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Ask ChatGPT about an 
Optimization Problem?

Knapsack on ChatGPT：

* ChatGPT tried to formulate 

problem and attempted to give 

an answer，but could not 

guarantee the correctness。

* ChatGPT highly recommended 

using reliable optimization 

solvers and consulting specialists

ChatGPT：
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Linear Programming and LP Giants won Nobel Prize…
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max  𝜋𝑗𝑥𝑗

s.t.  

𝑗

𝒂𝑗𝑥𝑗 ≤ 𝒃 ,

0 ≤ 𝑥𝑗 ≤ 1 ∀ 𝑗 = 1, . . . , 𝑛



Today’s Sharing

1. Online Linear Programming Algorithms and 
Applications

2. Accelerated Second-Order Methods for 
Nonlinear Optimization and Applications

3. Zero-Order Optimization Algorithms and 
Applications

4. Pre-Trained Mixed Integer Linear Programming 
Solvers and Applications



Topic 1. Online Linear Programming
an Online Auction Example

• There is a fixed selling period or number of buyers; and there is a fixed 

inventory of goods

• Customers come and require a bundle of goods and make a bid

• Decision: To sell or not to sell to each individual customer on the fly?

• Objective: Maximize the revenue.

Bid # $100 $30 …. … … Inventory

Decision x1 x2

Pants 1 0 …. … … 100

Shoes 1 0 50

T-Shirts 0 1 500

Jackets 0 0 200

Hats 1 1 … … … 1000



Online Linear Programming Model and Theory

 OLP theory and practice (Agrawal et al. 2010,14, Li&Y 2022)

 OLP:

 Variables together with their data points arrive sequentially and 

decision makers need decide xj on the fly, that is, before knowing 

the “future” data points

 Learning-while-Doing vs Learning-First and Deciding-Second 

(collect and learn all relevant data, then solve for all x)

 Offline LP’s objective value is a upper bond for the online version

 Is there an optimal online decision algorithm/mechanism
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max  𝜋𝑗𝑥𝑗

s.t.  

𝑗

𝒂𝑗𝑥𝑗 ≤ 𝒃 ,

0 ≤ 𝑥𝑗 ≤ 1 ∀ 𝑗 = 1, . . . , 𝑛



Price Mechanism for Online Auction

• Learn and compute itemized optimal prices

• Use the prices to price each bid internally

• Accept if it is a over bid, and reject otherwise

• There is an Optimal Online Algorithm to achieve the best you could do! 

Bid # $100 $30 …. … … Inventory Price?

Decision x1 x2

Pants 1 0 …. … … 100 45

Shoes 1 0 50 45

T-Shirts 0 1 500 10

Jackets 0 0 200 55

Hats 1 1 … … … 1000 15



The Online Algorithm can be 
Applied to Bandits with 
Knapsack (BwK) Applications

• For the previous problem, the decision 
maker first wait and observe the 
customer order/arm and then decide 
whether to accept/play it or not. 

• An alternative setting is that the 
decision maker first decides which 
order/arm (s)he may accept/play, and 
then receive a random resource 
consumption vector aj and yield a 
random reward 𝜋𝑗 of the pulled arm. 

• Known as the Bandits with Knapsacks, 
and it is a tradeoff exploration v.s. 
exploitation 8



• The decision variable 𝑥𝑗 represents the total-times of pulling the j-th arm.

• We have developed a two-phase algorithm
• Phase I: Distinguish the optimal super-basic variables/arms from the optimal non-basic

variables/arms with as fewer number of plays as possible
• Phase II: Use the arms in the optimal face to exhaust the resource through an adaptive 

procedure and achieve fairness

• The algorithm achieves a problem dependent regret that bears a logarithmic 
dependence on the horizon T. Also, it identifies a number of LP-related 
parameters as the bottleneck or condition-numbers for the problem

• Minimum non-zero reduced cost 
• Minimum singular-values of the optimal

basis matrix.

• First algorithm to achieve the 𝑂(log 𝑇) regret/gap bound [Li, Sun & Y 2021 
ICML] (https://proceedings.mlr.press/v139/li21s.html)
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max  𝜋𝑗𝑥𝑗 s.t.  

𝑗

𝒂𝑗𝑥𝑗 ≤ 𝒃 , 𝑥𝑗 ≥ 0 ∀ 𝑗 = 1, . . . , 𝐽



App. I: Online Matching for Display Advertising 
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阿里巴巴在2019年云栖大会上提到在智能履行决策上使用OLP的算法



阿里巴巴团队在2020年CIKM会议论文Online Electronic Coupon Allocation 
based on Real-Time User Intent Detection上提到他们设计的发红包的机
制也使用了OLP的方法[2]
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APP II: A key resource allocation model to achieve 
efficient allocation is the Fisher Market
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Do Prices exist to clear the market?
(Prices are posted and known to all agents so 

that they have freedom to choose)

c2c1 c3



The prices can be derived from a centralized optimization 
problem with a budget-weighted  social objective

(Eisenberg-Gale)
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Cj can be decision variables subject to other 

resource constraints



Online Market Pricing: how to update posted-prices to minimize 
regret of the Eisenberg/Gale social welfare while achieving 

market clearness

Static Fisher Market Price Equilibrium 
Theory and Limit

Now Agents Arrive Online

Agent 𝑡 + 1

𝑝1
𝑡+1

𝑝2
𝑡+1

𝑝3
𝑡+1

The price at time 𝑡 + 1 is updated and reposted 
based on observed consumption 𝒙𝑡 at time 𝑡

Jalota and Y
https://arxiv.org/abs/2205.00825



We develop a revealed preference algorithm with sub-
linear regret and constraint violation guarantees 

Difference between market share of 
each agent and goods purchased

Theorem: Under i.i.d. budget and utility parameters with strictly positive support and when 
good capacities are 𝑂(𝑛), Algorithm 2 achieves an expected regret of 𝑅𝑛(𝝅) ≤ 𝑂( 𝑛) and 
expected constraint violation of 𝑉𝑛(𝝅) ≤ 𝑂( 𝑛), where 𝑛 is the number of arriving users.  

Only requires knowledge of user consumption (and 
not their budgets or utilities) to update pricesStep-size: 𝑂

1

𝑛
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min 𝑓(𝑥), 𝑥 ∈ 𝑋 𝑖𝑛 ℝ𝑛,

• where  𝑓 is nonconvex and twice-differentiable,

𝑔𝑘 = 𝛻𝑓(𝑥𝑘), 𝐻𝑘 = 𝛻2𝑓(𝑥𝑘)

• Goal: find 𝑥𝑘 such that:

∥ 𝑔𝑘 ∥ ≤ 𝜖 (primary, first-order condition)

𝜆𝑚𝑖𝑛(𝐻𝑘) ≥ − 𝜖 (secondary, second-order condition) 

• First-order methods (FOM) typically need O(𝐧𝟐𝝐-2) arithmetic operations

• Second-order methods (SOM) typically need O(𝐧𝟑𝝐-1.5) arithmetic operations

• New? Yes, HSODM and DRSOM: a single-loop method with O(𝐧𝟐𝝐-1.75) operations 

(Zhang et al. https://arxiv.org/abs/2211.08212)

Topic 2. Accelerated Second-Order Methods for 

Unconstrained Optimization and Applications



An Integrated Descent Direction Using the 

SDP Homogeneous Model I (Zhang at al. SHUFE, 2022)

• -gk is the first-order steepest descent direction but ignores Hessian; the most-left 

eigenvector of Hk-would be a descent direction for the second order term

• Could we construct a direction integrating both?

Answer: with a suitable 𝜹k and use 𝑖𝑡 as the direction to go – a single loop 

algorithm to solve the original problem and replace the Newton step.

• Recall the fixed-radius trust-region method minimizes the Taylor quadratic model

where Δ𝑘 =𝜖1/2/𝑀 is the trust radius

O(𝐧𝟐𝝐-1.75) vs O(n3) operations 



Advantage of the Homogeneous Direction over Newton’s

• Consider Hilbert matrix

• Computing a Newton step by 

iterative methods versus 

Homogeneous Direction 

from 𝑯 + δ𝑰

• 𝛿 ↓ Condition number 𝜅𝐻↑

Newton (GMRES)
GHM (Lanczos

method)

Newton (CG)

Newton (GMRES)

Restarted



App. III: HSODM for Policy Optimization in RL I 

• Consider policy optimization of linearized objective in reinforcement learning

• 𝑀𝑘 is usually a preconditioning matrix. 

• The Natural Policy Gradient (NPG) method (Kakade, 2001) uses the Fisher information 

matrix where Mk is the inverse of

• Based on KL divergence, TRPO (Schulman et al. 2015) uses KL divergence in the constraint:

Homogeneous NPG: 

Apply HSODM!



HSODM for Policy Optimization in RL II
• A comparison of Homogeneous NPG and Trust-region Policy Optimization (Schultz, 2015) 

• Homogeneous model provides significant improvements over TRPO (public open-source solver)



App. IV: HSODM for Sensor Network Localization I

• Consider Sensor Network Location (SNL)

where       is a fixed parameter known as 

the radio range. The SNL problem considers 

the following QCQP feasibility problem,

• We can solve SNL by the nonconvex 

nonlinear least square (NLS) problem



HSODM for Sensor Network Localization II

• Compare HSODM (with HVP), and

Newton-TR Method.

• HSODM is faster due to the 

eigenvalue procedure

• The solution quality is much better 

than the FOMs



• Motivation from Multi-Directional FOM and Subspace Method, such as CG and 

ADAM, DRSOM applies the trust-region method in low dimensional subspace.

• This results in a low-dimensional quadratic sub-minimization problem:

• Typically, DRSOM adopts two directions 𝑑 = −𝛼1𝛻𝑓 𝑥𝑘 + 𝛼2𝑑𝑘

where 𝑔𝑘 = 𝛻𝑓 𝑥𝑘 , 𝐻𝑘 = 𝛻2𝑓 𝑥𝑘 , 𝑑𝑘 = 𝑥𝑘 − 𝑥𝑘−1

• Then we solve a 2-d quadratic minimization problem to decide the two step-sizes:

min 𝑚𝑘
α α ≔ 𝑓 𝑥𝑘 + 𝑐𝑘

𝑇α +
1

2
α𝑇𝑄𝑘𝛼

||α||𝐺𝑘
≤ Δ𝑘

𝐺𝑘 =
𝑔𝑘

𝑇𝑔𝑘 −𝑔𝑘
𝑇𝑑𝑘

−𝑔𝑘
𝑇𝑑𝑘 𝑑𝑘

𝑇𝑑𝑘

, 𝑄𝑘 =
𝑔𝑘

𝑇𝐻𝑘𝑔𝑘 −𝑔𝑘
𝑇𝐻𝑘𝑑𝑘

−𝑔𝑘
𝑇𝐻𝑘𝑑𝑘 𝑑𝑘

𝑇𝐻𝑘𝑑𝑘

, 𝑐𝑘 =
−||𝑔𝑘||

2

𝑔𝑘
𝑇𝑑𝑘

Dimension Reduced Second-Order Method (DRSOM)



Constructing the two-dimensional quadratic model is the Key

How to cheaply obtain Qk, that is, compute  

𝐻𝑘𝑔𝑘and 𝐻𝑘𝑑𝑘 ?

• Use Hessian if readily available !

• Finite difference:

𝐻𝑘 ⋅ 𝑣 ≈
1

𝜖
𝑔(𝑥𝑘 + 𝜖 ⋅ 𝑣) − 𝑔𝑘 ,

• Analytic approach to fit modern automatic 

differentiation,

𝐻𝑘𝑔𝑘 = 𝛻(
1

2
𝑔𝑘

𝑇𝑔𝑘), 𝐻𝑘𝑑𝑘 = 𝛻(𝑑𝑘
𝑇𝑔𝑘),

• Zero-Order: Three(-or more)-Point Interpolation 
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Iterat ion

=

CUTEst model name := SPMSRTLS-1000

GD+ Wolfe

LBFGS+ Wolfe

Newton-T R

CG

DRSOM

DRSOMPlus(homokrylov,1)

HSODM (warm)

Newton-TR (5s)

LBFGS (0.33s)

CG (0.46s)

DRSOM (0.67s)HSODM (0.15s)

DRSOM-Homo (0.51s)

GD (0.66s)

Preliminary Results: HSODM, DRSOM and DRSOM+HSODM

CUTEst example

• GD and LBFGS both use a Line-

search (Hager-Zhang)

• DRSOM uses 2-D subspace

• HSODM and DRSOM + HSODM 

are much better!

• DRSOM can also benefit from the 

homogenized system



Sensor Network Location again, Large-Scale Instances

• Graphical results with 10,000 nodes and 1000 anchors (no noise) within 3,000 seconds

• GD with Line-search 

and Hager-Zhang CG 

both timeout

• DRSOM can converge to 

| 𝒈𝒌| ≤ 𝟏𝒆−𝟓 in 2,200s



App. V: Neural Networks and Deep Learning 

Training and test results for ResNet18 with DRSOM and Adam

Training and test results for ResNet34 with DRSOM and Adam

Pros

• DRSOM has rapid convergence (30 
epochs)

• DRSOM needs little tuning

Cons

• DRSOM may over-fit the models

• Running time can benefit from 
Interpolation

• Single direction DRSOM is also 
good

Good potential to be a standard 
optimizer for deep learning!
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SOLNP+: History 
• First proposed by Y in 1989.

• Originally implemented (SOLNP) in Matlab, 1989.

• R implementation (Rsolnp) by Alexios Ghalanos and Stefan Theussl, 
2011.

• New and C implementation (SOLNP+) with improvements, 2022; 
and addition of Randomized BCG and DRSOM for unconstrained 
optimization by Tan et al., 2023

• Github link: https://github.com/COPT-Public/SOLNP_plus

• Use forward difference to calculate the approximated gradient.



• For finite-difference methods and other traditional zero-order 
methods, the number of function query increases linearly with the 
problem dimension.

• Traditional methods may not perform well for solving high 
dimensional problems.

• The dimension in machine learning problems can be extremely 
high.

Shortcoming of Finite-Difference



RMP: Multi-Point Random Perturbation 

• Multipoint ZO Gradient Estimates

where 𝑢𝑖 is i.i.d. random direction.

• Advantage: Fewer function queries to evaluate the gradient.



SOLNP+: Adopt Two Strategies 

• With gradient estimates, SOLNP+ implements ZO version of
• ZO-RMP (Ghadimiet al., 2013; Duchi et al., 2014), or
• ZO-BCD, more recent research see (Cai et al., 2021)

• DRSOM (Zhang et al., 2022) with interpolation

S. Ghadimi and G. Lan, “Stochastic first-and zeroth-order methods for nonconvex stochastic programming,” 

SIAM J. Optimiz., vol. 23, no. 4, pp. 2341–2368, 2013. doi: 10.1137/120880811
J.C.Duchi, M. I. Jordan, M. J. Wainwright, and A. Wibisono, “Optimal rates for zero-order convex 

optimization: The power of two function evaluations,”IEEE Trans.Inf Theory, vol.61,no.5,pp.2788-

2806,2015.doi: 10.1109/TIT.2015.2409256.

Cai, HanQin, et al. "A zeroth-order block coordinate descent algorithm for huge-scale black-box 

optimization." International Conference on Machine Learning. PMLR, 2021.

Zhang, Chuwen, et al. "DRSOM: A Dimension Reduced Second-Order Method and Preliminary 

Analyses." arXiv preprint arXiv:2208.00208 (2022).



SOLNP+: Apply RMP or RBCD plus DRSOM
• Randomized Multiple Point Estimator: 

• 𝑢𝑖~𝑁(0, 𝑅𝑑)

• 𝑢𝑖 Rademacher Random Variable(each element ∈ {−1,+1})

• Randomized Block Coordinate Descent Estimator:
• Randomly select some block
• Use 𝑒𝑖 (vector with zero components except that dimension 𝑖 is 1), 𝑖 ∈
𝐵𝑙𝑜𝑐𝑘 to estimate gradient

• Update rule:  𝑥𝑘+1 = 𝑥𝑘 − 𝜂  𝛻𝑓(𝑥𝑘)

R. Sun and Y. Y, “Worst-case complexity of cyclic coordinate descent:  O(n^2) gap with randomized 
version.” Mathematical Programming, Volume 185, 487-520, 2021.



Experiments in Large Problems: Rosenbrock I
• Rosenbrock function is a well-known nonconvex functions in the form of

𝑓(𝒙) =  

𝑖=1

𝑛−1

100(𝑥𝑖+1 − 𝑥𝑖
2)2 + (𝑥𝑖 − 1)2

• ZO-Adamm, ZO-SGD and ZO-DRSOM are tested in a 1200 dimensional 
Rosenbrock problem.
• Batch size 50
• Each experiment is repeated for 10 times.

Chen, Xiangyi, et al. "Zo-adamm: Zeroth-order adaptive momentum method for black-box 
optimization." Advances in neural information processing systems 32 (2019).



Experiments in Large Problems: Rosenbrock II

• ZO-RMP-DRSOM, ZO-
RBCD-DRSOM and ZO-
SGD decrease most 
smoothly. However, 
inappropriate parameters 
lead to worse performance 
of ZO-SGD and 

ZO-ADAMM.



Experiments in Large-Sacle Problems: SNL I

• ZO-Adam, ZO-SGD,
ZO-RBCD-DRSOM and 
ZO-RMP-DRSOM are 
tested in a 150-sensor 
SNL problem.
• Batch size 60
• Each experiment is 

repeated for 10 
times.
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App. VI: Unit Commitment Problem

• Electricity is generated from units (various

generators) 

• Transmitted safely and stably through power 

grids

• Consumed at minimum (reasonable) price

Optimization has its role to play

Unit commitment problem dispatches the units 

safely and stably at minimum cost



App. VII: Beijing Public Transport

Intelligent Urban Bus Operations 
Management with Mixed Fleet Types 
and Charging Schedule

Kickoff 2022.8



App. VIII: Beijing-Shanghai 

High-speed Railway Scheduling Optimization

COPT, Cardinal Operations 2022



Numerical Results: TTP for Beijing-Shanghai
• We solve the TTP for Beijing-Shanghai high-speed railway using Cardinal Optimizer (COPT).

• COPT is the first fully independently developed mathematical programming solver in China with strong

solving ability of MIP problem. It also has excellent performance in solving this problem.

• The result is presented in the following figure. We only need about 1000 seconds to schedule 584 train in

two directions.



Risk-Pooling Cuts in MILP

• Each  𝑦 is the likelihood a variable takes 1 or 0 in the optimal solution

• Each variable introduces some risk/variance of such rounding

so that dealing them separately results in extremely risk outcomes

• Given an MILP, the interior point solution of the LP relaxation tells us

Q: What should we do seeing a set of risky guesses? A: Put them in a pool!



Risk-Pooling Cuts via Moment Ambiguity of DRO

• Pooling the binary variables by adding “confidence” cardinality cuts

• Intuitively we know that the above two inequalities are expectedly to hold 

for 𝛼 → 0.9 and 𝛽 → 0.1

• These two inequalities are exactly cutting planes for MILP

• The last issue is how to choose 𝛼, 𝛽 to increase the confidence level:

Interpret  as some random variables with expectation      ,

then justify by concentration inequalities



Statistical Confidence Cut Generation (Gao at al. SHUFE, 2023)

• Overall, the two cuts (and their complement) split the whole feasible region into four 

regions

• Solving the most likelihood region of two cuts often gives a satisfying solution with 

confidence

• Branching over all four regions independently will not miss the optimal solution



Data-Driven Approaches to Mixed Integer Optimization in Practice

Learn from the past and predict the future such as the unit commitment

problem in Electrical Power Generation

• Many real-life MIO applications are solved on a 

regular basis

Unit commitment; portfolio; scheduling…

• Large amount of data and solutions collected 

from the past

Future instances are similar to the past

• A natural idea: use machine learning to learn 

from history

A Pre-trained Data-driven Approaches

…

0501

𝑥∗

0510

𝑥∗

0511

?
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Numerical Test Results I

• The method is tested on multi-knapsack, set-covering and unit-commitment 

problems

Train from 500 instances and test on 20 instances

• Measure the speedup of finding a good solution on in the region formed by two 

cuts

Average speedup on knapsack instances



Numerical Test Results II

Unit Commitment

Set-Covering

• Acceleration by two lines of 

code

• Remarkable speedup on 

primal solution finding for 

both the state of art MIP 

solvers Gurobi and COPT

• No loss of optimality
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COPT求解器各功能模块小结

求解问题
类型

问题难点与创新内容 国外求解器
ASU榜上国内求解

器
比较结果 目前位置

线性规划
矩阵预处理与矩阵分解
高效实现，大规模并行
等

GUROBI/CPLEX/XPRESS/
MATLAB/GOOGLE 杉数/华为/阿里

第一，比美国最快的
GUROBI快18%

国际领先

整数规划
数百种算法的调用强度
调优和协同工作调优，
百万行级软件工程协作

GUROBI/CPLEX/XPRESS/S
CIP

杉数 第二，慢于GUROBI，与
CPLEX XPRESS基本相当

与世界主流求解器
水平基本相当，填
补国内空白

半正定规划
针对特殊结构问题的算
法切换

GUROBI/MOSEK/SEDUMI 杉数/阿里 第一 国际领先

二阶锥规划
针对稀疏结构的探索和
高效算法实现

GUROBI/MOSEK/SEDUMI 杉数 第二
国际一流，填补国
内空白

凸二次规划
识别问题是否为凸，并
将凸问题并转化为二阶
锥规划求解

GUROBI 杉数
第一，比GUROBI快
103%

国际领先，填补国
内空白

混合整数凸
二次规划

抛物面拆分算法 GUROBI 杉数 第二，比GUROBI慢9%
国际领先，填补国
内空白

混合整数二
阶锥规划

充分利用二阶锥规划松
弛

GUROBI/MOSEK 杉数 第二，仅比GUROBI慢
国际一流，填补国
内空白
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求解器的国际影响力

• 2021年7月，COPT求解器获得全

球最大的优化求解平台NEOS主动

邀请，成为历史上第一个，也是至

今唯一的入驻此平台的的中国求解

器。

• NEOS由美国阿贡国家实验室与西

北大学在1996年开发。

• 每年执行数百万次来自全球学术和

实业机构的计算申请。是全世界最

有影响力的数学优化求解云平台。
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2021年，优化建模语言和系统

集成最著名的三家国际机构，

• 德国的GAMS

• 美国的AMPL

• 荷兰的AIMMS

分别写信来，主动邀请COPT与

其系统进行集成，进行全球服

务。

COPT也是至今唯一一个集成

在这几个系统中的中国求解器。

已经销售到美国，英国，韩国，

东欧多个国家。

求解器的国际影响力



Overall Takeaways

It is possible to maker online decision/learning for quantitative 
models with performance guarantees close to that of the offline 
decision-making with perfect/complete information 

Second-Order Derivative information matters and better to 
integrate FOM and SOM for nonlinear optimization!

Zero-Order Methods are competitive, especially for “Black-Box” 
optimization

Pre-training greatly improves Mixed Integer LP solvers that 
benefit real economy 

• THANK YOU


