# **An Alternative to the Trust-Region:** Homogeneous Second-Order Descent Framework

### **WOEC, AUGUST 18, 2023**

Yinyu Ye **Stanford University and CUHKSZ (Sabbatical Leave)** 

Stanford University



## **Early Complexity Analyses for Nonconvex Optimization**

- $\min f(x), x \in X \text{ in } \mathbb{R}^n$ , where f is nonconvex and twice-differentiable,  $g_k = \nabla f(x_k), H_k = \nabla^2 f(x_k)$
- Goal: find  $x_k$  such that:  $\|\nabla f(x_k)\| \le \epsilon$  (primary, first-order condition)  $\lambda_{min}(H_k) \ge -\sqrt{\epsilon}$  (in active subspace, second-order condition)
- For the ball-constrained nonconvex QP: min  $c^T x + 0.5 x^T Q x$  s.t.  $\| x \|_2 \le 1$  $O(loglog(\epsilon^{-1}));$  see Vavasis&Zippel (1990), Y (1989,93).
- For nonconvex QP with polyhedral constraints:  $O(\epsilon^{-1})$ ; see Y (1998), Vavasis (2001)

### **Second-order Methods for General Optimization**

**SOM (Hessian-Type Methods) with** *M***-Lipschitz cont. Hessian** 

- Trust-region (More 70, Sorenson 80). Fixed-radius TR  $O(\epsilon^{-\frac{3}{2}})$ , see the lecture notes by Y since 2005
- Cubic regularization,  $O(e^{-3/2})$ , see Nesterov and Polyak (2006), Cartis, Gould, and Toint (2011)
- An adaptive trust-region framework,  $O(\epsilon^{-3/2})$ , Curtis, Robinson, and Samadi (2017) **SOM for convex functions**
- Cubic regularization,  $O(\epsilon^{-1/2})$ , see Nesterov and Polyak (2006),
- Accelerated SOMs,  $O(\epsilon^{-1/3})$ ,  $O(\epsilon^{-1/3.5})$ , see Monteiro and Svaitor (2013), Nesterov (2008), Doikov et al. (2022)
- Linearly convergent SOMs, self-concordance, see Nesterov and Nemirovskii (1994); scaled Lipschitz, see Kortanek and Zhu (1993), Anderson and Ye (1998); generalized concordance, see Sun (2019).

Disadvantage: each iteration requires O(n<sup>3</sup>) operations: How to reduce it?



### **An Integrated Descent Direction Using the SDP Homogeneous Model I (Zhang at al. SHUFE, 2022)** Recall the fixed-radius trust-region method minimizes the Taylor quadratic

model

$$\min_{d \in \mathbb{R}^n} m_k(d) := g_k^T d + \frac{1}{2} d^T H_k d$$
  
s.t. $||d|| \le \Delta_k$ .

where  $\Delta_k = \epsilon^{1/2} / M$  is the trust-ball radius.

- $-g_k$  is the first-order steepest descent direction but ignores Hessian; •
- $\bullet$
- **Could we construct a direction integrating both? Answer:** Use the most-left eigenvector of the SDP homogenized quadratic function! (see Rojas 2001, a specialized Lanczos method for the Trust-region Subproblem with a given radius; and Adachi 2017 for solving more Generalized Trust-region Subproblems)

$$\min_{\substack{[d,t]\in\mathbb{R}^{n+1}}} m_k(d) := t \cdot g_k^T d + \frac{1}{2} d^T H_k d + \frac{1}{2} \delta \cdot (1 - t^2)$$
  
s.t.  $||d||^2 + t^2 = \Delta_k^2 + 1$ 

the most-left eigenvector of  $H_k$ -would be a descent direction for the second order term







$$\psi_k\left(\xi_0, t; \delta\right) := \frac{1}{2} \begin{bmatrix} \xi_0 \\ t \end{bmatrix}^T \begin{bmatrix} H_k & g_k \\ g_k^T & -\delta \end{bmatrix} \begin{bmatrix} \xi_0 \\ t \end{bmatrix} = \frac{t^2}{2} \begin{bmatrix} \xi_0/t \\ 1 \end{bmatrix}^T \begin{bmatrix} H_k & g_k \\ g_k^T & -\delta \end{bmatrix} \begin{bmatrix} \xi_0/t \\ 1 \end{bmatrix}$$

• Find the direction  $\xi = \xi_0/t$  (if t = 0 then set t=1) by the leftmost eigenvector:

# $\min_{\substack{|[\xi_0;t]| \leq 1}} \psi_k(\xi_0,t;\delta)$

with a suitable  $\delta_k$  and use  $\xi$  as the direction to go – a single loop

algorithm to solve the original problem.

• Accessible at the cost of  $O(n^2 e^{-1/4})$  via the randomized Lanczos method and needs only Hessian-Vector-Product (HVP).

**An Integrated Descent Direction Using the** SDP Homogeneous Model II (Zhang at al. SHUFE, 2022)

### How to Set $\delta$ : Theoretical Guarantees of HSODM

- Consider using the second-order homogenized direction, and let the length of • each step  $\|\eta \xi\|$  be fixed:  $\|\eta \xi\| \le \Delta_k = \frac{2\sqrt{\epsilon}}{M}$ , where f(x) has *L*-Lipschitz gradient and *M*-Lipschitz Hessian.
- Theorem 1 (Global convergence rate) : Let f(x) satisfy the Lipchitz Assumption and fix  $\delta = \sqrt{\varepsilon}$ , and let  $x_{k+1} = x_k + \eta_k \xi$  where  $\eta_k = \Delta_k / \|\xi\|$ , then algorithm has  $O(e^{-3/2})$  iteration complexity to second-order stationarity, where each iteration compute the most-left eigenvector of the homogenized matrix to  $\epsilon$  accuracy.
- Theorem 2 (Local convergence rate): If the iterate  $x_k$  of HSODM converges to a strict local optimum  $x^*$ , HSODM possesses a local superlinear (quadratic) speed of convergence:  $||x_{k+1} - x^*|| = O(||x_k - x^*||^2)$ .







# **HSODM** with Line-Search

- Fixed step length  $\eta_k$  may be too conservative.
- Observation I: homogenized direction  $\xi$  can be used with any Line-search (e.g., Hager-Zhang)
- Theorem 3 (Global convergence with Line-search, informal) : If we apply the backtrack to compute  $\eta_k$  with parameter  $\beta \in (0,1)$  then
  - the algorithm converges in  $O\left(\epsilon^{-\frac{3}{2}} |\log_{\beta}(\epsilon)|\right)$  iterations.



### **Application I: HSODM for Policy Optimization in Reinforcement Learning**

Consider policy optimization of linearized objective in reinforcement learning

$$\max_{ heta \in \mathbb{R}^d} L( heta) := L(\pi_ heta),$$

 $heta_{k+1} = heta_k + lpha_k \cdot M_k 
abla \eta( heta_k),$ 

• The Natural Policy Gradient (NPG) method (Kakade, 2001) uses the Fisher information matrix where  $M_k$  is the inverse of

$$F_k( heta) = \mathbb{E}_{
ho_{ heta_k}, \pi_{ heta_k}}ig[
abla \log \pi_{ heta_k}(s, a)
abla \log \pi_{ heta_k}(s, a)igg]$$

$$egin{aligned} &\max_{ heta} 
abla L_{ heta_k}( heta_k)^T( heta- heta_k) \ & ext{ s.t. } \mathbb{E}_{s\sim 
ho_{ heta_k}}[D_{KL}(\pi_{ heta_k}(\cdot\mid s);\pi_{ heta}(\cdot\mid s))] \leq \delta. \end{aligned}$$

 $a)^{T}$ 

• Based on KL divergence, TRPO (Schulman et al. 2015) uses KL divergence in the constraint:

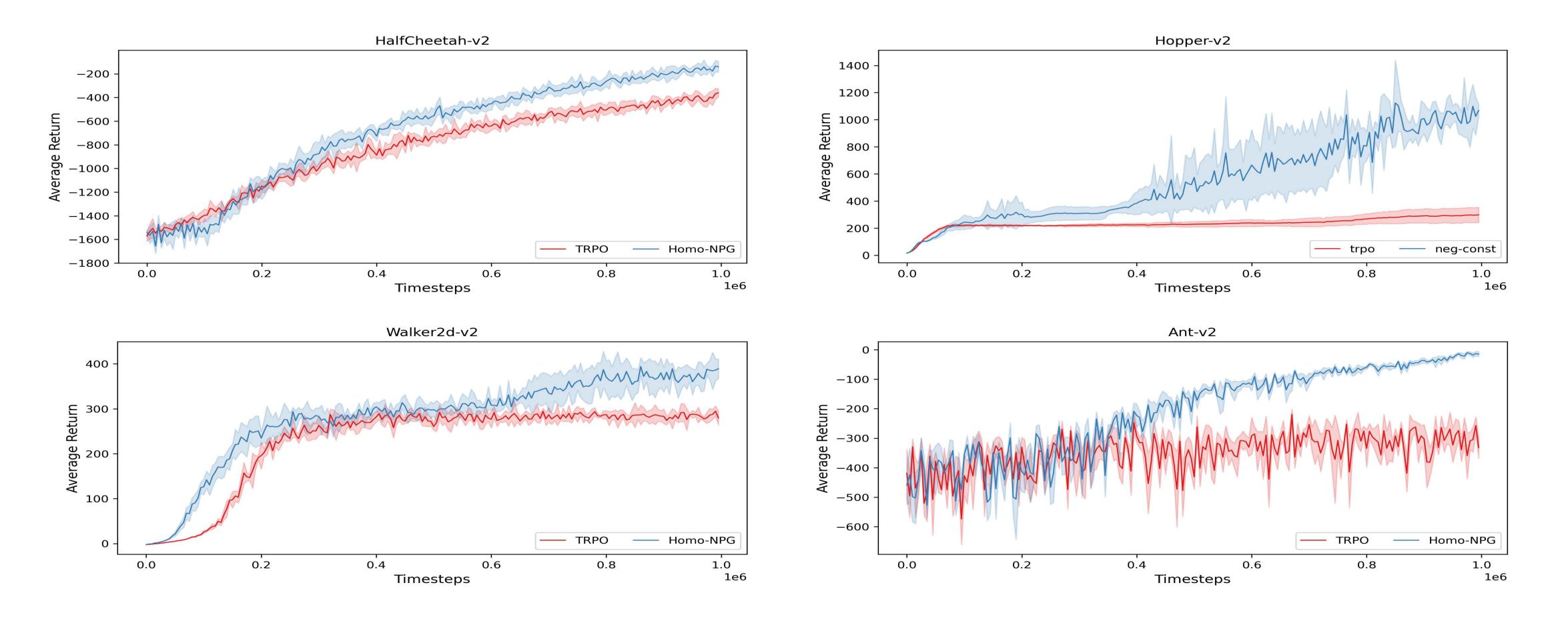
$$\min_{\|[v;t]\|\leq 1} egin{bmatrix}v\\t\end{bmatrix}^Tegin{bmatrix}F_k & g_k\g_t^T & -\delta\end{bmatrix}egin{bmatrix}v\\t\end{bmatrix}$$

**Homogeneous Natural Policy Gradient (NPG)** 



# **HSODM** for Policy Optimization in RL II

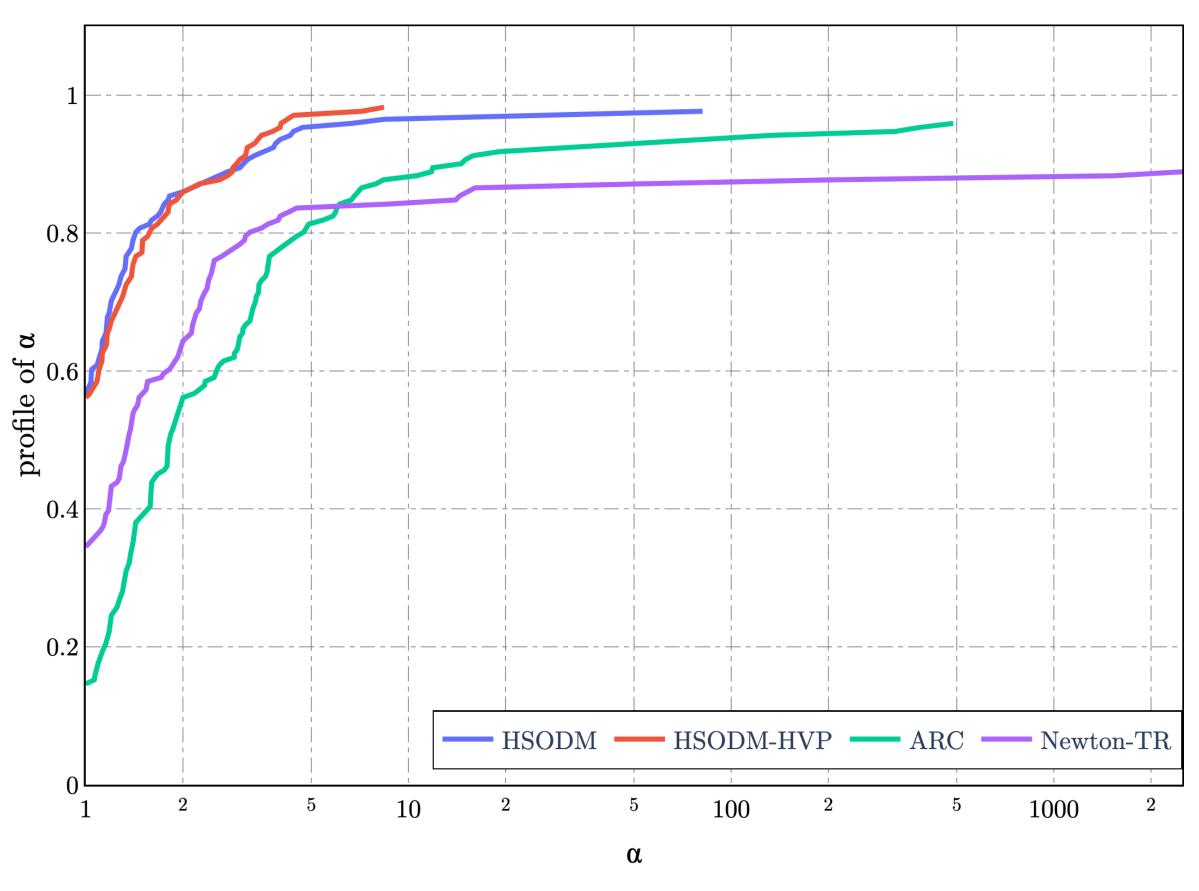
• A comparison of Homogeneous NPG and Trust-region Policy Optimization (Schultz, 2015)



### • Homogeneous NPG provides a significant improvement over TRPO (public open-source solver)



## **Application II: HSODM for CUTEst Benchmark**



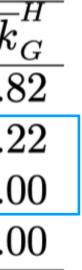
**Performance Profile of iteration #** 

 $\alpha$  – iteration # compared to the best profile( $\alpha$ ) – percentage of solved instances within  $\alpha$ 

- Compare HSODM (with Hessian), HSODM-HVP (with HVP), Newton TR and ARC
- Compare performance metrics in SGM

| method    | ${\cal K}$ | $\overline{t}_G$ | $\overline{k}_G$ | $\overline{k}_G^f$ | $\overline{k}_{G}^{g}$ | $\overline{k}$ |
|-----------|------------|------------------|------------------|--------------------|------------------------|----------------|
| Newton-TR | 155.00     | 15.41            | 216.59           | 211.99             | 219.58                 | 203.8          |
| HSODM     | 170.00     | 4.13             | 80.22            | 159.76             | 180.04                 | 80.2           |
| HSODM-HVP | 171.00     | 5.25             | 110.61           | 193.07             | 1080.57                | 0.0            |
| ARC       | 167.00     | 5.32             | 185.03           | 185.03             | 888.35                 | 0.0            |
|           |            |                  |                  |                    |                        |                |

- K success #, t<sub>G</sub> geometric mean running time (SGM), k<sub>G</sub> - geometric mean iteration # (SGM)
- Newton-TR and ARC are public solvers



### **Application III: HSODM for Sensor Network Localization**

Consider Sensor Network Location (SNL)

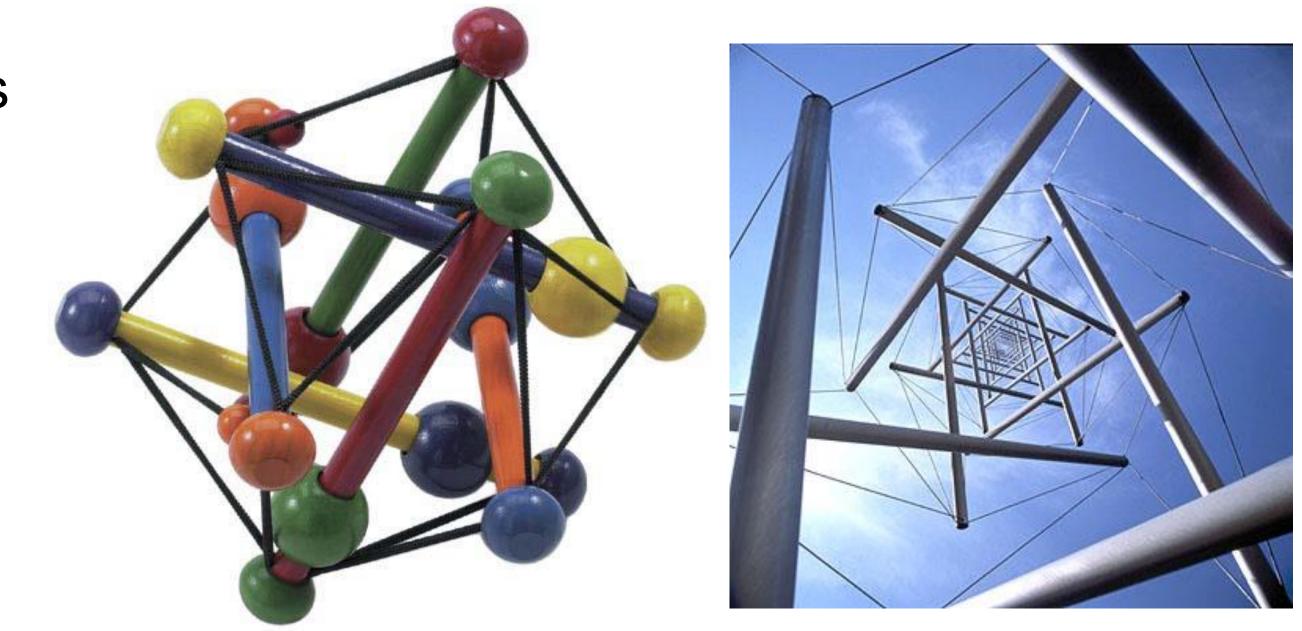
 $N_x = \{(i,j) : ||x_i - x_j|| = d_{ij} \le r_d\}, N_a = \{(i,k) : ||x_i - a_k|| = d_{ik} \le r_d\}$ 

where  $r_d$  is a fixed parameter known as the radio range. The SNL problem considers the following QCQP feasibility problem,

$$||x_i - x_j||^2 = d_{ij}^2, \forall (i, j) \in N_x$$
$$||x_i - a_k||^2 = \bar{d}_{ik}^2, \forall (i, k) \in N_a$$

• We can solve SNL by the nonconvex nonlinear least square (NLS) problem

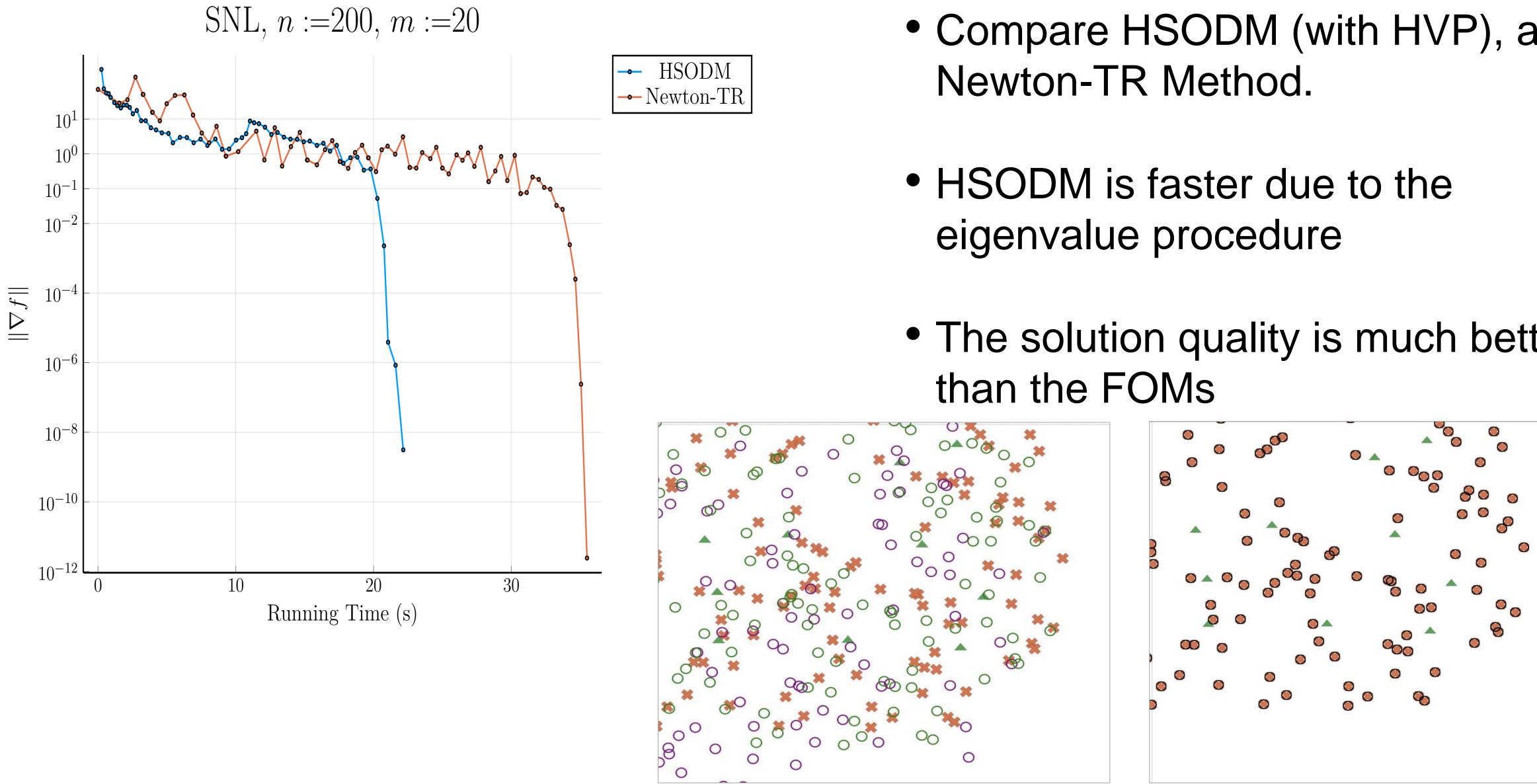
$$\min_{X} \sum_{(i < j, j) \in N_x} (\|x_i - x_j\|^2 - d_{ij}^2)^2 + \sum_{(k, j) \in N_x} (\|x_i - x_j\|^2 - d_{ij}^2)^2 + \sum_{(k, j) \in N_x} (\|x_i - x_j\|^2 - d_{ij}^2)^2 + \sum_{(k, j) \in N_x} (\|x_i - x_j\|^2 - d_{ij}^2)^2 + \sum_{(k, j) \in N_x} (\|x_i - x_j\|^2 - d_{ij}^2)^2 + \sum_{(k, j) \in N_x} (\|x_i - x_j\|^2 - d_{ij}^2)^2 + \sum_{(k, j) \in N_x} (\|x_i - x_j\|^2 - d_{ij}^2)^2 + \sum_{(k, j) \in N_x} (\|x_i - x_j\|^2 - d_{ij}^2)^2 + \sum_{(k, j) \in N_x} (\|x_i - x_j\|^2 - d_{ij}^2)^2 + \sum_{(k, j) \in N_x} (\|x_i - x_j\|^2 - d_{ij}^2)^2 + \sum_{(k, j) \in N_x} (\|x_i - x_j\|^2 - d_{ij}^2)^2 + \sum_{(k, j) \in N_x} (\|x_i - x_j\|^2 - d_{ij}^2)^2 + \sum_{(k, j) \in N_x} (\|x_i - x_j\|^2 - d_{ij}^2)^2 + \sum_{(k, j) \in N_x} (\|x_i - x_j\|^2 - d_{ij}^2)^2 + \sum_{(k, j) \in N_x} (\|x_i - x_j\|^2 - d_{ij}^2)^2 + \sum_{(k, j) \in N_x} (\|x_i - x_j\|^2 - d_{ij}^2)^2 + \sum_{(k, j) \in N_x} (\|x_i - x_j\|^2 - d_{ij}^2)^2 + \sum_{(k, j) \in N_x} (\|x_i - x_j\|^2 - d_{ij}^2)^2 + \sum_{(k, j) \in N_x} (\|x_i - x_j\|^2 - d_{ij}^2)^2 + \sum_{(k, j) \in N_x} (\|x_i - x_j\|^2 - d_{ij}^2)^2 + \sum_{(k, j) \in N_x} (\|x_i - x_j\|^2 - d_{ij}^2)^2 + \sum_{(k, j) \in N_x} (\|x_i - x_j\|^2 - d_{ij}^2)^2 + \sum_{(k, j) \in N_x} (\|x_i - x_j\|^2 - d_{ij}^2)^2 + \sum_{(k, j) \in N_x} (\|x_i - x_j\|^2 - d_{ij}^2)^2 + \sum_{(k, j) \in N_x} (\|x_i - x_j\|^2 - d_{ij}^2)^2 + \sum_{(k, j) \in N_x} (\|x_j - x_j\|^2 - d_{ij}^2)^2 + \sum_{(k, j) \in N_x} (\|x_j - x_j\|^2 - d_{ij}^2)^2 + \sum_{(k, j) \in N_x} (\|x_j - x_j\|^2 - d_{ij}^2)^2 + \sum_{(k, j) \in N_x} (\|x_j - x_j\|^2 - d_{ij}^2)^2 + \sum_{(k, j) \in N_x} (\|x_j - x_j\|^2 - d_{ij}^2)^2 + \sum_{(k, j) \in N_x} (\|x_j - x_j\|^2 - d_{ij}^2)^2 + \sum_{(k, j) \in N_x} (\|x_j - x_j\|^2 - d_{ij}^2)^2 + \sum_{(k, j) \in N_x} (\|x_j - x_j\|^2 - d_{ij}^2)^2 + \sum_{(k, j) \in N_x} (\|x_j - x_j\|^2 - d_{ij}^2)^2 + \sum_{(k, j) \in N_x} (\|x_j - x_j\|^2 - d_{ij}^2)^2 + \sum_{(k, j) \in N_x} (\|x_j - x_j\|^2 - d_{ij}^2)^2 + \sum_{(k, j) \in N_x} (\|x_j - x_j\|^2 - d_{ij}^2)^2 + \sum_{(k, j) \in N_x} (\|x_j - x_j\|^2 - d_{ij}^2)^2 + \sum_{(k, j) \in N_x} (\|x_j - x_j\|^2 - d_{ij}^2)^2 + \sum_{(k, j) \in N_x} (\|x_j - x_j\|^2 - d_{ij}^2)^2 + \sum_{(k, j) \in N_x} (\|x_j - x_j\|^2 - d_{ij}^2)^2 + \sum_{(k, j) \in N_x} (\|x_j - x_j\|^2 - d_{ij}^2)^2 + \sum_{(k, j) \in N_x} ($$



 $(\|a_k - x_j\|^2 - \bar{d}_{kj}^2)^2.$ 

### **Kurt's Collection**

### **Application III: HSODM for Sensor Network Localization**



- Compare HSODM (with HVP), and
- The solution quality is much better





### Adaptive HSODM for 2<sup>nd</sup> order Lipschitz functions I

 Establish an equivalence of HSODM to Adaptive Trust-Region Method: Adjust  $\delta_k \nearrow$  Implicit controls:  $|d_k(\delta_k)| \nearrow$ 

 Establish an equivalence of HSODM to Cubic Regularized Newton Method  $d_k = \operatorname{argmin} \quad g_k^T d + \frac{1}{2} d^T H_k d + \frac{\sqrt{h_k(\delta_k)}}{3}$ 

adaptively using a bisection to find proper  $h_k$ 

where  $\theta_k$  is the dual variable; therefore one can tune  $\delta_k$ Takeaway: "O(n<sup>3</sup>) Newton" can be replaced by  $O(n^2 \epsilon^{(-1/4)})$ 

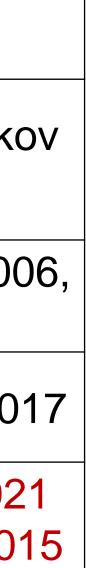
## **Generalized Homogeneous Model (GHM) and HSODM**

- Can we extend HSODM to more second-order frameworks?  $\bullet$
- Introduce Generalized Homogeneous Model (GHM)

$$\begin{bmatrix} H_k & g_k \\ g_k^T & \delta \end{bmatrix} \Rightarrow \begin{bmatrix} H_k & \phi_k \\ \phi_k^T & \delta_k \end{bmatrix},$$

Adaptive  $\delta_k$  and smart choice of  $\phi_k$  ( $g_k$  suffices in most case) 

|        |                         | Adaptive Controls |                |                                          | References                                        |  |
|--------|-------------------------|-------------------|----------------|------------------------------------------|---------------------------------------------------|--|
| Method |                         | $\phi_k$          | δ <sub>k</sub> | Complexity                               |                                                   |  |
|        | Gradient Regularization |                   |                | $O(\epsilon^{-0.5})$                     | Mishchenko 2022, Doiko<br>2022                    |  |
|        | ARC                     | +                 | ✓              | $O(\epsilon^{-1.5}), O(\epsilon^{-0.5})$ | Nesterov and Polyak 200<br>Cartis et al. 2011     |  |
|        | Trust-region Method     | †                 | $\checkmark$   | $O(\epsilon^{-1.5})$                     | Ye 2005, Curtis et al. 201                        |  |
|        | Homotopy Method (new)   | $\checkmark$      |                | $O(log(\epsilon^{-1}))$                  | Luenberger and Ye 202<br>Lecture notes by Ye, 201 |  |



### **Concordant Second-Order Lipschitz condition I**

• Consider min f(x), where f(x) satisfies

 $\left\| 
abla f(x+d) - 
abla f(x) - 
abla^2 f(x) d 
ight\| \leq eta \cdot d^T 
abla^2 f(x) d 
ight\|$ 

whenever  $|| d || \leq O(1)$ .

- This condition is called the concordant second-order Lipschitz condition (CSOLC), first introduced in Luenberger & Ye (2015, 2022).
- **CSOLC** is motivated from the Scaled Lipschitz Condition, which was widely used in the IPMs and MCPs. see Zhu (1992), Kortane&Zhu (1993), **Andersen&Ye(1999).**

### **Concordant Second-Order Lipschitz condition II**

### **Properties of CSOLC:**

- **Closed under positive scalar multiplications and summations;**
- Closed under affine transformation: if f(x) satisfies CSOLC, then f(Ax)

### **Examples of CSOLC:**

- Convex quadratic functions, exponential functions;
- $\gamma(0)$  -Regularized logistic regressi

$$+ \frac{\gamma}{|x|^2}$$

ion: 
$$f(x) = \frac{1}{m} \sum_{i=1}^{m} \log \left( 1 + e^{-b_i \cdot a_i^T x} \right)$$

### The Homotopy Model

• The homotopy model:

 $x_{\mu_T} = \arg\min f$ 

Where  $\mu_T \rightarrow 0$ . We say  $\{X_{\mu_T}\}$  forms a "central" path.

At each iterate solve the homotopy model *inexactly* (approximate) "centering" condition, ACC):  $\|\nabla f(x_{T,k}) + \mu_T \cdot x\|$ 

Use GHM with proper  $\delta_k$  and  $\phi_k$  in each iteration! 

$$f(x) + \frac{\mu_T}{2} ||x||^2$$

$$\| \leq \frac{\mu_T}{1+3(\beta+1)}.$$

### Homotopy HSODM I

For each homotopy model, we apply GHM to solve: lacksquare

$$\min_{\|[v;t]\| \le 1} \begin{bmatrix} v \\ t \end{bmatrix}^T \begin{bmatrix} H_{T,k} \\ (g_{T,k} + \mu_T \cdot x_{T,k})^T \end{bmatrix}$$

- Lemma 2(a): (fixed distance from the "central" path)  $\|x_{T,k} - x_{\mu_T}\| \le \frac{1}{1 + 3(\beta + 1)}$
- satisfied within  $K \leq 2$  steps, specifically

$$K = \left[\log_2\left(\frac{\log(1+3(\beta+1)) - \log \beta}{\log 3 - \log 2}\right]$$

$$\begin{array}{c}g_{T,k} + \mu_T \cdot x_{T,k} \\ -\mu_T \end{array} \begin{bmatrix} v \\ t \end{bmatrix}$$

Lemma 2(b): (finite convergence for each epoch) For any  $\mu_T$ , ACC can be

 $\underline{\log(\beta+1)}$ 

### Homotopy HSODM II

### **A Non-Interior Homotopy HSODM:**

Linearly decrease  $\mu_T \rightarrow$  simultaneously adaptive  $\delta_k$  and  $\phi_k$  $\bullet$ 

$$\mu_{T+1} = \frac{1 + \|x_{T,k}\|}{1 + 3(1 + \beta)(1 + \|x_{T,k}\|)} \cdot \mu_T$$

- Use GHMs as each subproblem at  $\mu_T$  with finite convergence
- Theorem: (global rate of convergence) After at most

$$\overline{T} = \left[ \log_{\tau} \left( \frac{(1 + 1)^2}{2(\beta + 1)(1 + \|\nabla f)^2} \right) \right]$$

iterates, we could find an iterate that satisfies  $|\nabla f(x_{\overline{T}+1.0})| \leq \epsilon$ 

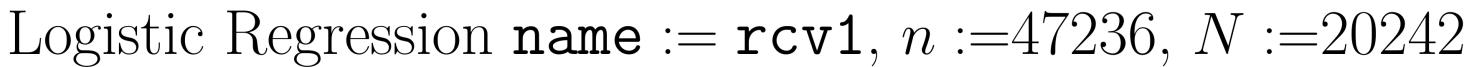
 $x_{T+1,0} := x_{T,k}$ 

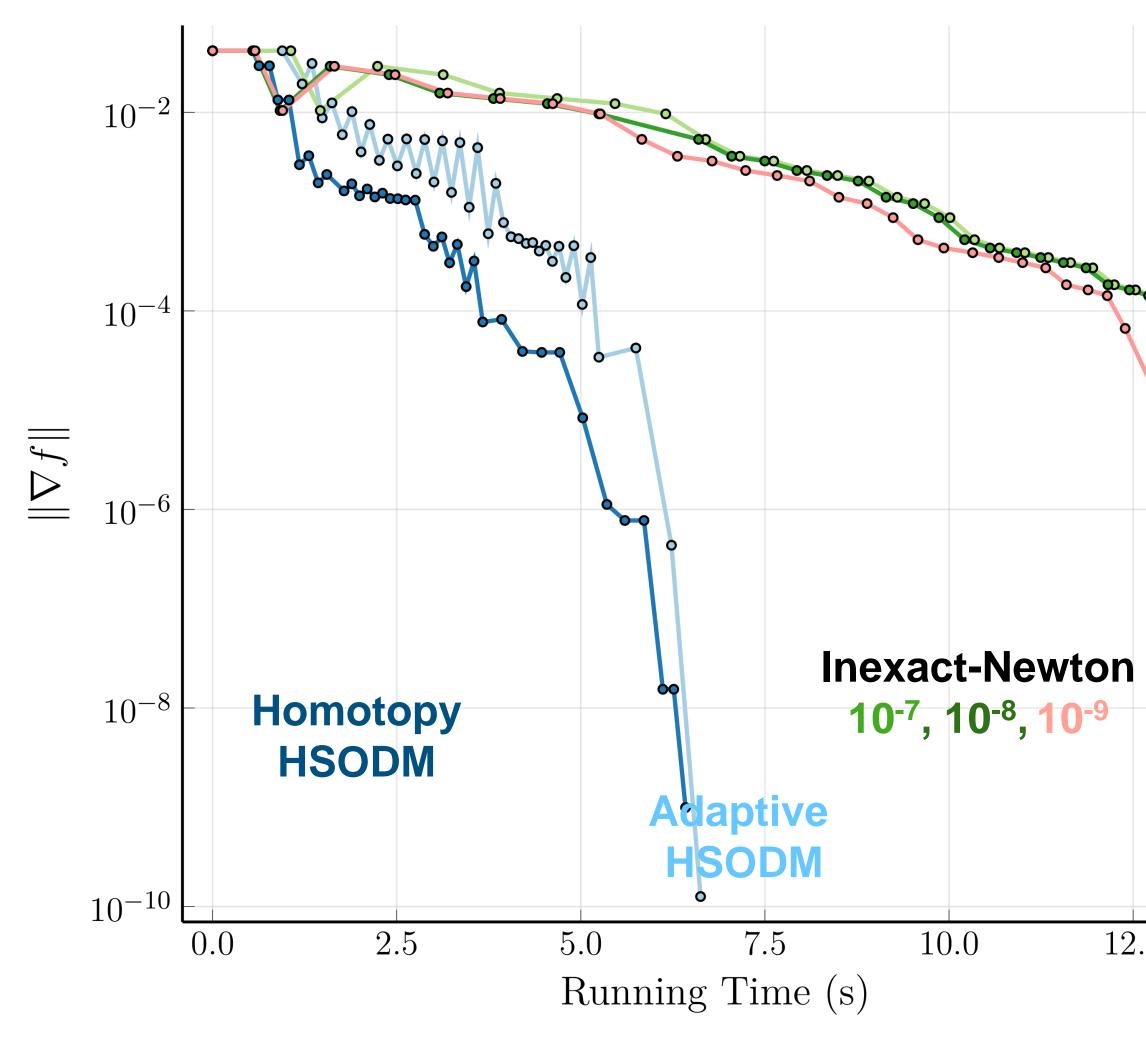
 $\frac{+3(\beta+1))\epsilon}{f(0)\|^2((3\beta+4)\|x^*\|+2)}\bigg)\bigg|$ 

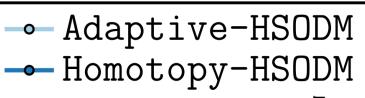
(no need to be strictly convex)

### Application IV: A Comparison in $L_2$ - Logistic regression, $\gamma = 1e-5$

12.5





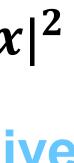


- $iNewton-10^{-7}$ 0
- $iNewton-10^{-8}$ 0
- $iNewton-10^{-9}$
- *L*<sub>2</sub> -Logistic regression:

$$f(x) = \frac{1}{m} \sum_{i=1}^{m} \log \left( 1 + e^{-b_i \cdot a_i^T x} \right) + \frac{\gamma}{2} |x|$$

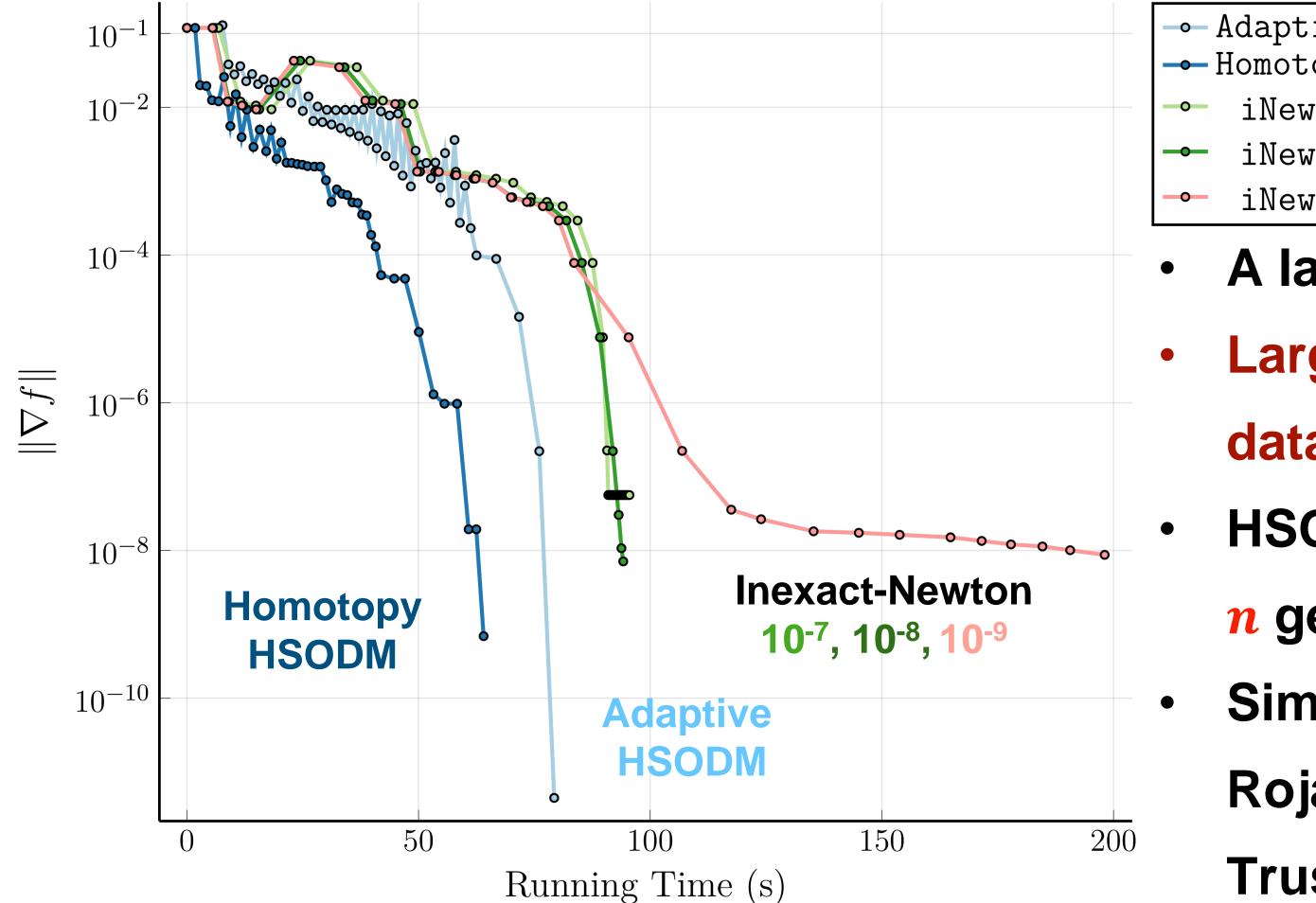
- **Compare Homotopy-HSODM, Adaptive HSODM**
- and inexact Newton with different accuracy (public open-source code)

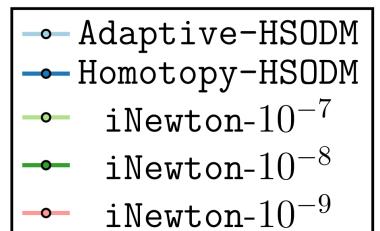




# A Comparison in $L_2$ - Logistic regression, $\gamma = 1e-5$

Logistic Regression name := news20, n := 1355191, N := 19996



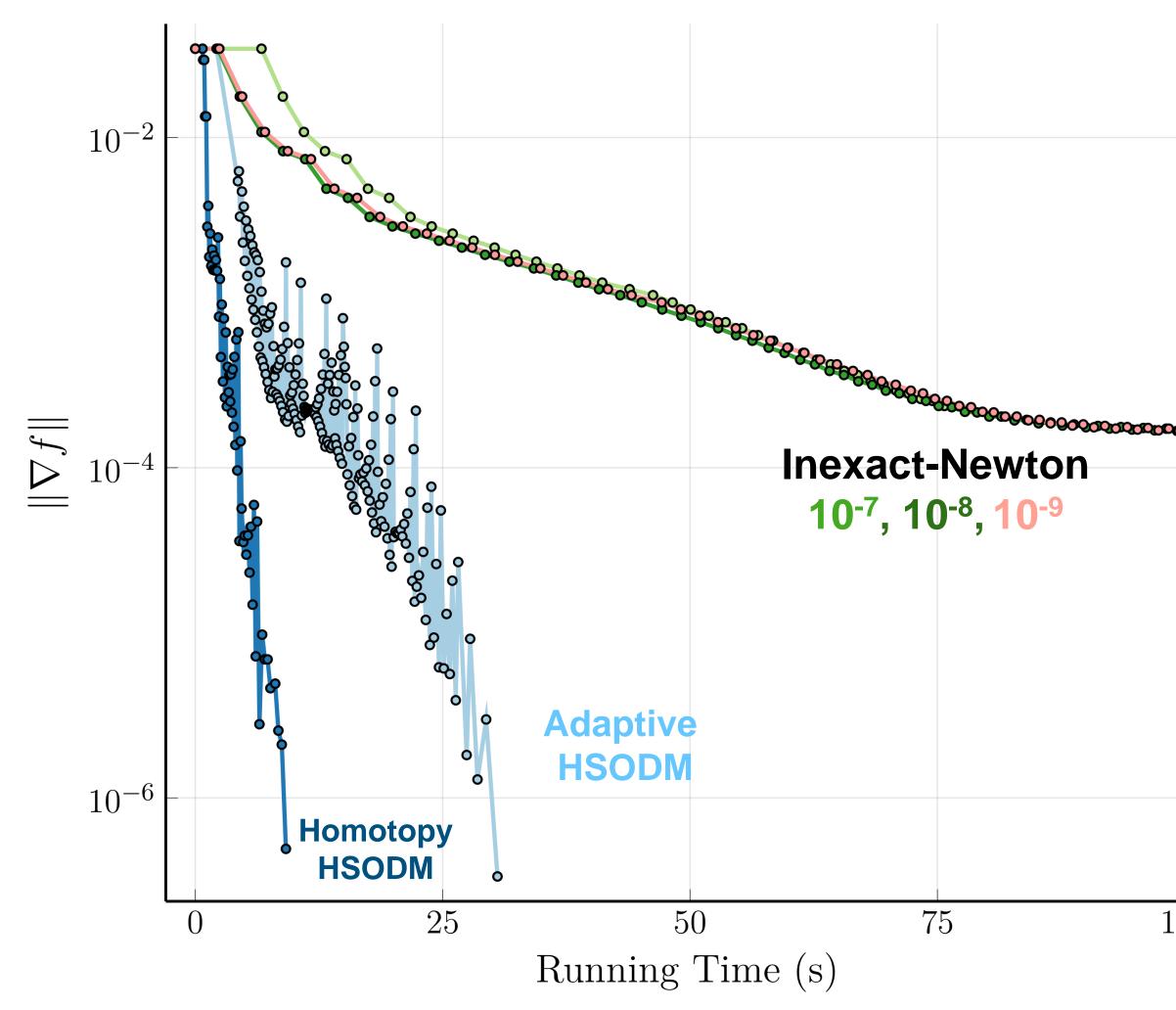


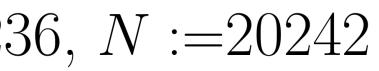
- A larger dataset news20
- Large dimension but relatively few data
  - **HSODM** can benefit when dimension *n* gets large
- Similar results were observed in Rojas 2001, Adachi 2017 for solving **Trust-region Subproblems.**

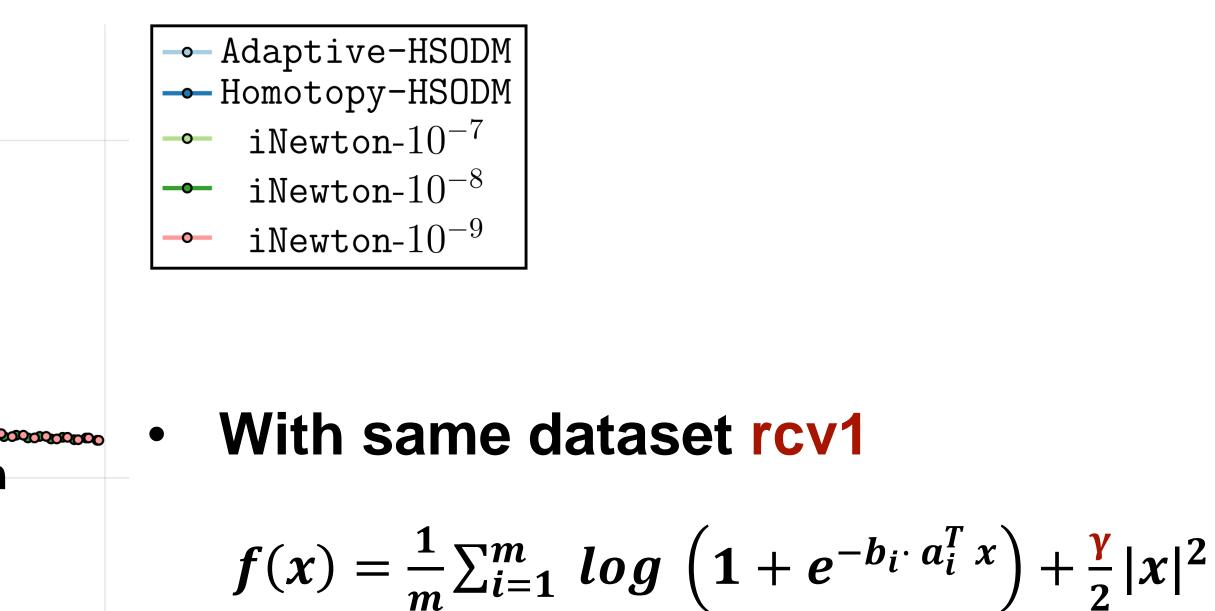


## **Resilience of Homotopy-HSODM for small** $\gamma$ , $\gamma = 1e-7$

Logistic Regression name := rcv1, n := 47236, N := 20242





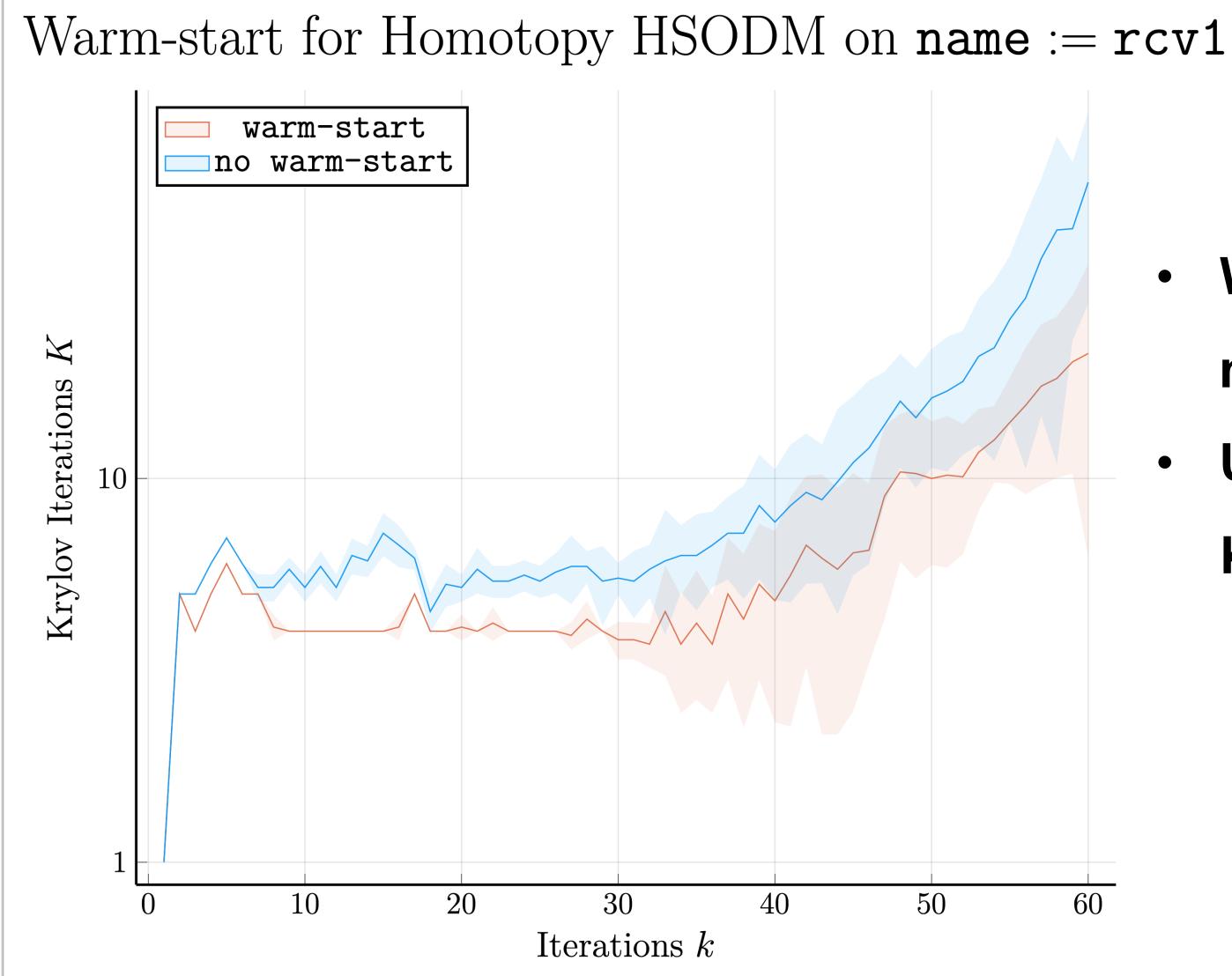


- Sensitivity study from  $\gamma = 1e-5 \rightarrow 1e-7$
- Homotopy-HSODM is resilient to small  $\gamma$ (almost degenerate case)

100



## Warm-starting Lanczos Method in HSODM

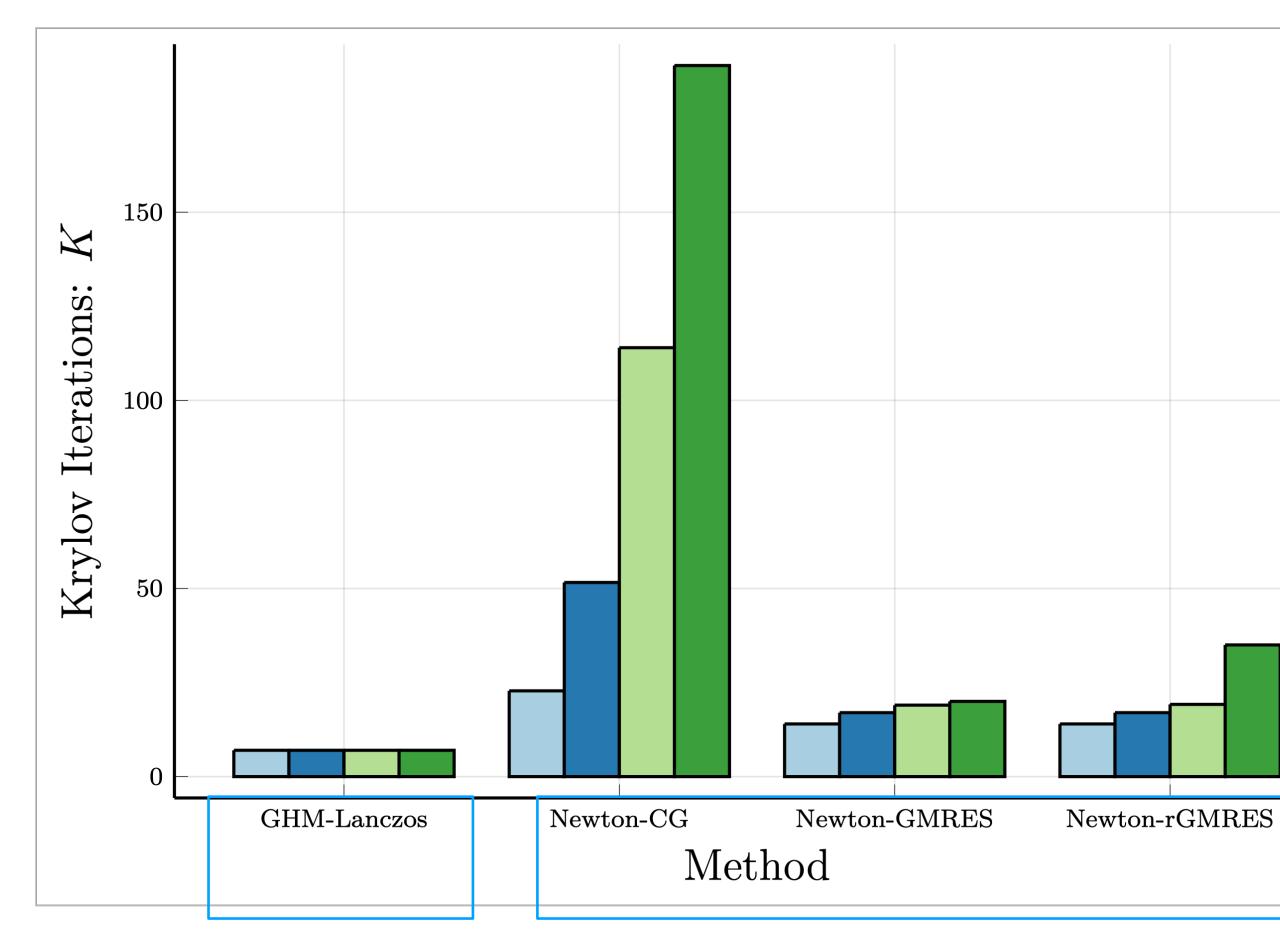


- Would the solution help in solving  $\bullet$ next eigenvalue problem?
- Using warm-starting vectors saves  $\bullet$ **Krylov iterations !**





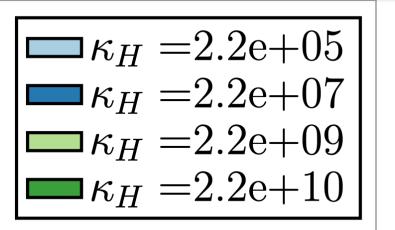
### Why does it work? Resilience of Eigenvalue Techniques I



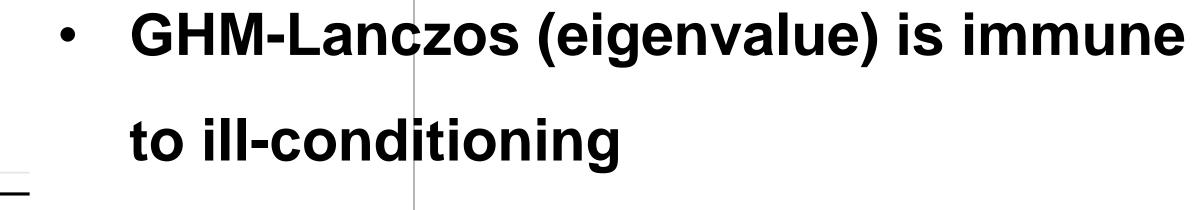
**Eigenvalues** 

**Linear Systems** 

$$H_{ij} = \frac{1}{i+j-1}, i \le n, j \le n.$$



We imitate the system needed in SOMs, using Hilbert matrices:
 H + δ I with δ to adjust cond. #





### Why does it work? **Resilience of Eigenvalue Techniques II**

**Table 3**: Average number of Krylov iterations  $K(\gamma)$  of calculating one Newton-type direction (5.2) for a linear least-square problem (5.1) with  $\gamma \in \{10^{-3}, 10^{-4}, 10^{-5}, 10^{-6}\}.$ 

| name    | method        | $K\left(10^{-3}\right)$ | $K\left(10^{-4}\right)$ | $K\left(10^{-5}\right)$ | $K\left(10^{-6}\right)$ |
|---------|---------------|-------------------------|-------------------------|-------------------------|-------------------------|
| a4a     | Newton-GMRES  | 28.0                    | 53.6                    | 76.0                    | 82.6                    |
|         | Newton-rGMRES | 28.0                    | 53.4                    | 128.0                   | 190.6                   |
|         | Newton-CG     | 40.4                    | 105.4                   | -                       | -                       |
|         | GHM-Lanczos   | 6.0                     | 6.0                     | 6.0                     | 6.0                     |
| a9a     | Newton-GMRES  | 28.0                    | 53.4                    | 74.2                    | 85.8                    |
|         | Newton-rGMRES | 28.0                    | 52.8                    | 111.6                   | 198.0                   |
|         | Newton-CG     | 39.8                    | 105.2                   | _                       | _                       |
|         | GHM-Lanczos   | 6.0                     | 6.0                     | 6.0                     | 6.0                     |
| covtype | Newton-GMRES  | 28.0                    | 54.4                    | 99.2                    | 152.0                   |
|         | Newton-rGMRES | 28.0                    | 54.4                    | 141.0                   | 198.0                   |
|         | Newton-CG     | 33.4                    | 85.2                    | _                       | _                       |
|         | GHM-Lanczos   | 6.0                     | 6.0                     | 6.0                     | 6.0                     |
| rcv1    | Newton-GMRES  | 9.6                     | 11.0                    | 12.0                    | 13.0                    |
|         | Newton-rGMRES | 9.6                     | 11.0                    | 12.0                    | 13.0                    |
|         | Newton-CG     | 11.4                    | 19.0                    | 32.4                    | 52.8                    |
|         | GHM-Lanczos   | 6.0                     | 6.0                     | 6.0                     | 6.0                     |
| w4a     | Newton-GMRES  | 18.8                    | 38.0                    | 78.0                    | 156.0                   |
|         | Newton-rGMRES | 18.8                    | 38.0                    | 92.0                    | 198.0                   |
|         | Newton-CG     | 19.4                    | 61.6                    | -                       | -                       |
|         | GHM-Lanczos   | <b>5.0</b>              | 5.0                     | 5.0                     | 5.0                     |

- Using real data to solve linear least-square models.
- **GHM-Lanczos (eigenvalue) is immune** •
  - to ill-conditioning
- Highly robust in degenerate problems
- <sup>‡</sup> In theory, Lanczos method for •
  - eigenvalue is depends on gaps
  - instead of cond. #



- computation is a "cheaper" alternative to the Trust-Region or
- **Newton step computation**
- $\phi_k$  and substitutes for other SOM step
- **Ongoing: HSODM for IPMs, non-smooth optimization.**

# Happy Birthday Jong-Shi



### Homogeneous second-order direction as an extreme eigenvalue

### Generalized Homogeneous direction is flexible using different $\delta_k$ and

