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Early Complexity Analyses for Nonconvex Optimization

* min f(x),x € X in R",

where f Is nonconvex and twice-differentiable,

g = Vf(xe), He = V2 f (i)
* Goal: find x; such that:

| V(xy) IS € (primary, first-order condition)

A.in(Hy) = —/e  (in active subspace, second-order condition)
» For the ball-constrained nonconvex QP: min ¢'x + 0.5x"Qx s.t. | x || , <1

O(loglog(e)); see Vavasis&Zippel (1990), Y (1989,93).
* For nonconvex QP with polyhedral constraints: O(et); see Y (1998), Vavasis (2001)



Second-order Methods for General Optimization

SOM (Hessian-Type Methods) with M-Lipschitz cont. Hessian

3
* Trust-region (More 70, Sorenson 80). Fixed-radius TR 0(6_5), see the lecture notes by Y since 2005

* Cubic regularization, 0(e~3/?) ,see Nesterov and Polyak (2006), Cartis, Gould, and Toint (2011)

* An adaptive trust-region framework, 0(e~3/?) ,Curtis, Robinson, and Samadi (2017)

SOM for convex functions

* Cubic regularization, 0(e~1/?) ,see Nesterov and Polyak (2006),

* Accelerated SOMs, 0(e~1/3), 0(e~1/3>), see Monteiro and Svaitor (2013), Nesterov (2008), Doikov et al.
(2022)

* Linearly convergent SOMs, self-concordance, see Nesterov and Nemirovskii (1994); scaled Lipschitz, see
Kortanek and Zhu (1993), Anderson and Ye (1998); generalized concordance, see Sun (2019).

Disadvantage: each iteration requires O(n3) operations: How to reduce it?



An Integrated Descent Direction Using the
SDP Homogeneous Model | (Zhang at al. SHUFE, 2022)

 Recall the fixed-radius trust-region method minimizes the Taylor quadratic

model | | |
min m(d) := g, d + —d' Hd » [df]féingnﬂ m(d) :=1 - g d + EdTde +50-(1=1)
deR" ) :
s.t.||d|| £ A,. s.t. ||d||*+ 1 = A7 + 1
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* -0, IS the first-order steepest descent direction but ignores Hessian;

» the most-left eigenvector of H -would be a descent direction for the second order term
 Could we construct a direction integrating both?

Answer: Use the most-left eigenvector of the SDP homogenized quadratic function!

(In Rojas 2001, a specialized Lanczos method Is proposed for solving the Trust-region
Subproblem with a given radius; and in Adachi 2017 for solving more Generalized Trust-
region Subproblems)



An Integrated Descent Direction Using the
SDP Homogeneous Model Il (Zhang at al. SHUFE, 2022)

o=t 1 4] -5 2 2]

* Find the direction & =&,/t (if t =0 then set t=1) by the leftmost

eigenvector:

8
‘[gom]r‘lqwk (&0, t;6)

with a suitable 6, and use ¢ as the direction to go — a single loop algorithm to

solve the original problem and ignore the trust-region subproblem.

- Accessible at the cost of 0(n%¢~1/*) via the randomized Lanczos

method and needs only Hessian-Vector-Product (HVP).



How to Set 6 : Theoretical Guarantees of HSODM

 Consider using the second-order homogenized direction, and let the length of

each step |[né|| be fixed: |[né|| < Ay, = %E , where f(x) has L-Lipschitz gradient

and M-Lipschitz Hessian.

 Theorem 1 (Global convergence rate) : Let f(x) satisfy the Lipchitz

Assumption and fix § = Ve, and let x,, = x;. + n.§ wheren, = A, /||¢]|, then
algorithm has 0(e~3/?) iteration complexity to second-order stationarity,
where each iteration compute the most-left eigenvector of the homogenized
matrix to € accuracy.

 Theorem 2 (Local convergence rate): If the iterate x;, of HSODM converges to
a strict local optimum x* , HSODM possesses a local superlinear (quadratic)

speed of convergence: || x,.1 —x* I= O(ll x,, — x* II%).



HSODM with Line-Search Methods

Fixed step length n;, may be too conservative.

Observation I: homogenized direction ¢ can be used with any
Line-search (e.g., Hager-Zhanq)

Theorem 3 (Global convergence with Line-search, informal) : If we

apply the backtrack to compute n, with parameter f € (0,1) then

3
the algorithm converges in O (E"E \l()gﬁ(e)\) iterations.



Application: HSODM for Policy Optimization in Reinforcement Learning

* Consider policy optimization of linearized objective in reinforcement learning

max L(0) := L(my),
OcR?

01 = O + o - M Vn(6r),

* The Natural Policy Gradient (NPG) method (Kakade, 2001) uses the Fisher information
matrix where M, Is the inverse of

F.(0) = g, 10, [V log g, (s,a)V log my, (s, a)T]

* Based on KL divergence, TRPO (Schulman et al. 2015) uses KL divergence In the constraint:

IIIOaXVLgk(Bk)T(H—Ok) . Wl [Fr gr] v
5.t Eoopy [Dic(ma,(- | 8);mo(- | 8))] < 6. ™ paliza[t] lgf —o] ¢

Homogeneous Natural Policy Gradient:
Apply the Homogenized Direction with Line Search!



HSODM for Policy Optimization in RL I

* A comparison of Homogeneous NPG and Trust-region Policy Optimization (Schultz, 2015)
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Homogeneous model provides significant improvements over TRPO (public open-source solver)



Application: HSODM for CUTEst Benchmark

* Compare HSODM (with Hessian), HSODM-
HVP (with HVP), Newton TR and ARC

0.8

* Compare performance metrics in SGM

3 06 method K tc ke k. A
= Newton-TR  155.00 15.41 216.59 211.99 219.58 203.82
S HSODM 170.00 4.13 80.22 159.76 180.04 80.22
04 HSODM-HVP 171.00 5.25 110.61 193.07 1080.57  0.00

ARC 167.00 5.32 185.03 185.03 888.35  0.00

0.2

* K—success #, t; - geometric mean running

l l l l l time (SGM), k. - geometric mean iteration #
2 5] 100 2 5 1000 2 (SGM)

a

== HSODM = HSODM-HVP = ARC ewton-TR

Performance Profile of iteration # _
* Newton-TR and ARC are public solvers
a — Iteration # compared to the best

profile(a) — percentage of solved instances within «



Application: HSODM for Sensor Network Localization

* Consider Sensor Network Location (SNL)

Nz = {(4,]) : ||zs — x|l = dij < ra}, No = {(4, k) :

where 74 Is a fixed parameter known as 2
the radio range. The SNL problem considers TN
the following QCQP feasibility problem,

|lzi — z;||* = d};,V(4,§) € Na
|lzi — ax||? = d2,V(i,k) € N,

* We can solve SNL by the nonconvex
nonlinear least square (NLS) problem

A/ LAN
K\.Z)Loab'onme
2/ RF Controller
%) RF Reader

T

min > (lz— 32 —di)?+ D (lak —xll” — diy)*.

X
(i<j:j)€N£B (k,j)GNa



Application: HSODM for Sensor Network Localization

SNL, n:=200, m =20 * Compare HSODM (with HVP), and
L |~ HSODM | Newton-TR Method.

* HSODM s faster due to the
eigenvalue procedure

* The solution guality 1Is much better
than the FOMs









Generalized Homogeneous Model (GHM) and HSODM

* Can we equivalent HSODM to more second-order frameworks?

* Introduce Generalized Homogeneous Model (GHM)

[Hk gk]: H; (Pk]
g O dr  Or|

* Adaptive 6, and smart choice of ¢, (g, suffices in most case)

Adaptive Controls
Method P Complexity References
P O
Gradient Regularization v 0(e~%°) Mishchenko 2022, Doikov
2022

_ _ Nesterov and Polyak 2006
1.5 0.5 ’

ARC T v 0(e72), 0(e7™) Cartis et al. 2011

Trust-region Method T v 0(e~1°) Curtis et al. 2017
_ Luenberger and Ye 2021

1

Homotopy method (new) v v O(log(e™)) | ecture notes by Ye, 2015




Concordant Second-Order Lipschitz condition |
 Consider mxin f(x), where f(x) satisfies
\Vf(z+d)— Vf(z)— Vf(z)d| < B-d"V*f(z)d

whenever || d II< 0(1).

* This condition Is called the concordant second-order Lipschitz condition

(CSOLCQ), first introduced In Luenberger & Ye (2015, 2022).

« CSOLC is motivated from the Scaled Lipschitz Condition, which was
widely used in the IPMs and MCPs. see Zhu(1992), Kortane&Zhu(1993),
Andersen&Ye(1999).



Concordant Second-Order Lipschitz condition |
Properties of CSOLC:

* Closed under positive scalar multiplications and summations;
* Closed under affine transformation: if f(x) satisfies CSOLC, then f(Ax

Examples of CSOLC:

 Convex quadratic functions, exponential functions;

» y-Reqularized logistic regression: f(x) :% 1 log (1 + e"’i‘“iTx) +§\x\2



The Homotopy Model

 The homotopy model:

1T
> lx|1
Where ur - 0. We say {XuT} forms a central path.

X, = argmin f(x) A

At each iterate solve the homotopy model inexactly (approximate
“centering” condition, ACC):

HT
1+3(6+1)

|\Vf(zrr) + pr - zrk| <

 Use GHM with proper 6, and ¢, !



Homotopy HSODM |

 For each homotopy model, we apply GHM to solve it:

. U HT#: gr.k T HT " TT K| |V
min

 Lemma 2(a): (fixed distance from the “central” path)

 Lemma 2(b): (finite convergence for each epoch) For any ur, ACC can be

satisfied within K < 2 steps, specifically

v _10 log(14+3(f+1)) —log(B+1)\
B GE log3 — log 2




Homotopy HSODM ||

A Non-Interior Homotopy HSODM:

 Linearly decrease u; — simultaneously adaptive 6, and ¢,

1+ ||xrx|]
UT1] = : - 4T LT4+1,0 = LT,k
ST A0 ) 1T

 Use GHMs as each subproblem at u, with finite convergence

 Theorem: (global rate of convergence) After at most

T =

loe ( 1+3(8+1))e )
N2+ DL+ V) IP)((38 + 4)[|z*| +2)

iterates, we could find an iterate that satisfies |Vf(x74110)| < €



Application: A Comparison in L, - Logistic regression, y = 1e-5

Logistic Regression name := rcvl, n :=47236, N :=20242

o Adaptive-HSODM
—— Homotopy—-HSODM

o iNewton-10~7
—— iNewton-1078
o iNewton-107"

1072

1074
L, -Logistic regression:
S
_ 1 —h..al
= 0 f(x) =%, log (1+e7br o) +1|x|?
« Compare Homotopy-HSODM
* Inexact-Newton
10°F  Homotopy 107, 1078, o
HSODM |
:  and inexact Newton with different
10~ — e TRE— — — accuracy (public open-source code)

Running Time (s)



A Comparison in L, - Logistic regression, y = 1e-5

Logistic Regression name := news20, n :=1355191, N :=19996

o- Adaptive-HSODM
—o— Homotopy—-HSUODM

iNewton-10~"
——  iNewton-10~8
iNewton-10""

A larger dataset news20

10_1 | op-af

1072}

10—4 n

 Large dimension but relatively few
107

IV

data

¢« HSODM can benefit when dimension

1078}

Inexact-Newton

Homotopy
HSODM 107, 10,
10-10 | e Similar results were observed In

n gets large

l | ‘ | , Rojas 2001, Adachi 2017 for solving
0 o0 100 150 200

Running Time (s) Trust-region Subproblems.



Resilience of Homotopy-HSODM for small y, y = 1le-7

Logistic Regression name := rcvl, n :=47236, N :=20242

o Adaptive-HSODM
—— Homotopy—-HSODM

o iNewton-10~"
—— iNewton-1078
o iNewton-107"

« With same dataset rcv1
Inexact-Newto

e FG) =131, log (1+e ol x) 4+ L1x?
* Sensitivity study from y = 1le-5 - le-7
« Homotopy-HSODM is resilient to small y
l l 1 (almost degenerate case)
50 75 100

Running Time (s)



Warm-starting HSODM
Warm-start for Homotopy HSODM on name := rcvil

1 warm-start
1no warm—-start

« With same dataset rcvl

f(x) =—%m, log (1

1
m

10 |

Krylov Iterations K

0 10 20 30 40 510 60
Iterations k
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Dimension Reduced Second-Order Method (DRSOM) |
* Motivation from Multi-Directional FOM and Subspace Method, DRSOM In general

uses reduced m-independent directions d(a):= D,a,D, e R"™, ae R™

* Plug the expression into the full-dimension Trust-Region quadratic minimization
model, we minimize a m-dimension trust-region subproblem to decide "m
stepsizes™:

min m§ () = (cp) o + %aTQka

o] |G, < A
Gy = D/ZDk: Qx = DZHka» Cr = (gk)TDk

How to choose D,? Provable complexity result?



DRSOM I

* |In following, as an example, DRSOM adopts two FOM directions
d =—a'Vf(x,) + a?d;, := d(a)
where g, = Vf(xy), He = V2f(x%), dy = x — xx_1
* Then we minimize a 2-D trust-region problem to decide “two step-sizes”:

min m§ (o) == f(x;) + (c)" a + %aTQka

o], < A
| gkgr  —9rkdr | 9kHrgx  —9xHidi R
Gy = T T , U = T T y Ok = T
—grdr  didg —9grHedy  djHpdyg Jr g



DRSOM I

DRSOM can be seen as:
* "Adaptive” Accelerated Gradient Method (Polyak’'s momentum 60)

* A second-order method minimizing quadratic model in the reduced 2-D subspace

my(d) = f () + V() d +dTV2f (x)d, d € span{—gy, di}
compare to, e.g., Dogleg method, 2-D Newton Trust-Region Method
d € span{gy, [H(xx)] *gx} (e.g., Powell 70, Byrd 88)
* A conjugate direction method for convex optimization exploring the Krylov Subspace

(e.qg., Barzilai&Borwein 88, Yuan&Stoer 95, Yuan 2014, Liu et al. 2021)

* For convex quadratic programming with no radius limit, terminates in n steps



Computing the two-dimensional quadratic model Is the Key

In the DRSOM with two directions:

| gkHrgr  —9iHedi|]  [—1lgkll?
Qk — ,Ck —

— g Hedx  diHydy, i dx
How to cheaply obtain Q? Compute H, g, H,d; first.

* Finite difference:

1
Hy v zg[g(xk +€-v) — gil,
* Analytic approach to fit modern automatic differentiation,
1T T
Higk = V(5 9k 9k), Hrdx = V(dj gi),

* Use Hessian If readily avallable !

* Three(-or more)-Point Interpolation: it Is almost as fast as Polyak and CG!



DRSOM: key assumptions and theoretical results (Zhang at al. SHUFE,
2022)

Assumption. (a) f has Lipschitz continuous Hessian. (b) If the Lagrangian multiplier 4,
< +/€e,assume | (Hy — Hp)d).1 I< C |l d.4 II* (Cartis et al.), where H,, is the projected
Hessian in the subspace (commonly adopted for approximate Hessian)

Theorem 1. If we apply DRSOM to QP, then the algorithms terminates in at most n
steps to find a first-order stationary point

Theorem 2. (Global convergence rate) For f with second-order Lipschitz condition, let A,

=2e1/2 /M, then DRSOM terminates in 0(e~3/2) iterations. Furthermore, the iterate x;,

satisfies the first-order condition, and the Hessian Is positive semi-definite in the subspace
spanned by the gradient and momentum.

Theorem 3. (Local convergence rate) If the iterate x; converges to a strict local optimum

x* such that H(x™) > 0, and if Assumption (c) Is satisfled as soonas A;, < Cy Il dy4+1 |,
then DRSOM has a local superlinear (quadratic) speed of convergence, namely: || x;., —
x* = 0(ll x — x* 1I#)



V=€

102 |

10—2 |

10—4 |

10—6 |

10-8 |

10—10 |

Preliminary Results: HSODM and DRSOM + HSODM

CUTEst model name := SPMSRTLS-1000

HSODM (0.15)

DRSOM-Homo (0.519)

Newton-TR (5s)

LBFGS (0.339)
CG (0.465)
DRSOM (0.675)

GD (0.665)

[teration

66666666

GD+ Wolfe
LBFGS+ Wolfe
Newton-TR
CG
DRSOM
DRSOMPIlus(homokrylov,1)
HSODM (warm)

CUTESt example
GD and LBFGS both use a Line-

search (Hager-Zhang)
« DRSOM uses 2-D subspace
« HSODM and DRSOM + HSODM
are much better!
« DRSOM can also benefit from the
homogenized system
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Sensor Network Location (SNL)

* Graphical results without SDP relaxation

* DRSOM can still converge to optimal solutions
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Sensor Network Location, Large-scale instances

* Test large SNL instances (terminate at 3,000s and | g, | < 1e™>)

* Compare GD, CG, and DRSOM. (GD and CG use Hager-Zhang Linesearch)

t
CG DRSOM GD

500 50  2.2e+04 | 1.7e+01 1.1e4+01 2.3e+01
1000 80 4.6e+04 | 7.3e+01 3.9e+01 1.8e+02
2000 120 9.4e+04 | 2.5e+02 1.4e+02 1.1e+03
3000 150 1.4e+05 | 6.5e+02 1.4e+02 -
4000 400 1.8e+05 | 1.3e4+03 5.0e+02 -
6000 600 2.7e+05 | 2.0e+03 1.1e+03 -

10000 1000 4.5e+05 - 2.2e+03 -

n m | E|

Table 2: Running time of CG, DRSOM, and GD on SNL instances of different problem size, |E|

W

denotes the number of QCQP constraints. means the algorithm exceeds 3,000s.

* DRSOM has the best running time (benefits of 2" order info and interpolation!)



Sensor Network Location, Large-scale instances

* Graphical results with 10,000 nodes and 1000 anchors (no noise) within 3,000 seconds

* GD with Line-search
and Hager-Zhang CG
both timeout

®  Truth

4  Anchors
O DRSOM
O GD

O CG

« DRSOM can converge to
| gr| < 1e 2 in 2,200s

® Truth

A Anchors

O DRSOM




Sensor Network Online Tracking, 2D and 3D


isnl.mp4
satellite.mp4

Application: Neural Networks and Deep Learning

To use DRSOM In machine learning problems

* We apply the mini-batch strategy to a vanilla DRSOM
* Use Automatic Differentiation to compute gradients

* Train ResNetl8/Resnet34 Model with CIFAR 10

* Set Adam with initial learning rate le-3

L | | e
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Neural Networks and Deep Learning
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—— Adam —— SGDm-0.90 —— SGDm-0.95 —— SGDm-0.99
—— DRSOM-¢g —— DRSOM-g+d

40

epoch

96

—— Adam —— SGDm-0.90 —— SGDm-0.95 —— SGDm-0.99
—— DRSOM-¢g —— DRSOM-g+d

80

epoch

Training and test results for ResNetl8 with DRSOM and Adam

— Adam —— SGDm-0.90 —— SGDm-0.95 —— SGDm-0.99
— DRSOM-g — DRSOM-g+d

40

epoch

test-acc

96

94

92

90

88

86

84

82

80

—— Adam —— SGDm-0.90 —— SGDm-0.95 —— SGDm-0.99
—— DRSOM-g —— DRSOM-g+d

o~ = \’ \ et

e P T
l'iu
// (

S " 5
A/Pw""v
7

20 40 60 80

epoch

Training and test results for ResNet34 with DRSOM and Adam

Pros

* DRSOM has rapid convergence (30
epochs)

* DRSOM needs little tuning
cons
* DRSOM may over-fit the models

* Running time can benefit from
Interpolation

* Single direction DRSOM is also
good

Good potential to be a standard
optimizer for deep learning!
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Mixed Integer Optimization iIs Real

* MIO is a mathematical programming model

with discrete integer (binary) decisions

 MERH praedita PRI IR b 112) AP2HPS S ath
by Mixed Integer Linear Programming (MILP)

Energy, Finance, Scheduling...
The simplest MIO model

How easy/hard is MIO?

Bad news: MIOs are notoriously HARD

State-of-the-art solvers may not solve hard MIOs

- =

min  c(x,y, &)

X,y

subject to h(x,y,&) <0
yi€{0,1} S
« IS

N7
||IIE!I l/;;4‘

M2

Good new
3. %
Imilar type

M4 - .

again and agaif

4 16 18 2021 2324 E?EEEESD 35

Scheduling




Application:
Unit Commitment Problem

* Electricity is generated from units (various
generators)

* Transmitted safely and stably through power
grids

* Consumed at minimum (reasonable) price

Optimization has its role to play

minimize Cost of electricity
subject to  Safety and Stability
Adaptivity to various units

Unit commitment problem dispatches the units
safely and stably at minimum cost




Application: Beljing Public Transport

Intelligent Urban Bus Operations
Management with Mixed Fleet Types
and Charging Schedule

.....
IONI T M
.......

e - : ‘ ' T N, A"“‘""f ¢
eijing Public Transport T e—— gni - )
| as - ” ; ¥

OF 5 v
<7 B

Kickoff 2022.8



Application: Beljing-Shanghai
High-speed Railway Scheduling Optimization

COPT, Cardinal Operations 2022
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Pooling the Risk via Variance Reduction

* Given an MILP, the interior point solution of the LP relaxation tells us

y1(€) S50
(6 || 012
7.(8) 0.38

* Each y Is the likelihood a variable takes 1 or O Iin the optimal solution
* Each variable introduces some risk/variance of such rounding

so that dealing them separately results in extremely risk outcomes

Q: What should we do seeing a set of risky guesses? A: Put them in a pool!



Risk Pooling through Variance Reduction

* Pooling the binary variables by adding “confidence” cardinality cuts

g yi (&) > || Yy <BIL]

ieU={j:yj(§)=>0.9} ie{/:y;(£)<0.1}
* Intuitively we know that the above two inequalities are expectedly to hold
fora—-09and g — 0.1
* These two Inequalities are exactly cutting planes for MILP
* The last Issue Is how to choose «a, f to Increase the confidence level:
Interpret y;k as Bernoulli random variables with expectation Qj ,

then justify by concentration inequalities



Statistical Confidence Cut Generation (Gao at al. SHUFE, 2023)

Theorem 2. Given independent random variables {y{'(£),..., ya(&)} such that E[y*(&)|&] = yi(&), letting
U:=1i:yi(&)>71} and L:={i:yi(§)<1—71} for 0.5 <7 <1. Then w.p. 1—14, each of the inequalities

below holds.
C )> — [ Hliog(1/5) \
U- Z yf Z yf Og /

reu IeuU l/
Feasible Region

Co: Y v (&) <) (¢ \/wloglﬁ \ / \
€L IEL

* Overall, the two cuts (and their complement) split the whole feasible region into four
regions

C L T

* Solving the most likelihood region of two cuts often gives a satisfying solution with
confidence

* Branching over all four regions independently will not miss the optimal solution



Numerical Experiments: Online Cut-Generation

* Tested on IEEEE unit commitment
problems using COPT

* Using pre-solved instances to compare
speed

0.5
1.0

* Accuracy of interior point prediction can
reach 80%

0.9

0.8

0.7

0.5

Accuracy of prediction by the IPM and PDLP

Instance Original Stat. cut Instance Original Stat. cut

* No loss of optimality 1

* Remarkable acceleration using proper

Gl B W

8382
242
263
495
241

187
170
168
167
182

6
I
8
9
10

1151
3600
1320
3600
3600

405
1510
1029
758
579

choosing cut generation parameters

Improvement of COPT on IEEE Instances

Offline-Training: Using past iInstances to improve prediction quality



Data-Driven Approaches to Mixed Integer Optimization
Learn from the past and predict the future such as the unit commitment

problem In Electrical Power Generation

* Many real-life MIO applications are solved on a min 6 y:¢)
; subject to h(x, y, &) <0
regular basis

yi€{0,1}

0501

Unit commitment; portfolio; scheduling...

* Large amount of data and solutions collected
from the past

Future instances are similar to the past

* A natural idea: use machine learning to learn
from history

Known as pre-trained data-driven approaches




Numerical Test Results |

* The method Is tested on multi-knapsack, set-covering and unit-commitment
problems

Train from 500 instances and test on 20 instances

* Measure the speedup of finding a good solution on In the region formed by two
cuts

B Gurobi B COPT

Min
1.032

10, 250, L. 10, 250, M 10, 250, H 10, 500, L. 10, 500, M 10, 500, H 30, 250, L. 30, 250, M 30, 250, H 30, 500, L. 30,500, M 30, 500, H

Average speedup on knapsack instances



Numerical Test Results I

* Acceleration by two lines of
code

* Remarkable speedup on
primal solution finding for
both the state of art MIP
solvers Gurobi and COPT

* No loss of optimality

Speed Up
ek o w = un (=) ~1 - -}

Min
0.676

3000.5000.L. 3000, 5000, M  3000.5000.H 4000, 6000.L.  4000,6000.M 4000, 6000. H

Unit Commitment

B Gurobi B COPT

Min
3.924

1000, 10000. L. 1000, 10000.M 1000,10000.H 2000,10000.1. 2000,10000.M 2000,10000.H 2000,20000.1. 2000,20000.M 2000,20000, H

Set-Covering



Overall Takeaways

Second-Order Derivative information matters and better to integrate FOM and
SOM for nonlinear optimization!

Homogeneous second-order direction as an extreme eigenvalue computation
IS @ “cheaper” alternative to the Trust-Region or Newton step computation

Generalized Homogeneous direction is flexible using different 8 k and ¢ _k and
substitutes for other SOM step

It Is possible to do dimension reduction of the trust-region method

It Is possible to train Mixed-Integer Linear Proqramming Solvers and add
Statistical Confidence Cuts to significantly accelerate the solution process.

* THANK YOU



