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• min 𝑓(𝑥), 𝑥 ∈ 𝑋 𝑖𝑛 ℝ𝑛,

where  𝑓 is nonconvex and twice-differentiable,

𝑔𝑘 = 𝛻𝑓(𝑥𝑘), 𝐻𝑘 = 𝛻2𝑓(𝑥𝑘)

• Goal: find 𝑥𝑘 such that:

∥ 𝛻𝑓(𝑥𝑘) ∥≤ 𝜖 (primary, first-order condition)

𝜆𝑚𝑖𝑛(𝐻𝑘) ≥ − 𝜖 (in active subspace, second-order condition) 

• For the ball-constrained nonconvex QP: min 𝑐𝑇𝑥 + 0.5𝑥𝑇𝑄𝑥 𝑠. 𝑡. ∥ 𝑥 ∥ 2 ≤1   

O(loglog(𝜖-1)); see Vavasis&Zippel (1990), Y (1989,93). 

• For nonconvex QP with polyhedral constraints: O(𝜖-1); see Y (1998), Vavasis (2001)

Early Complexity Analyses for Nonconvex Optimization



Second-order Methods for General Optimization

SOM (Hessian-Type Methods) with 𝑀-Lipschitz cont. Hessian 

• Trust-region (More 70, Sorenson 80). Fixed-radius TR 𝑂 𝜖−
3

2 , see the lecture notes by Y since 2005

• Cubic regularization, 𝑂(𝜖−3/2) ,see Nesterov and Polyak (2006), Cartis, Gould, and Toint (2011)

• An adaptive trust-region framework, 𝑂(𝜖−3/2) ,Curtis, Robinson, and Samadi (2017)

SOM for convex functions

• Cubic regularization, 𝑂(𝜖−1/2) ,see Nesterov and Polyak (2006),

• Accelerated SOMs, 𝑂(𝜖−1/3), 𝑂(𝜖−1/3.5), see Monteiro and Svaitor (2013), Nesterov (2008), Doikov et al. 

(2022)

• Linearly convergent SOMs, self-concordance, see Nesterov and Nemirovskii (1994); scaled Lipschitz, see 

Kortanek and Zhu (1993), Anderson and Ye (1998); generalized concordance, see Sun (2019).

Disadvantage: each iteration requires O(n3) operations: How to reduce it?



An Integrated Descent Direction Using the 

SDP Homogeneous Model I (Zhang at al. SHUFE, 2022)

where Δ𝑘 =𝜖1/2/𝑀 is the trust-ball radius.

• -gk is the first-order steepest descent direction but ignores Hessian; 

• the most-left eigenvector of Hk-would be a descent direction for the second order term

• Could we construct a direction integrating both?

Answer: Use the most-left eigenvector of the SDP homogenized quadratic function!

(In Rojas 2001, a specialized Lanczos method is proposed for solving the Trust-region 

Subproblem with a given radius; and in Adachi 2017 for solving more Generalized Trust-

region Subproblems)

• Recall the fixed-radius trust-region method minimizes the Taylor quadratic 

model



An Integrated Descent Direction Using the 

SDP Homogeneous Model II (Zhang at al. SHUFE, 2022)

• Find the direction 𝜉 = 𝜉0/𝑡 (if t = 0 then set t=1) by the leftmost 

eigenvector: 

min
| 𝜉0;𝑡 |≤1

𝜓𝑘 𝜉0, 𝑡; 𝛿

with a suitable 𝜹k and use 𝜉 as the direction to go – a single loop algorithm to 

solve the original problem and ignore the trust-region subproblem.

• Accessible at the cost of 𝑂 𝑛2𝜖−1/4 via the randomized Lanczos

method and needs only Hessian-Vector-Product (HVP).



How to Set 𝛿 : Theoretical Guarantees of HSODM

• Consider using the second-order homogenized direction, and let the length of 

each step η𝜉 be fixed: η𝜉 ≤ Δ𝑘 =
2 𝜖

𝑀
, where 𝑓(𝑥) has 𝐿-Lipschitz gradient 

and 𝑀-Lipschitz Hessian. 

• Theorem 1 (Global convergence rate) : Let 𝑓(𝑥) satisfy the Lipchitz 

Assumption and fix 𝛿 = √𝜀 , and let 𝑥𝑘+1= 𝑥𝑘 + η𝑘𝜉 where η𝑘 = Δ𝑘/ 𝜉 , then 

algorithm has 𝑂(𝜖−3/2) iteration complexity to second-order stationarity, 

where each iteration compute the most-left eigenvector of the homogenized 

matrix to ∊ accuracy.

• Theorem 2 (Local convergence rate): If the iterate 𝑥𝑘 of HSODM converges to 

a strict local optimum 𝑥∗ , HSODM possesses a local superlinear (quadratic) 

speed of convergence: ∥ 𝑥𝑘+1 − 𝑥∗ ∥= 𝑂 ∥ 𝑥𝑘 − 𝑥∗ ∥2 .



HSODM with Line-Search Methods

• Fixed step length η𝑘 may be too conservative.

• Observation I: homogenized direction 𝜉 can be used with any

Line-search (e.g., Hager-Zhang)

• Theorem 3 (Global convergence with Line-search, informal) : If we 

apply the backtrack to compute η𝑘 with parameter 𝛽 ∈ 0,1 then

the algorithm converges in 𝑂 𝜖−
3

2 |log𝛽 𝜖 | iterations.



Application: HSODM for Policy Optimization in Reinforcement Learning 

• Consider policy optimization of linearized objective in reinforcement learning

• The Natural Policy Gradient (NPG) method (Kakade, 2001) uses the Fisher information 

matrix where Mk is the inverse of

• Based on KL divergence, TRPO (Schulman et al. 2015) uses KL divergence in the constraint:

Homogeneous Natural Policy Gradient: 

Apply the Homogenized Direction with Line Search!



HSODM for Policy Optimization in RL II
• A comparison of Homogeneous NPG and Trust-region Policy Optimization (Schultz, 2015) 

• Homogeneous model provides significant improvements over TRPO (public open-source solver)



Application: HSODM for CUTEst Benchmark

• Compare HSODM (with Hessian), HSODM-

HVP (with HVP), Newton TR and ARC 

• Compare performance metrics in SGM

• K – success #, 𝑡𝐺 - geometric mean running 

time (SGM), 𝑘𝐺 - geometric mean iteration # 

(SGM)

• Newton-TR and ARC are public solvers
Performance Profile of iteration #

𝜶 – iteration # compared to the best

𝒑𝒓𝒐𝒇𝒊𝒍𝒆(𝜶) – percentage of solved instances within 𝜶



Application: HSODM for Sensor Network Localization

• Consider Sensor Network Location (SNL)

where       is a fixed parameter known as 

the radio range. The SNL problem considers 

the following QCQP feasibility problem,

• We can solve SNL by the nonconvex 

nonlinear least square (NLS) problem



Application: HSODM for Sensor Network Localization

• Compare HSODM (with HVP), and

Newton-TR Method.

• HSODM is faster due to the 

eigenvalue procedure

• The solution quality is much better 

than the FOMs







Generalized Homogeneous Model (GHM) and HSODM 

• Can we equivalent HSODM to more second-order frameworks?

• Introduce Generalized Homogeneous Model (GHM)

𝑯𝒌 𝒈𝒌

𝒈𝒌
𝑻 𝜹

⇒
𝑯𝒌 𝝓𝒌

𝝓𝒌
𝑻 𝜹𝒌

, 

• Adaptive 𝜹𝒌 and smart choice of 𝝓𝒌 (𝒈𝒌 suffices in most case)

Method
Adaptive Controls

Complexity References
𝝓𝒌 𝜹𝒌

Gradient Regularization ✓ 𝑂(𝜖−0.5)
Mishchenko 2022, Doikov

2022

ARC † ✓ 𝑂(𝜖−1.5), 𝑂(𝜖−0.5)
Nesterov and Polyak 2006, 

Cartis et al. 2011

Trust-region Method † ✓ 𝑂(𝜖−1.5) Curtis et al. 2017

Homotopy method (new) ✓ ✓ 𝑂(𝑙𝑜𝑔 𝜖−1 )
Luenberger and Ye 2021

Lecture notes by Ye, 2015



Concordant Second-Order Lipschitz condition I

• 𝐂𝐨𝐧𝐬𝐢𝐝𝐞𝐫 min
𝑥

𝑓 𝑥 , where 𝑓 𝑥 satisfies 

• This condition is called the concordant second-order Lipschitz condition 

(CSOLC), first introduced in Luenberger & Ye (2015, 2022). 

whenever ∥ 𝑑 ∥≤ 𝑂(1). 

• CSOLC is motivated from the Scaled Lipschitz Condition, which was 

widely used in the IPMs and MCPs. see Zhu(1992), Kortane&Zhu(1993), 

Andersen&Ye(1999).



Concordant Second-Order Lipschitz condition II

Properties of CSOLC:

• Closed under affine transformation:  if 𝑓 𝑥 satisfies CSOLC, then 𝑓(𝐴𝑥

• Closed under positive scalar multiplications and summations; 

Examples of CSOLC:

• Convex quadratic functions, exponential functions;

• 𝛄 -Regularized logistic regression: 𝒇 𝒙 =
𝟏

𝒎
 𝒊=𝟏
𝒎 𝒍𝒐𝒈 𝟏 + 𝒆−𝒃𝒊⋅ 𝒂𝒊

𝑻 𝒙 +
𝛄

𝟐
|𝒙|𝟐



The Homotopy Model

• The homotopy model:

Where 𝜇𝑇 → 0. We say {𝑋𝜇𝑇
} forms a central path.  

• At each iterate solve the homotopy model inexactly  (approximate 

“centering” condition, ACC):

• Use GHM with proper 𝜹𝒌 and 𝝓𝒌 !



Homotopy HSODM I

• For each homotopy model, we apply GHM to solve it:

• Lemma 2(a): (fixed distance from the “central” path)

• Lemma 2(b): (finite convergence for each epoch) For any 𝜇𝑇, ACC can be 

satisfied within 𝑲 ≤ 𝟐 steps, specifically  



Homotopy HSODM II

A Non-Interior Homotopy HSODM:

• Linearly decrease 𝜇𝑇 → simultaneously adaptive 𝜹𝒌 and 𝝓𝒌

• Use GHMs as each subproblem at 𝜇𝑇 with finite convergence

• Theorem: (global rate of convergence) After at most

iterates, we could find an iterate that satisfies |𝛻𝑓 𝑥  𝑇+1,0 | ≤ 𝝐



Application: A Comparison in 𝑳𝟐 - Logistic regression, 𝜸 = 1e-5

• 𝑳𝟐 -Logistic regression:

𝒇 𝒙 =
𝟏

𝒎
 𝒊=𝟏
𝒎 𝒍𝒐𝒈 𝟏 + 𝒆−𝒃𝒊⋅ 𝒂𝒊

𝑻 𝒙 +
𝛄

𝟐
|𝒙|𝟐

• Compare Homotopy-HSODM, Adaptive 

HSODM

• and inexact Newton with different 

accuracy (public open-source code)

Inexact-Newton

10-7, 10-8, 10-9Homotopy

HSODM
Adaptive 

HSODM



A Comparison in 𝑳𝟐 - Logistic regression, 𝜸 = 1e-5

• A larger dataset news20

• Large dimension but relatively few 

data

• HSODM can benefit when dimension 

𝒏 gets large

• Similar results were observed in 

Rojas 2001, Adachi 2017 for solving 

Trust-region Subproblems.

Homotopy

HSODM

Adaptive 

HSODM

Inexact-Newton

10-7, 10-8, 10-9



Resilience of Homotopy-HSODM for small 𝜸, 𝜸 = 1e-7

• With same dataset rcv1

𝒇 𝒙 =
𝟏

𝒎
 𝒊=𝟏
𝒎 𝒍𝒐𝒈 𝟏 + 𝒆−𝒃𝒊⋅ 𝒂𝒊

𝑻 𝒙 +
𝛄

𝟐
|𝒙|𝟐

• Sensitivity study from 𝜸 = 1e-5 → 1e-7

• Homotopy-HSODM is resilient to small 𝜸

(almost degenerate case)

Adaptive 

HSODM

Inexact-Newton

10-7, 10-8, 10-9

Homotopy

HSODM



Warm-starting HSODM

• With same dataset rcv1

𝒇 𝒙 =
𝟏

𝒎
 𝒊=𝟏
𝒎 𝒍𝒐𝒈  𝟏
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• Motivation from Multi-Directional FOM and Subspace Method, DRSOM in general 

uses reduced m-independent directions  𝑑(α):= 𝐷kα , 𝐷k ∊ Rnm, α∊ Rm

• Plug the expression into the full-dimension Trust-Region quadratic minimization 

model, we minimize a  m-dimension trust-region subproblem to decide “m 

stepsizes”:

min 𝑚𝑘
α α ≔ 𝑐𝑘

𝑇α +
1

2
α𝑇𝑄𝑘𝛼

||α||𝐺𝑘
≤ Δ𝑘

𝐺𝑘= 𝐷𝑘
𝑇𝐷𝑘, 𝑄𝑘 = 𝐷𝑘

𝑇𝐻𝑘𝐷𝑘, 𝑐𝑘 = 𝑔𝑘
𝑇𝐷k

How to choose Dk? Provable complexity result? 

Dimension Reduced Second-Order Method (DRSOM) I



• In following, as an example, DRSOM adopts two FOM directions

𝑑 = −𝛼1𝛻𝑓 𝑥𝑘 + 𝛼2𝑑𝑘 ∶= 𝑑(α)

where 𝑔𝑘 = 𝛻𝑓 𝑥𝑘 , 𝐻𝑘 = 𝛻2𝑓 𝑥𝑘 , 𝑑𝑘 = 𝑥𝑘 − 𝑥𝑘−1

• Then we minimize a  2-D trust-region problem to decide “two step-sizes”:

min 𝑚𝑘
α α ≔ 𝑓 𝑥𝑘 + 𝑐𝑘

𝑇α +
1

2
α𝑇𝑄𝑘𝛼

||α||𝐺𝑘
≤ Δ𝑘

𝐺𝑘 =
𝑔𝑘
𝑇𝑔𝑘 −𝑔𝑘

𝑇𝑑𝑘

−𝑔𝑘
𝑇𝑑𝑘 𝑑𝑘

𝑇𝑑𝑘

, 𝑄𝑘 =
𝑔𝑘
𝑇𝐻𝑘𝑔𝑘 −𝑔𝑘

𝑇𝐻𝑘𝑑𝑘

−𝑔𝑘
𝑇𝐻𝑘𝑑𝑘 𝑑𝑘

𝑇𝐻𝑘𝑑𝑘

, 𝑐𝑘 =
−||𝑔𝑘||

2

𝑔𝑘
𝑇𝑑𝑘

DRSOM II



DRSOM III

DRSOM can be seen as:

• “Adaptive” Accelerated Gradient Method (Polyak’s momentum 60)

• A second-order method minimizing quadratic model in the reduced 2-D subspace

𝑚𝑘(𝑑) = 𝑓(𝑥𝑘) + 𝛻𝑓(𝑥𝑘)
𝑇𝑑 +

1

2
𝑑𝑇𝛻2𝑓(𝑥𝑘)𝑑, 𝑑 ∈ 𝗌𝗉𝖺𝗇{−𝑔𝑘, 𝑑𝑘}

compare to, e.g., Dogleg method, 2-D Newton Trust-Region Method

𝑑 ∈ 𝗌𝗉𝖺𝗇{𝑔𝑘 , [𝐻(𝑥𝑘)]
−1𝑔𝑘} (e.g., Powell 70, Byrd 88)

• A conjugate direction method for convex optimization exploring the Krylov Subspace 

(e.g., Barzilai&Borwein 88, Yuan&Stoer 95, Yuan 2014, Liu et al. 2021)

• For convex quadratic programming with no radius limit, terminates in n steps



Computing the two-dimensional quadratic model is the Key

In the DRSOM with two directions:

𝑄𝑘 =
𝑔𝑘
𝑇𝐻𝑘𝑔𝑘 −𝑔𝑘

𝑇𝐻𝑘𝑑𝑘

−𝑔𝑘
𝑇𝐻𝑘𝑑𝑘 𝑑𝑘

𝑇𝐻𝑘𝑑𝑘

, 𝑐𝑘 =
−||𝑔𝑘||

2

𝑔𝑘
𝑇𝑑𝑘

How to cheaply obtain Q? Compute  𝐻𝑘𝑔𝑘 , 𝐻𝑘𝑑𝑘 first.

• Finite difference:

𝐻𝑘 ⋅ 𝑣 ≈
1

𝜖
𝑔(𝑥𝑘 + 𝜖 ⋅ 𝑣) − 𝑔𝑘 ,

• Analytic approach to fit modern automatic differentiation,

𝐻𝑘𝑔𝑘 = 𝛻(
1

2
𝑔𝑘
𝑇𝑔𝑘), 𝐻𝑘𝑑𝑘 = 𝛻(𝑑𝑘

𝑇𝑔𝑘),

• Use Hessian if readily available !

• Three(-or more)-Point Interpolation: it is almost as fast as Polyak and CG! 



DRSOM: key assumptions and theoretical results (Zhang at al. SHUFE, 

2022)

Theorem 1. If we apply DRSOM to QP, then the algorithms terminates in at most n 

steps to find a first-order stationary point

Theorem 2. (Global convergence rate) For f with second-order Lipschitz condition, let Δ𝑘

=2𝜖1/2/𝑀, then DRSOM terminates in 𝑂(𝜖  −3 2) iterations.  Furthermore, the iterate 𝑥𝑘
satisfies the first-order condition, and the Hessian is positive semi-definite in the subspace 

spanned by the gradient and momentum.

Assumption. (a)  𝑓 has Lipschitz continuous Hessian. (b) If the Lagrangian multiplier 𝝀𝒌
< 𝝐 , assume ∥ (𝑯𝒌 −  𝑯𝒌)𝒅𝒌+𝟏 ∥≤ 𝑪 ∥ 𝒅𝒌+𝟏 ∥𝟐 (Cartis et al.), where  𝐻𝑘 is the projected 

Hessian in the subspace (commonly adopted for approximate Hessian)

Theorem 3. (Local convergence rate) If the iterate 𝑥𝑘 converges to a strict local optimum 

𝑥∗ such that 𝐻(𝑥∗) ≻ 0, and if Assumption (c) is satisfied as soon as 𝜆𝑘 ≤ 𝐶𝜆 ∥ 𝑑𝑘+1 ∥, 
then DRSOM has a local superlinear (quadratic) speed of convergence, namely: ∥ 𝑥𝑘+1 −
𝑥∗ ∥= 𝑂(∥ 𝑥𝑘 − 𝑥∗ ∥2)



20.000000 23.321928 26.643856 27.643856 28.965784 29.965784

10− 10

10− 8

10− 6

10− 4

10− 2

102

Iterat ion

=

CUTEst model name := SPMSRTLS-1000

GD+ Wolfe

LBFGS+ Wolfe

Newton-T R

CG

DRSOM

DRSOMPlus(homokrylov,1)

HSODM (warm)

Newton-TR (5s)

LBFGS (0.33s)

CG (0.46s)

DRSOM (0.67s)HSODM (0.15s)

DRSOM-Homo (0.51s)

GD (0.66s)

Preliminary Results: HSODM and DRSOM + HSODM

CUTEst example

• GD and LBFGS both use a Line-

search (Hager-Zhang)

• DRSOM uses 2-D subspace

• HSODM and DRSOM + HSODM 

are much better!

• DRSOM can also benefit from the 

homogenized system



Sensor Network Location (SNL)

• DRSOM can still converge to optimal solutions

• Graphical results without SDP relaxation



Sensor Network Location, Large-scale instances

• Test large SNL instances (terminate at 3,000s and | 𝒈𝒌| ≤ 𝟏𝒆−𝟓)

• Compare GD, CG, and DRSOM. (GD and CG use Hager-Zhang Linesearch) 

• DRSOM has the best running time (benefits of 2nd order info and interpolation!)



Sensor Network Location, Large-scale instances

• Graphical results with 10,000 nodes and 1000 anchors (no noise) within 3,000 seconds

• GD with Line-search 

and Hager-Zhang CG 

both timeout

• DRSOM can converge to 

| 𝒈𝒌| ≤ 𝟏𝒆−𝟓 in 2,200s



Sensor Network Online Tracking, 2D and 3D

isnl.mp4
satellite.mp4


Application: Neural Networks and Deep Learning 

To use DRSOM in machine learning problems

• We apply the mini-batch strategy to a vanilla DRSOM

• Use Automatic Differentiation to compute gradients

• Train ResNet18/Resnet34 Model with CIFAR 10

• Set Adam with initial learning rate 1e-3



Neural Networks and Deep Learning 

Training and test results for ResNet18 with DRSOM and Adam

Training and test results for ResNet34 with DRSOM and Adam

Pros

• DRSOM has rapid convergence (30 
epochs)

• DRSOM needs little tuning

Cons

• DRSOM may over-fit the models

• Running time can benefit from 
Interpolation

• Single direction DRSOM is also 
good

Good potential to be a standard 
optimizer for deep learning!
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Mixed Integer Optimization is Real

• MIO is a mathematical programming model 

with discrete integer (binary) decisions

• Many practical MIO applications are modeled 

by Mixed Integer Linear Programming (MILP)

The simplest MIO model

Energy Portfolio

Scheduling

How easy/hard is MIO?

• Mixed integer optimization (MIO) is around us

Energy, Finance, Scheduling…

Bad news: MIOs are notoriously HARD

State-of-the-art solvers may not solve hard MIOs

Good news: 

Similar type of problems are solved 

again and again



Application:

Unit Commitment Problem

• Electricity is generated from units (various

generators) 

• Transmitted safely and stably through power 

grids

• Consumed at minimum (reasonable) price

Optimization has its role to play

Unit commitment problem dispatches the units 

safely and stably at minimum cost



Application: Beijing Public Transport
Intelligent Urban Bus Operations 
Management with Mixed Fleet Types 
and Charging Schedule

Kickoff 2022.8



Application: Beijing-Shanghai 

High-speed Railway Scheduling Optimization

COPT, Cardinal Operations 2022



Pooling the Risk via Variance Reduction

• Each  𝑦 is the likelihood a variable takes 1 or 0 in the optimal solution

• Each variable introduces some risk/variance of such rounding

so that dealing them separately results in extremely risk outcomes

• Given an MILP, the interior point solution of the LP relaxation tells us

Q: What should we do seeing a set of risky guesses? A: Put them in a pool!



Risk Pooling through Variance Reduction

• Pooling the binary variables by adding “confidence” cardinality cuts

• Intuitively we know that the above two inequalities are expectedly to hold 

for 𝛼 → 0.9 and 𝛽 → 0.1

• These two inequalities are exactly cutting planes for MILP

• The last issue is how to choose 𝛼, 𝛽 to increase the confidence level:

Interpret  as Bernoulli random variables with expectation      ,

then justify by concentration inequalities



Statistical Confidence Cut Generation (Gao at al. SHUFE, 2023)

• Overall, the two cuts (and their complement) split the whole feasible region into four 

regions

• Solving the most likelihood region of two cuts often gives a satisfying solution with 

confidence

• Branching over all four regions independently will not miss the optimal solution



Numerical Experiments: Online Cut-Generation

• Tested on IEEEE unit commitment 

problems using COPT

• Using pre-solved instances to compare 

speed

Accuracy of prediction by the IPM and PDLP

Improvement of COPT on IEEE instances

• Accuracy of interior point prediction can 

reach 80% 

• No loss of optimality

• Remarkable acceleration using proper

choosing cut generation parameters

Offline-Training: Using past instances to improve prediction quality



Data-Driven Approaches to Mixed Integer Optimization
Learn from the past and predict the future such as the unit commitment

problem in Electrical Power Generation

• Many real-life MIO applications are solved on a 

regular basis

Unit commitment; portfolio; scheduling…

• Large amount of data and solutions collected 

from the past

Future instances are similar to the past

• A natural idea: use machine learning to learn 

from history

Known as pre-trained data-driven approaches

…

0501

𝑥∗

0510

𝑥∗

0511

?

0511

𝑥∗



Numerical Test Results I

• The method is tested on multi-knapsack, set-covering and unit-commitment 

problems

Train from 500 instances and test on 20 instances

• Measure the speedup of finding a good solution on in the region formed by two 

cuts

Average speedup on knapsack instances



Numerical Test Results II

Unit Commitment

Set-Covering

• Acceleration by two lines of 

code

• Remarkable speedup on 

primal solution finding for 

both the state of art MIP 

solvers Gurobi and COPT

• No loss of optimality



Overall Takeaways

Second-Order Derivative information matters and better to integrate FOM and 
SOM for nonlinear optimization!

Homogeneous second-order direction as an extreme eigenvalue computation 
is a “cheaper” alternative to the Trust-Region or Newton step computation
Generalized Homogeneous direction is flexible using different 𝜹_𝒌 and 𝝓_𝒌 and 
substitutes for other SOM step

It is possible to do dimension reduction of the trust-region method 

It is possible to train Mixed-Integer Linear Programming Solvers and add 
Statistical Confidence Cuts to significantly accelerate the solution process.

• THANK YOU


