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Today’s Talk

I. Accelerated Second-Order Methods and 

Applications

II. Pre-Trained Statistical Cut Generation for 

Mixed-Integer Linear Programming Solvers



min 𝑓(𝑥), 𝑥 ∈ 𝑋 𝑖𝑛 ℝ𝑛,

• where  𝑓 is nonconvex and twice-differentiable,

𝑔𝑘 = 𝛻𝑓(𝑥𝑘), 𝐻𝑘 = 𝛻2𝑓(𝑥𝑘)

• Goal: find 𝑥𝑘 such that:

∥ 𝛻𝑓(𝑥𝑘) ∥≤ 𝜖 (primary, first-order condition)

𝜆𝑚𝑖𝑛(𝐻𝑘) ≥ − 𝜖 (in active subspace, secondary, second-order condition) 

• For the ball-constrained nonconvex QP: min 𝑐𝑇𝑥 + 0.5𝑥𝑇𝑄𝑥 𝑠. 𝑡. ∥ 𝑥 ∥ 2 ≤1   

O(loglog(𝜖-1)); see Y (1989,93), Vavasis&Zippel (1990)

• For nonconvex QP with polyhedral constraints: O(𝜖-1); see Y (1998), Vavasis

(2001)

I. Early Complexity Analyses for Nonconvex Optimization



Classic Methods for General Convex/Nonconvex Optimization
First-order Method (FOM): Gradient-Type Methods

• Assume 𝑓 has 𝐿-Lipschitz cont. gradient 

• Global convergence by, e.g., linear-search (LS)

• No guarantee for the second-order condition

• Worst-case complexity, 𝑂 𝜖−2 ; see the textbook by Nesterov (2004)

Each iteration requires O(n2) operations

Second-order Method (SOM): Hessian-Type Methods

• Assume 𝑓 has 𝑀-Lipschitz cont. Hessian 

• Trust-region (More 70, Sorenson 80) with a fixed-radius strategy, 𝑂(𝜖−3/2) ,see the lecture notes by Y since 

2005

• Cubic regularization, 𝑂(𝜖−3/2) ,see Nesterov and Polyak (2006), Cartis, Gould, and Toint (2011)

• An adaptive trust-region framework, 𝑂(𝜖−3/2) ,Curtis, Robinson, and Samadi (2017)

Each iteration requires O(n3) operations: How to reduce it?



An Integrated Descent Direction Using the Homogenized Quadratic 

Model I (Zhang at al. SHUFE, 2022)

• where Δ𝑘 =𝜖1/2/𝑀 is the trust-ball radius.

• -gk is the first-order steepest descent direction but ignores Hessian; 

• the most-left eigenvector of Hk-would be a descent direction for the second order 

term but such direction may not exist if it becomes nearly convex…

• Could we construct a direction integrating both?

Answer: Use the homogenized quadratic model of SDP relaxation

• Recall the fixed-radius trust-region method minimizes the Taylor quadratic model



An Integrated Descent Direction Using the Homogenized Quadratic 

Model II

• Using the homogenization trick by lifting with extra scalar 𝑡:

• Find a good direction 𝜉 = 𝜉0/𝑡 (if t = 0 then set t=1) by the leftmost 

eigenvector:

min
| 𝜉0;𝑡 |≤1

𝜓𝑘 𝜉0, 𝑡; 𝛿

with 𝛿 set to be O(√𝜖) !

• Accessible at the cost of 𝑂 n2𝜖−1/4 via the randomized Lanczos

• The homogeneous model is equivalent to 𝑚𝑘 up to scaling:

𝜓𝑘 𝜉0, 𝑡; 𝛿 = 𝑡2 ⋅ 𝑚𝑘 ξ0/𝑡 − 𝛿



Theoretical Guarantees of HSODM

• Consider use the second-order homogenized direction, and the length of each 

step η𝜉 is fixed: η𝜉 ≤ Δ𝑘 =
2 𝜖

𝑀
where 𝑓(𝑥) has 𝐿-Lipschitz gradient and 𝑀-

Lipschitz Hessian. 

• Theorem 1 (Global convergence rate) : if 𝑓(𝑥) satisfies the Lipchitz Assumption 

and 𝛿 = √휀 , the iterate moves along homogeneous vector 𝜉: 𝑥𝑘+1= 𝑥𝑘 + η𝑘𝜉, 

then, if we choose η𝑘 = Δ𝑘/ 𝜉 , and terminate at 𝜉 < Δ𝑘, then algorithm has 

𝑂(𝜖−3/2) iteration complexity. Furthermore, 𝑥𝑘+1 satisfies approximate first-

order and second-order conditions.

• Theorem 2 (Local convergence rate): If the iterate 𝑥𝑘 of HSODM converges to a 

strict local optimum 𝑥∗ such that 𝐻(𝑥∗) ≻ 0 ,and then 𝜂𝑘 = 1 if 𝑘 is sufficiently

large. If we do not terminate HSODM and set 𝛿 = 0, then HSODM has a local 

superlinear (quadratic) speed of convergence, namely: ∥ 𝑥𝑘+1 − 𝑥∗ ∥= 𝑂(∥ 𝑥𝑘



HSODM for Convex Optimization

• 𝑓(𝑥) is a convex function with 𝑀-Lipschitz Hessian.

• At every iteration, choose and  solve

• Update 𝑥𝑘+1= 𝑥𝑘 + 𝜉, 𝜉 = 𝜉0/𝑡 (𝑡 = 0 won’t happen when 𝑓(𝑥) is convex)

• Theorem 3 (Global convergence rate) : suppose the sublevel set {𝑥: 𝑓(𝑥) ≤

𝑓(𝑥𝟎)} is bounded, then the sequence {𝑥𝑘} satisfies

• Ongoing: improved bounds of accelerated HSODM, gradient-dominance, etc.

• Practical remarks: homogenized direction can be used with any Line-search 

(e.g., Hager-Zhang)



Application I: HSODM for Policy Optimization in Reinforcement Learning 

• Consider policy optimization of linearized objective in reinforcement learning

• 𝑀𝑘 is usually a preconditioning matrix. 

• The Natural Policy Gradient (NPG) method (Kakade, 2001) uses the Fisher information 

matrix where Mk is the inverse of

• Based on KL divergence, TRPO (Schulman et al. 2015) uses KL divergence in the constraint:

Homogeneous NPG: 

Apply the homogenized model!



HSODM for Policy Optimization in RL I

• Consider Homogeneous NPG in reinforcement learning

• 𝐹𝑘 is an estimation of Fisher matrix, see, Schulman et al. 2015, 2017

• We set a proper 𝛿 to work with “gradient dominance condition”.

• After solving a direction 𝑑𝑘, similarly, apply a line-search in practice

• Ongoing: convergence analysis for HSODM in RL. 



HSODM for Policy Optimization in RL II
• A comparison of Homogeneous NPG and Trust-region Policy Optimization (Schultz, 2015) 

• Homogeneous model provides significant improvements over TRPO

• Ongoing: second-order information?

• Further reduce the computation cost per step



• Motivation from Multi-Directional FOM and Subspace Method, DRSOM in general 

uses reduced m-independent directions  𝑑(α):= 𝐷kα , 𝐷k ∊ Rnm, α∊ Rm

• Plug the expression into the full-dimension Trust-Region quadratic minimization 

model, we minimize a  m-dimension trust-region subproblem to decide “m 

stepsizes”:

min 𝑚𝑘
α α ≔ 𝑐𝑘

𝑇α +
1

2
α𝑇𝑄𝑘𝛼

||α||𝐺𝑘 ≤ Δ𝑘

𝐺𝑘= 𝐷𝑘
𝑇𝐷𝑘, 𝑄𝑘 = 𝐷𝑘

𝑇𝐻𝑘𝐷𝑘, 𝑐𝑘 = 𝑔𝑘
𝑇𝐷k

How to choose Dk? Provable complexity result? 

Dimension Reduced Second-Order Method (DRSOM) I



• In following, as an example, DRSOM adopts two FOM directions

𝑑 = −𝛼1𝛻𝑓 𝑥𝑘 + 𝛼2𝑑𝑘 ∶= 𝑑(α)

where 𝑔𝑘 = 𝛻𝑓 𝑥𝑘 , 𝐻𝑘 = 𝛻2𝑓 𝑥𝑘 , 𝑑𝑘 = 𝑥𝑘 − 𝑥𝑘−1

• Then we minimize a  2-D trust-region problem to decide “two step-sizes”:

min 𝑚𝑘
α α ≔ 𝑓 𝑥𝑘 + 𝑐𝑘

𝑇α +
1

2
α𝑇𝑄𝑘𝛼

||α||𝐺𝑘 ≤ Δ𝑘

𝐺𝑘 =
𝑔𝑘
𝑇𝑔𝑘 −𝑔𝑘

𝑇𝑑𝑘
−𝑔𝑘

𝑇𝑑𝑘 𝑑𝑘
𝑇𝑑𝑘

, 𝑄𝑘 =
𝑔𝑘
𝑇𝐻𝑘𝑔𝑘 −𝑔𝑘

𝑇𝐻𝑘𝑑𝑘
−𝑔𝑘

𝑇𝐻𝑘𝑑𝑘 𝑑𝑘
𝑇𝐻𝑘𝑑𝑘

, 𝑐𝑘 =
−||𝑔𝑘||

2

𝑔𝑘
𝑇𝑑𝑘

DRSOM II



DRSOM III

DRSOM can be seen as:

• “Adaptive” Accelerated Gradient Method (Polyak’s momentum 60)

• A second-order method minimizing quadratic model in the reduced 2-D subspace

𝑚𝑘(𝑑) = 𝑓(𝑥𝑘) + 𝛻𝑓(𝑥𝑘)
𝑇𝑑 +

1

2
𝑑𝑇𝛻2𝑓(𝑥𝑘)𝑑, 𝑑 ∈ 𝗌𝗉𝖺𝗇{−𝑔𝑘, 𝑑𝑘}

compare to, e.g., Dogleg method, 2-D Newton Trust-Region Method

𝑑 ∈ 𝗌𝗉𝖺𝗇{𝑔𝑘 , [𝐻(𝑥𝑘)]
−1𝑔𝑘} (e.g., Powell 70, Byrd 88)

• A conjugate direction method for convex optimization exploring the Krylov Subspace 

(e.g., Barzilai&Borwein 88, Yuan&Stoer 95, Yuan 2014, Liu et al. 2021)

• For convex quadratic programming with no radius limit, terminates in n steps



Computing the two-dimensional quadratic model is the Key

In the DRSOM with two directions:

𝑄𝑘 =
𝑔𝑘
𝑇𝐻𝑘𝑔𝑘 −𝑔𝑘

𝑇𝐻𝑘𝑑𝑘
−𝑔𝑘

𝑇𝐻𝑘𝑑𝑘 𝑑𝑘
𝑇𝐻𝑘𝑑𝑘

, 𝑐𝑘 =
−||𝑔𝑘||

2

𝑔𝑘
𝑇𝑑𝑘

How to cheaply obtain Q? Compute  𝐻𝑘𝑔𝑘 , 𝐻𝑘𝑑𝑘 first.

• Finite difference:

𝐻𝑘 ⋅ 𝑣 ≈
1

𝜖
𝑔(𝑥𝑘 + 𝜖 ⋅ 𝑣) − 𝑔𝑘 ,

• Analytic approach to fit modern automatic differentiation,

𝐻𝑘𝑔𝑘 = 𝛻(
1

2
𝑔𝑘
𝑇𝑔𝑘), 𝐻𝑘𝑑𝑘 = 𝛻(𝑑𝑘

𝑇𝑔𝑘),

• Use Hessian if readily available !

• Three(-or more)-Point Interpolation: it is almost as fast as Polyak and CG! 



DRSOM: key assumptions and theoretical results (Zhang at al. SHUFE, 

2022)

Theorem 1. If we apply DRSOM to QP, then the algorithms terminates in at most n 

steps to find a first-order stationary point

Theorem 2. (Global convergence rate) For f with second-order Lipschitz condition, let Δ𝑘

=2𝜖1/2/𝑀, then DRSOM terminates in 𝑂(𝜖  −3 2) iterations.  Furthermore, the iterate 𝑥𝑘
satisfies the first-order condition, and the Hessian is positive semi-definite in the subspace 

spanned by the gradient and momentum.

Assumption. (a)  𝑓 has Lipschitz continuous Hessian. (b) If the Lagrangian multiplier 𝝀𝒌
< 𝝐 , assume ∥ (𝑯𝒌 −  𝑯𝒌)𝒅𝒌+𝟏 ∥≤ 𝑪 ∥ 𝒅𝒌+𝟏 ∥

𝟐 (Cartis et al.), where  𝐻𝑘 is the projected 

Hessian in the subspace (commonly adopted for approximate Hessian)

Theorem 3. (Local convergence rate) If the iterate 𝑥𝑘 converges to a strict local optimum 

𝑥∗ such that 𝐻(𝑥∗) ≻ 0, and if Assumption (c) is satisfied as soon as 𝜆𝑘 ≤ 𝐶𝜆 ∥ 𝑑𝑘+1 ∥, 
then DRSOM has a local superlinear (quadratic) speed of convergence, namely: ∥ 𝑥𝑘+1
− 𝑥∗ ∥= 𝑂(∥ 𝑥𝑘 − 𝑥∗ ∥2)
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Preliminary Results: HSODM and DRSOM + HSODM

CUTEst example

• GD and LBFGS both use a Line-

search (Hager-Zhang)

• DRSOM uses 2-D subspace

• HSODM and DRSOM + HSODM 

are much better!

• DRSOM can also benefit from the 

homogenized system



• Localization

–Given partial pair-

wise measured 

distance values

–Given some 

anchors’ positions

–Find locations of all 

other sensors that 

fit the measured 

distance values

This is also called 

graph realization on 

a fixed dimension 

Euclidean space

Application II: Sensor Network Location (SNL)



Mathematical Formulation of Sensor Network Location (SNL)

• Consider Sensor Network Location (SNL)

where       is a fixed parameter known as the radio range. The SNL problem considers 

the    following QCQP feasibility problem,

• We can solve SNL by the nonconvex nonlinear least square (NLS) problem



Sensor Network Location (SNL)

• Graphical results using SDP relaxation (Biswas&Y 2004, SO&Y 2007) to initialize the NLS

• n = 80, m = 5 (anchors), radio range = 0.5, degree = 25, noise factor = 0.05

• Both Gradient Descent and DRSOM can find good solutions !



Sensor Network Location (SNL)

• DRSOM can still converge to optimal solutions

• Graphical results without SDP relaxation



Sensor Network Location, Large-scale instances

• Test large SNL instances (terminate at 3,000s and | 𝒈𝒌| ≤ 𝟏𝒆−𝟓)

• Compare GD, CG, and DRSOM. (GD and CG use Hager-Zhang Linesearch) 

• DRSOM has the best running time (benefits of 2nd order info and interpolation!)



Sensor Network Location, Large-scale instances

• Graphical results with 10,000 nodes and 1000 anchors (no noise) within 3,000 seconds

• GD with Line-search 

and Hager-Zhang CG 

both timeout

• DRSOM can converge to 

| 𝒈𝒌| ≤ 𝟏𝒆−𝟓 in 2,200s



Sensor Network Online Tracking, 2D and 3D

isnl.mp4
satellite.mp4


Application III: Neural Networks and Deep Learning 

To use DRSOM in machine learning problems

• We apply the mini-batch strategy to a vanilla DRSOM

• Use Automatic Differentiation to compute gradients

• Train ResNet18/Resnet34 Model with CIFAR 10

• Set Adam with initial learning rate 1e-3



Neural Networks and Deep Learning 

Training and test results for ResNet18 with DRSOM and Adam

Training and test results for ResNet34 with DRSOM and Adam

Pros

• DRSOM has rapid convergence (30 
epochs)

• DRSOM needs little tuning

Cons

• DRSOM may over-fit the models

• Running time can benefit from 
Interpolation

• Single direction DRSOM is also 
good

Good potential to be a standard 
optimizer for deep learning!



Overall Takeaways

Second-Order Derivative information matters and 
better to integrate FOM and SOM for nonlinear 
optimization!

It is possible to train Mixed-Integer Linear 
Programming Solvers and add Statistical Confidence 
Cuts to significantly accelerate the solution process.

• THANK YOU


