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Offline and Online Linear Programming

maximizex
∑n

t=1 rtxt
subject to

∑n
t=1 atxt ≤ b,

xt ∈ {0, 1} (0 ≤ xt ≤ 1), ∀t = 1, ..., n.

rt : reward/revenue offered by the t-th customer/order

at ∈ Rm: the bundle of resources requested by the t-th order

xt : acceptance or rejection decision to the t-th order

b ∈ Rm: initially available budget/resource amounts

The objective
∑n

t=1 rtxt : the total collected revenue.

We know only b and n at the start.

the bidder data (rt , at) point arrives sequentially.

an irrevocable decision must be made as soon as an order arrives
(without knowing the future data).

Conform to resource capacity constraints at the end.
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Primal and Dual Offline LPs

max r>x

P : s.t. Ax ≤ b

0 ≤ x ≤ e

min b>p + e>s

D : s.t. A>p + s ≥ r

p ≥ 0, s ≥ 0
where the decision variables are x ∈ Rn, p ∈ Rm, s ∈ Rn (e vector of
all ones).

Denote the primal/dual optimal solution as x∗, p∗, s∗, then LP
duality/complementarity theory tells that for t = 1, ..., n,

x∗t =

{
1, rt > a>t p

∗

0, rt < a>t p
∗

(x∗t may take non-integer value when rt = a>t p
∗).

Most online LP algorithms are based on learning p∗ by dynamically
solving small sample-sized LPs based on revealed data.
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Data/Model Assumptions for Analyses
Stochastic Input (i.i.d) Model:

(a) (rt , at)’s are i.i.d. from an unknown distribution

Random Permutation (RP) Model:

(a’) (rt , at)’s may be adversarially chosen but arrive in a random
order (sample without replacement)

Both assume boundedness:

(b) |rt | ≤ r̄ and ‖at‖∞ ≤ ā for all t

(c) The right-hand-side b = n · d(> 0).

All early works also assume rt ≥ 0, at ≥ 0 (one-sited market).

What are the necessary and sufficient assumptions on the
right-hand-side b to achieve (1− ε)-competitive ratio of the
expected online reward over the optimal offline reword?

If the right-hand-side b (such as b = O(n)), what is the best
achievable gap or regret between the two?
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Competitive Ratio Summary of One-Sited Market

The journey to design (1− ε)-competitive online algorithms against
benchmark OPT-Optimal Offline Objective Value where B = mini bi :

Sufficient Condition
Kleinberg (2005) B ≥ 1

ε2 , for m = 1

Devanur et al (2009) OPT ≥ m2 log n
ε3

Feldman et al (2010) B ≥ m log n
ε3 and OPT ≥ m log n

ε

Agrawal/Wang/Y (2010,14) B ≥ m log n
ε2 or OPT ≥ m2 log n

ε2

Molinaro/Ravi (2013) B ≥ m2 log m
ε2

Kesselheim et al (2014) B ≥ log m
ε2

Gupta/Molinaro (2014) B ≥ log m
ε2

Agrawal/Devanur (2014) B ≥ log m
ε2

Necessary Condition

Agrawal/Wang/Y (2010,14) B ≥ log m
ε2
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Remarks

The optimal online algorithms have been designed for the
competitive ratio analyses for one-sited market and random
permutation data model!

The key difference between OLP and Online Convex
Optimization with Constraints (OCOwC):

Online LP problem employs a stronger benchmark where the
decision variables are allowed to take different values at each
time period
OCOwC (Mahdavi et al., 2012; Yu et al., 2017; Yuan and
Lamperski, 2018) and OCO problems usually considers a
stationary benchmark where the the decision variables are
required to be the same at each time period.

Recent focuses are on dealing with two-sited markets/platforms,
regret analyses, simple and fast algorithms, interior-point online
algorithm, extension to bandit models, ...
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Today’s Talk: Recent Developments

Part (I): Fast algorithms for online linear programming

Setup: First observe (rt , at) then decide xt

Part (II): A Fairer online interior-point LP algorithm

Setup: A “fair” online decision-making mechanism

Part (III): Bandits with knapsacks

Setup: First choose “xt” (the arm/customer), then observe
(rt , at)

Other recent works on OLP: papers by Balseiro, Lu, and Mirrokni
(2020,21), etc.
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Regret Analysis and Model

Let “offline” optimal solution be x∗ and “online” solution of n orders
be xn, and

R∗n =
n∑

j=1

rjx
∗
j , Rn =

n∑
j=1

rjxj .

Then define

∆n = supE [R∗n − Rn] , v(x) = supE
[
‖ (Ax− b)+ ‖2

]
where the expectation is taken with respect to i.i.d distribution or
random permutation, and the sup operator is over all permissible
distributions and admissible data.

Remark: A bi-criteria performance measure, but one can easily
modify the algorithms such that the constraints are always satisfied
at the end.
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Part (I): Equivalent Form of the Dual Problem

Recall the dual problem

min b>p +
n∑

t=1

st s.t. st ≥ rt − a>t p, ∀t; p, s ≥ 0

can be rewritten as

min b>p +
n∑

t=1

(
rt − a>t p

)+
s.t. p ≥ 0

where (·)+ is the positive-part or ReLU function.

After normalizing the objective, it becomes

min
p≥0

d>p +
1

n

n∑
t=1

(
rt − a>t p

)+

which can be viewed as a simple-sample-average (SSA) (with n sample
points) of a stochastic optimization problem under an i.i.d distribution.
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Convergence of p∗n

Theorem (Li & Y (2019, OR to appear))

Denote the n-sample SSA optimal solution by p∗n. Then, for the
stochastic input model under moderate conditions that guarantees a
local strong convexity of the underlying stochastic program f (p)
around its optimal solution p∗, there exists a constant C such that

E‖p∗n − p∗‖2
2 ≤

Cm log log n

n

holds for all n > m.

This is L2 convergence for the dual optimal solution. Heuristically,

p∗n ≈ p∗ +
1√
n
·Noise
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Fast Online Algorithm for Binary LP

1: Input: d = b/n
2: Initialize p1 = 0
3: For t = 1, 2, ..., n
4:

xt =

{
1, if rt > a>t pt

0, if rt ≤ a>t pt

5: Compute

pt+1 = pt + γt (atxt − d)

pt+1 = pt+1 ∨ 0

6: x = (x1, ..., xn)

Line 5 performs (projected) stochastic gradient descent in the dual.
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Performance Analysis

Theorem (Li, Sun & Y (2020, NeurIPS))

With step size γt = 1/
√
n, the regret and expected constraint

violation of the algorithm satisfy

E[R∗n − Rn] ≤ Õ(m
√
n), E [v(x)] ≤ Õ(m

√
n).

under both the stochastic input and the random permutation models.

Õ omits the logarithm terms and the constants related to (ā, r̄),
but the algorithm does not require any prior knowledge on the
constants.

The optimal offline value is in the range O(mn).

The algorithms runs in nm times - the time to read in the data.
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Adaptive Fast Online Algorithm for Binary LP

1: Initialize b1 = b and p1 = 0
2: For t = 1, 2, ..., n
3:

xt =

{
1, if rt > a>t pt

0, if rt ≤ a>t pt

4: Compute
pt+1 = pt + αt

(
atxt − 1

n−t+1
bt

)
pt+1 = pt+1 ∨ 0

5: Update remaining inventory: bt+1 = bt − atxt .
6: Return x = (x1, ..., xn)

The average inventory vector is adaptively adjusted based on the
previous realizations/decisions – this is a non-stationary approach.
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Nonadaptive vs. Adaptive

The first resource (sequential) usages in 10 runs of the algorithms.

Figure: Nonadaptive Figure: Adaptive
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Fast Online LP Algorithm for Solving Offline LPs?

A crucial assumption is that the right-hand-side b = nd scales linearly
with n. Is there a remedy for this case where we do not want to
compromise the computational efficiency of simple online algorithm?

Consider a “Replicated” LP from the original LP

max
n∑

t=1

k∑
h=1

rtxth

s.t.
n∑

t=1

k∑
h=1

atxth ≤ kb, 0 ≤ xt ≤ 1, t = 1, ..., n.

Algorithm: Solve the new LP with Simple Online Algorithm and use
xt = 1

k
(xt1 + ... + xtk) as the solution to the original LP.

The algorithm runs in O(kmn) times.
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Performance of the Variable-Replicating Algorithm

Proposition (Gao, Sun, Ye & Y (2021))

Under the random permutation model, the variable-replicating
algorithm finds a solution for the original LP that achieves at least
(1−O(ε))OPT with the constraint violation bounded by

(1 +O(ε))B where B = min
i=1,...,m

bi , if
√
kB2 ≥ n3/2 log kn

ε
and

√
kB ≥ m

√
n

ε
for any ε > 0. Moreover, if kn ≥ m, the relative

constraint violation can be bounded by (1 +O( ε√
m

)).

The proof comes from a direct application of performance analyses of
the Simple Online Algorithm

Takeaway: k times more computation cost for a
√
k factor

improvement in regret performance.
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Multi-knapsack Problem Instances - Binary LP

Benchmark dataset of Chu & Beasley implementation

V.R. Alg. Gurobi

m = 5, n = 500, k = 50 Time 0.000 0.211
Cmpt. Ratio 88.2% 95.3%

m = 5, n = 500, k = 1000 Time 0.007 0.211
Cmpt. Ratio 89.2% 95.3%

m = 8, n = 103, k = 50 Time 0.004 3.800
Cmpt. Ratio 89.9% 99.0%

m = 8, n = 103, k = 1000 Time 0.077 3.800
Cmpt. Ratio 95.6% 99.0%

m = 64, n = 104, k = 50 Time 0.013 > 60
Cmpt. Ratio 90.3% 98.7%

m = 64, n = 104, k = 1000 Time 0.223 > 60
Cmpt. Ratio 96.4% 98.7%
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Fast Online Algorithm as Pre-Classifier for LP

The key combinatorial task of LP is the partition of all variables into
optimal basic (with positive values) and optimal nonbasic (with zero
values) variables.

In LP, a column generation techniques is popularly used when
n >> m:

Constructed a Restricted Master Problem (RMP) defined by a
small subset of variables of the original problem

Solve RMP and reselect initially unselected variables into RMP

Ideally, the initial RMP would already contain the set of O(m)
optimal basic variables and there is no need (or less) to do reselect!

This is precisely where the fast online LP algorithm does a good job -
classify variables being positive or zero at an optimal solution in a
short time.

Ye, Yinyu (Stanford) Online Linear Programming November 27, 2021 18 / 33



Fast Online Algorithm as Pre-Classifier for LP

The key combinatorial task of LP is the partition of all variables into
optimal basic (with positive values) and optimal nonbasic (with zero
values) variables.

In LP, a column generation techniques is popularly used when
n >> m:

Constructed a Restricted Master Problem (RMP) defined by a
small subset of variables of the original problem

Solve RMP and reselect initially unselected variables into RMP

Ideally, the initial RMP would already contain the set of O(m)
optimal basic variables and there is no need (or less) to do reselect!

This is precisely where the fast online LP algorithm does a good job -
classify variables being positive or zero at an optimal solution in a
short time.

Ye, Yinyu (Stanford) Online Linear Programming November 27, 2021 18 / 33



Fast Online Algorithm as Pre-Classifier for LP

The key combinatorial task of LP is the partition of all variables into
optimal basic (with positive values) and optimal nonbasic (with zero
values) variables.

In LP, a column generation techniques is popularly used when
n >> m:

Constructed a Restricted Master Problem (RMP) defined by a
small subset of variables of the original problem

Solve RMP and reselect initially unselected variables into RMP

Ideally, the initial RMP would already contain the set of O(m)
optimal basic variables and there is no need (or less) to do reselect!

This is precisely where the fast online LP algorithm does a good job -
classify variables being positive or zero at an optimal solution in a
short time.

Ye, Yinyu (Stanford) Online Linear Programming November 27, 2021 18 / 33



Implementation in LP Solvers

More precisely, the fast online LP solution can be interpreted as a
“score” of how likely a variable is to be optimal basic.

We run online algorithm to obtain x̂, set a threshold ε and select the
columns in I{x̂>ε}. For benchmark LP problems that have more
columns than rows (such as rail4284, s82, and scpm1 from the
Mittelmann’s Simplex Benchmark), the online solution identifies more
than 90% of the primal optimal basis on average.

This technique has been adopted in the emerging LP solver COPT -
a new state of art LP solver.
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Part (II): A “Fairer” Online LP Algorithm

Recall the online LP formulation (changing n to T as in the literature)

max
T∑
t=1

rtxt s.t.
T∑
t=1

atxt ≤ b, xt ∈ [0, 1]

A finite-type assumption: P((rt , at) = (µj , cj)) = pj (unknown to the
decision maker) for j = 1, ..., J. The offline problem with the knowledge:

max
J∑

j=1

pjµjyj s.t.
J∑

j=1

pjcjyj ≤ b/T , yj ∈ [0, 1]

where yj is the acceptance probability for each customer type j .

Benchmark Regret Bound Key Assumption(s)
Jasin and Kumar (2012) Fluid Bounded Nondeg., distrib. known

Jasin (2015) Fluid Õ(log T ) Nondeg.
Vera et al. (2019) Hindsight Bounded Distrib. known

Bumpensanti and Wang (2020) Hindsight Bounded Distrib. known
Asadpour et al. (2019) Full flex. Bounded Long-chain, ξ-Hall condition
Chen, Li & Y (2021) Fluid Bounded Partial Nondeg.
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Behavior of the Simplex and Interior-Point

The key in Chen et al. (2021) paper is to use the interior-point
algorithm for solving the sample LPs with sample proportion p̂j

max
J∑

j=1

p̂jµjyj s.t.
J∑

j=1

p̂jcjyj ≤ b/T , yj ∈ [0, 1],

since the sample and offline LP may be degenerate or with multiple
optimal solutions - a common property for real-life LP problems.
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Fairness Desiderata: Time and Individual

Time Fairness: The algorithm may tends to accept mainly the first
half (or the second half of the orders), which is unfair or unideal such
as Adwords application.

Individual Fairness: For certain customer types there exist multiple
optimal allocation rules. Unfortunately, the optimal object value
depends on the total resources spent, not on the resources spent on
which groups - some individual or group may be ignored by the online
algorithm/allocation-rule.

But these individuals/groups could have different sensitive features,
such as demographic, race, and gender, and areas in Hospital
Admission and Hotel/Flight booking application.

Could we design an online algorithm/allocation-rule such as, while
maintain the efficiency in objective value, all individual/groups get a
fairer allocation shares?
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Fairer Solution for the Offline Problem

We define y∗, the fair offline optimal solution of the LP problem

max
J∑

j=1

pjµjyj , s.t.
J∑

j=1

pjcjyj ≤ b/T , yj ∈ [0, 1]

as the analytical center of the optimal solution set, which represents
an “average” of all the corner optimal solutions.

Let yt be allocation rule at time t which encodes the accepting
probabilities under algorithm π. Then we define the cumulative
unfairness of the online algorithm π as

UFT (π) = E

[
T∑
t=1

‖yt − y∗‖2
2

]
.

This definition is consistent with the definition of fair
classifiers/regressors in fair machine learning.
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Our Result

We develop an algorithm [Chen, Li & Y (2021)] that achieves

UFT (π) = O(logT )

RegT (π) = Bounded w.r.t T

Key ideas in algorithm design:

At each time t, we use interior-point method to obtain the
sample analytic-center solution yt , and it is necessary to achieve
the performance under weak non-degeneracy assumption and
maintain fairness.

We also adjust the right-hand-side properly to ensure (i) the
depletion of binding resources and (ii) non-binding resources not
affecting the fairness.

The use of interior-point method also relaxes a non-degeneracy
assumption in previous analysis
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Part (III): Bandits with Knapsacks
Reverse the order of decisions and observations in online LP: decide
xt then observe (r̂t , ĉt).

Horizon: T time periods (T known a priori)

Bandits: k arms, where each arm i with an unknown mean reward
µi ,.

Knapsacks: m types of resources. The total resource capacity
b ∈ Rm. Each arm i with an unknown mean resource consumption
ci ∈ Rm.

At each time t ∈ [T ], an arm i is selected to pull. The realized
reward r̂t and resources cost ĉt satisfying

E[r̂t |i ] = µi , E[ĉt |i ] = ci .

Goal: Select a subset of winning/optimal arms to maximize the total
reward subject to the resource capacity constraints!

Ye, Yinyu (Stanford) Online Linear Programming November 27, 2021 25 / 33



Part (III): Bandits with Knapsacks
Reverse the order of decisions and observations in online LP: decide
xt then observe (r̂t , ĉt).
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Goal: Select a subset of winning/optimal arms to maximize the total
reward subject to the resource capacity constraints!

Ye, Yinyu (Stanford) Online Linear Programming November 27, 2021 25 / 33



Part (III): Bandits with Knapsacks
Reverse the order of decisions and observations in online LP: decide
xt then observe (r̂t , ĉt).
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Offline Linear Program (LP) and Regret
With mean reward µ = (µ1, ..., µk) and mean cost C = (c1, ..., ck) of
all arms, consider the following deterministic offline LP,

max
x

k∑
i=1

µixi s.t.
k∑

i=1

cixi ≤ b, xi ≥ 0, i ∈ [k]

Here xi represents the optimal fractional number of playing i -th arm
if everything is deterministic and known

Denote its optimal value as OPT (the benchmark) and let τ be the
stopping time as soon as one of the resources is depleted. Then the
problem-dependent regret

Regret(P) = OPT − E

[
τ∑

t=1

rt

]
,

where P encapsulates the parameters related to the underlying data
distribution.
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Literature and Our Result

Paper Result

P-Independent Badanidiyuru et. al. (13) O(poly(m, k) ·
√
T )

Agrawal and Devanur (14)

P-Dependent Flajolet and Jaillet (15) Õ(2m+k logT )

Sankararaman and Slivkins (20) Õ(k logT ) for m = 1

Li, Sun & Y (21) Õ
(
m4 + k logT

)
The problem-dependent bounds all involve parameters related to the
non-degeneracy and the reduced cost of the underlying LP, while our
work has the mildest assumption and requires no prior knowledge of
these parameters.
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Dual LP and Reduced Cost

Primal : max µ>x

s.t. Cx ≤ b, x ≥ 0

Dual : min b>y

s.t. C>y ≥ µ, y ≥ 0

Denote x∗ ∈ Rk and y∗ ∈ Rm as optimal solutions
Define reduced cost (profit) for i-th arm ∆i := c>i y

∗ − µi and the
non-basic variable set I ′ = {i : ∆i > 0}.

Proposition (Li, Sun & Y (2021, ICML)
The regret of a BwK algorithm has the following upper bound:

Regret(P) ≤
∑
i∈I′

∆iE[ni (τ)] + E[b(τ)]>y∗

b(t): remaining resource at time t

ni (t): the number of times that i-th (non-optimal) arm is played up
to time t
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Implications of the Regret Upper Bound
Two tasks to accomplish to reduce the regret:

Task I: Control the number of plays ni(τ) for non-optimal arms
i ∈ I ′ which corresponds to the first component in the regret
bound ∑

i∈I′
∆iE[ni(τ)]

Playing each non-optimal arm will induce a cost/waste of ∆i .

Task II: Make sure no valuable resources b(τ)
j left unused, which

corresponds to the second component in the regret bound

E[b(τ)]>y∗

Recall τ is the time that one of the resources is exhausted.

Task II is often overlooked in the existing BwK literature.
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Our Approach: A Two-Phase Algorithm

Phase I: Identify the optimal arms with as fewer number of plays
as possible by designing an “importance score” for arm i :

OPTi := max µ>x

s.t. Cx ≤ b, xi = 0, x ≥ 0.

Implication: A larger value of OPT − OPTi ⇒ xi important and
likely to represent an optimal arm. Our algorithm then maintains
upper confidence bound (UCB)/lower confidence bound (LCB)
to estimate OPT and OPTi based are samples.

After t ′ = O(k log T
σ2δ2 ) times of Phase I, the non-optimal arm

variables are identified as set I ′ and they would be removed
from further consideration, and then we start

Phase II: Use the remaining arms to exhaust the resource
through an adaptive procedure such that no valuable resources
are wasted.
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through an adaptive procedure such that no valuable resources
are wasted.
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Phase II: Exhausting the Binding Resources

Adaptive Algorithm for filling the knapsacks:

For t = t ′ + 1, ...,T

1 Solve the UCB-LP and denote its optimal solution as x̃

max
x

k∑
i=1

(
µ̂i (t) +

√
2 logT

ni (t)

)
xi

s.t.
k∑

i=1

(
ĉi (t)−

√
2 logT

ni (t)

)
xi ≤ b(t−1)

x ≥ 0, xi = 0 for i ∈ I ′

2 Normalize x̃ into a probability and play an arm accordingly

3 Update the knapsack process b(t) (remaining resource)
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Combining the Two Phases

Proposition (Li, Sun & Ye 2021, ICML)

The regret of our two-phase algorithm is bounded by

O

(
m4

σ2δ2
+

k logT

δ2

)
.

Here the problem-dependent conditional numbers of the deterministic
BwK LP problem are:

σ is the minimum singular value of the sub-matrix of the
constraint matrix C that corresponds to the optimal basis.

δ measures the difficulty of identifying optimal basic variables:

min {min{x∗i |x∗i > 0},min{OPT − OPTi |x∗i > 0},min{∆i |x∗i = 0}} .
These condition numbers generalize the optimality gap for the
original (unconstrained) multi-armed bandits (Lai and Robbins
(1985), Auer et al. (2002)).
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Final Words
LP continues to play an important and significant role in today’s

online learning and decision-making!

Happy Birthday, Takashi!
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