An Alternative to the Trust-Region: Homogeneous Second-Order Descent Framework

WOEC, AUGUST 18, 2023

Yinyu Ye **Stanford University and CUHKSZ (Sabbatical Leave)**

Stanford University

Early Complexity Analyses for Nonconvex Optimization

- $\min f(x), x \in X \text{ in } \mathbb{R}^n$, where f is nonconvex and twice-differentiable, $g_k = \nabla f(x_k), H_k = \nabla^2 f(x_k)$
- Goal: find x_k such that: $\|\nabla f(x_k)\| \le \epsilon$ (primary, first-order condition) $\lambda_{min}(H_k) \ge -\sqrt{\epsilon}$ (in active subspace, second-order condition)
- For the ball-constrained nonconvex QP: min $c^T x + 0.5 x^T Q x$ s.t. $\| x \|_2 \le 1$ $O(loglog(\epsilon^{-1}));$ see Vavasis&Zippel (1990), Y (1989,93).
- For nonconvex QP with polyhedral constraints: $O(\epsilon^{-1})$; see Y (1998), Vavasis (2001)

Second-order Methods for General Optimization

SOM (Hessian-Type Methods) with *M***-Lipschitz cont. Hessian**

- Trust-region (More 70, Sorenson 80). Fixed-radius TR $O(\epsilon^{-\frac{3}{2}})$, see the lecture notes by Y since 2005
- Cubic regularization, $O(e^{-3/2})$, see Nesterov and Polyak (2006), Cartis, Gould, and Toint (2011)
- An adaptive trust-region framework, $O(\epsilon^{-3/2})$, Curtis, Robinson, and Samadi (2017) **SOM for convex functions**
- Cubic regularization, $O(\epsilon^{-1/2})$, see Nesterov and Polyak (2006),
- Accelerated SOMs, $O(\epsilon^{-1/3})$, $O(\epsilon^{-1/3.5})$, see Monteiro and Svaitor (2013), Nesterov (2008), Doikov et al. (2022)
- Linearly convergent SOMs, self-concordance, see Nesterov and Nemirovskii (1994); scaled Lipschitz, see Kortanek and Zhu (1993), Anderson and Ye (1998); generalized concordance, see Sun (2019).

Disadvantage: each iteration requires O(n³) operations: How to reduce it?



An Integrated Descent Direction Using the SDP Homogeneous Model I (Zhang at al. SHUFE, 2022) Recall the fixed-radius trust-region method minimizes the Taylor quadratic

model

$$\min_{d \in \mathbb{R}^n} m_k(d) := g_k^T d + \frac{1}{2} d^T H_k d$$

s.t. $||d|| \le \Delta_k$.

where $\Delta_k = \epsilon^{1/2} / M$ is the trust-ball radius.

- $-g_k$ is the first-order steepest descent direction but ignores Hessian; •
- \bullet
- **Could we construct a direction integrating both? Answer:** Use the most-left eigenvector of the SDP homogenized quadratic function! (see Rojas 2001, a specialized Lanczos method for the Trust-region Subproblem with a given radius; and Adachi 2017 for solving more Generalized Trust-region Subproblems)

$$\min_{\substack{[d,t]\in\mathbb{R}^{n+1}}} m_k(d) := t \cdot g_k^T d + \frac{1}{2} d^T H_k d + \frac{1}{2} \delta \cdot (1 - t^2)$$

s.t. $||d||^2 + t^2 = \Delta_k^2 + 1$

the most-left eigenvector of H_k -would be a descent direction for the second order term

$$\psi_k\left(\xi_0, t; \delta\right) := \frac{1}{2} \begin{bmatrix} \xi_0 \\ t \end{bmatrix}^T \begin{bmatrix} H_k & g_k \\ g_k^T & -\delta \end{bmatrix} \begin{bmatrix} \xi_0 \\ t \end{bmatrix} = \frac{t^2}{2} \begin{bmatrix} \xi_0/t \\ 1 \end{bmatrix}^T \begin{bmatrix} H_k & g_k \\ g_k^T & -\delta \end{bmatrix} \begin{bmatrix} \xi_0/t \\ 1 \end{bmatrix}$$

• Find the direction $\xi = \xi_0/t$ (if t = 0 then set t=1) by the leftmost eigenvector:

$\min_{\substack{|[\xi_0;t]| \leq 1}} \psi_k(\xi_0,t;\delta)$

with a suitable δ_k and use ξ as the direction to go – a single loop

algorithm to solve the original problem.

• Accessible at the cost of $O(n^2 e^{-1/4})$ via the randomized Lanczos method and needs only Hessian-Vector-Product (HVP).

An Integrated Descent Direction Using the SDP Homogeneous Model II (Zhang at al. SHUFE, 2022)

How to Set δ : Theoretical Guarantees of HSODM

- Consider using the second-order homogenized direction, and let the length of • each step $\|\eta \xi\|$ be fixed: $\|\eta \xi\| \le \Delta_k = \frac{2\sqrt{\epsilon}}{M}$, where f(x) has *L*-Lipschitz gradient and *M*-Lipschitz Hessian.
- Theorem 1 (Global convergence rate) : Let f(x) satisfy the Lipchitz Assumption and fix $\delta = \sqrt{\varepsilon}$, and let $x_{k+1} = x_k + \eta_k \xi$ where $\eta_k = \Delta_k / \|\xi\|$, then algorithm has $O(e^{-3/2})$ iteration complexity to second-order stationarity, where each iteration compute the most-left eigenvector of the homogenized matrix to ϵ accuracy.
- Theorem 2 (Local convergence rate): If the iterate x_k of HSODM converges to a strict local optimum x^* , HSODM possesses a local superlinear (quadratic) speed of convergence: $||x_{k+1} - x^*|| = O(||x_k - x^*||^2)$.

HSODM with Line-Search

- Fixed step length η_k may be too conservative.
- Observation I: homogenized direction ξ can be used with any Line-search (e.g., Hager-Zhang)
- Theorem 3 (Global convergence with Line-search, informal) : If we apply the backtrack to compute η_k with parameter $\beta \in (0,1)$ then
 - the algorithm converges in $O\left(\epsilon^{-\frac{3}{2}} |\log_{\beta}(\epsilon)|\right)$ iterations.

Application I: HSODM for Policy Optimization in Reinforcement Learning

Consider policy optimization of linearized objective in reinforcement learning

$$\max_{ heta \in \mathbb{R}^d} L(heta) := L(\pi_ heta),$$

 $heta_{k+1} = heta_k + lpha_k \cdot M_k
abla \eta(heta_k),$

• The Natural Policy Gradient (NPG) method (Kakade, 2001) uses the Fisher information matrix where M_k is the inverse of

$$F_k(heta) = \mathbb{E}_{
ho_{ heta_k}, \pi_{ heta_k}}ig[
abla \log \pi_{ heta_k}(s, a)
abla \log \pi_{ heta_k}(s, a)igg]$$

$$egin{aligned} &\max_{ heta}
abla L_{ heta_k}(heta_k)^T(heta- heta_k) \ & ext{ s.t. } \mathbb{E}_{s\sim
ho_{ heta_k}}[D_{KL}(\pi_{ heta_k}(\cdot\mid s);\pi_{ heta}(\cdot\mid s))] \leq \delta. \end{aligned}$$

 $a)^{T}$

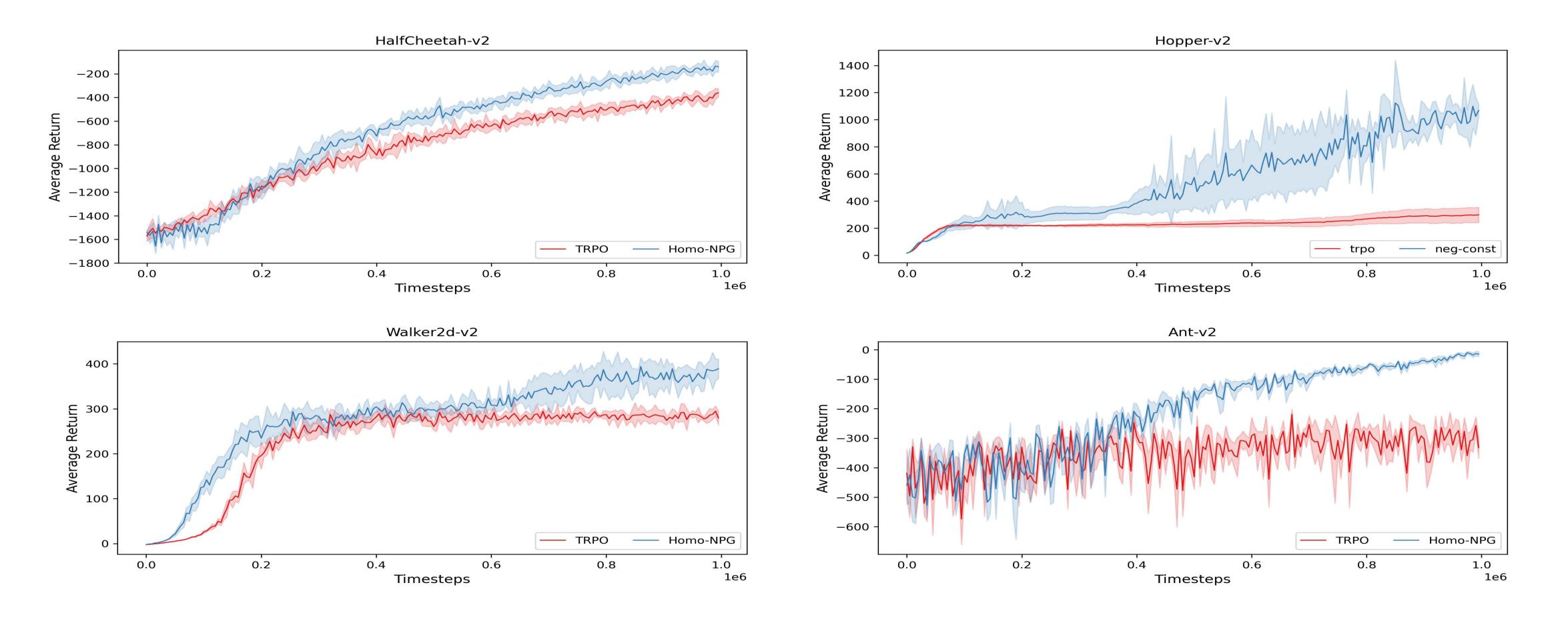
• Based on KL divergence, TRPO (Schulman et al. 2015) uses KL divergence in the constraint:

$$\min_{\|[v;t]\|\leq 1} egin{bmatrix}v\\t\end{bmatrix}^Tegin{bmatrix}F_k & g_k\g_t^T & -\delta\end{bmatrix}egin{bmatrix}v\\t\end{bmatrix}$$

Homogeneous Natural Policy Gradient (NPG)

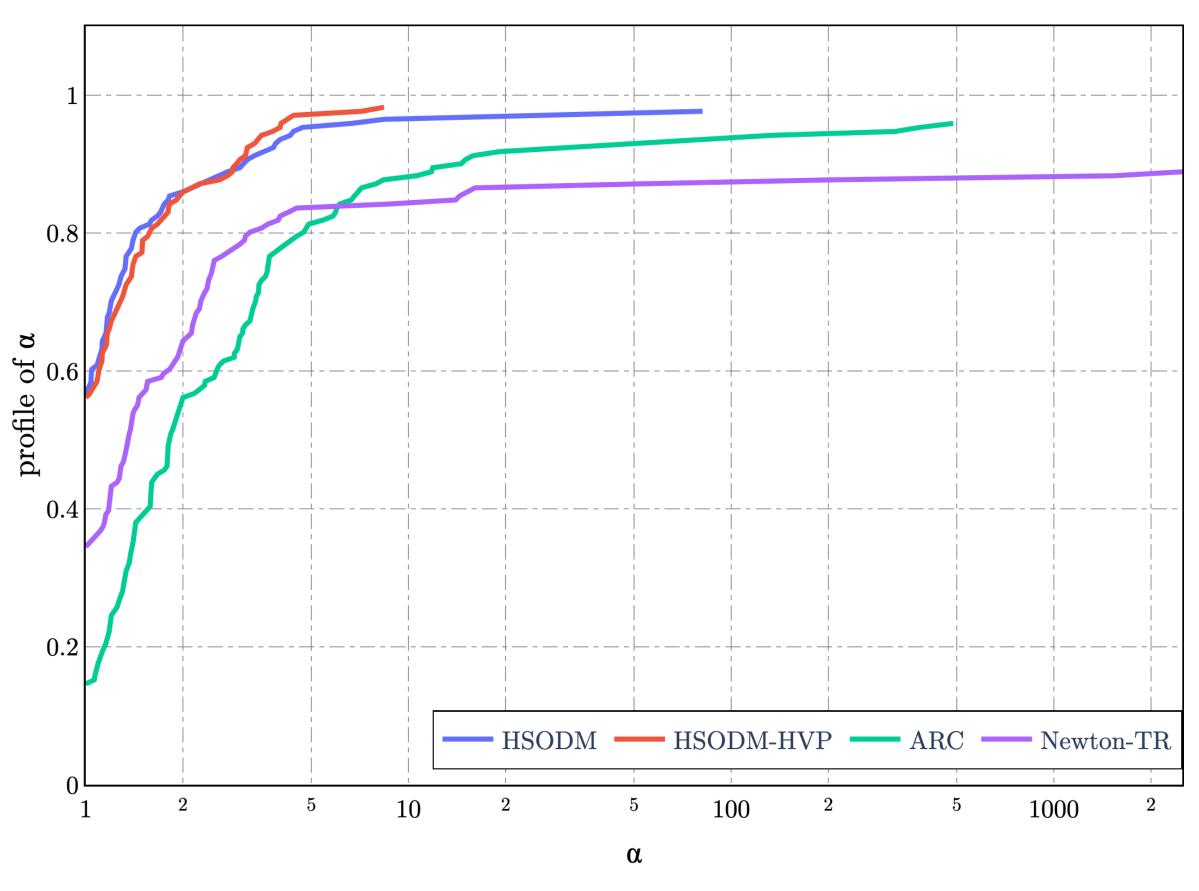
HSODM for Policy Optimization in RL II

• A comparison of Homogeneous NPG and Trust-region Policy Optimization (Schultz, 2015)



• Homogeneous NPG provides a significant improvement over TRPO (public open-source solver)

Application II: HSODM for CUTEst Benchmark



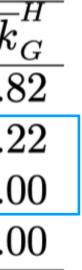
Performance Profile of iteration #

 α – iteration # compared to the best profile(α) – percentage of solved instances within α

- Compare HSODM (with Hessian), HSODM-HVP (with HVP), Newton TR and ARC
- Compare performance metrics in SGM

method	${\cal K}$	\overline{t}_G	\overline{k}_G	\overline{k}_G^f	\overline{k}_{G}^{g}	\overline{k}
Newton-TR	155.00	15.41	216.59	211.99	219.58	203.8
HSODM	170.00	4.13	80.22	159.76	180.04	80.2
HSODM-HVP	171.00	5.25	110.61	193.07	1080.57	0.0
ARC	167.00	5.32	185.03	185.03	888.35	0.0

- K success #, t_G geometric mean running time (SGM), k_G - geometric mean iteration # (SGM)
- Newton-TR and ARC are public solvers



Application III: HSODM for Sensor Network Localization

Consider Sensor Network Location (SNL)

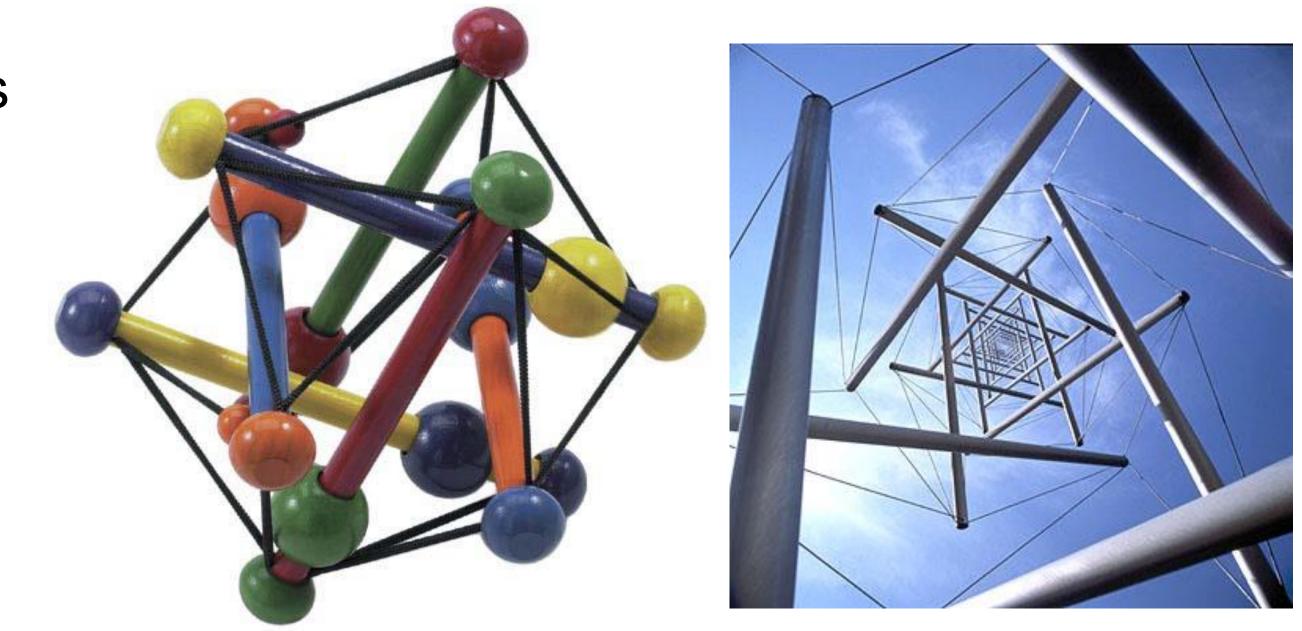
 $N_x = \{(i,j) : ||x_i - x_j|| = d_{ij} \le r_d\}, N_a = \{(i,k) : ||x_i - a_k|| = d_{ik} \le r_d\}$

where r_d is a fixed parameter known as the radio range. The SNL problem considers the following QCQP feasibility problem,

$$||x_i - x_j||^2 = d_{ij}^2, \forall (i, j) \in N_x$$
$$||x_i - a_k||^2 = \bar{d}_{ik}^2, \forall (i, k) \in N_a$$

• We can solve SNL by the nonconvex nonlinear least square (NLS) problem

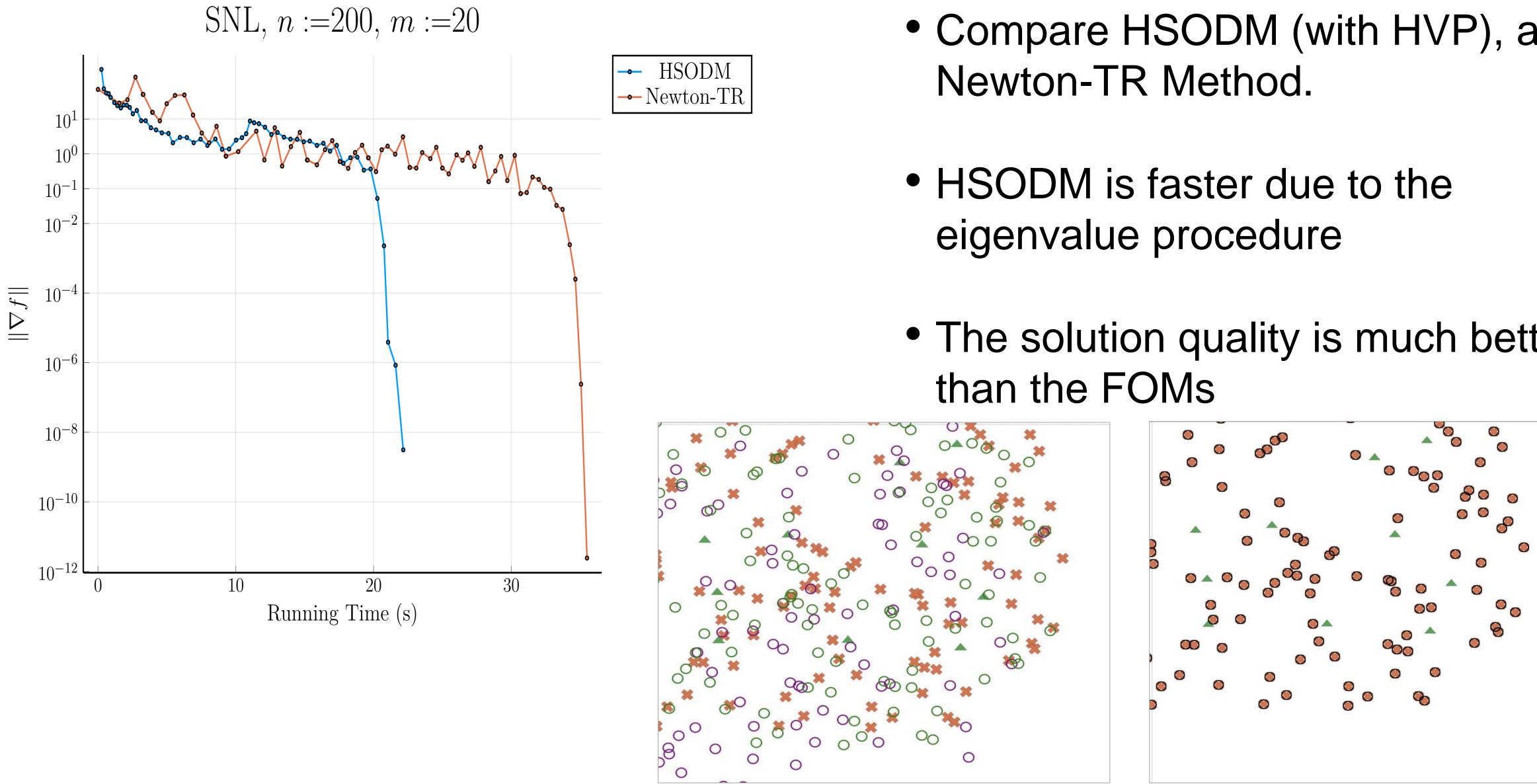
$$\min_{X} \sum_{(i < j, j) \in N_x} (\|x_i - x_j\|^2 - d_{ij}^2)^2 + \sum_{(k, j) \in N_x} (\|x_j - x_j\|^2 - d_{ij}^2)^2 + \sum_{(k, j) \in N_x} (\|x_j - x_j\|^2 - d_{ij}^2)^2 + \sum_{(k, j) \in N_x} (\|x_j - x_j\|^2 - d_{ij}^2)^2 + \sum_{(k, j) \in N_x} (\|x_j - x_j\|^2 - d_{ij}^2)^2 + \sum_{(k, j) \in N_x} (\|x_j - x_j\|^2 - d_{ij}^2)^2 + \sum_{(k, j) \in N_x} (\|x_j - x_j\|^2 - d_{ij}^2)^2 + \sum_{(k, j) \in N_x} (\|x_j - x_j\|^2 - d_{ij}^2)^2 + \sum_{(k, j) \in N_x} (\|x_j - x_j\|^2 - d_{ij}^2)^2 + \sum_{(k, j) \in N_x} (\|x_j - x_j\|^2 - d_{ij}^2)^2 + \sum_{(k, j) \in N_x} (\|x_j - x_j\|^2 - d_{ij}^2)^2 + \sum_{(k, j) \in N_x} (\|x_j - x_j\|^2 - d_{ij}^2)^2 + \sum_{(k, j) \in N_x} (\|x_j - x_j\|^2 - d_{ij}^2)^2 + \sum_{(k, j) \in N_x} (\|x_j - x_j\|^2 - d_{ij}^2)^2 + \sum_{(k, j) \in N_x} (\|x_j - x_j\|^2 - d_{ij}^2)^2 + \sum_{(k, j) \in N_x} (\|x_j - x_j\|^2 - d_{ij}^2)^2 + \sum_{(k, j) \in N_x} (\|x_j - x_j\|^2 - d_{ij}^2)^2 + \sum_{(k, j) \in N_x} (\|x_j - x_j\|^2 - d_{ij}^2)^2 + \sum_{(k, j) \in N_x} ($$



 $(\|a_k - x_j\|^2 - \bar{d}_{kj}^2)^2.$

Kurt's Collection

Application III: HSODM for Sensor Network Localization



- Compare HSODM (with HVP), and
- The solution quality is much better



Adaptive HSODM for 2nd order Lipschitz functions I

 Establish an equivalence of HSODM to Adaptive Trust-Region Method: Adjust $\delta_k \nearrow$ Implicit controls: $|d_k(\delta_k)| \nearrow$

 Establish an equivalence of HSODM to Cubic Regularized Newton Method $d_k = \operatorname{argmin} \quad g_k^T d + \frac{1}{2} d^T H_k d + \frac{\sqrt{h_k(\delta_k)}}{3}$

adaptively using a bisection to find proper h_k

where θ_k is the dual variable; therefore one can tune δ_k Takeaway: "O(n³) Newton" can be replaced by $O(n^2 \epsilon^{(-1/4)})$

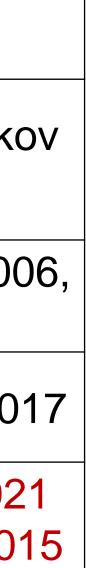
Generalized Homogeneous Model (GHM) and HSODM

- Can we extend HSODM to more second-order frameworks? \bullet
- Introduce Generalized Homogeneous Model (GHM)

$$\begin{bmatrix} H_k & g_k \\ g_k^T & \delta \end{bmatrix} \Rightarrow \begin{bmatrix} H_k & \phi_k \\ \phi_k^T & \delta_k \end{bmatrix},$$

Adaptive δ_k and smart choice of ϕ_k (g_k suffices in most case)

		Adaptive Controls			References	
Method		ϕ_k	δ _k	Complexity		
	Gradient Regularization			$O(\epsilon^{-0.5})$	Mishchenko 2022, Doiko 2022	
	ARC	+	✓	$O(\epsilon^{-1.5}), O(\epsilon^{-0.5})$	Nesterov and Polyak 200 Cartis et al. 2011	
	Trust-region Method	†	\checkmark	$O(\epsilon^{-1.5})$	Ye 2005, Curtis et al. 201	
	Homotopy Method (new)	\checkmark		$O(log(\epsilon^{-1}))$	Luenberger and Ye 202 Lecture notes by Ye, 201	



Concordant Second-Order Lipschitz condition I

• Consider min f(x), where f(x) satisfies

 $\left\|
abla f(x+d) -
abla f(x) -
abla^2 f(x) d
ight\| \leq eta \cdot d^T
abla^2 f(x) d
ight\|$

whenever $|| d || \leq O(1)$.

- This condition is called the concordant second-order Lipschitz condition (CSOLC), first introduced in Luenberger & Ye (2015, 2022).
- **CSOLC** is motivated from the Scaled Lipschitz Condition, which was widely used in the IPMs and MCPs. see Zhu (1992), Kortane&Zhu (1993), **Andersen&Ye(1999).**

Concordant Second-Order Lipschitz condition II

Properties of CSOLC:

- **Closed under positive scalar multiplications and summations;**
- Closed under affine transformation: if f(x) satisfies CSOLC, then f(Ax)

Examples of CSOLC:

- Convex quadratic functions, exponential functions;
- $\gamma(0)$ -Regularized logistic regressi

$$+ \frac{\gamma}{|x|^2}$$

ion:
$$f(x) = \frac{1}{m} \sum_{i=1}^{m} \log \left(1 + e^{-b_i \cdot a_i^T x} \right)$$

The Homotopy Model

• The homotopy model:

 $x_{\mu_T} = \arg\min f$

Where $\mu_T \rightarrow 0$. We say $\{X_{\mu_T}\}$ forms a "central" path.

At each iterate solve the homotopy model *inexactly* (approximate) "centering" condition, ACC): $\|\nabla f(x_{T,k}) + \mu_T \cdot x\|$

Use GHM with proper δ_k and ϕ_k in each iteration!

$$f(x) + \frac{\mu_T}{2} ||x||^2$$

$$\| \leq \frac{\mu_T}{1+3(\beta+1)}.$$

Homotopy HSODM I

For each homotopy model, we apply GHM to solve: lacksquare

$$\min_{\|[v;t]\| \le 1} \begin{bmatrix} v \\ t \end{bmatrix}^T \begin{bmatrix} H_{T,k} \\ (g_{T,k} + \mu_T \cdot x_{T,k})^T \end{bmatrix}$$

- Lemma 2(a): (fixed distance from the "central" path) $\|x_{T,k} - x_{\mu_T}\| \le \frac{1}{1 + 3(\beta + 1)}$
- satisfied within $K \leq 2$ steps, specifically

$$K = \left[\log_2\left(\frac{\log(1+3(\beta+1)) - \log \beta}{\log 3 - \log 2}\right]$$

$$\begin{array}{c}g_{T,k} + \mu_T \cdot x_{T,k} \\ -\mu_T \end{array} \begin{bmatrix} v \\ t \end{bmatrix}$$

Lemma 2(b): (finite convergence for each epoch) For any μ_T , ACC can be

 $\underline{\log(\beta+1)}$

Homotopy HSODM II

A Non-Interior Homotopy HSODM:

Linearly decrease $\mu_T \rightarrow$ simultaneously adaptive δ_k and ϕ_k \bullet

$$\mu_{T+1} = \frac{1 + \|x_{T,k}\|}{1 + 3(1 + \beta)(1 + \|x_{T,k}\|)} \cdot \mu_T$$

- Use GHMs as each subproblem at μ_T with finite convergence
- Theorem: (global rate of convergence) After at most

$$\overline{T} = \left[\log_{\tau} \left(\frac{(1 + 1)^2}{2(\beta + 1)(1 + \|\nabla f)^2} \right) \right]$$

iterates, we could find an iterate that satisfies $|\nabla f(x_{\overline{T}+1.0})| \leq \epsilon$

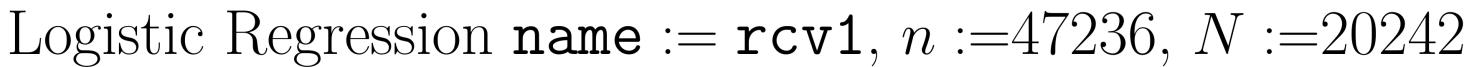
 $x_{T+1,0} := x_{T,k}$

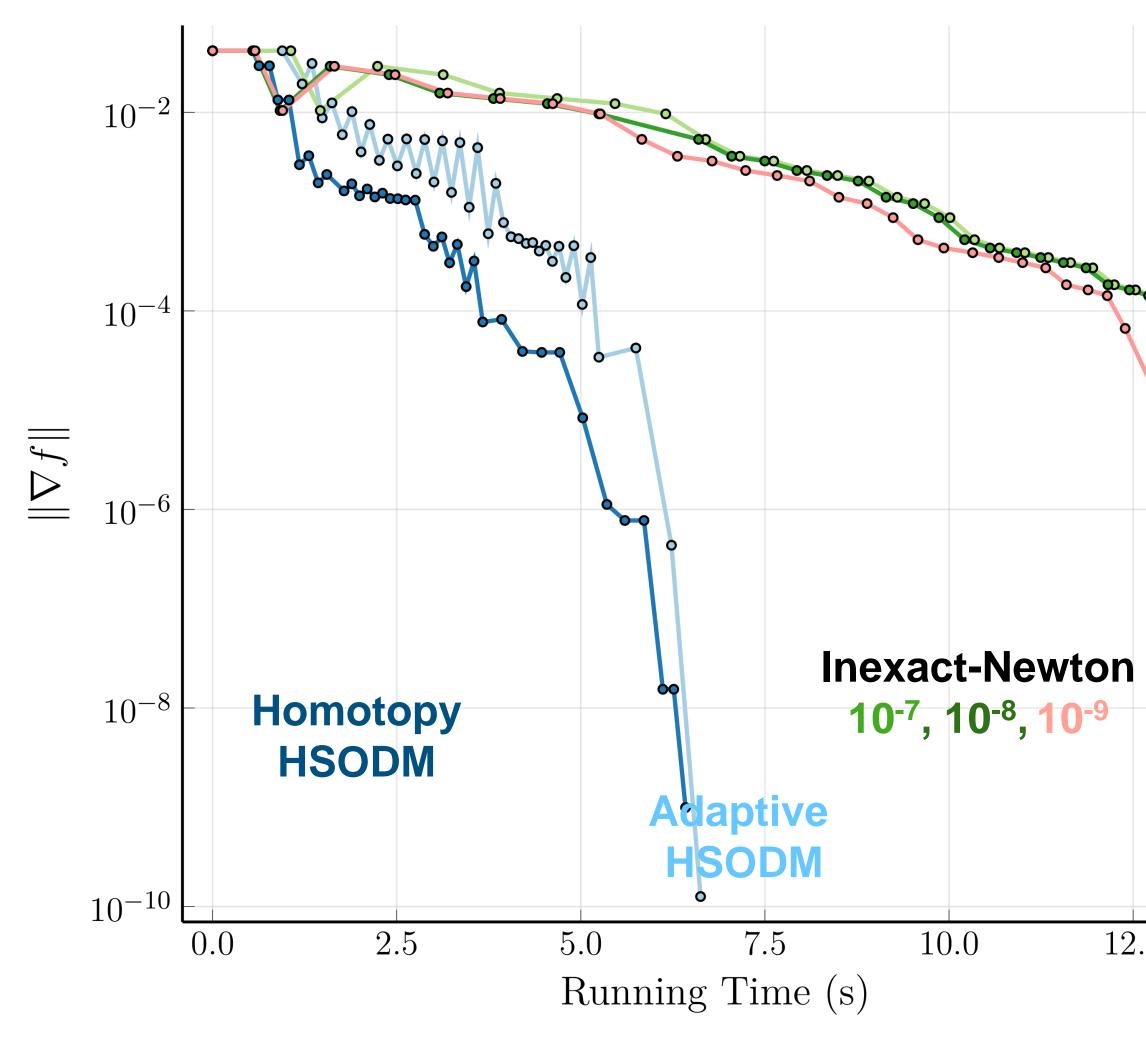
 $\frac{+3(\beta+1))\epsilon}{f(0)\|^2((3\beta+4)\|x^*\|+2)}\bigg)\bigg|$

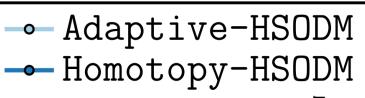
(no need to be strictly convex)

Application IV: A Comparison in L_2 - Logistic regression, $\gamma = 1e-5$

12.5



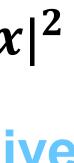




- $iNewton-10^{-7}$ 0
- $iNewton-10^{-8}$ 0
- $iNewton-10^{-9}$
- *L*₂ -Logistic regression:

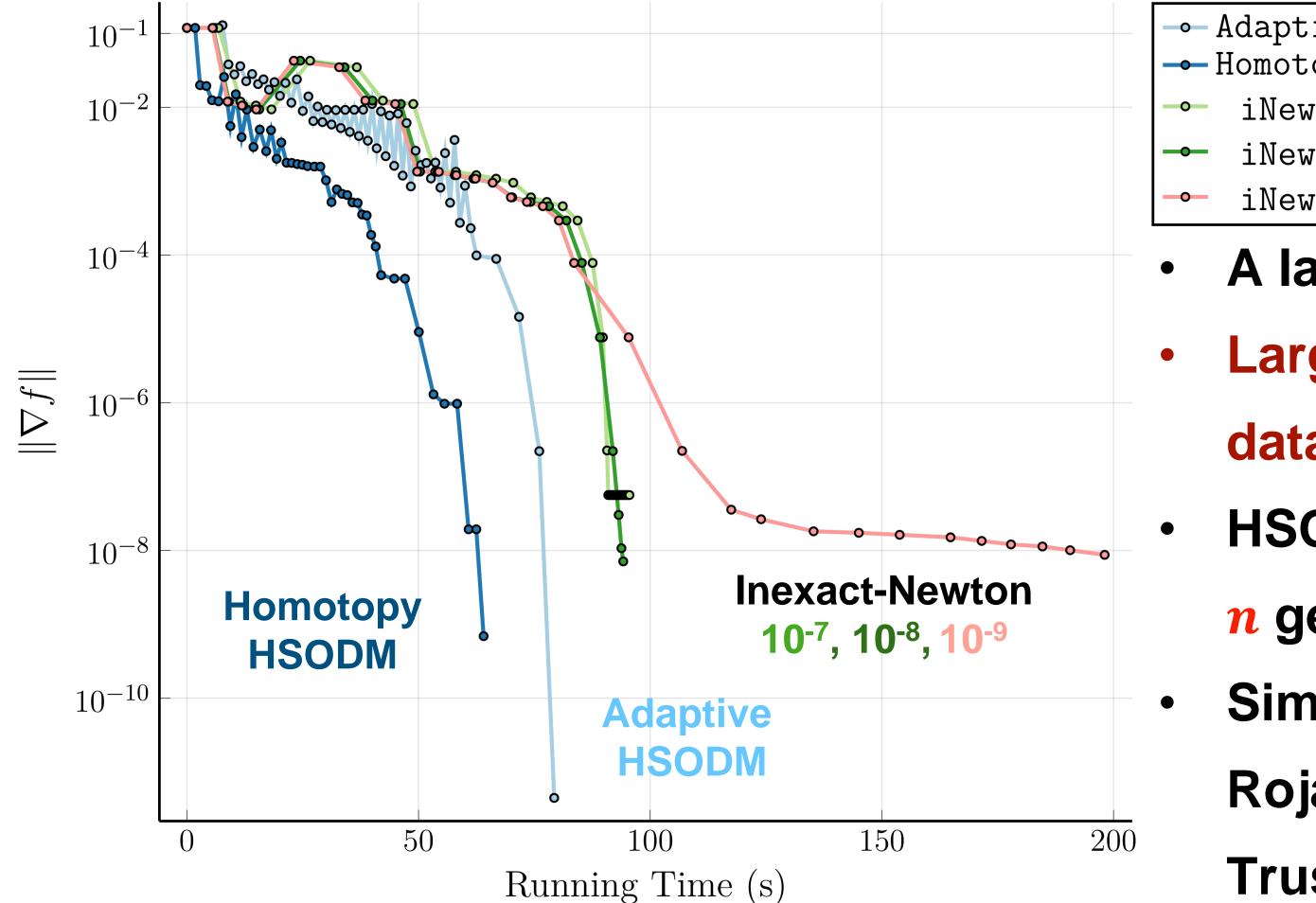
$$f(x) = \frac{1}{m} \sum_{i=1}^{m} \log \left(1 + e^{-b_i \cdot a_i^T x} \right) + \frac{\gamma}{2} |x|$$

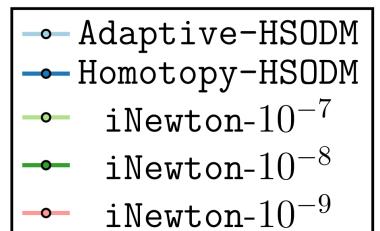
- **Compare Homotopy-HSODM, Adaptive HSODM**
- and inexact Newton with different accuracy (public open-source code)



A Comparison in L_2 - Logistic regression, $\gamma = 1e-5$

Logistic Regression name := news20, n := 1355191, N := 19996

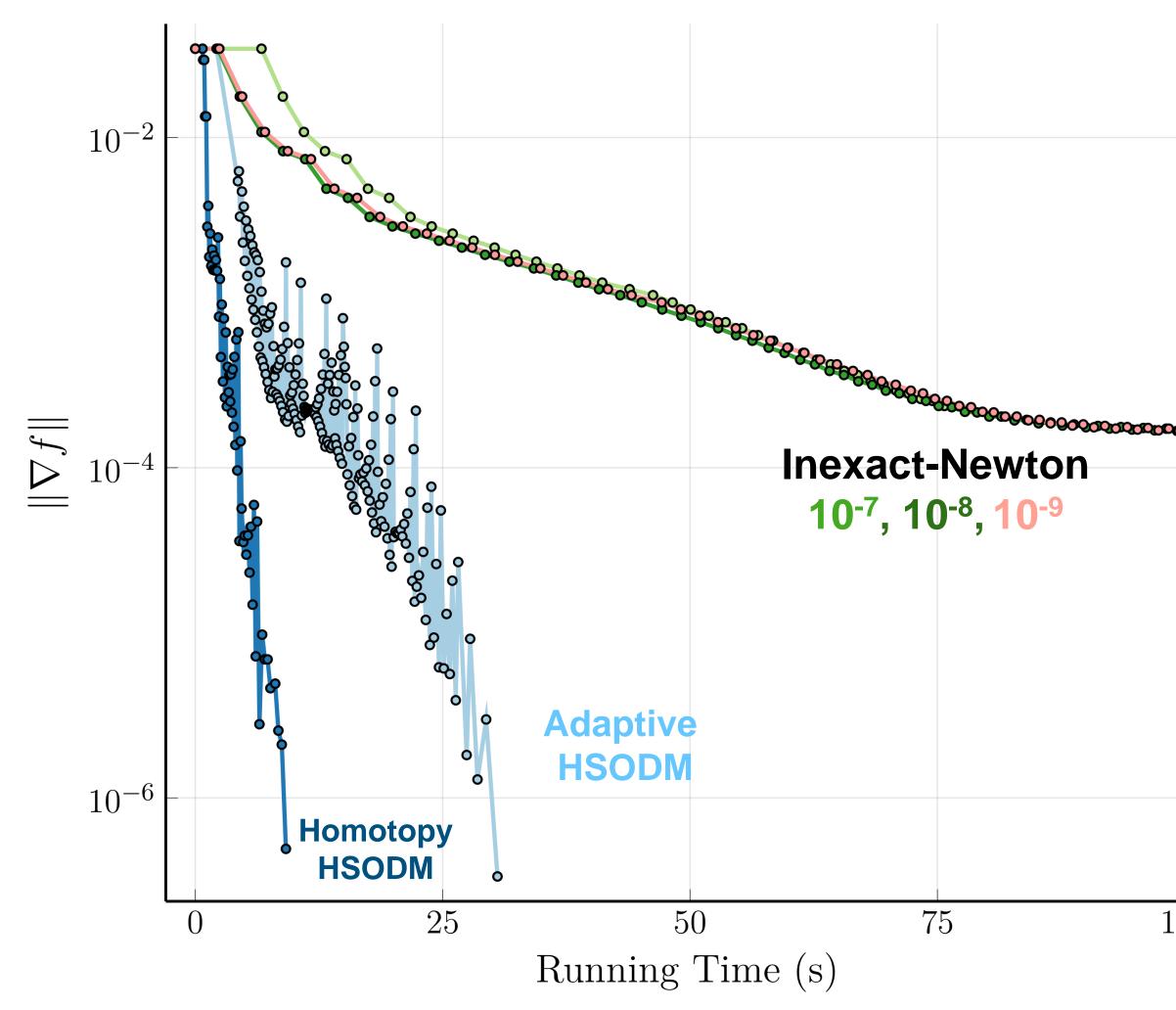


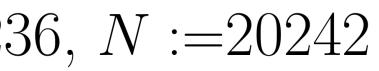


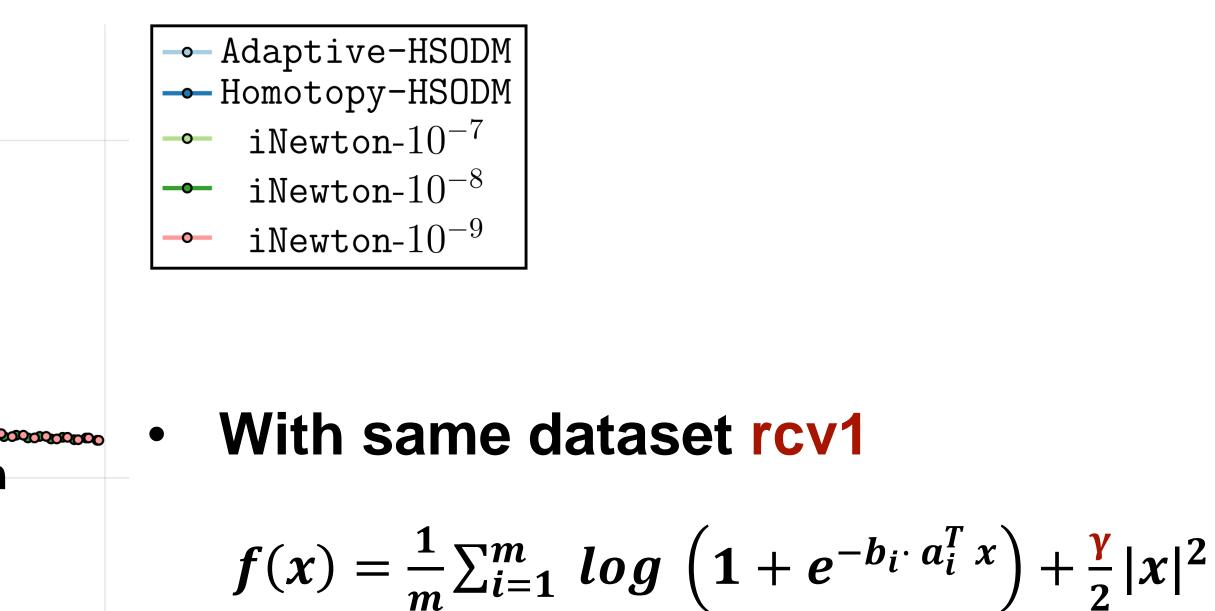
- A larger dataset news20
- Large dimension but relatively few data
 - **HSODM** can benefit when dimension *n* gets large
- Similar results were observed in Rojas 2001, Adachi 2017 for solving **Trust-region Subproblems.**

Resilience of Homotopy-HSODM for small γ , $\gamma = 1e-7$

Logistic Regression name := rcv1, n := 47236, N := 20242



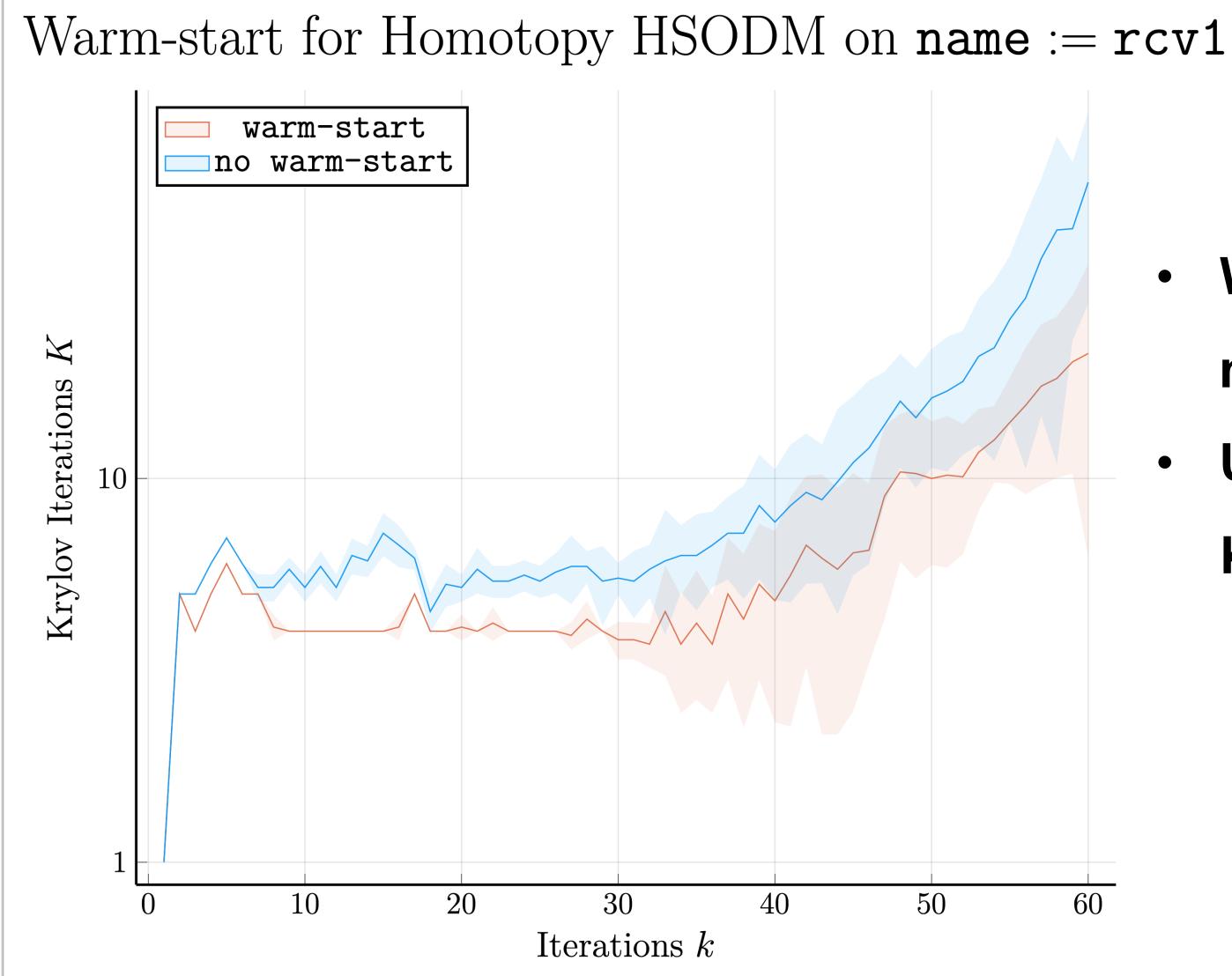




- Sensitivity study from $\gamma = 1e-5 \rightarrow 1e-7$
- Homotopy-HSODM is resilient to small γ (almost degenerate case)

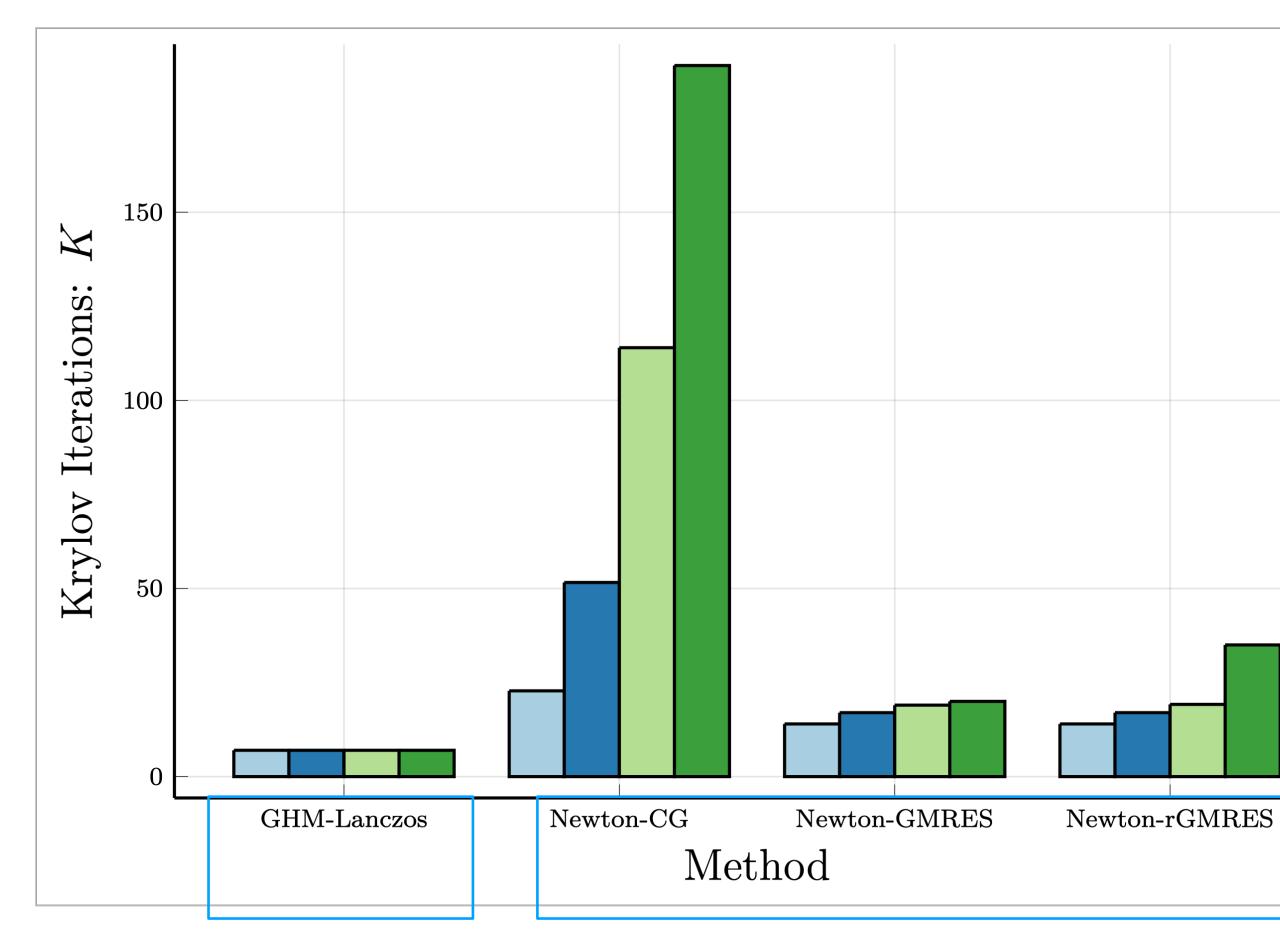
100

Warm-starting Lanczos Method in HSODM



- Would the solution help in solving \bullet next eigenvalue problem?
- Using warm-starting vectors saves \bullet **Krylov iterations !**

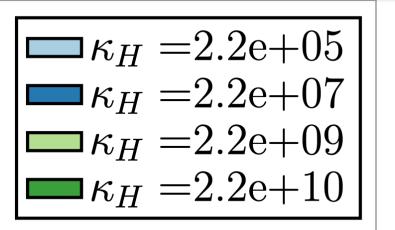
Why does it work? Resilience of Eigenvalue Techniques I



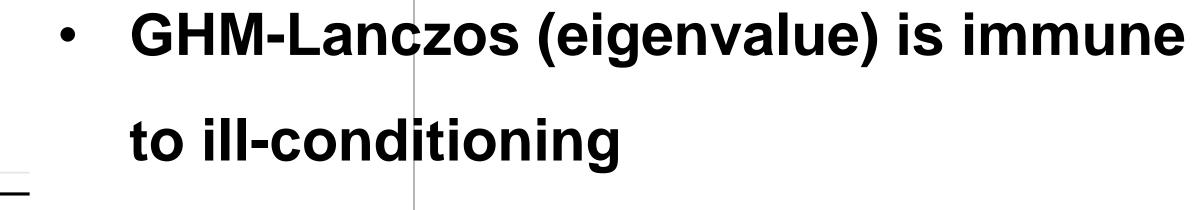
Eigenvalues

Linear Systems

$$H_{ij} = \frac{1}{i+j-1}, i \le n, j \le n.$$



We imitate the system needed in SOMs, using Hilbert matrices:
 H + δ I with δ to adjust cond. #



Why does it work? **Resilience of Eigenvalue Techniques II**

Table 3: Average number of Krylov iterations $K(\gamma)$ of calculating one Newton-type direction (5.2) for a linear least-square problem (5.1) with $\gamma \in \{10^{-3}, 10^{-4}, 10^{-5}, 10^{-6}\}.$

name	method	$K\left(10^{-3}\right)$	$K\left(10^{-4}\right)$	$K\left(10^{-5}\right)$	$K\left(10^{-6}\right)$
a4a	Newton-GMRES	28.0	53.6	76.0	82.6
	Newton-rGMRES	28.0	53.4	128.0	190.6
	Newton-CG	40.4	105.4	-	-
	GHM-Lanczos	6.0	6.0	6.0	6.0
a9a	Newton-GMRES	28.0	53.4	74.2	85.8
	Newton-rGMRES	28.0	52.8	111.6	198.0
	Newton-CG	39.8	105.2	_	_
	GHM-Lanczos	6.0	6.0	6.0	6.0
covtype	Newton-GMRES	28.0	54.4	99.2	152.0
	Newton-rGMRES	28.0	54.4	141.0	198.0
	Newton-CG	33.4	85.2	_	_
	GHM-Lanczos	6.0	6.0	6.0	6.0
rcv1	Newton-GMRES	9.6	11.0	12.0	13.0
	Newton-rGMRES	9.6	11.0	12.0	13.0
	Newton-CG	11.4	19.0	32.4	52.8
	GHM-Lanczos	6.0	6.0	6.0	6.0
w4a	Newton-GMRES	18.8	38.0	78.0	156.0
	Newton-rGMRES	18.8	38.0	92.0	198.0
	Newton-CG	19.4	61.6	-	-
	GHM-Lanczos	5.0	5.0	5.0	5.0

- Using real data to solve linear least-square models.
- **GHM-Lanczos (eigenvalue) is immune** •
 - to ill-conditioning
- Highly robust in degenerate problems
- [‡] In theory, Lanczos method for •
 - eigenvalue is depends on gaps
 - instead of cond. #

- computation is a "cheaper" alternative to the Trust-Region or
- **Newton step computation**
- ϕ_k and substitutes for other SOM step
- **Ongoing: HSODM for IPMs, non-smooth optimization.**

Happy Birthday Jong-Shi

Homogeneous second-order direction as an extreme eigenvalue

Generalized Homogeneous direction is flexible using different δ_k and

