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Abstract

We consider a linear complementarity problem (LCP) arisen from
the Arrow-Debreu-Leontief competitive economy equilibrium where
the LCP coefficient matrix is symmetric. We prove that the decision
problem, to decide whether or not there exists a complementary so-
lution, is NP-complete. Under certain conditions, an LCP solution is
guaranteed to exist and we present a fully polynomial-time approxi-
mation scheme (FPTAS) for computing such a solution, although the
LCP solution set can be non-convex or non-connected. Our method
is based on solving a quadratic social utility optimization problem
(QP) and showing that a certain KKT point of the QP problem is an
LCP solution. Then, we further show that such a KKT point can be
approximated with running time O((1

ε ) log(1
ε ) log(log(1

ε )) in accuracy
ε ∈ (0, 1) and a polynomial in problem dimensions. We also report pre-
liminary computational results which show that the method is highly
effective.

1 Introduction

Given a real n by n matrix A, consider the linear complementarity problem
(LCP) to find u and v such that

AT u + v = e, uT v = 0, (u 6= 0, v) ≥ 0, (1)
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where e is the vector of all ones. Note that uT v = 0 implies that uivi = 0 for
all i = 1, · · · , n. Also, u = 0 and v = e is a trivial complementary solution.
But we look for a non-trivial solution where u 6= 0 (see Cottle at al. [5] for
more literature on linear complementarity problems).

In this note, we focus on the case that A is symmetric. We first prove
that the decision problem, to decide whether or not there exists such a com-
plementary solution, is NP-complete. Under certain conditions, for example,
that all entries of A is non-negative, an LCP solution is guaranteed to exist.
Then, we present a fully polynomial-time approximation scheme (FPTAS)
for computing a solution, although the LCP solution set can be non-convex
or non-connected.

Our method is based on solving a quadratic social utility optimization
problem (QP) and showing that a certain KKT point of the QP problem is
an LCP solution. Then, we further show that such a KKT point can be ap-
proximated with running time O((1

ε
) log(1

ε
) log(log(1

ε
)) in accuracy ε ∈ (0, 1)

and a polynomial in problem dimensions. We also report preliminary compu-
tational results which show that the method is highly effective in comparison
with other well known LCP solvers.

2 Connection to Competitive Market and Bi-

matrix Game Equilibria

The LCP (1) rises from the Arrow-Debreu exchange competitive economy
equilibrium problem where it was first formulated by Léon Walras in 1874.
In this equilibrium problem everyone in a population of m traders has an
initial endowment of a divisible goods and a utility function for consuming all
goods—their own and others’. Every trader sells the entire initial endowment
and then uses the revenue to buy a bundle of goods such that his or her
utility function is maximized. Walras asked whether prices could be set
for everyone’s goods such that this is possible. An answer was given by
Arrow and Debreu in 1954 [1] who showed that, under mild conditions, such
equilibrium would exist if the utility functions were concave. In general, it
is unknown whether or not an equilibrium can be computed efficiently.

Consider a special class of Arrow-Debreu’s problems, where each of the n
traders has exactly one unit of a divisible and distinctive good for trade, and
let trader i, i = 1, ..., n, bring good i, which class of problems is called the
pairing class [13]. For given prices pj on good j, consumer i’s maximization
problem is

maximize ui(xi1, ..., xin)
subject to

∑
j pjxij ≤ pi,

xij ≥ 0, ∀j.
(2)
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Let x∗i denote a maximal solution vector of (2). Then, vector p is called
the Arrow-Debreu price equilibrium if there exists an x∗i for consumer i,
i = 1, ..., n, such that ∑

i

x∗i = e

where e represents available amount of goods on the exchange market.
The Leontief exchange economy problem is the Arrow-Debreu equilibrium

when the utility functions are in the Leontief form:

ui(xi) = min
j: aij>0

{
xij

aij

}
,

where the Leontief coefficient matrix is given by

A =




a11 a12 ... a1n

a21 a22 ... a2n

... ... ... ...
an1 an2 ... ann


 .

It was proved that

Theorem 1 (Ye [13]) Let B ⊂ {1, 2, ..., n}, N = {1, 2, ..., n} \ B, ABB be
irreducible, and uB satisfy the linear system

AT
BBuB = e, AT

BNuB ≤ e, and uB > 0.

Then the (right) Perron-Frobenius eigen-vector pB of UBHBB together with
pN = 0 will be a Leontief economy equilibrium. And the converse is also true.

Theorem 1 has thus established a combinatorial algorithm to compute a
Leontief economy equilibrium by finding a right block B 6= ∅, which is pre-
cisely a (non-trivial) complementary solution to the LCP problem (1).

The LCP (1) is also connected to the bimatrix game equilibrium problem
specified by a pair of n×m pay-off matrices C and R, with positive entries,
one can construct a Leontief exchange economy with n+m traders and n+m
goods as follows.

Theorem 2 (Codenotti et al. [4]) Let (C, R) denote an arbitrary bimatrix
game, where assume, w.l.o.g., that the entries of the matrices C and R are
all positive. Let

AT =

(
0 C

RT 0

)

describe the Leontief utility coefficient matrix of the traders in a Leontief
economy. There is a one-to-one correspondence between the Nash equilibria
of the game (C,R) and the market equilibria A of the Leontief economy.
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Therefore, computing a bimatrix game equilibrium is also equivalent to com-
puting a complementary solution of LCP (1). The reader may want to read
Brainard and Scarf [2], Gilboa and Zemel [8], Chen, Deng and Teng [3],
Daskalakis, Goldberg ans Papadimitriou [7], and Tsaknakis and Spirakis [11]
on hardness and approximation results of computing a bimatrix game equi-
librium.

3 Decision of the Existence of an LCP Solu-

tion

In general, it’s difficult to decide if LCP (1) has a complementary solution
or not, even when A is symmetric.

Theorem 3 Let A be a real symmetric matrix. Then, it is NP-complete
to decide whether or not LCP (1) has a complementary solution such that
u 6= 0.

Proof Given a symmetric matrix A, it’s NP-complete (see Murty and Kabadi
[10]) to decide if

∃u ≥ 0 such that uT Au > 0? (3)

The complement problem is to decide if or not for all u ≥ 0 one has uT Au ≤ 0,
or −A is co-positive plus.

We now prove that the decision problem (3) is equivalent to the problem
that if or not LCP (1) has a complementary solution u 6= 0.

If (1) has a complementary solution u 6= 0, then

0 = uT (e− Au) = eT u− uT Au.

Since u ≥ 0 and u 6= 0, we have uT Au = eT u > 0.
On the other hand, if the answer to the decision problem (3) is “yes”,

then the maximal value of the following bounded quadratic problem:

(QP ) maximize uT Au (4)

subject to eT u = 1, u ≥ 0,

is strictly positive. Let u∗ be the global maximizer of the problem. Then, u∗

must satisfy the Karush-Kuhn-Tucker (KKT) conditions:

−2Au + λe = v (5)

uT v = 0,

eT u = 1,

(u, v) ≥ 0, λ free.
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The first two equations in (5) imply that λ = 2(u∗)T Au∗
eT u∗ = 2(u∗)T Au∗ > 0.

Thus, ū = 2u∗
λ
≥ 0 is complementary solution of LCP (1) and ū 6= 0.

The question remains: given symmetric A, is it easy to compute one
if LCP (1) is known to have a complementary solution? Note that, the
complementary solution set of (1), even non-empty, is not convex nor even
connected. For example, let

AT =

(
2 1
1 2

)
.

Then, there are three isolated non-trivial complementary solutions.

u1 = (1/2; 0), u2 = (0; 1/2), u3 = (1/3; 1/3).

In the next section, however, we develop a fully polynomial-time approxi-
mation scheme (FPTAS) to compute ε-approximate complementary solution
for LCP (1) when A is symmetric and

∑
i,j aij > 0, that is, the sum of all

entries of A is positive. Here, an ε-approximate complementary solution is a
pair (u 6= 0, v) such that

AT u + v = e, (u 6= 0, v) ≥ 0,
uT v

ā
≤ ε,

where ā is the largest entry in A:

ā = max
i,j
{aij} (> 0). (6)

In most applications, one can scale A such that ā = 1.

4 A Social Optimization and FPTAS

We consider a quadratic “social” utility function uT Au, which we like to
maximize over the simplex {u : eT u = 1, u ≥ 0}. This can be written as
the quadratic programming problem of QP (4) in the previous section.

Since eT Ae > 0 so that LCP (1) has at least one non-trivial complemen-
tary solution. Further more, the maximal value of QP (4) is strictly greater
than 0 but bounded above by ā (recall that ā is the largest entry of A). These
facts, together with the proof of Theorem 3, lead to

Lemma 1 Let A be symmetric. Then, every KKT point u of problem (4),
with uT Au > 0, is a (non-trivial) complementary solution for LCP (1).

In [14], an interior-point potential reduction algorithm was proved to be
a FPTAS for computing an ε-approximate KKT point of general quadratic
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programming with bounded feasible region. It can be adapted in solving
QP (4) in a running time bounded by O((n4

ε
log 1

ε
+ n4 log n)(log 1

ε
+ log n))

arithmetic operations. The algorithm reduces the potential function

P (u) = ρ log
(
ā− uT Au

)−
n∑

j=1

log(uj),

where ρ = (2n +
√

n)/ε, by a constant each iteration from the initial point
u0 = 1

n
e, till u becomes an ε-approximate KKT point.

Note that

P (u0) = ρ log

(
ā− 1

n2
eT Ae

)
+ n log(n),

and for any u ∈ {u : eT u = 1, u > 0},

−
n∑

j=1

log(uj) ≥ n log(n).

Thus, P (u) < P (u0) implies that

ρ log
(
ā− uT Au

)
< ρ log

(
ā− 1

n2
eT Ae

)

or

uT Au >
1

n2
eT Ae > 0,

that is, any KKT point u generated by the algorithm must have uT Au > 0.
To conclude, we have

Theorem 4 There is a FPTAS to compute an ε-approximate non-trivial
complementary solution of LCP (1) when A is symmetric and eT Ae > 0.
Moreover, such a solution is an ε-approximate equilibrium of the symmetric
Leontief economy when all entries of A are positive.

5 Preliminary Computational Results

Here, we computationally compare three type methods to solve the com-
plementarity problem of (1): 1) the QP-based potential reduction algorithm
(referred as QP) presented in this paper; 2) a homotopy-based path-following
algorithm method (referred as HOMOTOPY) developed in Dang at al. [6];
3) Mixed Complementarity Problem (MCP) general solvers PATH (Ferris
and Munson, http://www.gams.com/dd/docs/solvers/path.pdf) and MILES
(Rutherford http://www.gams.com/dd/docs/solvers/miles.pdf), where both
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solvers use a Lemke type algorithm that is based on a sequence of pivots
similar to those generated by the simplex method for linear programming;
see Lemke [9].

If one applies Lemke’s algorithm directly to solving LCP (1), then it will
return the trivial solution u = 0, v = e. To exclude it, we rewrite LCP (1)
into an equivalent homogeneous LCP as follows:

Mz + q = w, zT w = 0, (z, w) ≥ 0, (7)

where z, w ∈ Rn+1,

M =

( −AT e
eT 0

)
∈ Mn+1, q =

(
0n

−1

)
.

Then, we can obtain a solution for LCP (1) from a complementary solution of
LCP (7). However, the standard Lemke algorithm may not be able to solve
LCP (7) either, since it may terminate at the second iteration with a non-
complementary “secondary-ray” solution. Thus, as shown below, commonly
used LCP solver PATH or MILES seems cannot successfully solve LCPs (7)
most of times.

Both QP and HOMOTOPY are coded in MATLAB script files, and all
solvers are run in the MATLAB environment on a desktop PC (2.8GHz
CPU). For the QP-based potential reduction algorithm, we set ε = 1.e − 8.
After the termination, we use the support of u, {i : ui ≥ 1.e − 5}, to
recalibrate an “exact” solution (to the machine accuracy) for LCP (1).

For different size n ( n = 20 : 20 : 100, 100 : 100 : 1000, 1500 : 500 : 3000),
we randomly generate 15 symmetric and sparse matrices A of two different
types (uniform in [0, 1] or binary {0, 1}) and solve them by the three meth-
ods. In the following tables, “mean sup” the average support size of u and
“max sup” the maximum support size of u in the 15 problems, “mean iter”
the average number of iterations of QP and Homotopy algorithms (each it-
eration solves a system of linear equations), and “mean time” the average
computing CPU time in seconds.

From our preliminary computational results, we can draw few conclu-
sions. First, LCP (1), although the matrix A is symmetric, seems not an
easy problem to solve. Secondly, the QP-based FPTAS algorithm lives up
with its theoretical expectation and it is numerically effective. Thirdly, the
homotopy-based algorithm seems able to solve sizable problems, although its
computational complexity is not proven to be a PTAS. Finally, as mentioned
earlier, the general LCP solvers, PATH and MILES, may terminate with a
“secondary-ray” solution at the second Lemke pivot, therefore fail to solve
LCP (7). As a result, in our numerical experiments MILES can solve none of
our test problems, and PATH can only solve a small number of test problems
with size no more than 50. (PATH use an alternative default pivoting rule
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n mean sup mean iter mean time max sup
20 4.1 39.5 0.1 5
40 4.5 46.0 0.1 5
60 4.5 47.9 0.1 5
80 4.9 47.5 0.2 6

100 5.3 48.2 0.3 7
200 5.5 53.5 1.2 6
300 5.6 59.3 3.4 8
400 5.7 55.1 5.9 7
500 5.9 62.5 11.3 7
600 5.7 58.8 16.0 7
700 5.8 58.8 23.4 7
800 5.8 62.6 33.8 8
900 5.7 65.1 47.3 7

1000 6.3 65.0 60.2 7
1500 6.1 71.5 187.2 8
2000 5.9 73.5 411.9 7
2500 6.4 74.6 774.5 8
3000 6.2 78.7 1404.2 8

Table 1: QP for solving uniform symmetric matrix LCP

n mean sup mean iter mean time max sup
20 4.1 37.7 0.2 5
40 4.4 52.7 0.4 5
60 4.4 58.3 0.8 6
80 4.6 68.2 1.4 6

100 5.3 72.6 2.2 7
200 4.9 108.9 14.0 6
300 5.5 127.7 49.3 8
400 5.5 160.5 111.9 7
500 5.7 159.7 181.6 7
600 5.5 182.5 317.0 6
700 5.9 202.9 515.6 7
800 5.5 208.9 706.3 6
900 5.7 231.7 1039.2 7

1000 5.9 267.2 1644.0 7
1500 5.9 305.5 4726.4 7
2000 5.7 307.1 10105.2 6

Table 2: HOMOTOPY for solving uniform symmetric matrix LCP
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n mean sup mean time max sup
20 8.7 0.1004 12
40 13.8 0.3406 23

n≥60 fail to solve

Table 3: PATH for solving uniform symmetric matrix LCP

n mean sup mean iter mean time max sup
20 11.8 35.2 0.1 13
40 16.6 43.3 0.1 20
60 21.1 44.4 0.2 23
80 22.1 46.9 0.3 25

100 23.9 53.3 0.5 27
200 30.0 54.5 1.7 34
300 32.5 66.9 5.2 35
400 34.1 65.1 9.5 38
500 35.4 67.1 16.1 39
600 36.0 82.9 31.4 39
700 37.9 68.0 35.4 42
800 37.8 74.9 55.4 41
900 37.8 78.1 76.5 43

1000 38.7 82.1 106.6 42
1500 40.0 84.9 305.3 43
2000 42.4 91.4 702.2 45
2500 42.9 94.7 1382.8 47
3000 43.9 99.5 1959.4 48

Table 4: QP for solving binary symmetric matrix LCP
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n mean sup mean iter mean time max sup
20 11.7 48.6 0.2 14
40 16.2 68.3 0.5 21
60 20.6 75.3 0.9 24
80 22.9 84.0 1.7 26

100 24.3 92.9 2.9 27
200 31.3 111.1 14.6 39
300 32.3 130.4 51.1 39
400 32.4 108.2 79.9 34
500 34.8 153.6 263.7 41
600 34.4 144.8 451.3 37
700 35.6 184.0 572.3 38
800 36.5 208.0 1628.1 37
900 37.2 261.2 4733.4 41

1000 37.2 502.8 5370.1 38

Table 5: HOMOTOPY for solving binary symmetric matrix LCP

n mean sup mean time max sup
20 8.2 0.0445 12
40 10.2 0.3229 17

n≥60 fail to solve

Table 6: PATH for solving binary symmetric matrix LCP
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and it switches to original Lemke’s pivot rule only when the default rule fails
or the users force to do so.)

6 Further Remarks

We make few final remarks and open questions.
First, is symmetric LCP (1) in the PPAD class described by [3] and [7]?
Secondly, by restricting A being symmetric for bimatrix game setting de-

scribed in Section 2, we must have R = C, that is, the two payoff matrices
are identical. But in this case, a trivial, pure-strategic, and Pareto-optimal
bimatrix game equilibrium is to simply play the largest entry in C. Thus,
it remains to be seen if the QP-based approach offer a PTAS for comput-
ing a bimatrix equilibrium with a larger support. Note that the constant-
approximation result of Tsaknakis and Spirakis [11] was indeed based on
computing a KKT point of a social QP problem.

Thirdly, an important direction is to study the LCP problem (1) where
A is not necessarily symmetric. In this case, even all entries of A being non-
negative may not guarantee the existence of a (non-trivial) complementary
solution; see example:

AT =

(
0 2
0 1

)
.

Finally, the computational results based on randomly generated data
show that the support of u is relative small. Is there a theoretical justifi-
cation for this fact or observation?
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