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Today’s talk

Topics on considering social values, ethical issues, and online learning in

dynamic and complex operations management and decision-making
environments.

Achieving Social Fairness in an online resource allocations to
individuals/groups (Chen, Li, Sun, Y 2021)

Dynamically learning client Behavior/Preference/Utility in computing fair

market equilibrium prices with incomplete market information (Jalota, Y
2021)

Balance Data Privacy and Prediction Accuracy/Efficiency in Statistical
Learning (Zhu, Y 2021)

Industrial Cases (Cardinal Operations)



Search
Hotels; motels, apartments, and more..

Online Resource Allocation
& Revenue Management Booking

Check-out

e mtype of resources; T customers

e Decision maker needs to decide
whether and how much resources are T
allocated to each customer max Z e Xe

e Resources are limited! t=1

e Online setting: T
o  Customers arrive sequentially s.t. Z aipxe < bj, 1=1,...m
and the decision needs to be t=1
made instantly upon the 0< x<1 orxs € {0, 1}3 t=1,..., T

customer arrival



-
Customer-Type Based LP formulation

In the original offline LP formulation, x, represents the decision for the t-th
customer, a, represents the request vector of the t-th customer, and r, represents

the reward of the t-th customer
T T

max Z rex;  s.t. Z arxy < b, x; €[0,1]

In the customer-type based formulation, there are in total J types of customers.
The J-th type arrives with a probability p; (proportion of type | but unknown); the

request vector and reward of the J-th type customer Is ¢; and y;

J J
max ijﬂjyj s.t. ijcjyj <b/T, yjel0,1]
j=1 j=1

The decision variable y; represents the fraction/probability of J-th type customer
being accepted. But, in real applications, most LPs have nonunique solutions... 4



A Motivation Example

Consider an allocation problem: there exists three types of

orders/customers, where the first two types have the reward/resource

characteristics that are considered equivalent from the system.

The following plots show the acceptance fraction/probability of the three types across
time by two different online algorithms: the simplex and interior-point methods (Jasin
2015, Chen et al 2021).

Acceptance Probability across Time
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Fairness Desiderata

o Individual Fairness: Similar customers should be treated similarly. For certain
customer types, there exist multiple optimal allocation rules. Unfortunately, the
optimal object value depends on the total resources spent, not on the
resources spent on which groups. Therefore, some individual or group may be
ignored by the online algorithm/allocation-rule.

o Time Fairness: The algorithm may tend to accept mainly the first half (or the
second half of the orders), which is unfair or unideal such



Fair Optimal Solution for Offline Problem

J J
max Z piLLjyi s.t. Z pjciyi < b/ T, y;€|0,1]
j=1 j=1

« We define y* the fair offline optimal solution of the LP problem
as the analytical center of the optimal solution set, which represents
an “average” of all the corner optimal solutions.

o The fair solution y* will treat individuals fairly, based on their similar reward
and resource consumption.

« An online learning algorithm would use the data points up to time t and solve
the sample-based linear program to decide ..



e
Performance Measure

« Let y, be the allocation rule at time t which encodes the accepting
probabilities under the online algorithm . Then we define the cumulative
unfairness of the online algorithm o as

UFr(n) = E[ST-q|lye = ¥71])]
o Intuition: If UF;(m) is sub-linear, we know Time Fairness is satisfied since the
deviation of the online solution cannot be large. Moreover, Individual Fairness

Is satisfied because we know UF; () being sub-linear implies y, converging

to y*.

e Letj, denote the incoming customer type at time t, the Revenue Regret is
defined as

° Regr(m) = E| Z=17"t(y]>'kt = Ytj)l

Regret measures the performance loss compared to the optimal policy.



Our Result

« We develop an algorithm [Chen, Li & Y (2021)] that achieve
UFr(m) = O(log T)
Reg,(m) Bounded w.rt T

» Key ideas in algorithm design:

o At each time t, we use interior-point method to obtain the sample
analytic-center solution and randomly make decision based on
sample solution vy..

o We also adjust the right-hand-side resource of the LP to ensure the
depletion of binding resources and non-binding resources does not
affect the fairness.



The Online Algorithm can be
Extended to Bandits with
Knapsack (BwK) Applications

e
i

|

 For the previous problem, the
decision maker first observe the
customer order and then decide
whether to accept it or not.

« An alternative setting Is that the
decision maker first decides which AFFILIATE
.:)USE CDQ_

order/arm (s)he may accept/pull, and 2, S W 0 N I-I N E
o U U
consumption vector a; and yield a Jvm ISERS o nggng
random reward m; of the pulled arm. = .:‘?"‘“,"i‘*,
« Known as the Bandits with
Knapsacks, and it is a tradeoff

then receive a random resource ' D
: - ,D\ERTISE"ENT
exploration v.s. exploitation P G AD 10



max Zijj S.t. Zajxjgb, Xj >0 vji=1,...,]
J

o The decision variable x; represents the total-times of pulling the j-th arm.
e We have developed a two-phase algorithm
o  Phase I Distinguish the optimal super-basic variables/arms from the optimal
non-basic variables/arms with as fewer number of plays as possible
o  Phase II: Use the arms in the optimal face to exhaust the resource through
an adaptive procedure and achieve fairness
e The algorithm achieves a problem dependent regret that bears a logarithmic
dependence on the horizon T. Also, it identifies a number of LP-related
parameters as the bottleneck or condition-numbers for the problem

o Minimum non-zero reduced cost Takeaway:
o Minimum singular-values of the optimal Stochastic data are learnable and
basis matrix. certain social fairness is achievable

 First algorithm to achieve the O(log T) regretboundine linear programming

11
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Monetary pricing instruments have served as a primary
mechanism to achieve an efficient and fair allocation of
resources

aT—a

a— a

Users with the highest
willingness to pay receive the
goods

Goods are priced to Match
Supply and Demand

13



However, there are many settings when monetary
transfers are disallowed such as Public Goods

computing resource

14



This has led to a growing interest in the use of Artificial
Currencies to mediate the allocation of resources/goods

Artificial Currency Budget Endowment

p; : Price of Good j w; : Budget of Agent ¢

15



A canonical model studied in artificial-currency-based
resource allocation Is that of Fisher Markets

Agent 1
4 u;; : Preference of Agent 7 for one unit of good j
w z;; : Quantity of good j purchased by person %
p; : Price of Good ]

w; : Budget of Agent i
Individual Optimization Problem:
max Z Ui T45
X -
J
S.t. pTXi < w;
X; Z 0

16

M = Total Number of Goods




Classical Fisher Markets provide a fair framework to derive
prices through a centralized optimization problem

Individual Optimization Problem: Social Optimization Problem:
P E w; lo E Ui T
H}{?XE :“1333%3 x; Wie [V] ' g( *J ”)
S.t. § : o — 5. Wi
St pTX,i S w; Lij = SJ:VJ € [M]
X; Z 0 _ Capacity Constraints
zi; = 0,V,]

p; : Price of Good j = Dual Variable of Constraint j

17



However, the centralized Fisher market needs the
“Complete Individual/Private utility Information”

Individual Optimization Problem: Social Optimization Problem:

x; ‘v’zE[N Zwi log (Zu”%j)

8.L. Zil?ij - §j,Vj S [M]

Capacity Constraints

zi; = 0,V,]

—

p; : Price of Good j = Dual Variable of Constraint j

18




We now study an online and privacy-protecting variant of
Fisher markets with Incomplete-Information and develop
Learning Algorithms with sub-linear regret guarantees
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We evaluate the performance of our algorithms through their
regret and violation of capacity constraints

Regret (Optimality Gap) Constraint Violation
Difference in the Optimal Social
Objective of the online policy T to
that of the optimal offline solution

Norm of the violation of capacity
constraints of the online policy

Vi(m) = ) mij(m) — 5
R,(m) = j

Zwi log (Z uija::fj) — Zwi log (Z uija:ij(ﬂ'))

/ \

Optimal Offline Objective of Norm of the expected
Objective online policy : constraint violation

Violation of Capacity
Constraint of good j

Va(m) = [|E[V (7)]]]2

20



We establish convergence of the optimal dual prices

Dual of social optimization problem oDy
‘ ptimi prot | mlnzwtlog (wy) Z’wt log (.’511 ) -I—Epjsj Ewt
Equivalent Sample Average n D,
Approximation (SAA) of Duall mmD Z ('wt log (w;) — w¢ log (min —J) — wt)
=1 J€[m] Ut
. in D(p) = - . + ] —wl i 24 _
Dual Stochastic Program mn (p) = ZPJ it w log(w) — wlog J;gﬂ;l] o A
j=1 ’

Main Result 1: The optimal dual solution p;, of the SAA problem converges to the
optimal solution p* of the stochastic program with rate O (\/iﬁ)

;Sll—‘

uMs

21



We obtain sub-linear regret and constraint violation
guarantees under different informational assumptions

Known Probability Distribution e parameterls l(W’ w) are Privacy Preserving

Algorithm 3: Update and post
prices through gradient descent on
on a sequence of dual dual problem and observe buying
problems using revealed behavior, which reduces to
parameters tatonnement

Main Result 2: Under each of the above informational assumptions the above dual
based algorithms achieve expected regret R,, () < 0(+/n) and the expected
constraint violation V,, < 0(y/n), where n is the number of arriving users.

Algorithm 1: Set price based Algorithm 2: Set prices based

on solution of Stochastic
Program

22



The numerical results indicate superior
performance relative to the theoretical guarantees

Infinity Norm of Excess Demand

0.3
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Takeaway: It Is possible to develop online algorithm for
solving the Fisher market of good-allocation with sub-linear
regret guarantees while keeping certain customer “privacy”
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Statistical Learning and Regression Across
Decentralized Data Centers

Decentralized Learning : Method that learns or trains an
algorithm across multiple decentralized centers holding local

data.
Pros: Such method protects data privacy and data security.

Cons: Many decentralized learning algorithms suffers from
slow convergence and solution quality.

26



Statistical Learning Model

Each center i possess model data matrix X; € R5*P and
dependent variable vector y; € R5*1.

Let (x; ;,v; ;) be the j** data pair of the i*" data center.

The decision maker tries to find the global estimator B € RP*! that
minimizes a regression error

201 2 f (%, vi); B)

where f((xi,j, Vi j); ﬁ) represent the loss function.
27



Commonly Used Loss Functions

Commonly used loss function are convex in £, including
Least Square

f((x,3); B) = ||1xB- ylI3

Ridge
() B) = |1xB- yll5 + al|Bll3
Lasso
() B) = |1xB-ylI5 + a|Bll1
Elastic Net
() B) = [1xB-ylI5 + allBllL + (1 — a) |IBIl3
Logistic

f((x,y); B) =log(1 — exp(—yxP))

28



Statistical Learning Across Decentralized Data Centers

e Centralized Learning
e Alllocal data are uploaded to one

e
=

Data Center 2

e et
I_ X2,y2 I_
—_—— | |

Data Center 1 l Data Center 3

X1, vyl X3,vy3
N e &

()

Decision Maker Receives
X =[X1; X2; X3]
Y =[yl;y2; y3]

And trains in one server

IE X2,y2 I
|

Data Center 1 \LT Data Center 3

e Decentralized Learning

Local data cannot be exchanged

e
=

Data Center 2

10N

X1, y1 Q . % X3, y3

)

Decision Maker trains local
data in local servers, pools
the training results and
aggregates the results

ithout ing dat
without accessing data 29



Optimization Methods in Decentralized Learning

Gradient or Conjugate-Gradient Descend (SGD) in minimizing

Sy T f (i yi); B)

Consensus/distributed Alternating Direction Method of Multipliers (ADMM, essentially
a dual gradient method)
Introducing local estimators g; to each center and reformulate the problem as

Zf:l Zja=1 J((Xij, )60
st. B3,—-08=0 VYi=1,...,b

Let 4; be the dual with respect to the constraint g; — 8 = 0, and p,, be the step-
size to the primal consensus ADMM, the augmented Lagrangian is given by

b

LB.BA) =) Z F(Xepn 1) B) + Z N B =B+, 2B -8B BB

i=1  j=1 i=1



Balancing Privacy and Efficiency

The complete decentralized and privacy-protecting algorithms are
typically slow in convergence

We now designing ADMM algorithm with data exchange that balance
the trade-off between privacy and efficiency
Introducing Dual Randomly-Assembled Cyclic ADMM (DRC-
ADMM)
Data exchange Is necessary — comparison with variants
Randomly-Permuted ADMM and Cyclic ADMM.

Numerical Results
31



Dual Randomly-Assembled Cyclic ADMM

"t "t "t
= = =

Data Center 1 Data Center 2 Data Center 3

(x1,1,y1,1), (x1,z; 3’1,2), (x1,3:3’1,3)} (x2,1f3’2,1): (xz,Z:YZ,z):(x2,3JJ’2,3)i (x3,1: 3’3,1)x (xS,Z’yB,Z)* (X33, ¥3,3);

Local data L ocal data Local data

&y

Global Data Pool
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Introducing Dual Randomly-Assembled Cyclic ADMM

"t "t "t
= = =

Data Center 1 Data Center 2 Data Center 3

(x1,1; y1,1); (x1,z; y1,z); (x2,1r y2,1): (x2,3: y2,3); (xS,Z! y3,2)r (x3,3! y3,3);
Local data _) L ocal data —) Local data
Cyclic updating Cyclic updating

&y

Global Data Pool

(%13,Y1,3); (xz,z: J/Z,z): (x3,1: 3’3,1)’ 33




Data Exchange is Beneficial in Linear Regression

If each the time we directly add all global data to each of the block (here the
data structure at each block is fixed), and compare

Distributed ADMM with global data

Cyclic ADMM with global data

Randomly Permuted ADMM with global data

Algorithms Run Time (s) | Number of Iterations | Absolute Loss

Primal Consensus ADMM 100 1,520,752 3.60x 1073

Primal Consensus ADMM (with global data) 100 1,627,174 3.51x 107!

Cyclic ADMM (with global data) 100 1,124,016 2.62x 107!

RP ADMM (with global data) 100 1,103,549 3.04x 107!
DRC-ADMM 100 4153 4.56 x 107° 34




Numerical Results on UCI ML Regression Repository |

Fix run time = 100 s

Fix number of iteration = 200

Primal distributed | DRC-ADMM | Primal distributed | DRC-ADMM
Bias Correction 1.60 x 107~ 371 x 107" 3.20x 107 6.31 x 107’
Bike Sharing Beijing 8.43 x 10~ 9.57 x 107"* 2.03x 107° 6.61 x 107°
Bike Sharing Seoul 2.60 x 1077 1.71 x 1078 8.87 x 10" 5.80 x 1077
Wine Quality Red 3.45x 107 231 x 1071 8.10 x 10~ 1.22 x 107/
Wine Quality White 7.36 x 1071 1.24 x 1075 2.40x 107> 1.56 x 107°
Appliance Energy 5.02x 1072 1.61 x 10~ 7.56 x 107" 4.77 x 107>
Online News Popularity * 9.42 x 1071° 3.23x 1070 7.70 x 10~ 4.63 x 107°
Portugal 2019 Election * 3.97 x 107'° 497 x 10~ 3.22x 107 1.99 x 1071
Relative Location of CT 1.65x 107" 6.44 x 107* 1.29 x 10° 4.79 x 107*
SEGMM GPU 2.63x 107" 2.20x 1077 4.60 x 10~ 2.65 x 107°
Superconductivity Data 1.25x 107" 2.98 x 107° 6.97 x 107" 4.99 x 107
UJIIndoorLoc Data 3.76 x 107! 4.48 x 1078 8.45 x 107! 2.53 %1072
Wave Energy Converters 3.40 x 107 7.12x 107" 7.70 x 10~ 2.39 x 107’
Year Prediction MSD 3.60 x 107° 4.56 x 107~ 3.91 x 107* 2.64 x 107

* The covariance matrix’s spectrum is of 10?°, which is hard for all algorithms to converge. We further scale
- eachentry by n.

35



Numerical Results on UCI ML Regression Repository Il

With 5% of access to global data, DRC ADMM utilizes the
benefit of data exchange, and outperforms primal distributed

ADMM.

Benefit of DRC-ADMM
Manage to get a good quality of solution within fewer
iteration, which further reduces the communication load

across centers
Manage to get a good quality of solution within a fixed

time.
36



Applications of Data Sharing in Logistic Regression |

o Previous literature suggests that distributed ADMM method suffers from
slow convergence in classification problems (1).

« Numerical results suggest that, DRC-ADMM with data sharing could again
overcome the slow convergence issue.

o The numerical data for logistic regression is provided by Stanford
Medicine with number of observations n = 2,000 and feature
dimensionality p = 26. We compare the objective value under each
algorithm — with smaller objective calue, the algorithm performs better.

(1) Gopal, Siddharth, and Yiming Yang. "Distributed training of large-scale logistic models." International

Conference on Machine Learning. PMLR, 2013. 37



Applications of Data Sharing in Logistic Regression |l

o Although distributed ADMM suffers from slow convergence compared with
traditional Newton’'s method that requires full access of data, DRC-ADMM
with data sharing could outperform traditional algorithms with only limited
access to the data.

Algorithms Number of Iterations | Objective Value
Centralized Optimization via Newton’s Method (2) 50 2.15% 1072
Multi-block Primal Consensus ADMM 50 8.53x 1072
Multi-block DRC-ADMM (5% data sharing) 50 2.22% 1073
Multi-block DRC-ADMM (10% data sharing) 50 1.01x 1073
Multi-block DRC-ADMM (20% data sharing) 50 5.67x10™*

(2) https://web.stanford.edu/~boyd/papers/admm/logreg-l1/logreg.html
Boyd, Stephen, Neal Parikh, and Eric Chu. Distributed optimization and statistical learning via the alternating direction method of

multipliers. Now Publishers Inc, 2011. c



.
Data Sharing in Conjugate Gradient Method

o Data sharing could also be applied in helping preconditioning for
conjugate gradient method. Specifically, we use the global data pool to
build a good pre-conditioning matrix.

o In UCI ML regression repository Year Prediction MSD, preconditioning
under data sharing helps convergence. We report number of iteration
required to the target tolerance (3).

Algorithms Target Tolerance 1076 | Target Tolerance 1010
CG without preconditioning 564 1,112
Takeaway: It ISheiE6kIRsSNBER1 % data sharing) 6 10
even a small amount data
preconditioning (3% data sharing) 4 7
among different groups?] arties
to combat glol5alMiEsigeghitoning (10% data sharing) 3 6

(3) tolerance is defined by [|b-Ax]||/||b]|. https://www.mathworks.com/help/matlab/ref/cgs.html 39
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%, Case l: About For-U

FOR-U

Make road freight transportation simpler and smarter

FOR-U chose to work with intermediaries in the transport sector so that drivers can get orders via agents and conventional
intermediaries can get more orders.
FOR-U sent operation team to monitor each deal to avoid possible corruption problem between shipper representative
and drivers, which bought true value for its clients and marked its core competence was the offline operation ability.

Shipper Carrier
Book a truck at your fingertips More earnings with dignity

Efficiency / Transparency / Reliability Real jobs / Fast payment / Haggle-free

41




% What Need to be Improved Originally

On the shipper side of the equation: finding carriers can be a cumbersome and inefficient process. Freight
rates are volatile and lack transparency. Lack of services and dispatch delays are prevalent during loading and
shipment. En-route order tracking remains limited, and cost settlement suffers from a lack of standardization
and significant risk.

On the carrier side: drivers often experience difficulties identifying legitimate loads. They are also hurt by
volatile and nontransparent freight rates. Transport capacity is often undercut by inefficient utilization, and

issues such as a lack of payment guarantees and protracted payment periods plague the settlement process.

c 8V * ok & K
B a n &
A A % -

Connect dots and routes to Reduce empty-loaded rate Guarantee safe and timely
improve efficiency and disruptive incidences freight delivery

D

=/
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B How We Address the Problem ® *%MHE

Real-time Truck Scheduling

* The traditional truck scheduling model restricts each truck to given routes, which may cause too many stops for the truck, e.g. truck
can only stand wait for orders but not to seek orders within its searching area.

* An effective algorithm is required to break the conventional scheduling rules in order to reduce the stop rate, improve the driving
efficiency, while considering the constraints, like time window, empty driving mileage, vehicle resources and special situations.

B Minimize empty driving mileage B Different truck types and order types should be considered in the
model to support the specific business scenario
B Maximize the number of assigned orders
B Balance the monthly driving mileage of each truck
B Dynamically adjust searching area
B Intelligently arrange driver break to avoid fatigue driving
B Predict future orders of each district
B Asimulation system is built to simulate different special situations

B Globally optimize the whole network in the real world, e.g. order cancellation, vehicle accident



B What We Did for For-U - Truck Scheduling System

Application 1. Real-time Scheduling

Application 2 .| Route Quotation System

: : . - . The simulation system with the core of scheduling algorithm is
Real-time scheduling system is used to efficiently assign : -
. . : . used to calculate the impact of each bidding route on the
trucks with real-time input orders in order to optimize . . .
. - . whole network, including the change of monthly profit and
monthly profit and monthly truck efficiency (minimize empty monthly truck efficiency (empty driving rate, stop rate). Based
driving rate, stop rate) , satisfying all the business constraints. Y Y Pty 8 , StOP

on the evaluation, a proper price is given to each route.

Application 3. Decision on the Number of Trucks

Application 4. Decision on the Number of Orders

Whenever the order pool is changed, e.g. the number of orders Whenever the truck pool is changed, e.g. truck driver quit his
in one month is increased from 10,000 to 12,000, the simulation job, the simulation system is used to decide how many orders
system is used to decide how many new trucks are supposed to are supposed to be added or removed from the network.

be added in the network.

44



% Improvements and Results

Before After

] ] China's First Successful Case of using
Two-sides/Three-sides Globally optimize the whole network

Intelligent Scheduling System to Solve
.2 ; o Trunk Vehicle Transportation
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s
& Algorithm Design ® *%M*'”i

subject to Z ..';f' <I,VieIuIP | (2)
,* =0, VieI kek (3)
al,=0,VieI% jeIP kek (4)
Y ol <gi, VieI? kek (5)
€1
Z.rﬁ! — .f[':'. vieI? kek (6)
1€l
Z .1"5! = Z .."'fl/ — .fjf". YVieI kek (7)
jETUIC '€l 7%
o(ti+ st +1;) <t;, VieTIUI® jeI i#j, kek (8) 300 trucks X 12,000 orders
ti=1ty, VieIY (9)
tg < = A (10)
Takgaw'ayz CDnSLdﬁ” ng social = Over 10 billion decision variables
reSQO nsib I;“ty apd human |ty, (12) commercial solver UNABLE To Solve
tGg ather Wth S peratl on (13) customized algorithm Solved in Minutes

)‘*-.fC—IHI (14)

optlmlzmg benefit companies
greatly 46



" Case II: Carbon Emission Process Control

Carbon Emission in the Industry

Carbon emission in industry represent 23 percent of greenhouse gas emissions (2019) . Greenhouse gas emissions
from industry primarily come from burning fossil fuels for energy, as well as greenhouse gas emissions from certain
chemical reactions necessary to produce goods from raw materials.

Supplier Raw Plant Manufacturing Process 3PL Customer
material
H @ ﬂ Station 1 Station 2 Station 3 O

Emission in
02 Manufacturing

0 Emission in
Process

Purchasing Process

03 Emission in
Supply Chain

a7



" Liuguo Chemical Industry S&0P-Background

e Market conditions of fertilizer industry: Excess capacity, severe similarity and Low-Level competition
are forcing fertilizer enterprises to giving impetus to industrial transformation.

e Problems in transformation and coping strategy in supply chain:

S&OP:
1. Producing a fit productto £ 3

making maximized profit in T[EEE Sl sl

fit time by operation research
Improve response speed to

L 2 the market

2. Sales forecasting,

N RG] Maek) analyzing the limit of

material and capacity, overall

Improve the output-input

planning to storage network,

adjustment plan in minutes, ) fa

New system of products

cost reduction in production,

storage and transportation

o Build the KPI system of Improve sophisticated
Sophisticated management

supply chain management management skill

@ Theme.




B Liuguo—Shanshu S&OP Engine

Shanshu S&OP engine strengthen LIUGUO Chemical Industry

supply chain
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S&OP meeting phalalaialy ->

Production Plan

. . 4
Real-time monitor of /
demand /

4
Intelligentized advice of I,' /‘
demad plan Capacity estimdte ,/
1 [I II
7 Il
* /l 4
/ ,l
Demand Plan // Production
/ Plan
Sales forcast / Derrand
Sales NS Sales Plan
director Departm
Sale A b
[S :Sales forcast
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Inventory Status

L3 Goods calling based on
\
\ demand

Product

@*ﬁi’ﬂlﬂﬁ

Cardinal Operations

v Save 5% transportation

cost (allocating
v' Experience-> System

evaluation tansportation) .

. . v' Reduce 20% inventories,
v Off-line -> On-line
save 20 million cost of

v Serial plan -> Closed loop

storage.
plan

_
_
_

Overall planning to storage
network

v Reduce 50% time of
human resource in
demand plan and

production plan

Intelligentized allocating
advice

. ¥

Supplying Plan

SOl Client
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B, Mathematical Programming Model: @?%E&Hﬁ
minimize the total operation cost & total amount of carbon emission

Minimize the total
amount of carbon

+ nventory cost emission in the
+ transportation cost supply chain

Minimize production cost

+ carbon expenditure
Subject to:

(DEHVE‘I’y) 5i,t—|—1 = (Sijt —+ Dz t— Z dipt

(Inventory) N t+1 = Nyt — '),pt + Lipt — Z i Ljpt + Z y@p pt Z yzpp t

All supplier's and
1ji=>0

> OEM's emission of

are taken into
consideration as the
flow decision of the
model.

(Carbon control) carbon bound > Zemission

t,p,t

(Operation rules) Many more ...
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-
% Intelligentize S&OP function description — S&OP simulation

—
Demand Purch
schedule Real order Inventory asing Resource
forecast order Capacity

L IS

*  How to satisfy the sales demand to the maximum extent?

*  How to organize production (production type\quantity) with
higher profit?

*  How to select extern customer sales order when it is excess
production capacity?

*  Choose which orders the company has maximum profit when
the production capacity is limited?

*  Choose which orders the company has maximum profit when

the material is limited?
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Input

Sales order, sales forecast,
unit capacity, in-route
inventory, inventory...

Different sales strategy

Different capacity(resource
utilization rate)

Different shift and work time

Different purchasing plan

Other input

Fluctuation and
influence of the
production,
sales, inventory
and supply plan,
be cause of the
change of
multiple
parameter

20

Cardinal
Smart

Planning
Engine

@*ﬁi’ﬂlﬂﬁ

Cardinal Operations

I Output

The production plan,
sales plan and
inventory plan
guided on S&OP

v' Sales qty, production qty,
inventory plan and
purchasing pan based on
this version’s production
and operation plan

v’ Cost and profit based on
this version’s production
and operation plan

v" KPI comparison of
different plan versions
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s
B, Control/Visualization Tower of the Supply Chain with the Consideration of Carbon Emis@f"gif’!iﬂifshlci

Cardinal Operations

(9 1 H=Em S&OP I H4E RGAHE
FRITEAN @ e B2
m R A
750 1000 L]
I, 530 1 UU%
960 n Flsa] A
s00 = 2480 5s
FitRIFERTE:
En ® EfER *EA
FARNE A 5% HE R TR R AIEh M CO2[E14#) A 301 2 % 50% 50%
S H=E S&OP I ##2 RRECE FFR#
REGHH @ 2021 SR M

2 BHRBRY ‘

gt

fo— SATIEE [J SFEIHIE . SR @ RS [ MEER . R
i il T o ] f o
T 24465.3155% 49580057 E 560855 I>> 6209.845% '__] 12% E 453

BAEES..

‘ |

2020458 {47t
SPU BITRHIY WENE. WERH - FTEBUNIE FHEW - BUHERME e - HEER » HEEFIE
sPU1 20 .- 1,906.97 1,906.00 - 1,999.50 0.00 0.00
SpU2 18 5,000.00 1,947.77 1,947.00 9,738,831.07  1,633.04 8,165,192.56 1,573,638.51 16%
SPU3 19 5,000.00  1,823.30 1,823.00 9,116,500.58  1,638.38 8,191,923.94 924,576.64 10
SPU4 20 20,000.00 1,978.15 1,978.00 39,562,957.86  1,5399.89 30,797,758.54 8,765,199.32 22%
SPUS 20 7,500.00 1,646.72 1,646.00 12,350374.47  1,258.42 9,438,152.18 2,912,222.30 24%
SPUG 18 2,800.00 1,815.04 1,815.00 5082,10588  1,789.99 5,011,977.40 70,128.48 1%
SPUT 21 8,000.00  1,972.00 1,972.00 15,776,000.00  1,962.00 15,696,000.00 80,000.00 1%
SPUS 22 22,000.00 1,834.00 1,834.00 40,348,000.00  1,824.00 40,128,000.00 220,000.00 1%
SPU9 25 25,000.00 1,611.14 1,611.00 40,278,577.82  1,342.77 33,569,304.67 6,709,273.15 17%
Bt 95,300.00 172,253,347.68 150,998,309.28  21,255,038.40 12% 32
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W, Liuguo Chemical Industry sales and operation planning -

Implementation achievement

@*ﬁi’ﬂlﬂﬁ

Cardinal Operations

® \/ia operation optimization, arrange the production material restr‘rgiz)érawtéya{izelt I S p O S S bblﬁet@e customer satisfaction rate in the market

profit maximum

® By sales forecast, understand market dynamics, planning reasiaﬁb‘yﬁlsl@vw <p ro f I tab I I I ty

company

Oé{rﬁraement the company sales and operation planning capacity

® Release the production delicacy management of company

® Using supply chain management method, profit-oriented, QUidiF@'@rw sy al b on emiss @ dAse@ interconnection of whole company’s core operation data

production, inventory and forwarding

® Optimize capacity planning and manufacturing technique, furtlth&thsarrlnee tl me, If Emn

compliance requirements

Materials Production

Multiple line\multiple remodel
type, production scheduling
with integration of the
production capacity, order
and inventory information,
Improve the effective

 Production Data
Monitoring

* Production
optimization
continuously

« Material Via more effective planping

efficiency of capacity and producthn

. schedule, reduce operations

'mprovement like melted, reduce energy

about 19y consumption(Carbon

emission index ) about“]%

capacity utilization 20%
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Operation

Inventory cost reduce

18Mi|lions

Customer satisfaction
rate improve

194

Industry Chain

Insure
the
gross
profit
rate
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Thank You!

Stanford University



