Accelerated Second-Order Methods for Convex and Nonconvex Optimization

MIIS, DECEMBER 17, 2022

Yinyu Ye Stanford University and CUHKSZ (Sabbatical Leave)

Stanford University

Today's Talk

- Optimal Diagonal Precondition using SDP
- An Accelerated Second-Order Method Using Homogenized **Descent Direction**
- A Dimension Reduced Trust-Region Method for Unconstrained Optimization
- Potential Reduction Algorithm for Linear Programming

Optimal Diagonal Pre-Condition [QGHYZ 20]

- Convergence of iterative methods depends on condition number of X
- In practice we choose preconditioner D_L, D_R and solve $(D_L X D_R)^{\top} (D_L X D_R) x' = b$
- Diagonal $D = diag(d_1, \ldots, d_{\{m \text{ or } n\}})$ is called diagonal pre-conditioner

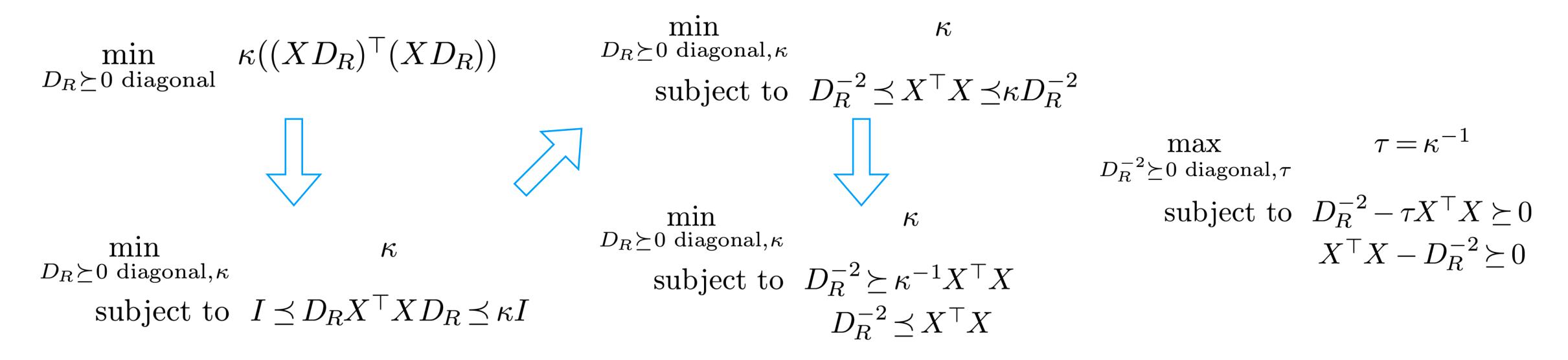
More generally, we look for D_L , D_R such that condition number of $D_L X D_R$ is minimized

Is it possible to find optimal D_L^* and D_R^* ?

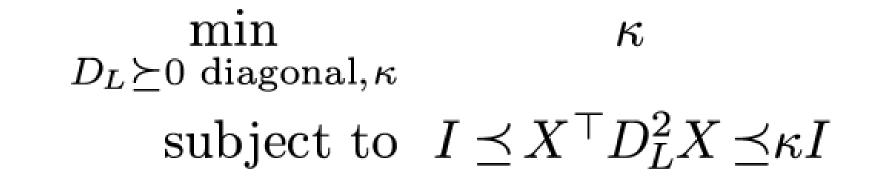
- Given $X^{\top}X > 0, X \in \mathbb{R}^{m \times n}$, iterative method (e.g., CG) is often applied to solve
 - $(X^{\mathsf{T}}X)x = b$

- **SDP works!**

Optimal Diagonal Pre-Conditioner



- Finding the optimal diagonal pre-conditioner is an SDP
- Two SDP blocks and sparse coefficient matrices
- **Trivial dual interior-feasible solution**
- An ideal formulation for dual SDP methods
- Similar trick applies to $D_L X$



Two-Sided Optimal Pre-Conditioner

 $\min_{D_L, D_R \succeq 0 \text{ diagonal}} \kappa(D_L X D_R)$

- Common in practice and popular heuristics exist e.g. Ruiz-scaling, matrix equilibration & balancing
- Not directly solvable using SDP
- Can be solved by *iteratively* fixing D_L , D_R , and optimizing the other side Solving a sequence of SDPs
- Answer a question: how far can diagonal pre-conditioners go
- Computation cost of the preconditioner is often amortized by successive solves

Computational Results: Solving for the Optimal Pre-Conditioner

min κ D,κ subject to $D \leq M$ $\kappa D \succ M$

SDP from optimal diagonal pre-conditioning problem HDSDP

- Perfectly in the dual form
- **Trivial dual feasible interior point solution**
- 1 is an upper-bound for the optimal objective value

n	Sparsity	HDSDP (start from $(-10^6, 0)$)	COPT	Mosek	SDPT3
500	0.05	7.1	6.8	9.1	18.0
1000	0.09	44.5	53.9	54.2	327.0
2000	0.002	34.3	307.1	374.7	572.3
5000	0.0002	64.3	>1200	>1200	>1200

$$\max_{\substack{\delta,d}} \qquad \qquad \delta$$

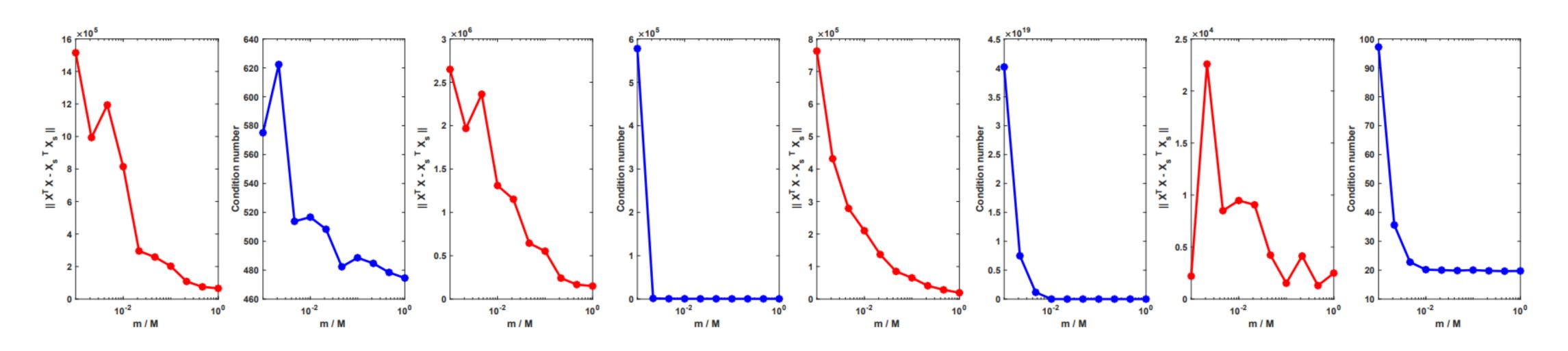
subject to
$$D - M \preceq 0$$

$$\delta M - D \preceq 0$$

- A dual SDP algorithm (successor of DSDP5.8 by **Benson**)
- Support initial dual solution
- **Customization for the diagonal pre-conditioner**

Computational Results: Build Preconditioner from Samples

- Many matrices result from statistical datasets
- $X^{\top}X$ estimates the covariance matrix
- It suffices to use a few (row) samples to approximate \bullet



Experiment over regression datasets shows that

- It generally takes 1% to 5% of the samples to approximate well
- Scales well with dimension and saves much time for matrix-matrix multiplication

How few?

As few as O(log(#sample)!

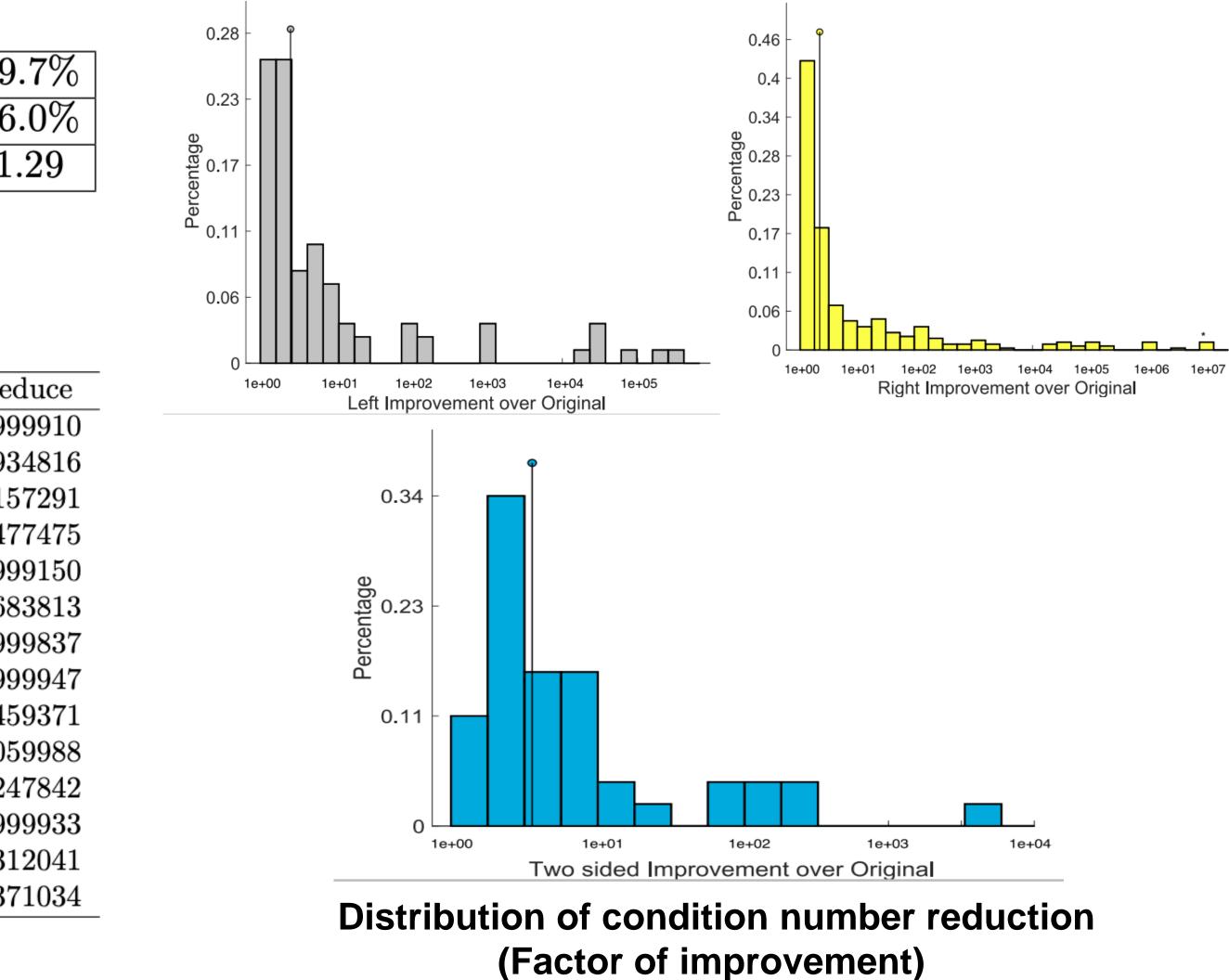
Computational Results: Optimal Diagonal Pre-Conditioner

• Test over 491 Suite Sparse Matrices of fewer than 1000 columns

Reduction	Number		
		Average reduction	49
$\geq 80\%$	121	Better than diagonal	36
>50%	190	U	00
	261	Average time	$\mid 1$
$\geq 20\%$	201		

• LIBSVM datasets

Mat	Size	Cbef	Caft	Rec
YearPredictionMSD	90	5233000.00	470.20	0.99
YearPredictionMSD.t	90	5521000.00	359900.00	0.93
$abalone_scale.txt$	8	2419.00	2038.00	0.15
$bodyfat_scale.txt$	14	1281.00	669.10	0.47
cadata.txt	8	8982000.00	7632.00	0.99
$cpusmall_scale.txt$	12	20000.00	6325.00	0.68
eunite2001.t	16	52450000.00	8530.00	0.99
eunite2001.txt	16	67300000.00	3591.00	0.99
$housing_scale.txt$	13	153.90	83.22	0.45
$mg_scale.txt$	6	10.67	10.03	0.05
${ m mpg_scale.txt}$	7	142.50	107.20	0.24
$pyrim_scale.txt$	27	49100000.00	3307.00	0.99
$space_ga_scale.txt$	6	1061.00	729.60	0.31
$triazines_scale.txt$	60	24580000.00	15460000.00	0.37



Summary

PCG is one of the most popular methods to accelerate SOM

- Optimal Diagonal Precondition, either one-side or two-sides, is "polynomially" computable
- It would be efficient for solving systems with the stable left-hand matrix and variable right-hand vectors, such as in Regression and ADMM
- It establishes the bench-mark for evaluating other pre-conditioners based on heuristics and/or machine-learning
- HDSDP a general purpose SDP solver which using dual-scaling and simplified HSD
- It is developed with effective heuristics and computational tricks from DSDP

Today's Talk

- Optimal Diagonal Precondition using SDP
- An Accelerated Second-Order Method using Homogenized **Descent Direction**
- Optimization
- Potential Reduction Algorithm for Linear Programming

A Dimension Reduced Trust-Region Method for Unconstrained

Early Complexity Analyses for Nonconvex Optimization

min $f(x), x \in X$ in \mathbb{R}^n ,

• where f is nonconvex and twice-differentiable,

$$g_k = \nabla f(x_k), H_k = \nabla^2 f(x_k)$$

• Goal: find x_k such that:

 $\|\nabla f(x_k)\| \le \epsilon$ (primary, first-order condition)

- For the ball-constrained nonconvex QP: min $c^T x + 0.5x^T Qx s.t. \parallel x \parallel_2 \le 1$ $O(loglog(\epsilon^{-1}))$; see Y (1989,93), Vavasis&Zippel (1990)
- For nonconvex QP with polyhedral constraints: $O(\epsilon^{-1})$; see Y (1998), Vavasis (2001)

- $\lambda_{min}(H_k) \ge -\sqrt{\epsilon}$ (in active subspace, secondary, second-order condition)

Standard methods for general nonconvex optimization I

First-order Method (FOM): Gradient-Type Methods

- Assume f has L-Lipschitz cont. gradient
- Global convergence by, e.g., linear-search (LS)
- No guarantee for the second-order condition
- Worst-case complexity, $O(\epsilon^{-2})$; see the textbook by Nesterov (2004)
- Each iteration requires $O(n^2)$ operations

Classical Methods for General Nonconvex Optimization II Second-order Method (SOM): Hessian-Type Methods

- Assume f has M-Lipschitz cont. Hessian
- Trust-region (More 70, Sorenson 80) with a fixed-radius strategy, $O(\epsilon^{-3/2})$, see the lecture notes by Y since 2005
- Cubic regularization, $O(\epsilon^{-3/2})$, see Nesterov and Polyak (2006), Cartis, Gould, and Toint (2011)
- An adaptive trust-region framework, $O(\epsilon^{-3/2})$, Curtis, Robinson, and Samadi (2017)

Each iteration requires O(n³) operations: How to reduce it?

An Integrated Descent Direction Using the Homogenized Quadratic Model I (Zhang at al. SHUFE)

lacksquare

 $\min_{d\in\mathbb{R}^n} m_k(d) := g_k^T d$

s.t.||*d*||

- where $\Delta_k = \epsilon^{1/2}/M$ is the trust-ball radius.
- $-g_k$ is the first-order steepest descent direction but ignores Hessian;
- term but such direction may not exist if it becomes nearly convex...
- **Could we construct a direction integrating both?** lacksquare**Answer:** Use the homogenized quadratic model of SDP relaxation

Recall the fixed-radius trust-region method minimizes the Taylor quadratic model

$$+\frac{1}{2}d^{T}H_{k}d$$
$$\leq \Delta_{k}.$$

the most-left eigenvector of H_k -would be a descent direction for the second order

An Integrated Descent Direction Using the Homogenized Quadratic Model II

Using the homogenization trick by lifting with extra scalar t: $\begin{bmatrix} \xi_0 \\ t \end{bmatrix} = \frac{t^2}{2} \begin{bmatrix} \xi_0/t \\ 1 \end{bmatrix}^T \begin{bmatrix} H_k & g_k \\ g_k^T & -\delta \end{bmatrix} \begin{bmatrix} \xi_0/t \\ 1 \end{bmatrix}$

$$\psi_k\left(\xi_0, t; \delta\right) := \frac{1}{2} \begin{bmatrix} \xi_0 \\ t \end{bmatrix}^T \begin{bmatrix} H_k & g_k \\ g_k^T & -\delta \end{bmatrix} \begin{bmatrix} \xi_0 \\ \xi_0 \end{bmatrix}^T \begin{bmatrix} \xi_0 \end{bmatrix}^T \begin{bmatrix} \xi_0 \\ \xi_0 \end{bmatrix}^T \begin{bmatrix} \xi_0 \end{bmatrix}^T \begin{bmatrix} \xi_0 \\ \xi_0 \end{bmatrix}^T \begin{bmatrix} \xi_0$$

The homogeneous model is equivalent to m_k up to scaling:

$$\psi_k(\xi_0, t; \delta) = t^2 \cdot (m_k(\xi_0/t) - t)$$

• Find the direction $\xi = \xi_0/t$ (if t = 0 then set t=1) by the leftmost eigenvector:

$$\min_{\substack{|[\xi_0;t]|\leq 1}} \psi_k(\xi_0,t;\delta)$$

• Fix δ and compute the direction at the cost of $O(\epsilon^{-1/4}\log(1/\epsilon))$ via the randomized Lanczos method (Curvature computation of H_k was used in few hybrid $O(e^{-7/4}\log(1/\epsilon))$ methods of first and second orders; see Agarwal

 δ)

Global Convergence Rate: Outline of Analysis

A concise analysis using fixed radius ∆

Let $x_{k+1} = x_k + \eta \xi$, $R(H_k, \xi) = \xi^T H_k \xi / \|\xi\|^2$, $\xi = \xi_0 / t$ • (sufficient decrease in large step) If $\|\xi\| \ge \Delta$, we choose $\eta = \Delta / \|\xi\|$ ► $f(x_{k+1}) - f(x_k) \le -\frac{\delta\Delta^2}{2} + \frac{M}{6}\Delta^3$, regardless of t = 0 or not δ must be some greater than $O(\sqrt{\epsilon})$ to have $O(\epsilon^{\frac{3}{2}})$ decrease step-size $\eta = 1$ and

 $||g_{k+1}|| \le 4(L+\delta)^2 \Delta^3 + \frac{M}{2} \Delta^2 + (2L\delta + 2\delta^2) \Delta^3 + \frac{M}{2} \Delta^2 + (2L\delta + 2\delta^2) \Delta^3 + \frac{M}{2} \Delta^2 + (2L\delta + 2\delta^2) \Delta^3 + \frac{M}{2} \Delta^2 + \frac{M}{2} \Delta^2$

 δ must be some less than $O(\sqrt{\epsilon})$ and converge

• δ should also be set in $O(\sqrt{\epsilon})$!

- (small step means convergence) Otherwise $\|\xi\| < \Delta$, then we choose

This results a single-looped (easy-to-implement) $O(\epsilon^{-7/4}\log(1/\epsilon))$ method

Theoretical Guarantees of HSODM

- Consider use the second-order homogenized direction, and the length of each • step $\|\eta \xi\|$ is fixed: $\|\eta \xi\| \leq \Delta_k = \frac{2\sqrt{\epsilon}}{M}$ where f(x) has *L*-Lipschitz gradient and *M*-Lipschitz Hessian.
- Theorem 1 (Global convergence rate) : if f(x) satisfies the Lipchitz Assumption and $\delta = \sqrt{\varepsilon}$, the iterate moves along homogeneous vector ξ : $x_{k+1} = x_k + \eta_k \xi$, then, if we choose $\eta_k = \Delta_k / \|\xi\|$, and terminate at $\|\xi\| < \Delta_k$, then algorithm has $O(\epsilon^{-3/2})$ iteration complexity. Furthermore, x_{k+1} satisfies approximate firstorder and second-order conditions. • Theorem 2 (Local convergence rate): If the iterate x_k of HSODM converges to a strict local optimum x^* such that $H(x^*) > 0$, and then $\eta_k = 1$ if k is sufficiently large. If we do not terminate HSODM and set $\delta = 0$, then HSODM has a local superlinear (quadratic) speed of convergence, namely: $|| x_{k+1} - x^* || = O(|| x_k)$

HSODM for Convex Optimization

- f(x) is a convex function with *M*-Lipschitz Hessian.
- At every iteration, choos $\delta_k = O\left(\|g_k\|^{1/2}\right)$

$$\min_{\substack{\|[\xi_0;t]\| \le 1}} \begin{bmatrix} \xi_0 \\ t \end{bmatrix}^T \begin{bmatrix} H_k & g_k \\ g_k^T & -\delta_k \end{bmatrix} \begin{bmatrix} \xi_0 \\ t \end{bmatrix}^T$$

- Update $x_{k+1} = x_k + \xi$, $\xi = \xi_0/t$ (t = 0 won't happen when f(x) is convex) • Theorem 3 (Global convergence rate) : suppose the sublevel set {x: $f(x) \le f(x) \le f(x)$ $f(x_0)$ is bounded, then the sequence $\{x_k\}$ satisfies

 $f(x_k) - f(x^*) \le O(k^{-2})$

Ongoing: improved bounds of accelerated HSODM Practical remarks: homogenized direction can be used with any Line-Search (e.g., Hager-Zhang)

and solve

Today's Talk

- Optimal Diagonal Precondition using SDP
- An Accelerated Second-Order Method using homogenized **Descent Direction**
- A Dimension Reduced Trust-Region Method for Unconstrained Optimization
- Potential Reduction Algorithm for Linear Programming

DRSOMI

- Motivation from Multi-Directional FOM and Subspace Method, DRSOM in general uses reduced m-independent directions $d(\alpha) := D_k \alpha$, $D_k \in \mathbb{R}^{nm}$, $\alpha \in \mathbb{R}^m$
- Plug the expression into the full-dimension Trust-Region quadratic minimization model, we minimize a m-dimension trust-region subproblem to decide "m stepsizes":

min
$$m_k^{\alpha}(\alpha) \coloneqq (c_k)^T \alpha + \frac{1}{2} \alpha^T Q_k \alpha$$

 $||\alpha||_{G_k} \le \Delta_k$

$$G_k = D_k^T D_k, Q_k = D_k^T H_k D_k, C_k = (g_k)^T D_k$$

How to choose D_k ? Provable complexity result?

DRSOM II

• In following, as an example, DRSOM adopts one or two FOM directions

$$d = -\alpha^1 \nabla f(x_k) + \alpha^2 d_k := d(\alpha)$$

where
$$g_k = \nabla f(x_k), H_k = \nabla^2 f(x^k), d_k = x_k - x_{k-1}$$

$$\min \ m_k^{\alpha}(\alpha) \coloneqq f(x_k) + (c_k)^T \alpha + \frac{1}{2} \alpha^T Q_k \alpha$$
$$||\alpha||_{G_k} \le \Delta_k$$
$$G_k = \begin{bmatrix} g_k^T g_k & -g_k^T d_k \\ -g_k^T d_k & d_k^T d_k \end{bmatrix}, Q_k = \begin{bmatrix} g_k^T H_k g_k & -g_k^T H_k d_k \\ -g_k^T H_k d_k & d_k^T H_k d_k \end{bmatrix}, c_k = \begin{bmatrix} -||g_k||^2 \\ g_k^T d_k \end{bmatrix}$$

• Then we minimize a 1 or 2-D trust-region problem to decide "two step-sizes":

$$Q_k \alpha$$

DRSOM III

DRSOM can be seen as:

- "Adaptive" Accelerated Gradient Method (Polyak's momentum 60)
- A second-order method minimizing quadratic model in the reduced 2-D subspace

 $m_k(d) = f(x_k) + \nabla f(x_k)^T d + \frac{1}{2} d^T \nabla^2 f(x_k)^T d$

compare to, e.g., Dogleg method, 2-D Newton Trust-Region Method

 $d \in \text{span}\{g_k, [H(x_k)]^{-1}g_k\}$ (e.g., Powell 70, Byrd 88)

- A conjugate direction method for convex optimization exploring the Krylov Subspace (e.g., Barzilai&Borwein 88, Yuan&Stoer 95, Yuan 2014, Liu et al. 2021)
- For convex quadratic programming with no radius limit, it reduces to CG and BFGS terminating in n steps

$$_k)d, d \in \operatorname{span}\{-g_k, d_k\}$$

Computing Hessian-Vector Product in DRSOM is the Key

In the DRSOM with two directions:

$$Q_k = \begin{bmatrix} g_k^T H_k g_k & -g_k^T H_k d_k \\ -g_k^T H_k d_k & d_k^T H_k d_k \end{bmatrix}, c_k = \begin{bmatrix} -||g_k|| \\ g_k^T d_k \end{bmatrix}$$

How to cheaply obtain Q? Compute $H_k g_k, H_k d_k$ first.

Finite difference:

$$H_k \cdot v \approx \frac{1}{\epsilon} [g(x_k + \epsilon \cdot v) - g_k],$$

- Analytic approach to fit modern automatic differentiation, $H_k g_k = \nabla(\frac{1}{2}g_k^T g_k), H_k d_k = \nabla(d_k^T g_k),$
- Use Hessian if readily available !
- Three(-or more)-Point Interpolation: it is almost as fast as Polyak and CG!

DRSOM: Key Assumptions and Theoretical Results (Zhang at al. SHUFE)

 $<\sqrt{\epsilon}$, assume $||(H_k - \tilde{H}_k)d_{k+1}|| \le C || d_{k+1} ||^2$ (Cartis et al.), where \tilde{H}_k is the projected Hessian in the subspace (commonly adopted for approximate Hessian)

Theorem 1. If we apply DRSOM to QP, then the algorithms terminates in at most n steps to find a first-order stationary point

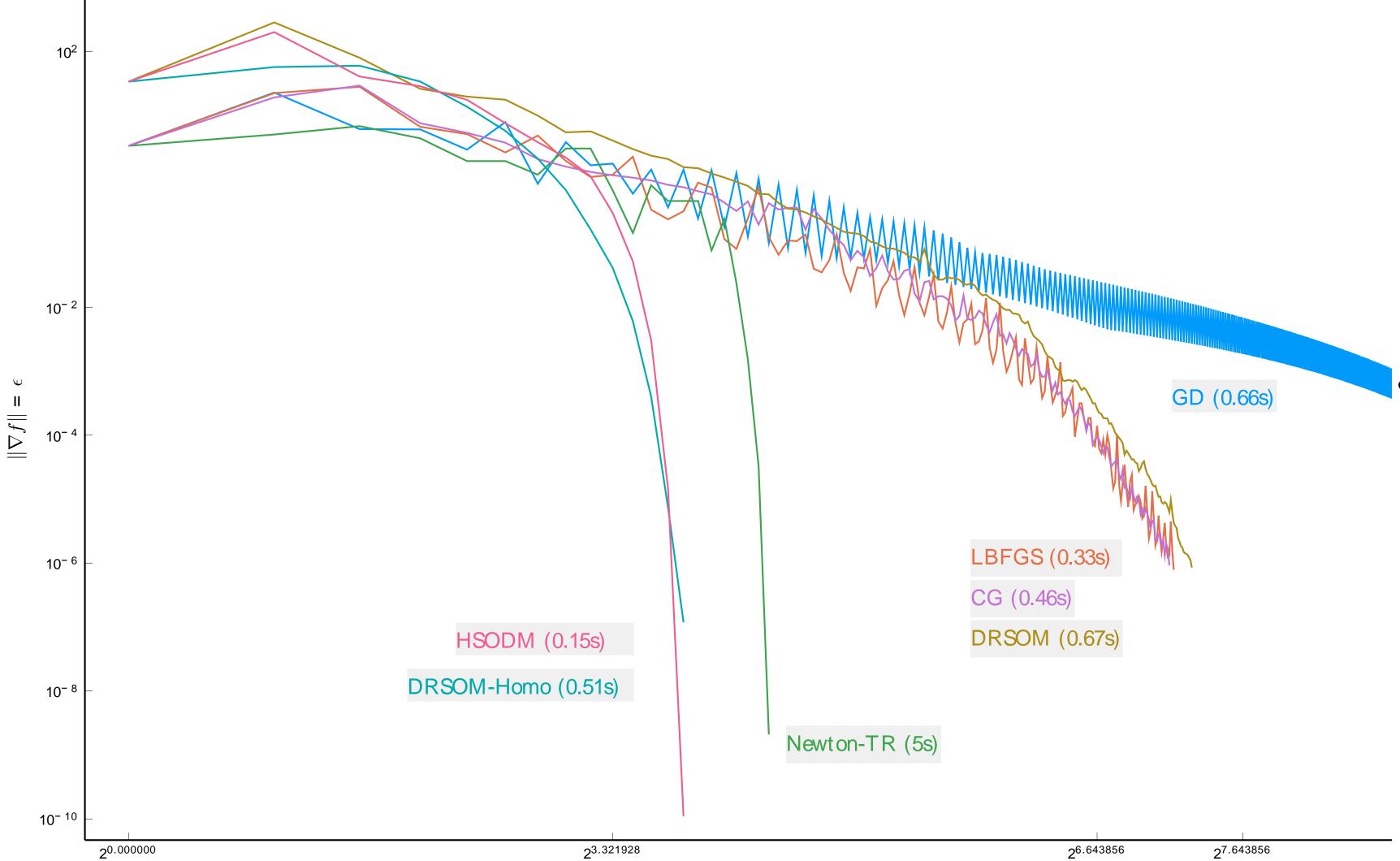
Theorem 2. (Global convergence rate) For f with second-order Lipschitz condition, let Δ_k $=2\epsilon^{1/2}/M$, then DRSOM terminates in $O(\epsilon^{-3/2})$ iterations. Furthermore, the iterate x_k spanned by the gradient and momentum.

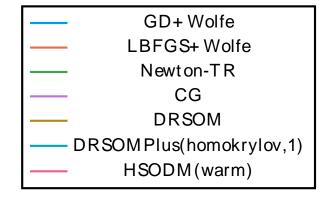
Theorem 3. (Local convergence rate) If the iterate x_k converges to a strict local optimum x^* such that $H(x^*) > 0$, and if **Assumption (b)** is satisfied as soon as $\lambda_k \leq C_{\lambda} \parallel d_{k+1} \parallel$, then DRSOM has a local superlinear (quadratic) speed of convergence, namely: $|| x_{k+1}$ $-x^* \parallel = O(\parallel x_k - x^* \parallel^2)$

- **Assumption**. (a) f has Lipschitz continuous Hessian. (b) If the Lagrangian multiplier λ_k
- satisfies the first-order condition, and the Hessian is positive semi-definite in the subspace

Preliminary Results: HSODM and DRSOM + HSODM

CUTEst model name := SPMSRTLS-1000





CUTEst example

- GD and LBFGS both use a Linesearch (Hager-Zhang)
- DRSOM uses 2-D subspace
- HSODM and DRSOM + HSODM are much better!
- DRSOM can also benefit from the homogenized system

Sensor Network Location (SNL)

Consider Sensor Network Location (SNL)

 $N_x = \{(i, j) : ||x_i - x_j|| = d_{ij} \le r_d\}, N_a =$

where r_d is a fixed parameter known as the radio range. The SNL problem considers following QCQP feasibility problem, the

$$||x_i - x_j||^2 = d_{ij}^2, \forall (i, j) \in N_x$$
$$||x_i - a_k||^2 = \bar{d}_{ik}^2, \forall (i, k) \in N_a$$

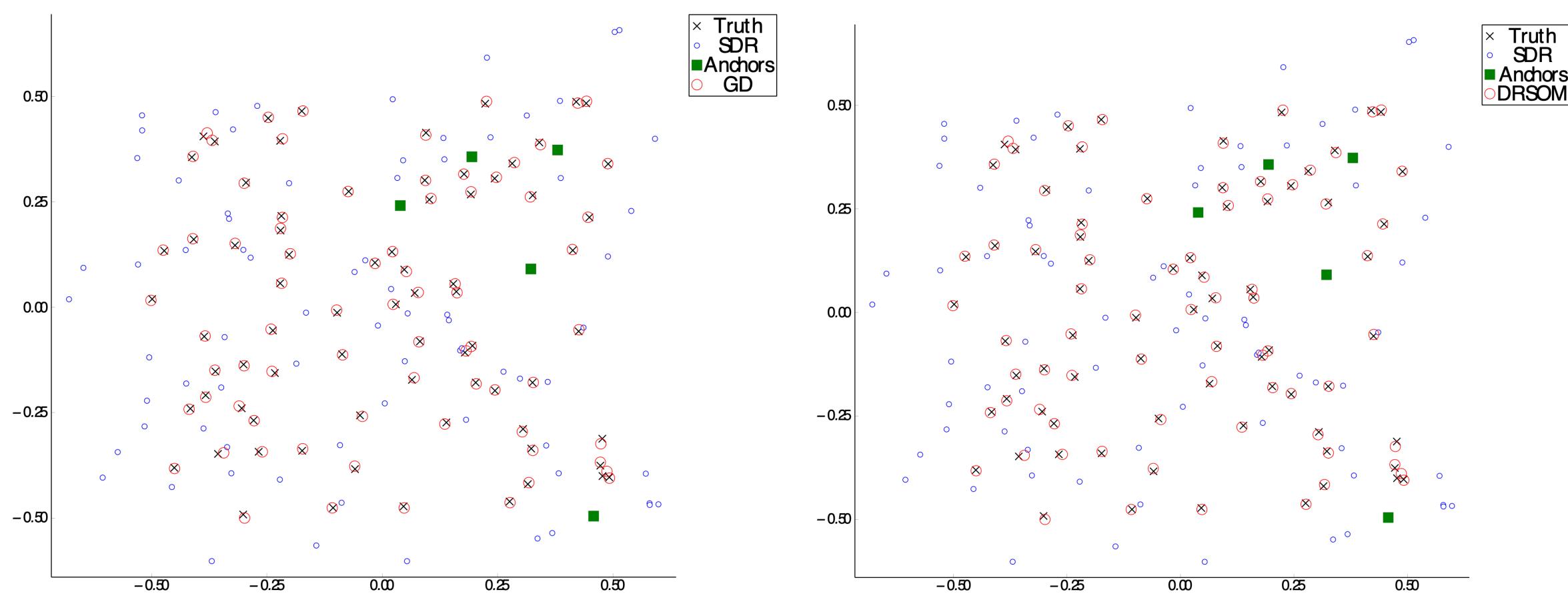
We can solve SNL by the nonconvex nonlinear least square (NLS) problem

$$\min_{X} \sum_{(i < j, j) \in N_x} (\|x_i - x_j\|^2 - d_{ij}^2)^2 + \sum_{(k, j) \in N_a} (\|a_k - x_j\|^2 - \bar{d}_{kj}^2)^2.$$

$$= \{(i,k) : ||x_i - a_k|| = d_{ik} \le r_d\}$$

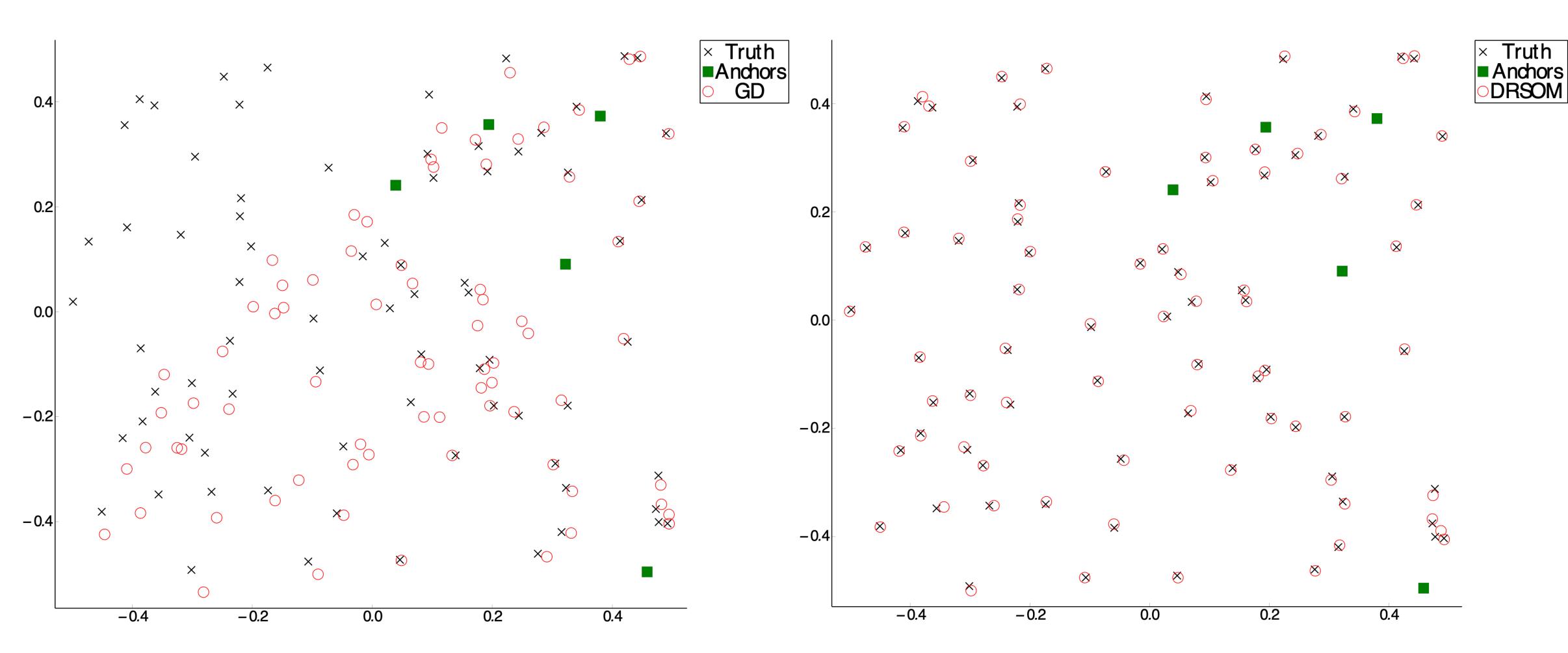
Sensor Network Location (SNL)

- Graphical results using SDP relaxation to initialize the NLS
- n = 80, m = 5 (anchors), radio range = 0.5, degree = 25, noise factor = 0.05
- Both Gradient Descent and DRSOM can find good solutions !



Sensor Network Location (SNL)

- Graphical results without SDP relaxation
- DRSOM can still converge to optimal solutions \bullet



Sensor Network Location, Large-scale instances

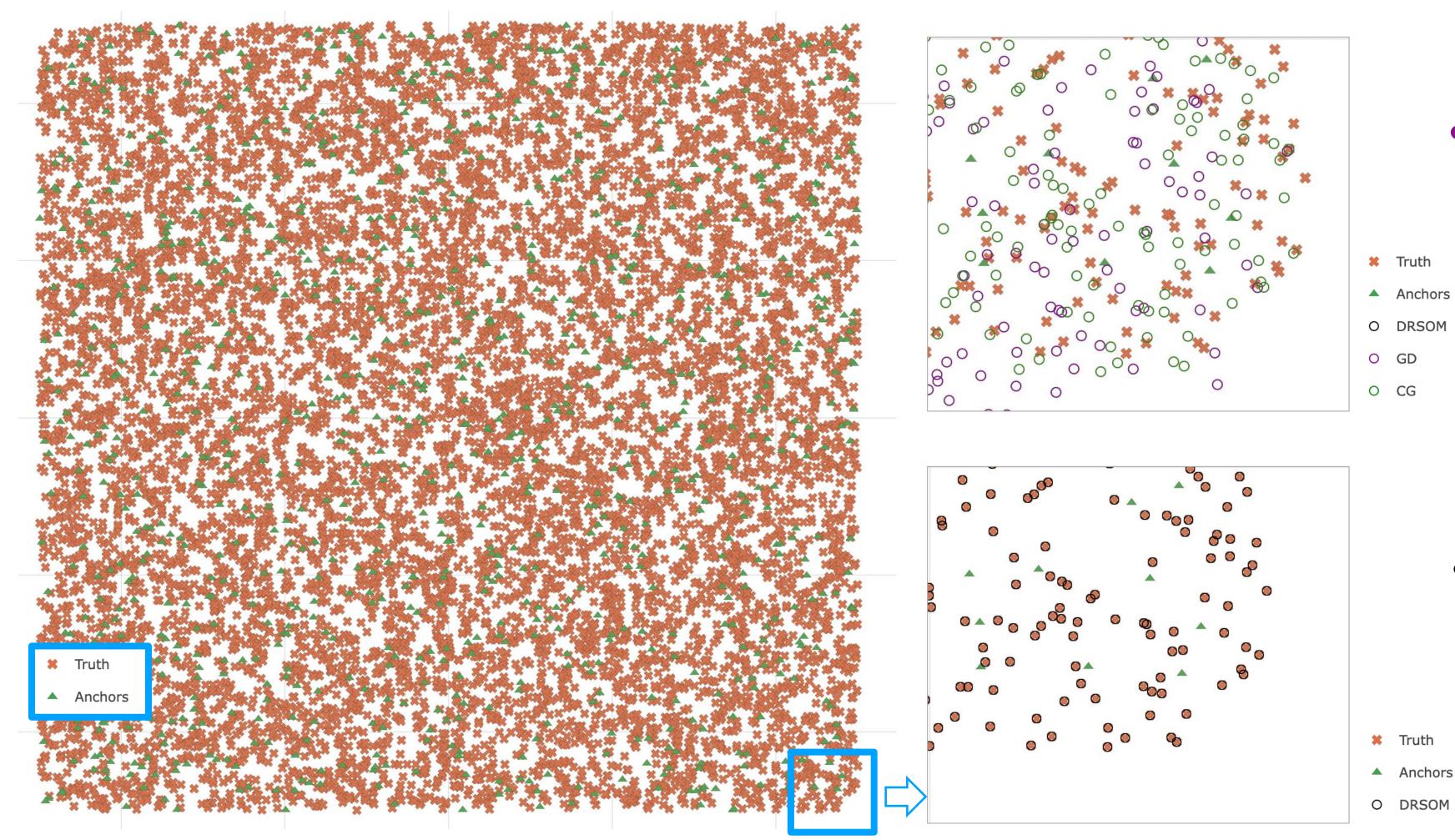
- Test large SNL instances (terminate at 3,000s and $|g_k| \leq 1e^{-5}$)
- Compare GD, CG, and DRSOM. (GD and CG use Hager-Zhang Linesearch)

223-22		E	t			
n	m		CG	DRSOM	GD	
500	50	$2.2e{+}04$	1.7e+01	$1.1e{+}01$	2.3e+01	
1000	80	4.6e + 04	7.3e+01	$3.9e{+}01$	1.8e+02	
2000	120	9.4e + 04	2.5e+02	1.4e+02	1.1e+03	
3000	150	$1.4\mathrm{e}{+05}$	6.5e+02	$1.4e{+}02$	-	
4000	400	1.8e+05	1.3e+03	5.0e + 02	-	
6000	600	$2.7\mathrm{e}{+05}$	2.0e+03	$1.1e{+}03$	-	
10000	1000	4.5e+05	-	2.2e+03	-	

Table 2: Running time of CG, DRSOM, and GD on SNL instances of different problem size, |E|denotes the number of QCQP constraints. "-" means the algorithm exceeds 3,000s.

DRSOM has the best running time (benefits of 2nd order info and interpolation!)

Sensor Network Location, Large-scale instances



Graphical results with 10,000 nodes and 1000 anchors (no noise) within 3,000 seconds

GD with Line-search and Hager-Zhang CG both timeout

 DRSOM can converge to $|g_k| \le 1e^{-5}$ in 2,200s

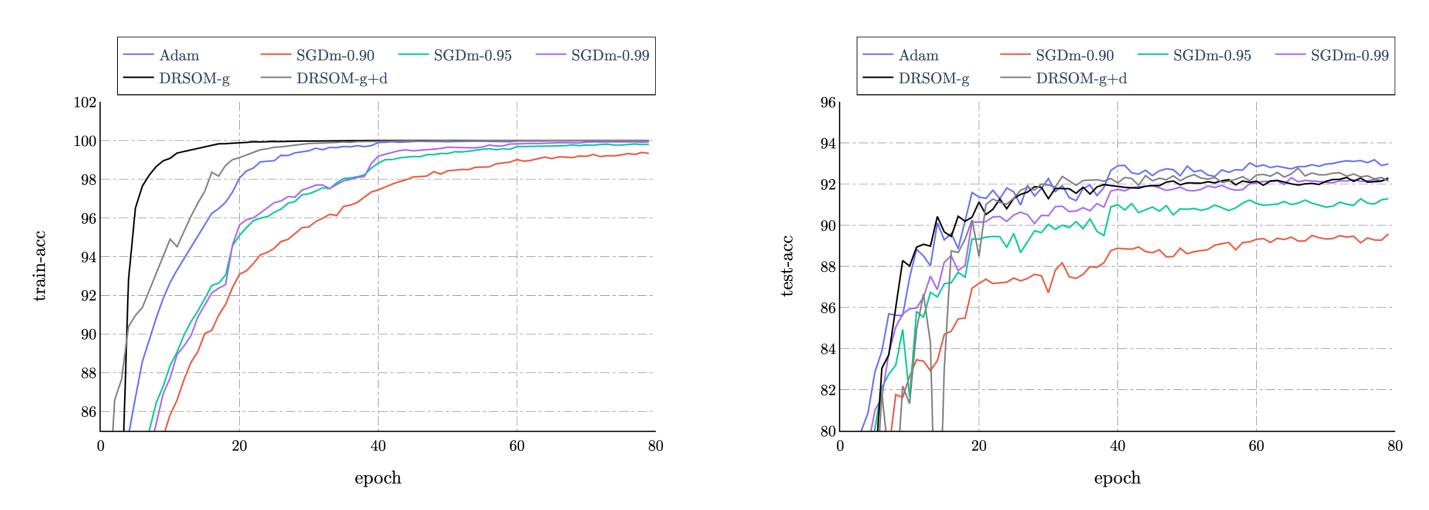
Neural Networks and Deep Learning

To use DRSOM in machine learning problems

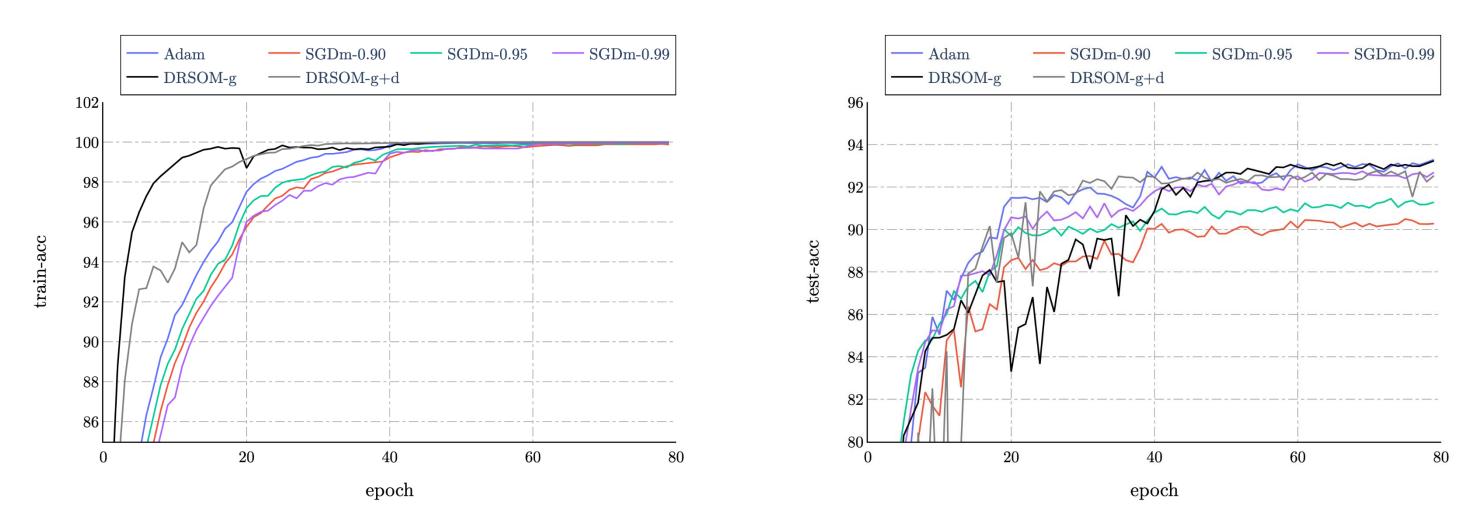
- We apply the mini-batch strategy to a vanil
- Use Automatic Differentiation to compute g
- Train ResNet18/Resnet34 Model with CIFA
- Set Adam with initial learning rate 1e-3

IS	airplane	and a	A.	-	X	¥	-	2	-4		-
	automobile					-		-		-	-
illa DRSOM	bird	Sal	5	12			4	1		2	1
	cat	2.2			00		1		A.	No.	1
gradients	deer	6	40	X	R		Y	Y	a.	-	Party and
3	dog	1	(:	-		1			C.	1	1
AR 10	frog	-	-			7			3		4
	horse	-sp-	16	(AP)	7	P	ICAL		the	1	N
	ship	-		-	-	MA	-	1	100	1-1	-
	truck			1	ġ.				1	1	6

Neural Networks and Deep Learning



Training and test results for ResNet18 with DRSOM and Adam



Training and test results for ResNet34 with DRSOM and Adam

Pros

- DRSOM has rapid convergence (30 epochs)
- DRSOM needs little tuning

Cons

- DRSOM may over-fit the models
- Running time can benefit from Interpolation
- Single direction DRSOM is also good

Good potential to be a standard optimizer for deep learning!

DRSOM for Riemannian Optimization (Tang et al. NUS) $\min_{x\in\mathcal{M}} f(x)$ (ROP)

- \mathcal{M} is a Riemannian manifold embeded in Euclidean space \mathbb{R}^n .
- bounded in \mathcal{M} .

R-DRSOM: Ch for k Step $H_k d_k$

Step

(SOM: Choose an initial point
$$x_0 \in \mathcal{M}$$
, set $k = 0$, $p_{-1} = 0$;
 $= 0, 1, ..., T$ do
1. Compute $g_k = \operatorname{grad} f(x_k)$, $d_k = \operatorname{T}_{x_k \leftarrow x_{k-1}}(p_{k-1})$, $H_k g_k = \operatorname{Hess} f(x_k)[g_k]$ and
 $= \operatorname{Hess} f(x_k)[d_k]$;
2. Compute the vector $c_k = \begin{bmatrix} -\langle g_k, g_k \rangle_{x_k} \\ \langle g_k, d_k \rangle_{x_k} \end{bmatrix}$ and the following matrices
 $Q_k = \begin{bmatrix} \langle g_k, H_k g_k \rangle_{x_k} & \langle -d_k, H_k g_k \rangle_k \\ \langle -d_k, H_k g_k \rangle_{x_k} & \langle d_k, H_k d_k \rangle_{x_k} \end{bmatrix}$, $G_k := \begin{bmatrix} \langle g_k, g_k \rangle_{x_k} & -\langle d_k, g_k \rangle_{x_k} \\ -\langle d_k, g_k \rangle_{x_k} & \langle d_k, d_k \rangle_{x_k} \end{bmatrix}$.

Step 3. Solve the following 2 by 2 trust region subproblem with radius $\Delta_k > 0$

$$egin{aligned} lpha_k &:= rg \min_{\|lpha_k\|_{G_k} \leq riangle_k} f(x_k) + c_k^ op lpha + rac{1}{2} lpha^ op Q_k lpha; \ &ig(x_k - lpha_k^1 g_k + lpha_k^2 d_kig); \end{aligned}$$

Step 4. $x_{k+1} := \mathcal{R}_{x_k}$ end Return x_k .

• $f: \mathbb{R}^n \to \mathbb{R}$ is a second-order continuously differentiable function that is lower

1D-Kohn-Sham Equation

$$\min\left\{\frac{1}{2}\operatorname{tr}(R^{\top}LR)+\frac{\alpha}{4}\operatorname{diag}(RR^{\top})^{\top}L^{-1}\operatorname{diag}(RR^{\top}): R^{\top}R=I_{p}, R\in\mathbb{R}^{n\times r}\right\}, \quad (3)$$

where L is a tri-diagonal matrix with 2 on its diagonal and -1 on its subdiagonal and $\alpha > 0$ is a parameter. We terminate algorithms when $\|\operatorname{grad} f(R)\| < 10^{-4}$.

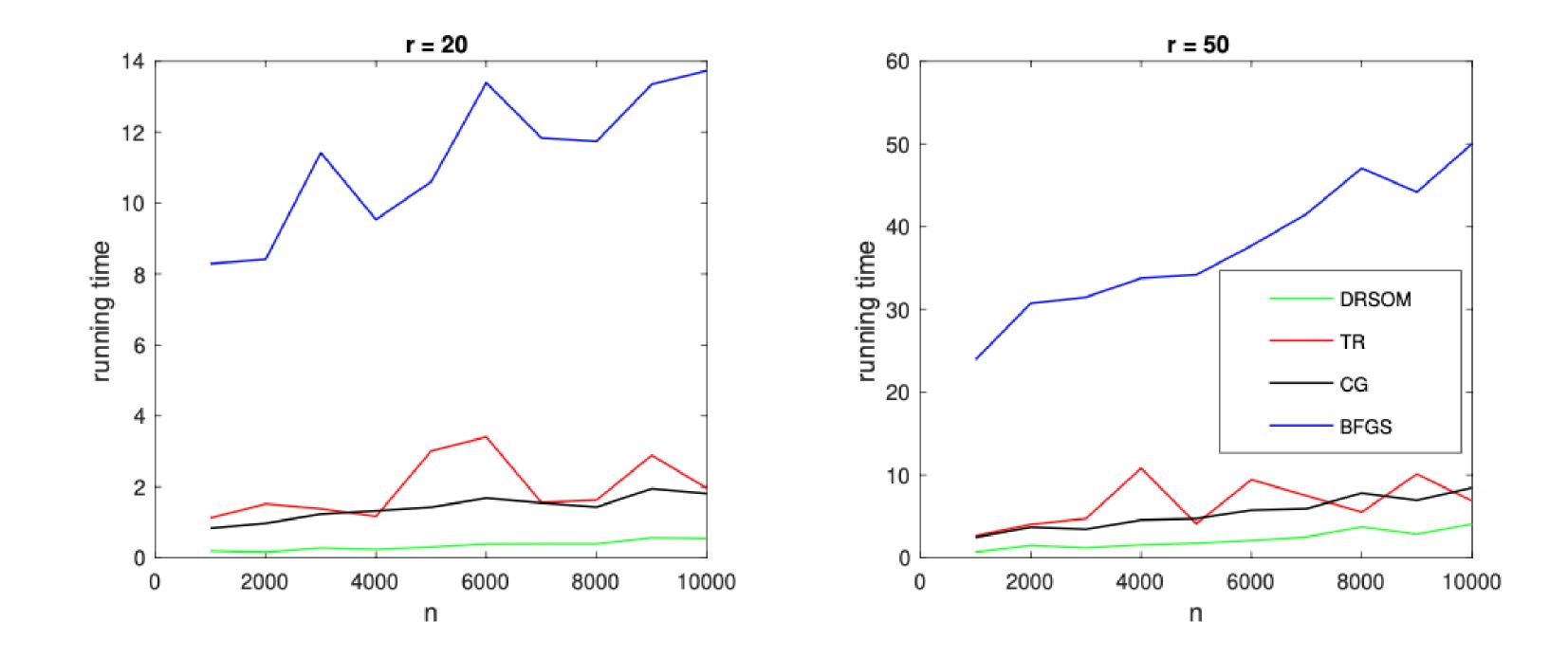


Figure 1: Results for Discretized 1D Kohn-Sham Equation. $\alpha = 1$.

Ongoing Research and Future Directions on HSODM/DRSOM

- **Rigorous DRSOM** analyses, that is, removing Assumption (b)?
- Low-rank approximation of the homogenized matrix $\begin{vmatrix} H_k & g_k \\ g_k^T & * \end{vmatrix}$, and "Hot-Start" eigenvector computing by Power Methods (linear convergence of Liu et al. 2017)?
- Indefinite and Randomized Hessian rank-one updating via BFGS/SR1
- **Dimension Reduced Non-Smooth/Semi-Smooth Newton**

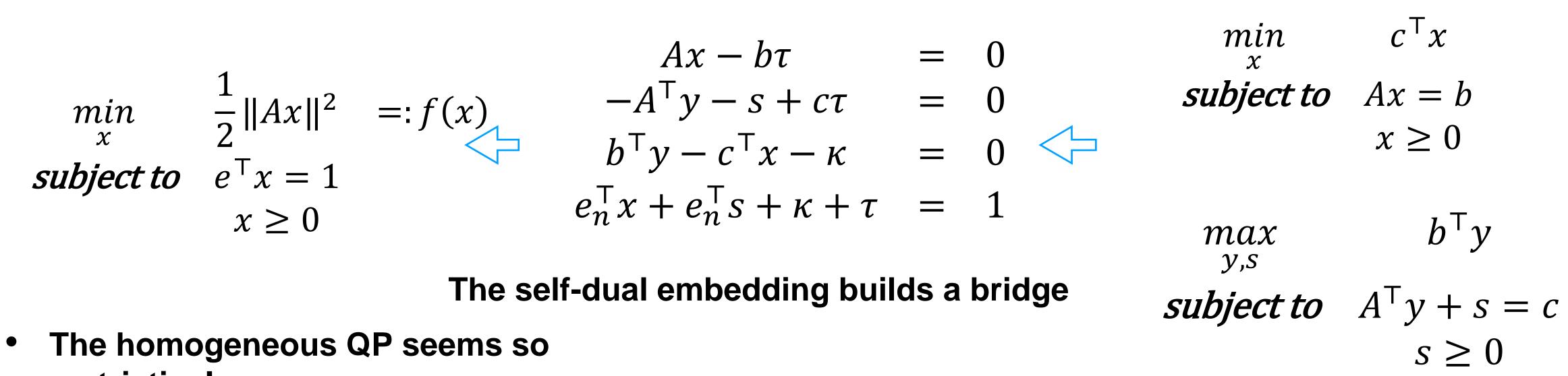
Today's Talk

- Optimal Diagonal Precondition using SDP
- An Accelerated Second-Order Method using homogenized **Descent Direction**
- Optimization
- **Potential Reduction Algorithm for Linear Programming**

A Dimension Reduced Trust-Region Method for Unconstrained

DRSOM for LP Potential Reduction

We consider a simplex-constrained QP model



- restrictive!
- How to solve much more general LPs? Then we define the (nonconvex) potential function and apply DRSOM to it

$$\phi(x) := \rho \log(f(x)) - \sum_{i=1}^{n} \log x_i$$
$$\nabla \phi(x) = \frac{\rho \nabla f(x)}{f(x)} - X^{-1}e, \qquad \nabla^2 \phi(x) = -\frac{\rho \nabla f(x) \nabla f(x)^{\mathsf{T}}}{f(x)^2} + \rho \frac{A^{\mathsf{T}}A}{f(x)} + X^{-2}$$

Combined with scaled gradient(Hessian) projection, the method solves LPs.

We wish to solve a standard LP (and its dual)

First-order Potential Reduction Algorithm

The first order steepest descent potential reduction algorithm would update x by solving

$$\begin{array}{ll} \min_{d} & \nabla \phi(x)^{T} d \\ subject to & e^{T} d = 0, \|X^{-1}d\| \leq \beta \end{array} \end{array}$$

- $\beta < 1$ to guarantee the update x + d > 0
- It admits a close-form solution $d^* = p(x)$ which is the scaled gradient projection vector
- By choosing $\beta = O(f(x))$, it is guaranteed to generate a solution $f(x) \le \epsilon$ in $O(\epsilon^{-1} \log(\epsilon^{-1}))$ iterates, see Ye (2015).

Question: Can we achieve a faster convergence by including second order information?

which is the scaled gradient projection vector If to generate a solution $f(x) \leq \epsilon$ in

DRSOM for LP Potential Reduction

Recall the DRSOM is to minimize a 2-D trust-region problem

subject to $e^T d = 0, ||X^{-1}d|| \le \beta$

- p(x) is the scaled gradient projection vector and m(x) is the moment vector
- If the assumption $\| (H_k H_k) d_{k+1} \| \le C \| d_{k+1} \|^2$ (Cartis et al.) still holds,

then a faster convergence rate $O(\epsilon^{-3/4} \log(\epsilon^{-1}))$ can be guaranteed

Question: Can we remove this assumption?

- $\min_{d} \quad \nabla \phi(x)^T d + \frac{1}{2} d^T \nabla^2 \phi(x) d$ $d \in span\{p(x), m(x)\}$

DRSOM + Negative Curvature

Once DRSOM gets stuck at some local region:

matrix H(x) =
$$(I - \frac{ee^T}{n})\nabla^2\phi(x)(I - \frac{ee}{n})$$

Theorem 3: For any point *X* satisfying min{

eigenvalue of H(x) satisfies $\lambda_{min}(H(x)) \leq$

$$\leq -\frac{H(A)\rho}{f(x)}.$$

A simple corrector step can be applied to guarantee the condition $\min\{x_i\} \ge c_0 f(x)^{1/2}$ holds: $x_l^+ = 2x_l$ and $x_m^+ = x_m - x_l$, where $l = argmin_{1 \le i \le n} x_i$ and $m = argma_{1 \le i \le n} x_i$ If $\min\{x_i\} \ge c_0 f(x)^{1/2}$, then $\phi(x^+) - \phi(x) \le -0.15$.

• we can compute the smallest eigenvector (usually negative curvature) of the projected Hessian

(-), which could help to escape local

$$\{x_i\} \ge c_0 f(x)^{1/2}$$
 for some $c_0 > 0$, the smallest

$$\leq \frac{-c_0^2 H(A)^2 \rho + 1}{c_0^2 f(x)}$$
, where H(A) is the Hoffman

constant for LP. Besides, let d be the smallest eigenvector of Q(x), then we have $\nabla \phi(x)^T d$

DRSOM-Potential Reduction

Repeat until stopping rule holds

- (Corrector step if necessary) If $\min\{x_i\} \ge c_0 f(x)^{1/2}$, then apply the corrector step
- (DRSOM step) Choose $\beta = O(f(x)^{-3/4})$ and take the DRSOM step

 $-\frac{ee^{T}}{2}$), and apply the linear search.

Theorem 4: By choosing $\beta = O(f(x)^{-3/4})$, the algorithm is guaranteed to generate a solution

$$f(x) \le \epsilon$$
 in $O\left(\epsilon^{-3/4} \log(\epsilon^{-1})\right)$ iterates.

- The theorem holds without using the Assumption on Hessian projection. \bullet
- \bullet

> (Negative curvature step if the decrease is slow) if $\phi(x^+) - \phi(x) \leq -cf(x)^{-3/4}$ do not holds, go alone with the smallest eigenvector of $H(x) = (I - \frac{ee^{T}}{r})\nabla^{2}\phi(x)(I)$

The results can be extended to general function satisfying local error bound condition.

DR-Potential Reduction: Computational Techniques

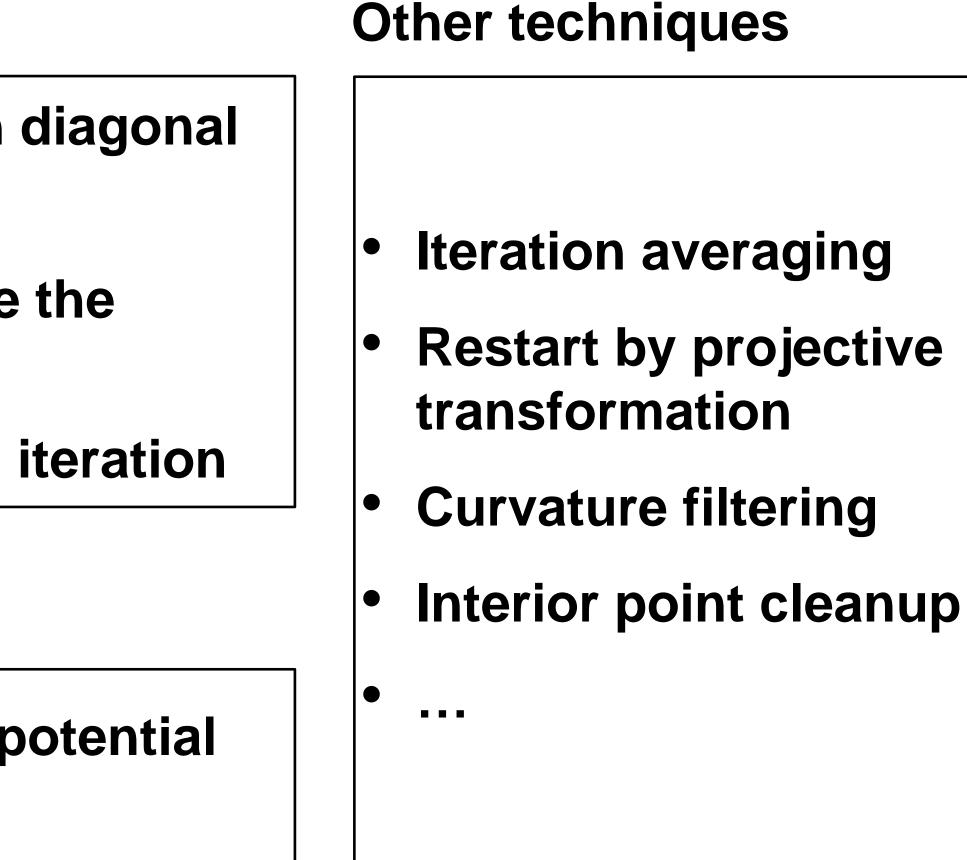
Several computational techniques have been applied to accelerate

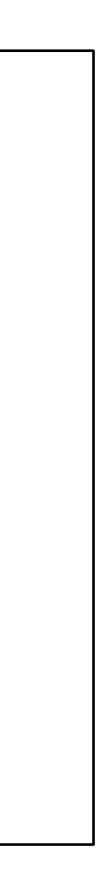
Scaling and matrix equilibration

- Solving $f(x) := 1/2 \parallel D_I A D_r x \parallel^2$ with diagonal D.' s
- Using Ruiz, PC, l_2 scaling to equilibrate the matrix
- Adaptively adjust D's during algorithm iteration

Line-search

Given direction d, line-search reduces potential $\phi(x+\alpha d)$





Computational techniques: Averaging and Restart

Iteration averaging

- maintains a window of past iterates $X = [x^k]$.
- finds affine combination $\alpha = (\alpha_1, \dots, \alpha_w)$ to minimize $1/2 \parallel AX\alpha \parallel^2$
- similar spirits to Anderson acceleration
- the QP is solved using primal-dual interior point

After averaging, we restart via Kamarkar's pr

$$\frac{1}{2} \|Ax\|^2 = \frac{1}{2} \|(AX)e\|^2 = \frac{1}{2} \|\hat{A}e\|^2$$

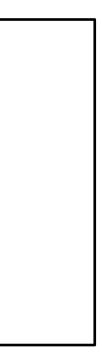
- restart from center of simplex
- improve numerical stability

$$\dots, x^{k+w}]$$

nt method at cost
$$O(nw^3)$$

$$\min_{\alpha} \frac{1}{2} \|AX\alpha\|^2$$

subject to $X\alpha \ge 0$
 $e^{\top}\alpha = 1$



Numerical Experiments: Netlib and Large Instances

- 114 Netlib LP instances
- Solving to 10^{-4} relative tolerance
- 600 seconds per-instance
- Allow final interior point iterations for cleanup

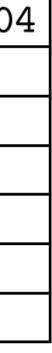
Pure first-order methods work particularly well on LPs with matrix coefficients $\{1, -1, 0\}$

- **Controlled tabular adjustment** \bullet
- Set partitioning
- PageRank

Method	#Solved
Raw algorithm	${\sim}20$
+Scaling	${\sim}50$
+Negative curvature	${\sim}70$
+Averaging and restart	$\sim \! 90$
+Newton cleanup	114/114

Table 1. Techniques vs. performance

Instance	Iteration to 1e-04	Instance	Iteration to 1e-0	
L2CTA3D	320	CTA-15-15-10	< 320	
CTA-15-15-10	< 320	CTA-15-15-25	< 320	
CTA-15-15-25	< 320	scpm1	Around 4096	
CTA-25-25-25	< 320	scpn2	Around 4096	
CTA-15-15-10	< 320	scpk4	Around 4096	
CTA-15-15-25	< 320	scpn2	Around 4096	



Summary of DRSOM for LP

- Able to make use of dual information.
- Provide estimation of both primal and dual solutions.
- Faster speed in a few problems.
- Robust under noise.
- QP sub-problem solver

Overall Takeaways

Algorithm customization/individualization is very helpful

• THANK YOU

Second-Order Information matters and simple accelerated SOMs, with various computation tricks, work as faster as FOMs!