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There are many settings when we need to (fairly) 
allocate shared resources/goods to users

Public Good Allocation Vaccine Allocation



A key framework to achieve a (fair or envy-free) 
allocation of resources/goods is Fisher Markets
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The prices can be derived from a centralized Eisenberg-Gale 
social optimization problem

4The social problem can be solved in polynomial time (Jain, Vazirazi, Ye 2005; Jalota, Qi et al. GEB 2023)



However, the applicability of Fisher Markets may 
be limited

Individual’s choice under 
only budget constraint

Classical Fisher Markets

Require complete information 
on utilities and budgets to 

compute prices



We extend classical Fisher Markets to take into 
account practical considerations
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Resource Allocation under 
budget and capacity constraints

Classical Fisher Markets

Require complete information 
on deterministic utilities and 
budgets to compute prices

Individuals under budget and other
physical (e.g., knapsack) 

constraints

Our Work

Set prices in online and 
incomplete/uncertain  information 

environment of Fisher Markets

Jalota, Pavone, Qi, Ye GEB’23

Jalota, Ye WINE’23
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We consider convex IOP where agents have 
additional linear constraints beyond budgets
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Fisher markets with additional constraints have 
different properties from classical Fisher markets
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2. Market Equilibrium may not be 
Unique

3. [Giffen Goods] An increase in the 
price of a good may result in an 

increased demand of those goods

1. Competitive or Market Equilibrium 
may not Exist

4. The set of equilibrium prices is non-convex



Under mild conditions, however, the market 
equilibrium exists
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Theorem 1: Market Equilibrium 
Exists if there under some technical 
assumptions, such as there is a good 
that does not belong to any physical 

constraint

Theorem 2: Market Equilibrium 
Exists if bit = 0 for all i, t.



Can we develop a method to compute equilibria 
with additional constraints when they exist?
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Can the Convex Fisher Market social optimization 
problem with additional constraints be used to set 
equilibrium prices?
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Theorem: The dual variables of the capacity constraint of 
SOP-I is an equilibrium for homogeneous constraints
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This gives a polynomial time algorithm to compute 
market equilibria

YES



Theorem: However, in general, the dual variables of the 
capacity constraint of SOP-I may not be equilibrium prices

15



A plausible approach to account for physical constraints 
in Fisher Markets can be achieved through Budget 
Perturbations
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17

A plausible approach to account for physical constraints 
in Fisher Markets can be achieved through Budget 
Perturbations



Budget Perturbations allow more constrained agents to 
have “higher priority” to get their goods

18



Theorem 4: The dual variables of the capacity constraint 
of BP-SOP are the market equilibrium price iff

19



However, determining budget perturbations is 
PPAD-hard
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The problem of finding a market equilibrium in Fisher 
Markets with linear constraints is PPAD-hard

Thus, determining budget perturbations, in general, is a 
challenging problem



To determine the perturbation constants we test a 
fixed-point iterative procedure
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However, determining the budget perturbations 
requires solving a large-scale centralized optimization
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Solving a centralized optimization requires 
complete information on agents’ budgets and 

utilities
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Alternating Direction Method of Multipliers

24

ADMM helps break 
down a large problem 
into small 
tractable sub-
problems

Enables a market 
Implementation where 
users solve individual 
objective



Distributed optimization enables a natural market 
implementation where users optimize individual 
objectives under given prices
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Centralized Problem Solve 1 big optimization problem

Split variables to transform the social 
optimization problem and apply ADMM to 
this transformed problem

All users solve an 
individual optimization 

objective at each 
iteration

Iteratively solve this problem to 
update budget perturbation 
and learn equilibrium prices



We obtain a natural market implementation 
through ADMM with Classical Fisher Markets
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We apply ADMM to the following 
transformed problem (BA-SOP-ADMM) 

where we add a variable y

We get a natural market 
implementation

Repeat until convergence to Equilibrium Price:
1. Agents distributedly solve regularized version of 

IOP based on market price
2. Market designer updates baseline demand y

based on observed demands x
3. Prices are updated in the market using a 

tatonnement style update with a fixed step-size



We also obtain a natural market implementation 
through ADMM with Additional Constraints

27

We apply ADMM to the following 
transformed problem (BA-SOP-ADMM) 

where we add a variable y

We get a natural market 
implementation

Repeat until convergence to Equilibrium Price:
1. Agents distributedly solve regularized version of 

IOP based on market price
2. Market designer updates baseline demand y

based on observed demands x
3. Prices and perturbations are updated in the 

market using a tatonnement style update with a 
fixed step-size

~



Applying ADMM to our setting achieves good 
convergence guarantees
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Homogenous Constraints Non-Homogenous Constraints

Provable Convergence Guarantees for classical Fisher markets and 
Fisher markets with homogeneous linear constraints 



Can this distributed implementation be made online 
where users arrive into the market sequentially with 
uncertainty?
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Yes! For classical Fisher markets
Ongoing Work: Extending online implementation to 
Fisher markets with linear constraints
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Recall the prices can be derived from a centralized 
optimization problem that requires complete information

31

We start by focusing on the problem of online arrivals with 
incomplete information in a classical Fisher market



We study an online incomplete information 
variant of Fisher markets

Buyers arrive 
sequentially with utility 
and budget parameters 

drawn i.i.d. from a 
distribution

Establish performance 
limits of static pricing 
algorithms, including 

one that sets expected 
equilibrium prices

Develop an adaptive 
expected equilibrium 
pricing approach with 
strong performance 

guarantees

Develop a revealed 
preference algorithm 
with sub-linear regret 
and capacity violation



Online Pricing Market: evaluate algorithms through the 
absolute regret of social welfare and capacity violation

Regret (Optimality Gap) Constraint Violation 

or Market Clearance
Difference in the Optimal Social 

Objective of the online policy 𝝅 to 

that of the optimal offline social value

Norm of the violation of capacity 

constraints of the online policy 𝝅

Optimal Offline 
Objective

Objective of 
online policy

Violation of Capacity 
Constraint of good 𝑗

Norm of the expected 
constraint violation



Limitations of Static Pricing

Theorem: No static pricing algorithm can achieve either a regret or capacity violation 
of better than 𝛀( 𝒏), where n is the number of arriving users



Problem with static pricing: Using optimal expected 
prices, the capacity violation is Ω( 𝑛), with n agents

Two agent types specified by
(Utility for Good 1, Utility for Good 

2)

Type I: (1, 0) Type II: (0, 1)

Arrival Probability = 
0.5

Arrival Probability = 
0.5

2 goods, each 
with a capacity of 

𝒏

Static Expected Prices: (0.5, 0.5)
While 

𝑛

2
users of Type I arrive in expectation, the realized 

arrivals of type I users deviates by 𝑂( 𝑛)



We overcome problem of static expected equilibrium 
pricing by dynamically adjusting prices of over or 

under consumed goods

Can we develop adaptive pricing algorithms with improved 
performance guarantees?



Our adaptive expected equilibrium pricing approach 
achieves constant constraint violation and log regret

Set price based on dual 
variable of capacity 
constraints of certainty 
equivalent problem

Users consume optimal 
bundle of goods

Update average remaining 
resource capacities

Theorem: Under i.i.d. budget and utility parameters with a discrete probability distribution 
and when good capacities are 𝑂(𝑛), Algorithm 1 achieves an expected regret of 𝑅𝑛(𝝅) ≤

𝑂(log(𝑛)) and expected constraint violation of 𝑉𝑛(𝝅) ≤ 𝑂(1)



However, this algorithm required knowledge of the 
distribution from which users’ utility and budgets are 

drawn



We design a dual based algorithm, wherein users 
see prices at each time they arrive

Agent 𝑡 Agent 𝑡 + 1

Price 𝑝1
𝑡

𝑝2
𝑡

𝑝3
𝑡

𝑝1
𝑡+1

𝑝2
𝑡+1

𝑝3
𝑡+1

𝑤𝑡 , 𝒖𝑡 ~𝑃 𝑤𝑡+1, 𝒖𝑡+1 ~𝑃

The price at time 𝑡 + 1 is updated based 
on observed consumption 𝒙𝑡 at time 𝑡

Agent purchases 
an optimal bundle 
𝒙𝑡 given price 𝒑𝑡



Applying gradient descent to the dual of the social 
optimization problem motivates a natural algorithm

Dual of social optimization problem 
with Lagrange multiplier of the 

capacity constraints 𝑝𝑗

Equivalent Sample Average 
Approximation (SAA) of Dual Problem

(Sub)-gradient descent of dual 
problem for each agent: 𝑂(𝑚)

complexity of price update

Difference between market share 
of each agent and goods purchased



We develop a revealed preference algorithm with sub-
linear regret and constraint violation guarantees 

Difference between market share 
of each agent and goods purchased

Theorem: Under i.i.d. budget and utility parameters with strictly positive support and when 
good capacities are 𝑂(𝑛), Algorithm 2 achieves an expected regret of 𝑅𝑛(𝝅) ≤ 𝑂( 𝑛) and 
expected constraint violation of 𝑉𝑛(𝝅) ≤ 𝑂( 𝑛), where 𝑛 is the number of arriving users.  

Only requires knowledge of user consumption (and 
not their budgets or utilities) to update pricesStep-size: 𝑂

1

𝑛

We believe our results 
in the online setting 
for classical Fisher 

markets may also hold 
for homogenously 
constrained Fisher 

markets



Again, the price of a good is increased if the arriving 
user purchases more than its market share of the good 
and vice versa

Agent 𝑡 Agent 𝑡 + 1

Price 𝑝1
𝑡

𝑝2
𝑡

𝑝3
𝑡

𝑝1
𝑡+1

𝑝2
𝑡+1

𝑝3
𝑡+1

𝑤𝑡 , 𝒖𝑡 ~𝑃 𝑤𝑡+1, 𝒖𝑡+1 ~𝑃

Increase Prices: 𝑝𝑗
𝑡+1 > 𝑝𝑗

𝑡 if 𝑥𝑗
𝑡+1 >

𝑐𝑗

𝑛

Decrease Prices: 𝑝𝑗
𝑡+1 < 𝑝𝑗

𝑡 if 𝑥𝑗
𝑡+1 <

𝑐𝑗

𝑛

Agent purchase an 
optimal bundle 𝒙𝑡

given price 𝒑𝑡
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Takeaways: we extended classical Fisher Markets 
to take into account practical considerations
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Resource Allocation under 
budget, capacity and physical 
(e.g., knapsack) constraints

Set prices in Online and Uncertain 
variants of Fisher Markets

Jalota, Pavone, Qi, Ye GEB’23 Jalota, Ye WINE’23

Additional constraints introduce non-
convexities

Yet we derive a social optimization 
problem and distributed algorithms to 

compute prices

Static Pricing has performance 
limitations

We derive adaptive/dynamic pricing 
approaches with improved performance 

guarantees



Ongoing and Future Work
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Convergence of Fixed 
Point Scheme

Online Algorithms with 
Linear Constraints and a 

Batch  Size

Integral Allocations


