Recent Developments on Optimization Algorithms and Applications

Yinyu Ye **Stanford University and CUHKSZ (Sabbatical Leave)**

MAY 11, 2023

Stanford University

Today's Talk

I. Accelerated Second-Order Methods and Applications

II. Pre-Trained Statistical Cut Generation for **Mixed-Integer Linear Programming Solvers**

I. Early Complexity Analyses for Nonconvex Optimization

min $f(x), x \in X$ in \mathbb{R}^n ,

• where f is nonconvex and twice-differentiable,

$$g_k = \nabla f(x_k), H_k = \nabla^2 f(x_k)$$

• Goal: find x_k such that:

 $\|\nabla f(x_k)\| \le \epsilon$ (primary, first-order condition)

- For the ball-constrained nonconvex QP: min $c^T x + 0.5x^T Qx s.t. \parallel x \parallel_2 \le 1$ $O(loglog(\epsilon^{-1}))$; see Y (1989,93), Vavasis&Zippel (1990)
- For nonconvex QP with polyhedral constraints: $O(\epsilon^{-1})$; see Y (1998), Vavasis (2001)

- $\lambda_{min}(H_k) \ge -\sqrt{\epsilon}$ (in active subspace, secondary, second-order condition)

Classic Methods for General Convex/Nonconvex Optimization First-order Method (FOM): Gradient-Type Methods

- Assume f has L-Lipschitz cont. gradient
- Global convergence by, e.g., linear-search (LS)
- No guarantee for the second-order condition
- Worst-case complexity, $O(\epsilon^{-2})$; see the textbook by Nesterov (2004) Each iteration requires $O(n^2)$ operations

Second-order Method (SOM): Hessian-Type Methods

- Assume f has M-Lipschitz cont. Hessian
- 2005
- Cubic regularization, $O(e^{-3/2})$, see Nesterov and Polyak (2006), Cartis, Gould, and Toint (2011)
- An adaptive trust-region framework, $O(e^{-3/2})$, Curtis, Robinson, and Samadi (2017)

Each iteration requires O(n³) operations: How to reduce it?

• Trust-region (More 70, Sorenson 80) with a fixed-radius strategy, $O(e^{-3/2})$, see the lecture notes by Y since

Model I (Zhang at al. SHUFE, 2022)

 $\min_{d\in\mathbb{R}^n} m_k(d) := g_k^T d$

s.t.||*d*||

- where $\Delta_k = \epsilon^{1/2} / M$ is the trust-ball radius.
- $-g_k$ is the first-order steepest descent direction but ignores Hessian;
- the most-left eigenvector of H_k -would be a descent direction for the second order term but such direction may not exist if it becomes nearly convex...
- **Could we construct a direction integrating both?** lacksquare**Answer:** Use the homogenized quadratic model of SDP relaxation

An Integrated Descent Direction Using the Homogenized Quadratic

Recall the fixed-radius trust-region method minimizes the Taylor quadratic model

$$+\frac{1}{2}d^{T}H_{k}d$$
$$\leq \Delta_{k}.$$

An Integrated Descent Direction Using the Homogenized Quadratic Model II

• Using the homogenization trick by lifting with extra scalar t:

$$\psi_k\left(\xi_0, t; \delta\right) := \frac{1}{2} \begin{bmatrix} \xi_0 \\ t \end{bmatrix}^T \begin{bmatrix} H_k & g_k \\ g_k^T & -\delta \end{bmatrix} \begin{bmatrix} \xi_0 \\ t \end{bmatrix} = \frac{t^2}{2} \begin{bmatrix} \xi_0/t \\ 1 \end{bmatrix}^T \begin{bmatrix} H_k & g_k \\ g_k^T & -\delta \end{bmatrix} \begin{bmatrix} \xi_0/t \\ 1 \end{bmatrix}$$

The homogeneous model is equivalent to m_k up to scaling: lacksquare

$$\psi_k(\xi_0,t;\delta) = t^2 \cdot (m_k(\xi_0/t) - t^2) + (m_k(\xi_$$

• Find a good direction $\xi = \xi_0/t$ (if t = 0 then set t=1) by the leftmost eigenvector:

$$\min_{\substack{|[\xi_0;t]| \le 1}} \psi_k(\xi_0,t;\delta)$$

with δ set to be $O(\sqrt{\epsilon})$!

• Accessible at the cost of $O(n^2 e^{-1/4})$ via the randomized Lanczos

$$\delta)$$

Theoretical Guarantees of HSODM

- Consider use the second-order homogenized direction, and the length of each • step $\|\eta \xi\|$ is fixed: $\|\eta \xi\| \leq \Delta_k = \frac{2\sqrt{\epsilon}}{M}$ where f(x) has *L*-Lipschitz gradient and *M*-Lipschitz Hessian.
- Theorem 1 (Global convergence rate) : if f(x) satisfies the Lipchitz Assumption and $\delta = \sqrt{\varepsilon}$, the iterate moves along homogeneous vector ξ : $x_{k+1} = x_k + \eta_k \xi$, then, if we choose $\eta_k = \Delta_k / \|\xi\|$, and terminate at $\|\xi\| < \Delta_k$, then algorithm has $O(\epsilon^{-3/2})$ iteration complexity. Furthermore, x_{k+1} satisfies approximate firstorder and second-order conditions. • Theorem 2 (Local convergence rate): If the iterate x_k of HSODM converges to a strict local optimum x^* such that $H(x^*) > 0$, and then $\eta_k = 1$ if k is sufficiently large. If we do not terminate HSODM and set $\delta = 0$, then HSODM has a local superlinear (quadratic) speed of convergence, namely: $|| x_{k+1} - x^* || = O(|| x_k)$

HSODM for Convex Optimization

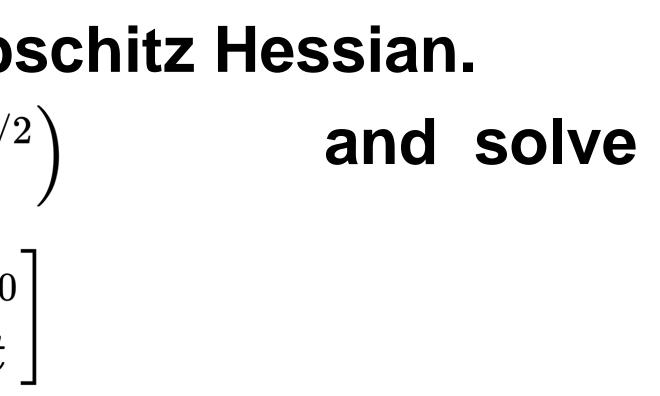
- f(x) is a convex function with *M*-Lipschitz Hessian.
- At every iteration, choose $_{k} = O(||g_{k}||^{1/2})$

$$\min_{\|[\xi_0;t]\|\leq 1}egin{bmatrix} \xi_0\ t\end{bmatrix}^Tegin{bmatrix} H_k & g_k\ g_T^T & -\delta_k\end{bmatrix}egin{bmatrix} \xi_0\ t\end{bmatrix}$$

- Update $x_{k+1} = x_k + \xi$, $\xi = \xi_0/t$ (t = 0 won't happen when f(x) is convex) • Theorem 3 (Global convergence rate) : suppose the sublevel set {x: $f(x) \le f(x) \le f(x)$ $f(x_0)$ is bounded, then the sequence $\{x_k\}$ satisfies

$$f(x_k) - f(x^*) \leq Oig(k^{-2}$$

Ongoing: improved bounds of accelerated HSODM, gradient-dominance, etc. Practical remarks: homogenized direction can be used with any Line-search (e.g., Hager-Zhang)



Application I: HSODM for Policy Optimization in Reinforcement Learning

Consider policy optimization of linearized objective in reinforcement learning

$$\max_{ heta \in \mathbb{R}^d} L(heta) := L(\pi_ heta),$$

 $\theta_{k+1} = \theta_k + \alpha_k \cdot M_k \nabla \eta(\theta_k),$

- M_k is usually a preconditioning matrix.
- The Natural Policy Gradient (NPG) method (Kakade, 2001) uses the Fisher information matrix where M_k is the inverse of $F_k(heta) = \mathbb{E}_{
 ho_{ heta_k}, \pi_{ heta_k}} ig arprop \log \pi_{ heta_k}(s, a)
 abla \log \pi_{ heta_k}(s, a)^T ig arprop v$
- $\max_{ heta}
 abla L_{ heta_k}(heta_k)^T (heta heta_k)$ $\text{s.t.} \ \mathbb{E}_{s \sim \rho_{\theta_k}}[D_{KL}(\pi_{\theta_k}(\cdot \mid s); \pi_{\theta}(\cdot \mid s))] \leq \delta.$

• Based on KL divergence, TRPO (Schulman et al. 2015) uses KL divergence in the constraint:

Homogeneous NPG: Apply the homogenized model!

HSODM for Policy Optimization in RL I

Consider Homogeneous NPG in reinforcement learning

$$\min_{\|[v;t]\|\leq 1} egin{bmatrix} v \ t \end{bmatrix}^T egin{bmatrix} F_k & g_k \ g_T^T & -\delta \end{bmatrix} egin{bmatrix} v \ t \end{bmatrix}$$

• F_k is an estimation of Fisher matrix, see, Schulman et al. 2015, 2017

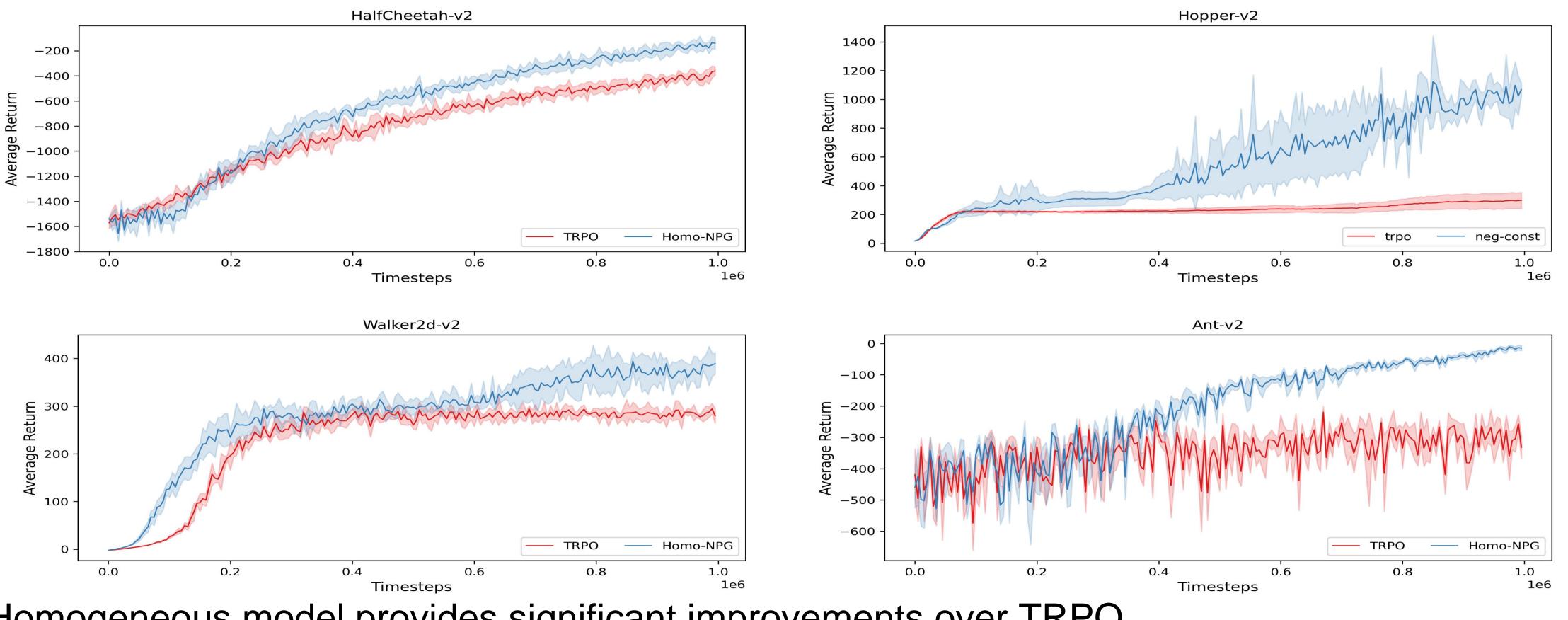
$$F_k(heta) = \mathbb{E}_{
ho_{ heta_k}, \pi_{ heta_k}}ig[
abla \log \pi_{ heta_k}(s, a)
abla \log \pi_{ heta_k}ig]$$

- We set a proper δ to work with "gradient dominance condition".
- After solving a direction d_k , similarly, apply a line-search in practice
- Ongoing: convergence analysis for HSODM in RL.

 $\left|_{ heta_k}(s,a)^T
ight|$

HSODM for Policy Optimization in RL II

• A comparison of Homogeneous NPG and Trust-region Policy Optimization (Schultz, 2015)



- Homogeneous model provides significant improvements over TRPO
- Ongoing: second-order information?
- Further reduce the computation cost per step

Dimension Reduced Second-Order Method (DRSOM)

- Motivation from Multi-Directional FOM and Subspace Method, DRSOM in general uses reduced m-independent directions $d(\alpha) := D_k \alpha$, $D_k \in \mathbb{R}^{nm}$, $\alpha \in \mathbb{R}^m$
- Plug the expression into the full-dimension Trust-Region quadratic minimization model, we minimize a m-dimension trust-region subproblem to decide "m stepsizes":

min
$$m_k^{\alpha}(\alpha) \coloneqq (c_k)^T \alpha + \frac{1}{2} \alpha^T Q_k \alpha$$

 $||\alpha||_{G_k} \le \Delta_k$

$$G_k = D_k^T D_k, Q_k = D_k^T H_k D_k, C_k = (g_k)^T D_k$$

How to choose D_k ? Provable complexity result?

DRSOM II

In following, as an example, DRSOM adopts two FOM directions

$$d = -\alpha^1 \nabla f(x_k) + \alpha^2 d_k := d(\alpha)$$

where
$$g_k = \nabla f(x_k), H_k = \nabla^2 f(x^k), d_k = x_k - x_{k-1}$$

• Then we minimize a 2-D trust-region problem to decide "two step-sizes":

$$\min \ m_k^{\alpha}(\alpha) \coloneqq f(x_k) + (c_k)^T \alpha + \frac{1}{2} \alpha^T Q_k \alpha \\ ||\alpha||_{G_k} \le \Delta_k \\ G_k = \begin{bmatrix} g_k^T g_k & -g_k^T d_k \\ -g_k^T d_k & d_k^T d_k \end{bmatrix}, Q_k = \begin{bmatrix} g_k^T H_k g_k & -g_k^T H_k d_k \\ -g_k^T H_k d_k & d_k^T H_k d_k \end{bmatrix}, c_k = \begin{bmatrix} -||g_k||^2 \\ g_k^T d_k \end{bmatrix}$$

$$Q_k \alpha$$

DRSOM III

DRSOM can be seen as:

- "Adaptive" Accelerated Gradient Method (Polyak's momentum 60)
- A second-order method minimizing quadratic model in the reduced 2-D subspace

$$m_k(d) = f(x_k) + \nabla f(x_k)^T d + \frac{1}{2} d^T \nabla^2 f(x_k)^T d + \frac{1}{2} d^$$

compare to, e.g., Dogleg method, 2-D Newton Trust-Region Method $d \in \text{span}\{g_k, [H(x_k)]^{-1}g_k\}$ (e.g., Powell 70, Byrd 88)

- A conjugate direction method for convex optimization exploring the Krylov Subspace (e.g., Barzilai&Borwein 88, Yuan&Stoer 95, Yuan 2014, Liu et al. 2021)
- For convex quadratic programming with no radius limit, terminates in n steps

- $(z_k)d, d \in \operatorname{span}\{-g_k, d_k\}$

Computing the two-dimensional quadratic model is the Key

In the DRSOM with two directions:

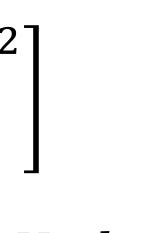
$$Q_k = \begin{bmatrix} g_k^T H_k g_k & -g_k^T H_k d_k \\ -g_k^T H_k d_k & d_k^T H_k d_k \end{bmatrix}, c_k = \begin{bmatrix} -||g_k||^2 \\ g_k^T d_k \end{bmatrix}$$

How to cheaply obtain Q? Compute $H_k g_k, H_k d_k$ first.

Finite difference:

$$H_k \cdot v \approx \frac{1}{\epsilon} [g(x_k + \epsilon \cdot v) - g_k],$$

- Analytic approach to fit modern automatic differentiation, $H_k g_k = \nabla(\frac{1}{2}g_k^T g_k), H_k d_k = \nabla(d_k^T g_k),$
- Use Hessian if readily available !
- Three(-or more)-Point Interpolation: it is almost as fast as Polyak and CG!



DRSOM: key assumptions and theoretical results (Zhang at al. SHUFE, 2022)

 $<\sqrt{\epsilon}$, assume $||(H_k - \tilde{H}_k)d_{k+1}|| \le C || d_{k+1} ||^2$ (Cartis et al.), where \tilde{H}_k is the projected Hessian in the subspace (commonly adopted for approximate Hessian)

Theorem 1. If we apply DRSOM to QP, **then** the algorithms terminates in at most n steps to find a first-order stationary point

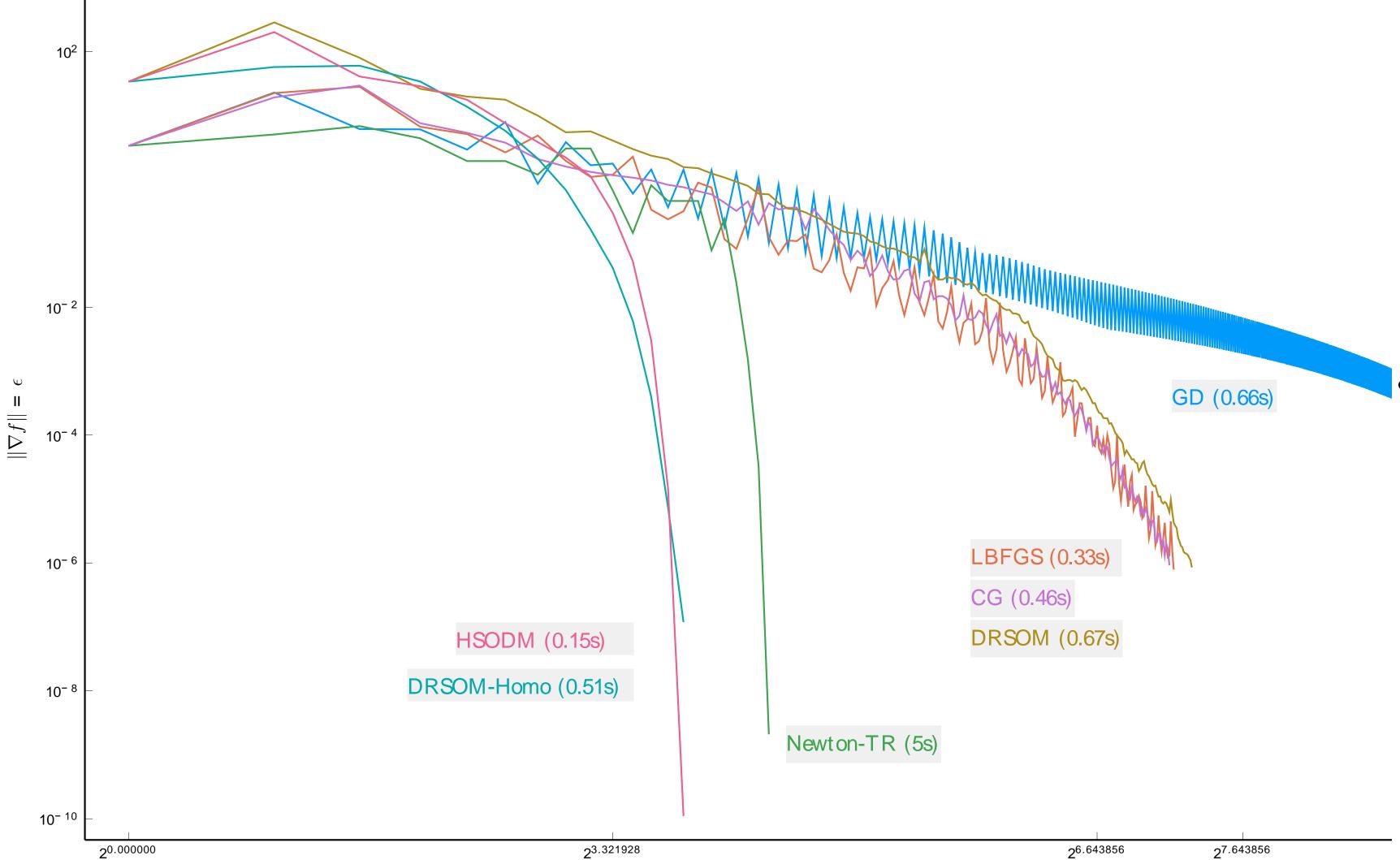
Theorem 2. (Global convergence rate) For f with second-order Lipschitz condition, let Δ_k $=2\epsilon^{1/2}/M$, then DRSOM terminates in $O(\epsilon^{-3/2})$ iterations. Furthermore, the iterate x_k spanned by the gradient and momentum.

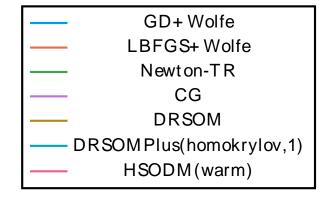
Theorem 3. (Local convergence rate) If the iterate x_k converges to a strict local optimum x^* such that $H(x^*) > 0$, and if **Assumption (c)** is satisfied as soon as $\lambda_k \leq C_{\lambda} \parallel d_{k+1} \parallel$, then DRSOM has a local superlinear (quadratic) speed of convergence, namely: $|| x_{k+1}$ $-x^* \parallel = O(\parallel x_k - x^* \parallel^2)$

- **Assumption**. (a) f has Lipschitz continuous Hessian. (b) If the Lagrangian multiplier λ_k
- satisfies the first-order condition, and the Hessian is positive semi-definite in the subspace

Preliminary Results: HSODM and DRSOM + HSODM

CUTEst model name := SPMSRTLS-1000





CUTEst example

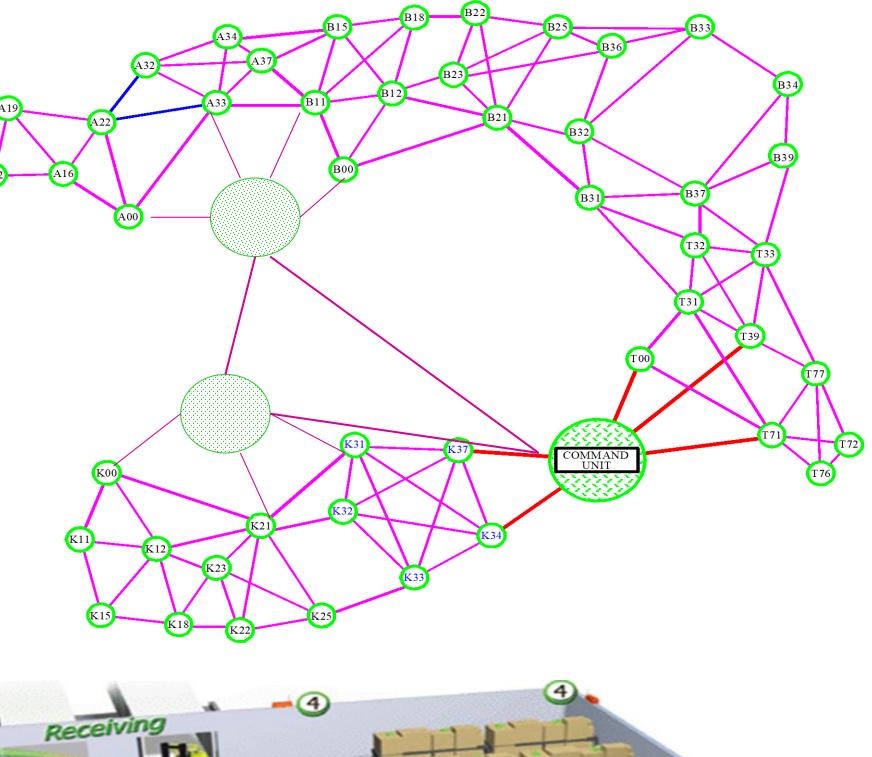
- GD and LBFGS both use a Linesearch (Hager-Zhang)
- DRSOM uses 2-D subspace
- HSODM and DRSOM + HSODM are much better!
- DRSOM can also benefit from the homogenized system

Application II: Sensor Network Location (SNL)

Localization

- -Given partial pairwise measured distance values
- -Given some anchors' positions
- -Find locations of all other sensors that fit the measured distance values

This is also called graph realization on a fixed dimension **Euclidean space**





CO Location Software

Mathematical Formulation of Sensor Network Location (SNL)

Consider Sensor Network Location (SNL)

 $N_x = \{(i, j) : ||x_i - x_j|| = d_{ij} \le r_d\}, N_a$

where r_d is a fixed parameter known as the radio range. The SNL problem considers following QCQP feasibility problem, the

$$||x_i - x_j||^2 = d_{ij}^2, \forall (i, j) \in N_x$$
$$||x_i - a_k||^2 = \bar{d}_{ik}^2, \forall (i, k) \in N_a$$

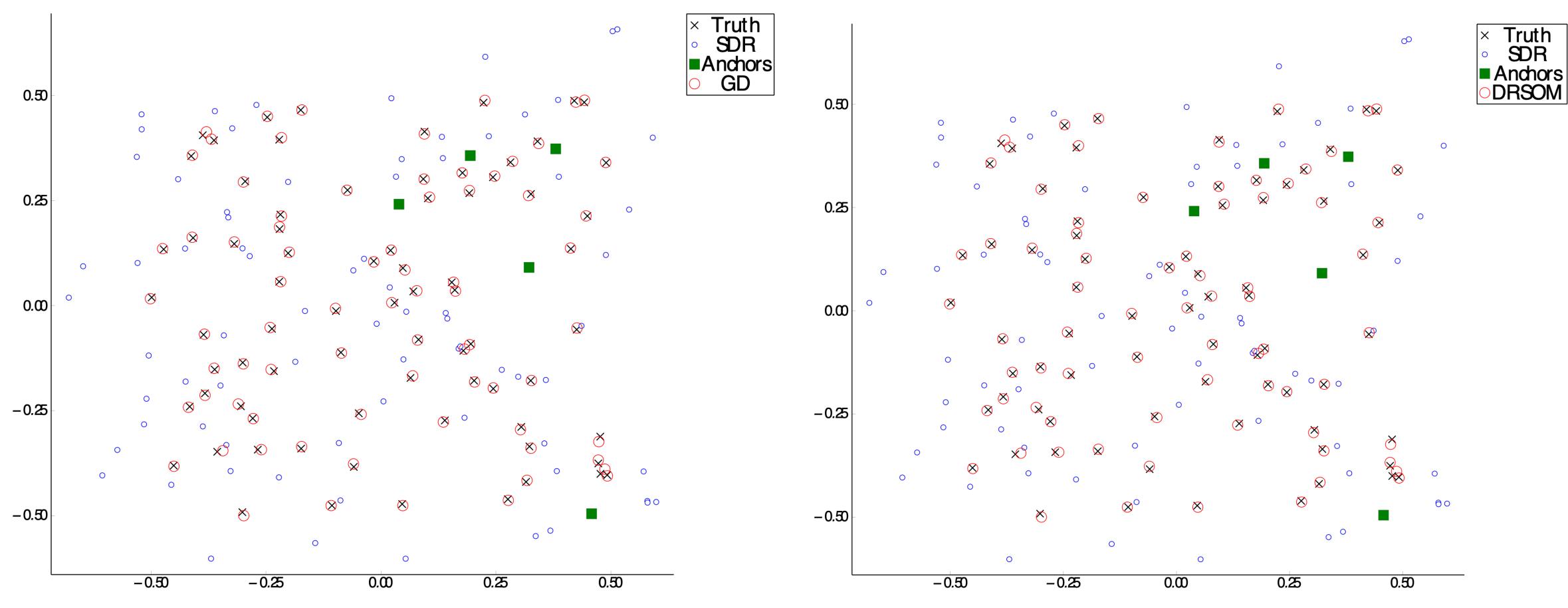
We can solve SNL by the nonconvex nonlinear least square (NLS) problem

$$\min_{X} \sum_{(i < j, j) \in N_x} (\|x_i - x_j\|^2 - d_{ij}^2)^2 + \sum_{(k, j) \in N_a} (\|a_k - x_j\|^2 - \bar{d}_{kj}^2)^2.$$

$$= \{(i,k) : ||x_i - a_k|| = d_{ik} \le r_d\}$$

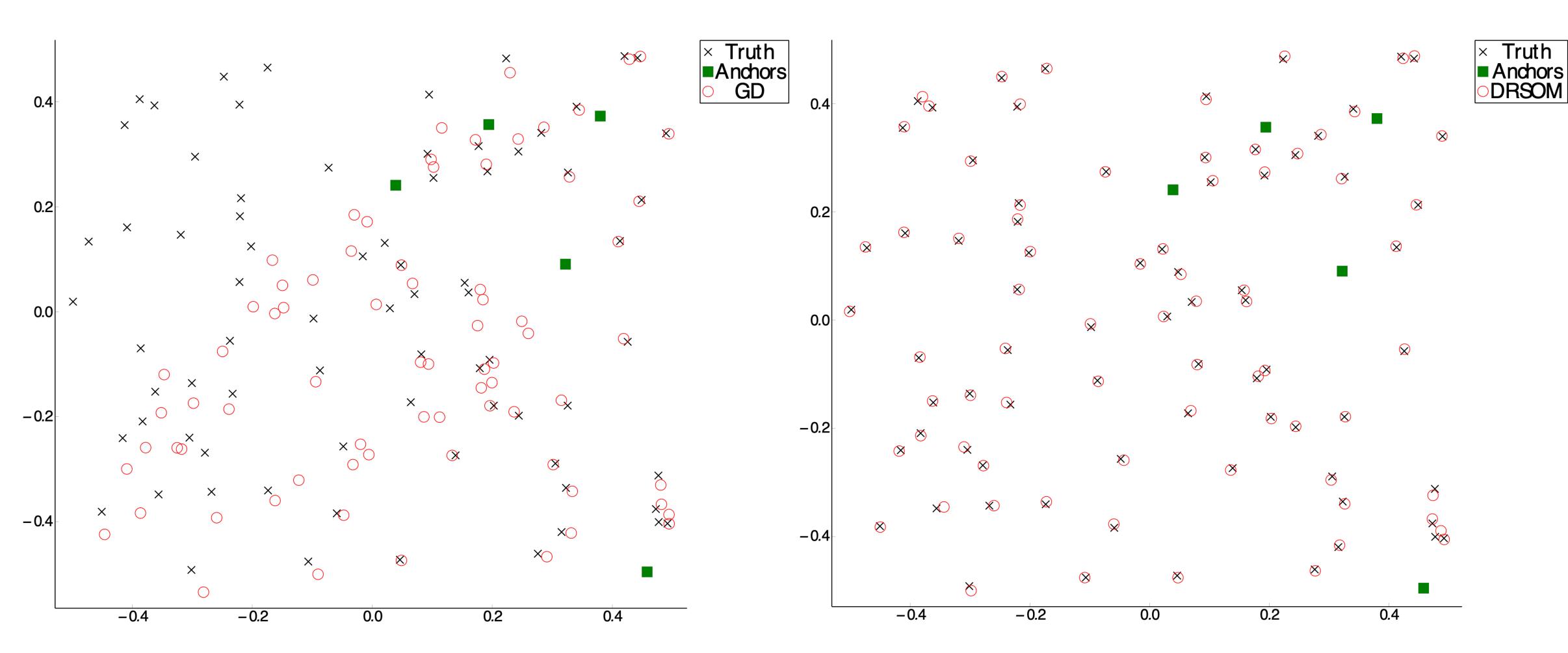
Sensor Network Location (SNL)

- Graphical results using SDP relaxation (Biswas&Y 2004, SO&Y 2007) to initialize the NLS n = 80, m = 5 (anchors), radio range = 0.5, degree = 25, noise factor = 0.05
- Both Gradient Descent and DRSOM can find good solutions !



Sensor Network Location (SNL)

- Graphical results without SDP relaxation
- DRSOM can still converge to optimal solutions \bullet



Sensor Network Location, Large-scale instances

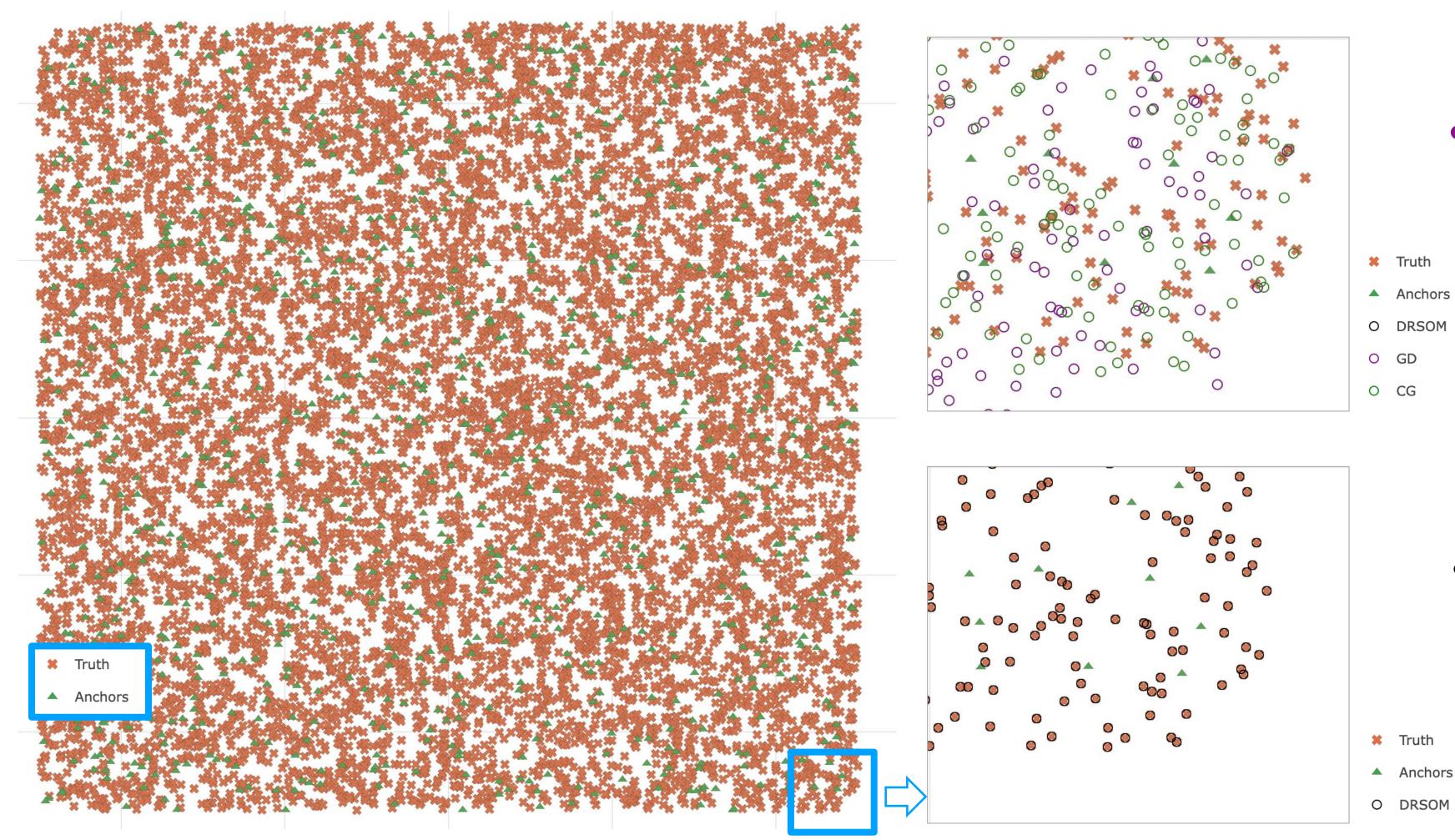
- Test large SNL instances (terminate at 3,000s and $|g_k| \leq 1e^{-5}$)
- Compare GD, CG, and DRSOM. (GD and CG use Hager-Zhang Linesearch)

n	m	E	t		
			CG	DRSOM	GD
500	50	$2.2e{+}04$	1.7e+01	$1.1e{+}01$	2.3e+01
1000	80	4.6e + 04	7.3e+01	$3.9e{+}01$	1.8e+02
2000	120	9.4e + 04	2.5e+02	1.4e+02	1.1e+03
3000	150	$1.4\mathrm{e}{+05}$	6.5e+02	$1.4e{+}02$	-
4000	400	1.8e+05	1.3e+03	5.0e + 02	-
6000	600	$2.7\mathrm{e}{+05}$	2.0e+03	$1.1e{+}03$	-
10000	1000	4.5e+05	-	2.2e+03	-

Table 2: Running time of CG, DRSOM, and GD on SNL instances of different problem size, |E|denotes the number of QCQP constraints. "-" means the algorithm exceeds 3,000s.

DRSOM has the best running time (benefits of 2nd order info and interpolation!)

Sensor Network Location, Large-scale instances



Graphical results with 10,000 nodes and 1000 anchors (no noise) within 3,000 seconds

GD with Line-search and Hager-Zhang CG both timeout

 DRSOM can converge to $|g_k| \le 1e^{-5}$ in 2,200s

Sensor Network Online Tracking, <u>2D</u> and <u>3D</u>

Application III: Neural Networks and Deep Learning

To use DRSOM in machine learning problems

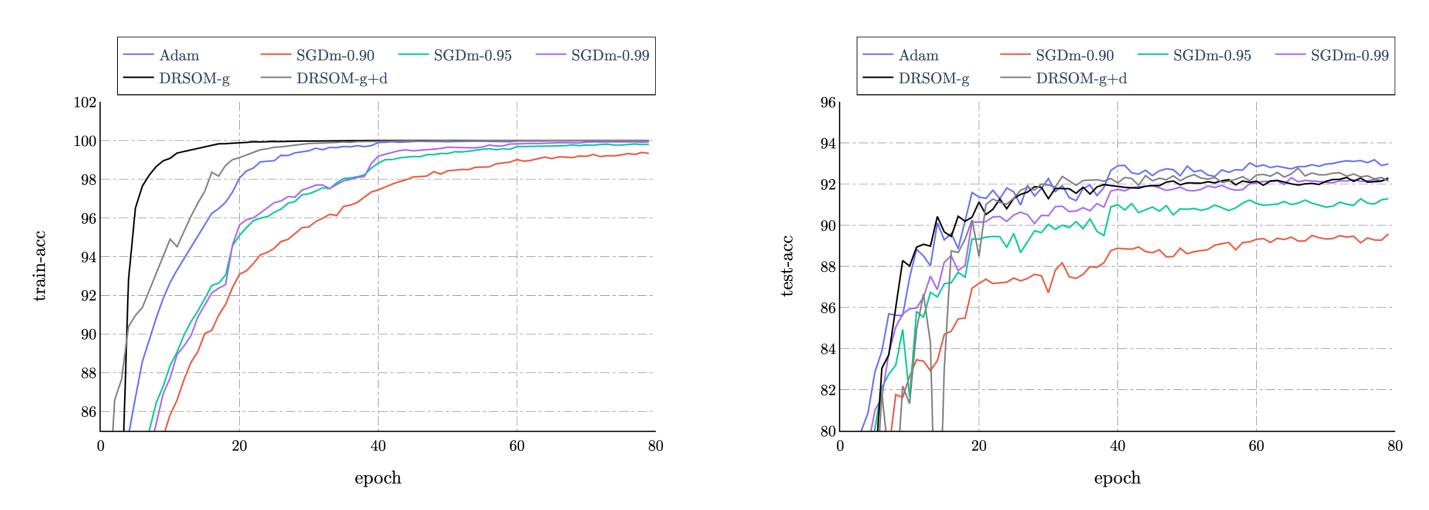
- We apply the mini-batch strategy to a vanilla DRSOM
- Use Automatic Differentiation to compute gradients \bullet
- Train ResNet18/Resnet34 Model with CIFAR 10
- Set Adam with initial learning rate 1e-3 \bullet

airplane bird cat deer dog frog horse ship

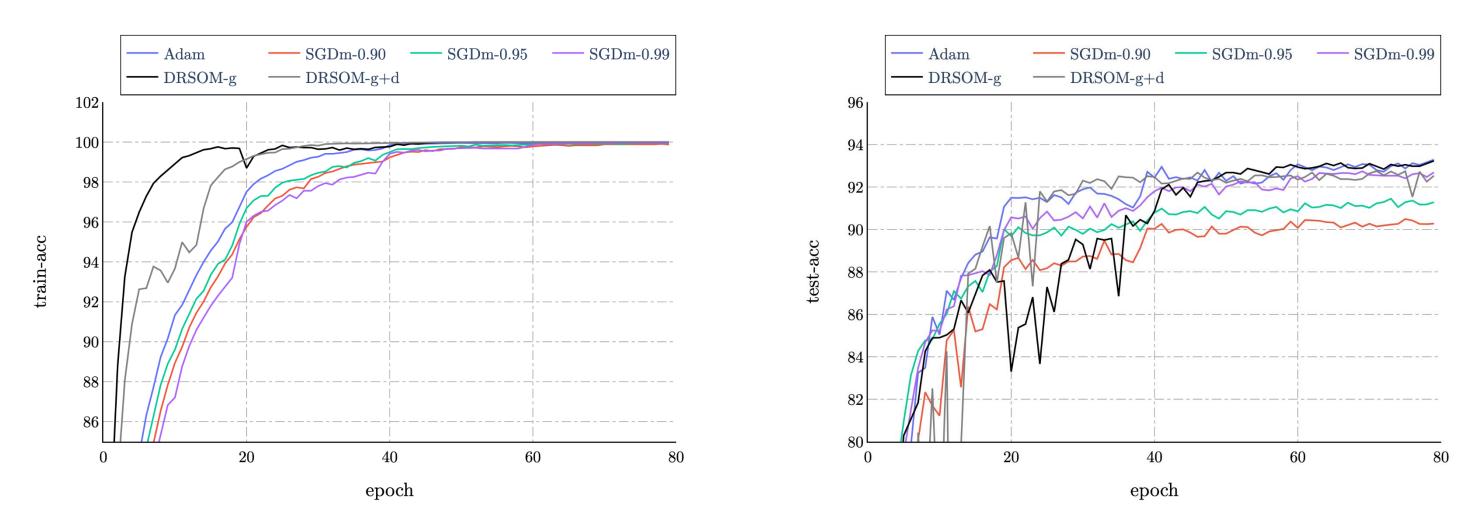
truck

automobile

Neural Networks and Deep Learning



Training and test results for ResNet18 with DRSOM and Adam



Training and test results for ResNet34 with DRSOM and Adam

Pros

- DRSOM has rapid convergence (30 epochs)
- DRSOM needs little tuning

Cons

- DRSOM may over-fit the models
- Running time can benefit from Interpolation
- Single direction DRSOM is also good

Good potential to be a standard optimizer for deep learning!

Overall Takeaways

better to integrate FOM and SOM for nonlinear optimization!

It is possible to train Mixed-Integer Linear Programming Solvers and add Statistical Confidence Cuts to significantly accelerate the solution process.

• THANK YOU

Second-Order Derivative information matters and