Recent Developments on Optimization Algorithms and Applications

MAY 11, 2023

Yinyu Ye
Stanford University and CUHK SZ (Sabbatical Leave)
Today’s Talk

I. Accelerated Second-Order Methods and Applications

II. Pre-Trained Statistical Cut Generation for Mixed-Integer Linear Programming Solvers
I. Early Complexity Analyses for Nonconvex Optimization

\[\min f(x), x \in X \text{ in } \mathbb{R}^n, \]

- where \(f \) is nonconvex and twice-differentiable,

\[g_k = \nabla f(x_k), H_k = \nabla^2 f(x_k) \]

- Goal: find \(x_k \) such that:

\[\| \nabla f(x_k) \| \leq \epsilon \quad \text{(primary, first-order condition)} \]

\[\lambda_{\min}(H_k) \geq -\sqrt{\epsilon} \quad \text{(in active subspace, secondary, second-order condition)} \]

- For the ball-constrained nonconvex QP: \(\min c^T x + 0.5x^T Q x \) s. t. \(\| x \|_2 \leq 1 \)

\(\mathcal{O}(\log\log(\epsilon^{-1})); \text{ see Y (1989,93), Vavasis\&Zippel (1990)} \)

- For nonconvex QP with polyhedral constraints: \(\mathcal{O}(\epsilon^{-1}); \text{ see Y (1998), Vavasis (2001)} \)
Classic Methods for General Convex/Nonconvex Optimization

First-order Method (FOM): Gradient-Type Methods

- Assume f has L-Lipschitz cont. gradient
- Global convergence by, e.g., linear-search (LS)
- No guarantee for the second-order condition
- Worst-case complexity, $O(\epsilon^{-2})$; see the textbook by Nesterov (2004)

Each iteration requires $O(n^2)$ operations

Second-order Method (SOM): Hessian-Type Methods

- Assume f has M-Lipschitz cont. Hessian
- Trust-region (More 70, Sorenson 80) with a fixed-radius strategy, $O(\epsilon^{-3/2})$, see the lecture notes by Y since 2005
- Cubic regularization, $O(\epsilon^{-3/2})$, see Nesterov and Polyak (2006), Cartis, Gould, and Toint (2011)

Each iteration requires $O(n^3)$ operations: How to reduce it?
An Integrated Descent Direction Using the Homogenized Quadratic Model I (Zhang et al. SHUFE, 2022)

- Recall the fixed-radius trust-region method minimizes the Taylor quadratic model

\[
\min_{d \in \mathbb{R}^n} m_k(d) := g_k^T d + \frac{1}{2}d^T H_k d
\]

\[
\text{s.t.} \|d\| \leq \Delta_k.
\]

- where \(\Delta_k = \epsilon^{1/2} / M\) is the trust-ball radius.

- \(-g_k\) is the first-order steepest descent direction but ignores Hessian;

- the most-left eigenvector of \(H_k\)-would be a descent direction for the second order term but such direction may not exist if it becomes nearly convex…

- Could we construct a direction integrating both?

Answer: Use the homogenized quadratic model of SDP relaxation
An Integrated Descent Direction Using the Homogenized Quadratic Model II

- Using the homogenization trick by lifting with extra scalar t:

$$
\psi_k (\xi_0, t; \delta) := \frac{1}{2} \begin{bmatrix} \xi_0 \\ t \end{bmatrix}^T \begin{bmatrix} H_k & g_k \\ g_k^T & -\delta \end{bmatrix} \begin{bmatrix} \xi_0 \\ t \end{bmatrix} = \frac{t^2}{2} \begin{bmatrix} \xi_0/t \\ 1 \end{bmatrix}^T \begin{bmatrix} H_k & g_k \\ g_k^T & -\delta \end{bmatrix} \begin{bmatrix} \xi_0/t \\ 1 \end{bmatrix}
$$

- The homogeneous model is equivalent to m_k up to scaling:

$$
\psi_k (\xi_0, t; \delta) = t^2 \cdot (m_k (\xi_0/t) - \delta)
$$

- Find a good direction $\xi = \xi_0/t$ (if $t = 0$ then set $t=1$) by the leftmost eigenvector:

$$
\min_{||[\xi_0;t]| \leq 1} \psi_k (\xi_0, t; \delta)
$$

with δ set to be $O(\sqrt{\epsilon})$!

- Accessible at the cost of $O(n^2 \epsilon^{-1/4})$ via the randomized Lanczos...
Theoretical Guarantees of HSODM

• Consider use the second-order homogenized direction, and the length of each step $\|\eta \xi\|$ is fixed: $\|\eta \xi\| \leq \Delta_k = \frac{2\sqrt{\varepsilon}}{M}$ where $f(x)$ has L-Lipschitz gradient and M-Lipschitz Hessian.

• Theorem 1 (Global convergence rate): if $f(x)$ satisfies the Lipchitz Assumption and $\delta = \sqrt{\varepsilon}$, the iterate moves along homogeneous vector ξ: $x_{k+1} = x_k + \eta_k \xi$, then, if we choose $\eta_k = \Delta_k / \|\xi\|$, and terminate at $\|\xi\| < \Delta_k$, then algorithm has $O(\varepsilon^{-3/2})$ iteration complexity. Furthermore, x_{k+1} satisfies approximate first-order and second-order conditions.

• Theorem 2 (Local convergence rate): If the iterate x_k of HSODM converges to a strict local optimum x^* such that $H(x^*) > 0$, and then $\eta_k = 1$ if k is sufficiently large. If we do not terminate HSODM and set $\delta = 0$, then HSODM has a local superlinear (quadratic) speed of convergence, namely: $\| x_{k+1} - x^* \| = O(\|x_k\|$
HSODM for Convex Optimization

- \(f(x) \) is a **convex** function with \(M \)-Lipschitz Hessian.
- At every iteration, choose
 \[\xi_k = O\left(\|g_k\|^{1/2}\right) \]
 and solve
 \[
 \min_{\|\xi_0; t\| \leq 1} \begin{bmatrix} \xi_0 \\ t \end{bmatrix}^T \begin{bmatrix} H_k & g_k \\ g_k^T & -\delta_k \end{bmatrix} \begin{bmatrix} \xi_0 \\ t \end{bmatrix}
 \]

- Update \(x_{k+1} = x_k + \xi, \ \xi = \xi_0/t \) \((t = 0 \) won’t happen when \(f(x) \) is convex)\)
- **Theorem 3** (Global convergence rate): suppose the sublevel set \(\{x: f(x) \leq f(x_0)\} \) is bounded, then the sequence \(\{x_k\} \) satisfies
 \[f(x_k) - f(x^*) \leq O\left(k^{-2}\right) \]

- Ongoing: improved bounds of accelerated HSODM, gradient-dominance, etc.
- **Practical remarks**: homogenized direction can be used with any Line-search (e.g., Hager-Zhang)
Application I: HSODM for Policy Optimization in Reinforcement Learning

• Consider policy optimization of linearized objective in reinforcement learning

\[
\max_{\theta \in \mathbb{R}^d} L(\theta) := L(\pi_{\theta}),
\]

\[
\theta_{k+1} = \theta_k + \alpha_k \cdot M_k \nabla \eta(\theta_k),
\]

• \(M_k\) is usually a preconditioning matrix.

• The Natural Policy Gradient (NPG) method (Kakade, 2001) uses the Fisher information matrix where \(M_k\) is the inverse of

\[
F_k(\theta) = \mathbb{E}_{\rho_{\theta_k}, \pi_{\theta_k}} \left[\nabla \log \pi_{\theta_k}(s, a) \nabla \log \pi_{\theta_k}(s, a)^T \right]
\]

• Based on KL divergence, TRPO (Schulman et al. 2015) uses KL divergence in the constraint:

\[
\max_{\theta} \nabla L_{\theta_k}(\theta_k)^T (\theta - \theta_k)
\]

\[
s.t. \mathbb{E}_{s \sim \rho_{\theta_k}} [D_{KL}(\pi_{\theta_k}(\cdot | s); \pi_{\theta}(\cdot | s))] \leq \delta.
\]

Homogeneous NPG:
Apply the homogenized model!
HSODM for Policy Optimization in RL I

• Consider **Homogeneous NPG** in reinforcement learning

\[
\min_{\|v; t\| \leq 1} \begin{bmatrix} v \\ t \end{bmatrix}^T \begin{bmatrix} F_k & g_k \\ g_k^T & -\delta \end{bmatrix} \begin{bmatrix} v \\ t \end{bmatrix}
\]

• \(F_k \) is an estimation of Fisher matrix, see, Schulman et al. 2015, 2017

\[
F_k(\theta) = \mathbb{E}_{\rho_{\theta_k}, \pi_{\theta_k}} \left[\nabla \log \pi_{\theta_k}(s, a) \nabla \log \pi_{\theta_k}(s, a)^T \right]
\]

• We set a proper \(\delta \) to work with “gradient dominance condition”.

• After solving a direction \(d_k \), similarly, apply a line-search in practice

• Ongoing: convergence analysis for HSODM in RL.
HSODM for Policy Optimization in RL II

- A comparison of Homogeneous NPG and Trust-region Policy Optimization (Schultz, 2015)

- Homogeneous model provides significant improvements over TRPO
- Ongoing: second-order information?
- Further reduce the computation cost per step
Dimension Reduced Second-Order Method (DRSOM) I

- Motivation from Multi-Directional FOM and Subspace Method, DRSOM in general uses reduced m-independent directions $d(\alpha) = D_k \alpha, D_k \in \mathbb{R}^{nm}, \alpha \in \mathbb{R}^m$

- Plug the expression into the full-dimension Trust-Region quadratic minimization model, we minimize a m-dimension trust-region subproblem to decide “m stepsizes”:

$$\min m_k^\alpha(\alpha) := (c_k)^T \alpha + \frac{1}{2} \alpha^T Q_k \alpha$$

$$||\alpha||_{G_k} \leq \Delta_k$$

$$G_k = D_k^T D_k, Q_k = D_k^T H_k D_k, c_k = (g_k)^T D_k$$

How to choose D_k? Provable complexity result?
In following, as an example, DRSOM adopts two FOM directions

\[d = -\alpha_1 \nabla f(x_k) + \alpha_2 d_k := d(\alpha) \]

where \(g_k = \nabla f(x_k), H_k = \nabla^2 f(x^k), d_k = x_k - x_{k-1} \)

Then we minimize a 2-D trust-region problem to decide “two step-sizes”:

\[
\begin{align*}
\min m_k^\alpha (\alpha) & := f(x_k) + (c_k)^T \alpha + \frac{1}{2} \alpha^T Q_k \alpha \\
G_k &= \begin{bmatrix} ||\alpha||_{g_k} & \leq \Delta_k \\
g_k^T g_k & -g_k^T d_k \\
-g_k^T d_k & d_k^T d_k \end{bmatrix}, \\
Q_k &= \begin{bmatrix} g_k^T H_k g_k & -g_k^T H_k d_k \\
-g_k^T H_k d_k & d_k^T H_k d_k \end{bmatrix}, \\
c_k &= \begin{bmatrix} -||g_k||^2 \\
g_k^T d_k \end{bmatrix}
\end{align*}
\]
DRSOM III

DRSOM can be seen as:

- “Adaptive” **Accelerated Gradient Method** (Polyak’s momentum 60)
- A second-order method minimizing quadratic model in the reduced 2-D subspace

\[m_k(d) = f(x_k) + \nabla f(x_k)^T d + \frac{1}{2} d^T \nabla^2 f(x_k) d, \quad d \in \text{span}\{-g_k, d_k\} \]

compare to, e.g., Dogleg method, 2-D Newton **Trust-Region Method**

\[d \in \text{span}\{g_k, [H(x_k)]^{-1} g_k\} \] (e.g., Powell 70, Byrd 88)

- A conjugate direction method for convex optimization exploring the **Krylov Subspace**
 (e.g., Barzilai&Borwein 88, Yuan&Stoer 95, Yuan 2014, Liu et al. 2021)
- For convex quadratic programming with no radius limit, terminates in \(n \) steps
Computing the two-dimensional quadratic model is the Key

In the DRSOM with two directions:

\[
Q_k = \begin{bmatrix}
g_k^T H_k g_k & -g_k^T H_k d_k \\
-g_k^T H_k d_k & d_k^T H_k d_k
\end{bmatrix}, c_k = \begin{bmatrix}
-\|g_k\|^2 \\
g_k^T d_k
\end{bmatrix}
\]

How to cheaply obtain Q? Compute \(H_k g_k, H_k d_k \) first.

- Finite difference:
 \[
 H_k \cdot v \approx \frac{1}{\epsilon} [g(x_k + \epsilon \cdot v) - g_k],
 \]

- Analytic approach to fit modern automatic differentiation,

\[
H_k g_k = \nabla \left(\frac{1}{2} g_k^T g_k \right), H_k d_k = \nabla (d_k^T g_k),
\]

- Use Hessian if readily available!

- Three(-or more)-Point Interpolation: it is almost as fast as Polyak and CG!
DRSOM: key assumptions and theoretical results (Zhang at al. SHUFE, 2022)

Assumption. (a) f has Lipschitz continuous Hessian. (b) **If the Lagrangian multiplier** $\lambda_k < \sqrt{\epsilon}$, assume $\| (H_k - \tilde{H}_k) d_{k+1} \| \leq C \| d_{k+1} \|^2$ (Cartis et al.), where \tilde{H}_k is the projected Hessian in the subspace (commonly adopted for approximate Hessian).

Theorem 1. If we apply DRSOM to QP, then the algorithms terminates in at most n steps to find a first-order stationary point.

Theorem 2. (Global convergence rate) For f with second-order Lipschitz condition, let $\Delta_k = 2\epsilon^{1/2}/M$, then DRSOM terminates in $O(\epsilon^{-3/2})$ iterations. Furthermore, the iterate x_k satisfies the first-order condition, and the Hessian is positive semi-definite in the subspace spanned by the gradient and momentum.

Theorem 3. (Local convergence rate) If the iterate x_k converges to a strict local optimum x^* such that $H(x^*) > 0$, and if **Assumption (c)** is satisfied as soon as $\lambda_k \leq C\lambda \| d_{k+1} \|$, then DRSOM has a local superlinear (quadratic) speed of convergence, namely: $\| x_{k+1} - x^* \| = O(\| x_k - x^* \|^2)$.
Preliminary Results: HSODM and DRSOM + HSODM

CUTEst example

- **GD** and **LBFGS** both use a Line-search (Hager-Zhang)
- **DRSOM** uses 2-D subspace
- HSODM and DRSOM + HSODM are much better!
- **DRSOM** can also benefit from the homogenized system
Application II: Sensor Network Location (SNL)

- **Localization**
 - Given partial pairwise measured distance values
 - Given some anchors’ positions
 - Find locations of all other sensors that fit the measured distance values

This is also called graph realization on a fixed dimension Euclidean space
Mathematical Formulation of Sensor Network Location (SNL)

- Consider Sensor Network Location (SNL)

\[N_x = \{(i, j) : \|x_i - x_j\| = d_{ij} \leq r_d\}, \quad N_a = \{(i, k) : \|x_i - a_k\| = d_{ik} \leq r_d\} \]

where \(r_d \) is a fixed parameter known as the radio range. The SNL problem considers the following QCQP feasibility problem,

\[
\begin{align*}
\|x_i - x_j\|^2 &= d_{ij}^2, \forall (i, j) \in N_x \\
\|x_i - a_k\|^2 &= d_{ik}^2, \forall (i, k) \in N_a
\end{align*}
\]

- We can solve SNL by the nonconvex nonlinear least square (NLS) problem

\[
\min_{X} \sum_{(i<j,k,j) \in N_x} (\|x_i - x_j\|^2 - d_{ij}^2)^2 + \sum_{(k,j) \in N_a} (\|a_k - x_j\|^2 - d_{k,j}^2)^2.
\]
Sensor Network Location (SNL)

- Graphical results using SDP relaxation (Biswa&Y 2004, SO&Y 2007) to initialize the NLS
- $n = 80$, $m = 5$ (anchors), radio range = 0.5, degree = 25, noise factor = 0.05
- Both Gradient Descent and DRSOM can find good solutions!
Sensor Network Location (SNL)

- Graphical results without SDP relaxation
- DRSOM can still converge to optimal solutions
Sensor Network Location, Large-scale instances

- Test large SNL instances (terminate at 3,000s and $|g_k| \leq 1e^{-5}$)

- Compare GD, CG, and DRSOM. (GD and CG use Hager-Zhang Linesearch)

| n | m | |E| | t | | |
|----|----|----------|--------|---------|---------|---------|
| | | | CG | DRSOM | GD |
| 500| 50 | 2.2e+04 | 1.7e+01| 1.1e+01 | 2.3e+01 |
| 1000| 80 | 4.6e+04 | 7.3e+01| 3.9e+01 | 1.8e+02 |
| 2000| 120| 9.4e+04 | 2.5e+02| 1.4e+02 | 1.1e+03 |
| 3000| 150| 1.4e+05 | 6.5e+02| 1.4e+02 | - |
| 4000| 400| 1.8e+05 | 1.3e+03| 5.0e+02 | - |
| 6000| 600| 2.7e+05 | 2.0e+03| 1.1e+03 | - |
| 10000|1000| 4.5e+05 | - | 2.2e+03 | - |

Table 2: Running time of CG, DRSOM, and GD on SNL instances of different problem size, $|E|$ denotes the number of QCQP constraints. "-" means the algorithm exceeds 3,000s.

- DRSOM has the best running time (benefits of 2nd order info and interpolation!)
Sensor Network Location, Large-scale instances

- Graphical results with 10,000 nodes and 1000 anchors (no noise) **within 3,000 seconds**

- GD with Line-search and Hager-Zhang CG both timeout

- DRSOM can converge to $|g_k| \leq 1e^{-5}$ in 2,200s
Sensor Network Online Tracking, 2D and 3D
Application III: Neural Networks and Deep Learning

To use DRSOM in machine learning problems

• We apply the mini-batch strategy to a vanilla DRSOM
• Use Automatic Differentiation to compute gradients
• Train ResNet18/Resnet34 Model with CIFAR 10
• Set Adam with initial learning rate $1e^{-3}$
Neural Networks and Deep Learning

Training and test results for ResNet18 with DRSOM and Adam

Training and test results for ResNet34 with DRSOM and Adam

Pros

- DRSOM has rapid convergence (30 epochs)
- DRSOM needs little tuning

Cons

- DRSOM may over-fit the models
- Running time can benefit from Interpolation
- Single direction DRSOM is also good

Good potential to be a standard optimizer for deep learning!
Overall Takeaways

Second-Order Derivative information matters and better to integrate FOM and SOM for nonlinear optimization!

It is possible to train Mixed-Integer Linear Programming Solvers and add Statistical Confidence Cuts to significantly accelerate the solution process.

• THANK YOU