Recent Computational Progress on
Linear Programming Solvers

LA/OPT SEMINAR

FEBRUARY 14, 2024

Yinyu Ye
Stanford University

Stanford University

Linear Programming and LP Giants

max or min E C;X;

S.1L. 2 a]x] <b)

J
0 SX]S]. ‘v’j=1,...,n

Today’s Talk

* LP Warm-Start: Online Helps Offline

* Smart Crossover:. From an Interior Point to a Corner Points
* ABIP: Interior Point Method Meets ADMM

* cuPDLP-C: How GPU Accelerates Solving LP

* Summary

Linear Programming as Combinatorial Classification

* Basic solution is one of the most important concept in LP , -
min C X
X
* LP algorithms work towards identifying the optimal basis subject to Ax=0>b
x>0

Knowledge of B reduces linear programming to a linear system

* LP can be viewed a classification task
X1 X9, -

/ \

Can we predict the basis?
Yes! Use the Dual

Classification using Duality

LP duality provides the most powerful classifier for LP

max cl x Dual T'ET" b'y+u's
X .
subject to Ax<b Y subjectto s>c—A'y
0<x<u S (y,5)=0

If we get optimal y*, then optimality condition tells us

{0}, ¢ — a;y* <0
xi € 100,11 ¢ — %Ty* —0 Dual solution tells us almost all about primal

{1} ¢—ay*>0

Fast Training the Classifier y*
. . . . {O}j o Jl y* { O
But solving dual problem is no easier than the primal x* € 110, 1] q — 3 Ty*=(

. al
Is there a “cheap” way to estimatey =~ y*? b g—a7y >0

Dual solution tells us almost all about primal

No matrix factorization

No explicit matrix multiplication The overall budget is only several MatVec

0 (nnz(A)) flops How can we fulfill the goals simultaneously?

Ans: Estimate on the fly by Online
Linear Programming (OLP)

[Gao et al. ICML, 2023]

Reasonable accuracy

What is Online Linear Programming

* Decision maker needs to decide x,: how
much resources are allocated/sold to each Max E Xt

customer t=1
T
e Online setting: s.t. Z ajigXe < bi, 1=1,...,m
t=1
e Customers arrive sequentially and the 0<x<1 orx€{0,1}, t=1,...,T
decision needs to be made instantly

upon the customer arrival: Sell or No-
sell?

Online Learning of y*

Re-write the dual as

min b'y+u's o - T
y,Ss = m:i'a b y+Z [Cj_ Ji JV]-I-
subjectto s>c—A'y V= J=1
(y,s) =0

* The dual objective is a finite-sum problem with minimal constraints
* When n is large, dual objective is the sample approximation of a stochastic program

* What’s the most efficient way for finite-sum problem?

Ans: Online Sub-Gradient

Online Sub-Gradient Method

Solve finite-sum problem by 0SG?

n
min b'y+ Ci—a:
i Yy J—Z1 [J J J/]-I-

On the dual side
* Whenread in a column (cj, a;) data
Compute subgradient g; = % —a;l{c; > a]-Tyf}

* Update y/ using (projected) subgradient

How to estimate {x;} ?

On the primal side
* Apply optimality condition on the fly
— T~
x; =I{c; >a;y}
* May randomly sample columns multiple times

and take average

Computational Results

Experiments on MIPLIB 2017 and MKP instances using Column-Generation

B Original CG B Online + CG

Data Acc Data Acc
scpm’ rail507
scpn2 rail516
scpld rail2586
scpk4 rail4284

* 2x speedup on instances with many variables
Accuracy of classification

* Simple, efficiently and almost no-cost

* Online LP helps pre-solving offline LP for Warm Start

Today’s Talk

* LP Warm-Start: Online Helps Offline

* Smart Crossover: From an Interior Point to a Corner Point
* ABIP: Interior Point Method Meets ADMM

* cuPDLP-C: How GPU Accelerates Solving LP

* Summary

Linear Programming: the Need of Basic Feasible Solutions

= argmin,cpc ' x
Simplex Method Interior Point Method

P P 0

0 X
x I

3

-

\
Move along vertices Move in the interior

Crossover is the procedure from an interior-point solution to a BFS
[Andersen/Y, 1996]

From an Interior Point to a Corner Point [Ge et al. 2021}

= argmin,cp ' x

Goal: Find a BFS that is in the sublevel set
IPM Stops at x* (enough for regular tolerance)

PNn{x:c"x < c"x*}

Our approach: Solve a randomly-perturbed-
objective problem

X = argmin,ep T

X

* If Ac is too tiny, identifying the BFS X is still
hard

* If Ac is too large, X is no longer in the sublevel
set

* We need theoretical guarantees to keep a balance on the size of Ac!

How Large Can the Perturbation be?

Theorem:

Let x* be any central-path solution of mxin c'x s.t.Ax = b,x = 0. Then for any /¢ such that
1X (I — AT(AXF AT AX) el

1 XiAcll < T ,

let X be the optimal solution of the perturbed problem, and then

cTx <cTxk

Insight:
We can generate the random perturbation Ac within this range but as large as
possible.

Flowchart of the Perturbation Crossover Method

Other heuristics:

1. Identify the feasibility problems.

2. Estimate the optimal face

[Starting Interior-Point solution (z*,y*)

Solve the Perturbed
Restricted Problem

Infeasible?

Feasibility

Problem?

Identify a Candidate Compute a Perturbation
Optimal Face (©F

i)

pyy?

Yes

that Satisfies (ﬂi)

A

> Decrease 7y

Reoptimize

—/BES /()

Solve a Randomly
Perturbed Problem

/BFS 2+ /

End

Computational Results on some LP relaxations in MIPLIB

LP relaxation of some max cut packing problems:

Perturbation

Frobiem optimal face Method (seconds) (seconds) ggssﬁ\ég

Dimension of Gurobi Barrier Gurobi Crossover

graph20-20-1rand 2035 0.01 0.05 0.04
graph20-80-1rand 15912 0.05 2.42 1.11
graph40-20-1rand 20773 0.09 15.82 8.33
graph40-40-1rand 101700 0.41 323.41 50.79
graph40-80-1rand 282112 1.4 >10000 872.07

Our crossover is much faster especially when the dimension of the optimal face is large.

More Experiments on the LP Benchmark Problems (LPopt)

Geometric Average Time for
Obtaining an Optimal BFS

Some hard LP instances for
crossover in Gurobi:

M Gurobi's Crossover ™ Our Perturbation Crossover ® The "Virtual Best"

» datt256

415.94 -> 18.19
* S82

881.19 ->0.53
* set_cover_model

281.14 ->1.28

«Optimal”: the regular relative objective gap < 1e-8

Today’s Talk

* LP Warm-Start: Online Helps Offline

* Smart Crossover: from an Interior Point to a Corner Point
* ABIP: Interior Point Method Meets ADMM

* cuPDLP-C: How GPU Accelerates Solving LP

* Summary

ABIP [Lin et al., 2021]

e An ADMM based interior point method solver for LP problems

e The primal-dual pair of LP: min c¢'x max bTy
(P) st. Ax=b (D) st A'y+s=c
x > 0 s > ()

e ForIPM, initial feasible interior solutions are hard to find

e So we consider homogeneous and self-dual (HSD) LP here!
min Bn+1)0+1(r=0)+1(&=-—n—1)
s.t. Qu =,
y free, x > 0,7 > 0,0 free,s > 0,k > 0

where
0 A -b b y -
—AT 0 C —C X | S — A B . T
Q= T o0 2 LD YLD b=b—-4e, c=c—e, z=c e+1
_T
b ¢ -z 0 L0 L€

ABIP - Subproblem

e Add log-barrier penalty for HSD LP and solve
min B(u, v, u)
s.t. Qu=1v

e Traditional IPM applies Newton’s method to solve the subproblem, which can be too expensive when
problem is large!

e Apply ADMM (with splitting) to solve the kth subproblem inexactly
min 1(Qa = V) + B(u, V, ,uk)
s.t. (@,V) = (u, V)

where the augmented Lagrangian function

Ls(d,v,u,v, 4" p,q) = 1(Qa = ¥) + B(u,v, ") — (B(p,q), (@i, V) — (u,v))

ABIP+ - Enhancements [Deng et al., 2022]

Motivation Enhancement
Rescaling
ADMM Restart

Half-update

IPM Adaptive barrier parameter .
P P Various enhancements

significantly improve ABIP!
Inner loop convergence check

Practice

Strategy integration

Extension Quadratic conic programming

ABIP+ - Restart

* |dea: Let the uniform average of the past few points be the new starting point
* ABIP (or first-order method in general) tends to induce a spiral trajectory

» After restart, ABIP moves more aggressively and converges faster (reduce almost 70% ADMM
iterations) !

Point after 400 ADMM
iterations

Point after 400 ADMM iterations
(ABIP method with restart)

Starting point of the

ABIP method ABIP method

is stuck here

Optimal solution

X X X
2 1 g 1

Before restart After restart
Instance SC50B (only plot the first two dimension)

Computational Results on Netlib

e Selected 105 Netlib instances

e ¢ =107° 10° max ADMM iterations

Method # Solved # IPM # ADMM Avg.Time (s)
ABIP 65 74 265418 87.07
-+ restart 03 74 88257 23.63
+ rescale 84 72 (7925 20.44
+ hybrid p (=ABIP+) 86 22 73738 14.97

e Hybrid u:If u > € use the aggressive strategy, otherwise use the LOQO strategy

e ABIP+ decreases both # IPM iterations and # ADMM iterations significantly

Computational Results on PageRank Problems

e 117 instances, generated from sparse matrix datasets: DIMACS10, Gleich, Newman and SNAP, where
Second order methods in commercial solver fail in most of these instances.

e ¢ =10"%, 5000 max ADMM iterations.

Method + Solved SGM
PDLP(Julia) 117 1
ABIP+ 114 1.28

e Instaircase matrix case (# nodes = # edges), ABIP+ is significantly faster than PDLP!

nodes PDLP (Julia) ABIP-+

104 8.60 0.93
10° 135.67 10.36
10° 29248 .40 60.32

[PDLP, Applegate et al., 2021, 2023]

Today’s Talk

* Online Warm-Start: Online Helps Offline

* Smart Crossover: From an Interior Point to a Corner Point
* ABIP: Interior Point Method meets ADMM

* cuPDLP-C: How GPU Accelerates Solving LP

* Summary

Drawbacks for the simplex method and IPMs

Factorization is memory demanding Difficult for GPU and parallelization
* A sparse matrix may induce dense * Factorization is not as efficient on
decomposition GPU
» Factorization is difficult for huge- * Operations like pivoting are hard to
size problems (>10°variables) parallelize
Recent progresses * CPU and GPU communication

* Parallelizing first-order methods for Linear gyagspsriwing on GPU
» Utilizing matrix-vector products on GPU

 Julia prototype: cuPDLP.jl (Lu/Yang, 2023)

* Cimplementation and solver enhancements: cuPDLP-C (Lu et al., 2024)

Primal-Dual Hybrid Gradient for Linear Programming

* cuPDLP uses the saddle-point formulation of LP

321%1 ¢ I;él}{l I?EEL}}/{ Lz,y)=c x—y Kx+q'y.
s.t. Gx > h - ‘
Axr =0
[< x<u

?

i« projy(zt = 7(c — K 'yt))
y't « projy (y +o(g — K (22" — a"))) .

An Iteration of PDHG [Esser at al. 2010]:

. Computiné Kx,K'y by sparse matrix-vector product (spmv)

* Choosing step sizes: 1,0
* PDLP Adaptive line-search: Applegate et al. (2021,2023), Lu/Yang (2023)

* All operations can be done on GPU!

Selected MIPLIB Instances

Instances Variables Constraints Non-zeros
Packing Cuts in Undirected Graphs.
graph20-80-1ranc 16263 55107 191997
graph40-20-1ranc 31243 99067 345557
graph40-40-1ranc 102600 360900 1260900
graph40-80-1ranc 2836438 1050112 3671552
Open Pit Mining over a cube considering multiple time periods and two knapsack constraints per period.
rminell 12292 97389 241240
rminel3 23980 197155 485784
rminel5 42438 358395 879732
rmine2l 162547 1441651 3514884
rmine25 326599 2953849 7182744
Unit Commitment problems (electricity production planning problems)
uccase/ 33020 47132 335644
uccase8 37413 53709 214625
uccase9 33242 49565 332316
uccasell 110818 196498 787045
uccasel? 62529 121161 419447

Computational Results on Selected MIPLIB instances

Instances cuPDLP.jl cuPDLP.jl cuPDLP-C Gurobi COPT Barrier COPT Barrier

V100 H100 H100 Barrier 1th, 16G 12 th, 128G
graph20-80-1ranc 1.16 0.86 0.13 0.21 0.04 0.04
graph40-20-1ranc 1.16 0.87 0.15 0.36 0.06 0.06
graph40-40-1ranc 1.19 0.84 0.30 1.62 0.12 0.14
graph40-80-1rand 1.73 1.02 0.88 5.72 0.43 0.44
rminell 42.81 32.80 16.70 9.79 5.06 2.26
rminel3 28.35 56.62 12.09 38.31 15.23 4.20
rminel5 35.14 32.02 22.40 149.59 68.90 13.55
rmine2l 441.16 330.18 148.49 2674.46 1361.07 207.33
rmine25 1411.57 409.39 246.33 > 3600.00 > 3600.00 1839.05
uccase’/ 62.26 82.04 38.34 3.98 2.57 1.66
uccases 14.57 14.92 7.04 2.62 1.86 1.18
uccase9 66.49 58.31 13.40 4.46 3.09 2.04
uccaselO 65.49 99.36 20.76 2.68 1.22 0.90
uccasel? 45.53 37.41 20.22 1.53 0.59 0.62

GPU solver is less influenced by problem sizes

Strengthening with other LP Techniques

Dataset Optimizer Presolver | Tol. | SGM10 | Solved
COPT -1 1078 3.11 383
—4

corr | 01| 38

MIPLIB (383) - '
. 10~ 6.12 373
cuPDLP-C HIGHS | 10-8 | 2008 | 365
104 7.95 372
CLP 1 90-8 | 21.89 362
10~4 | 10.28 370
No Presolve | 15-8 | 9715 | 359
. 1074 | 17.49 370
cuPDLP.jl | No Presolve 10-8 35 69 355
COPT _ | 1078 | 13.81 48

—4

corr 3| |

Mittelmann (49) - '
. 10~ 31.84 46
cuPDLP-C HIGHS | 10-s | 128.39 41
10~4 | 33.97 45
CLP 10783 | 125.95 38
10—+ 57.54 43
No Presolve | 158 | 179,08 39

Julia Prototype: cuPDLP.jl (Lu/Yang, 2023)

C Implementation: cuPDLP-C (Lu et al., 2024)

LP scaling and presolving techniques significantly
iImprove the GPU solver

cuPDLP-C with HiGHS backend are open-sourced

at:

github.com/COPT-Public/cuPDLP-C

Milestones of Solving a Well-Known “Intractable” Instance

In a workshop in January 2008 on the

Perspectives in Interior Point Methods for Solving Linear Programs, the instance zib03

with 29.128.799 columns, 19,731 97

rows and 104,422,573 non-zeros was made public.

As it turned out, the simplex algorit;

1m was not suitable to solve 1t and barrier methods

needed at least about 256 GB of memory, which was not easily available at that time.
The first to solve it was Christian Bliek in April 2009, running CPLEX out-of-core with
eight threads and converging in 12,035,375 seconds (139 days) to solve the LP without

crossover. Each iteration took 56 hours! Using modern codes on a machine with 2 TB

memory and 4 E7-8880v4 CPUs @ 2.20 GHz with a total of 88 cores, this instance can
be solved in 59,432 seconds = 16.5 hours with just 10% of the available memory used.

This is a speed-up of 200 within 10

in 2008, none of the codes was able

the first year. Furthermore, 2021 was the first time we were able to compute an optimal

basis solution.

years. However, when the instance was introduced

to solve it. Therefore there was infinite progress in

2008: Instance zib03!
29,128,799 variables
19,731,970 constraints
104,422,573 non-zeros
Presolve can’t really reduce it

2009: Cplex Barrier (without crossover)
139 days (56 hours/IPM-iteration)

2019: IPM on a more advanced machine
16.5 hours

2023-24: cuPDLP-C (to 1e-6 tolerance)
1.7 hours on NVIDIA A6000
27 minutes on NVIDIA H100!

IKoch, Thorsten, et al. "Progress in mathematical programming solvers from
2001 to 2020." EURO Journal on Computational Optimization 10 (2022): 100031.

Today’s Talk

* LP Warm-Start: Online Helps Offline

* Smart Crossover: From an Interior Point to a Corner Point
* ABIP: Interior Point Method Meets ADMM

* cuPDLP-C: How GPU Accelerates Solving LP

* Summary

Scientific Research Drives (Conic) LP Solver Development

COPT Barrier solver [User guide Ge at al. 2022]

 Addedin COPT 1.4, October 2020
* Leadingin Barrier Benchmark since June 2021 (COPT 2)

e Continueto leadin new LP benchmarks since October

2022

There are 49 public and 16 undisclosed LP problems in

new LP benchmark.

COPT is the only solver that can solve all of them in time.

Barrier is more often the best choice for soling LP.

Key Features

High performance presolver
Deterministic Parallel

Cholesky

" Ny

threads-independent
behaviors
Parallel crossover

Smart crossover

87.5

75

62.5

(6))
o

37.5

Shifted-GeoMean

25

12.5

Performance Advances COPT 1-7 on Solving LP

M Shifted-GeoMean -+Accelerationratio

4.5

w
&

2.5

oljeJ UoI}e.Ia]92dy

1.5

COPT 4 COPTS5 COPT®6 COPTT7 COPT 7 + GPU*
2022 2022 2022 2023 2024

COPT1
2020

COPT 2
2021

COPT3
2021

COPT1

COPT 2

COPT3

COPT 4

COPTS5

COPT®6

COPT T

COPT 7+

GPU*

2020.10

2021.05

2021.10

2022.01

2022.06

2022.10

2023.09

2024.01

Initial barrier LP solver release.

Independently development
efficient alternatives for
MKL/Pardiso,

allows for better parallelization

and numerical handling.

Solves set-cover-
model 1.95 times
faster.

Developed and Implemented smart Solves datt256 18.8

crossover.

Improved parallel crossover
implementation.

Improved barrier ordering.

Improved LP presolver.

Revised starting point
computation.

Added PDLP with GPU support.

Tested on 49 public LP benchmark problems from Hans Mittelmann, using time limit 15000.

The PDLP GPU version also solves to optimal basis, where the crossover is finished on CPU.

COPT 7 + GPU* = Best of COPT 7 and PDLP with GPU support.

Hardware: CPU: AMD 5900X (12 Threads) with 128G memory and NVIDIA 4090 with 24G memory.

times faster.

Solves a2864-99blp
2.02 times faster.

Solves dlrl 36%
faster.

Solves rail02 28%
faster.

Solves s82 45%
faster.

Solves thk 63 40%
faster.

Performance Advances COPT 5 -7 on Solving SDP

90 2.5
Initial SDP solvers release with all of
75 2.25 : :
c > I Primal-Dual, ABIP/ADMM and Dual method.
2 60 2 s
8 4 175 3 - Rewrote and improved ABIP/ADMM + Solvesthetal2 7.5
o 3 implementation. times faster.
’E 30 1.5 gr COPTe ~ 2022.10 | oo wroteand improved Dual method + Solves G55mc 6.85
15 1.25 implementation. times faster.
0 1 el : 0
copT s copTe CopT COPT 7 2023.09 Improved Prlma! Dual method parallelism Solves Bex2_1_593%
2022 2022 2023 for large SDPs with many cones. faster.

° ° . 1 FEb 2 0 2 4 o P ———— ————————T—— T — T ———— T — T—————— ——T—— — T — — T———— — —— T— — — ————
* Testing machine AMD 5300X with 128G Several SDP-codes on sparse and other SDP problems
memory. Hans D. Mittelmann (mittelmann@asu.edu)
° TESting time limit 40000s. Scaled shifted geometric means of runtimes ("1" is fastest solver)
1 5.21 3.64 10.5 5.14 28.9 7.86 1.44
» COPT 7.0 leads in the Mittelmann SDP .-, ;7 0 ;7 T T
solved of 75 75 70 73 61 69 62 70 75

benchmark (Feb. 1, 2024). bl I R R A e —_

* |n 2019, COPT first stood on
the solver stage with its
high-performance LP

simplex solver.

* Atpresent, COPT 7.0 has
become one of the fastest
solver in the world for

various problem types.

Benchmarks for Optimization
Software
http://plato.asu.edu/guide.html
by Prof. Hans Mittelmann

COPT Standings

16 May 2019

H. Mittelmann (mittelmann€asu.edu)

Logfiles of these runs at: plato.asu.eduw/fip/lp logs/

This benchmark was run on a Linux-PC (17-4790K., 4.0GHz, 32GB).
The MPS-datafiles for all testcases are in one of (see column "s")

miplib.zib.de/ [1]
plato.asu.edu/ftp/lptestset/ [2]
www.netlib.org/lp/data/ [3,7])
www.sztaki.hu/~-meszaros/public_ftp/lptestset/
(MISC[4], PROBLEMATIC[5], STOCHLP[6], INFEAS[8])

NOTE: files in [2-8] need to be expanded with emps in same directory!
The simplex methods were tested of the codes:

MOSEK-9.0.86 www.mosek.com
CLP-1.17.0 projects.coin-or.org/Clp (with openblas)
Google-GLOP LP with Glop

SOPLEX-4.0.0 soplex.zib.de/
LP_SOLVE-5.5.2 1lpsolve.sourceforge.net/

GLPK-4.64 www.gnu.org/software/glpk/glpk.html
MATLAB-R2018a mathworks.com (dual-simplex)
SAS-OR-14.3: SAS

HiGHS-1.0.0: HiGHS

COPT-1.0.0: COPT

Unscaled and scaled shifted (by 10 sec) geometric mean of runtimes

solved 38 40 40 36 23 31 32 38 37
40 probs MSK CLP GLOP SPLX LPSLV GLPK MATL SAS Hi1GHS COPT
Ll sixm 350 402 f 13342 11965 2536 - & £f 3030
Linf 520c f 48 249 ; 523 1358 1433 3396 1212 121
buildingen 382 158 267 316 14128 652 309 97 207
contl 208 277 656 7508 398 o 32 449 1185 451
contll 19268 1070 3025 16851 10537 f £f 1413 2103 2580
cont4 700 216 338 907 503 f : 7 289 £ 285
dano3mip 10 E 3 14 17455 5 49 13 17
dbicl o 26 17 226 345 137 157 14 448
ds-big 156 218 318 t g = 712 338 355 276 160
fomel2 54 25 64 78 506 571 38 45 45
fomel3 139 49 232 233 6498 3574 179 99 111
gend 1 5 11 8 463 25 2 1 3
ken-18 4 2 Gl 65 1215 541 8 11 6
130 6 12 39 3D 4 14 5 8 4
mod?2 16 17 42 82 92 210 26 11 29
neos 67 29 105 61 1616 5510 387 319 353
neosl 1 4 50 13 11644 13 39 10 9
neos?2 1 5 163 19 £ 15 314 11 32
neos3 8 29 404 9881 t 3617 £ 552 1390
ns1644855 236 20 77 118 e 29 220 86 671
nsl687037 449 408 1501 725 t 3247 E £f 1036 2400
nsl688926 t 17 t 104 t = b 18 12
nugl5 9796 13 230 12533 t 398 371 3104 9997
na08. 304 23711 1727 £ 1178 £ ' £ 13054 149

Simplex Benchmark, 2019

Problem Types

Ranking

Linear Programming

Mixed Integer Linear
Programming

Second-Order Cone
Programming

Convex Quadratic
Programming and
Convex Quadratically
Constrained Programming

v

2
v

) &
-

!

Semi-Definite Programming

Mixed Integer Second-Order
Cone Programming

Mixed Integer Convex
Quadratic Programming

Optimization Benchmark, Oct. 25,2023

LP Real-World Applications (from Cardinal Operations)

\

!

L LY
—
Al Lol

A L L A J

| =9

inaqa
o
) e

Finance

Long Live - Linear Programming

