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Introduction to SO and DRO

We start from considering a stochastic optimization problem as
follows:

maximizex∈X EFξ
[h(x, ξ)] (1)

where x (typically called β in data science with minimizing a loss
function) are decision variables with feasible region X , ξ represents
random variables satisfying joint distribution Fξ.

Pros: In many cases, the expected value is a good measure of
performance; simply apply simple sample average (SSA)
approach.

Cons: One has to know the exact distribution of ξ to perform
the stochastic optimization. Deviant from the assumed
distribution may result in sub-optimal solutions. Even know the
distribution, the solution/decision is generically risky.
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Learning with Noises

Goodfellow et al. [2014]
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Robust Optimization

In order to overcome the lack of knowledge on the distribution,
people proposed the following (static) robust optimization approach:

maximizex∈X minξ∈Ξ h(x, ξ) (2)

where Ξ is the support of ξ.

Pros: Robust to any distribution; only the support of the
parameters are needed.

Cons: Too conservative and it ignores observed/training data
information/statistics. The decision that maximizes the
worst-case pay-off may perform badly in usual cases; e.g.,
Ben-Tal and Nemirovski [1998, 2000], etc.

Ye, Yinyu (Stanford) Robust and Online Optimization June 2, 2020 6 / 60
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Motivation for a Middle Ground

In practice, although the exact distribution of the random
variables may not be known, people usually know certain
observed samples or training data and other statistical
information.

Thus we could choose an intermediate approach between
stochastic optimization, which has no robustness in the error of
distribution; and the robust optimization, which admits vast
unrealistic single-point distribution on the support set of random
variables.
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Distributionally Robust Optimization

A solution to the above-mentioned question is to take the following
Distributionally Robust Optimization/Learning (DRO) model:

maximizex∈X minFξ∈D EFξ
[h(x, ξ)] (3)

In DRO, we consider a set of distributions D and choose one to
maximize the expected value for any given x ∈ X .

When choosing D, we need to consider the following:

Tractability (fast algorithm available)

Practical (Statistical) Meanings (utilize observed/training data)

Performance (the potential loss comparing to the benchmark
cases)

Ye, Yinyu (Stanford) Robust and Online Optimization June 2, 2020 8 / 60



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Distributionally Robust Optimization

A solution to the above-mentioned question is to take the following
Distributionally Robust Optimization/Learning (DRO) model:

maximizex∈X minFξ∈D EFξ
[h(x, ξ)] (3)

In DRO, we consider a set of distributions D and choose one to
maximize the expected value for any given x ∈ X .

When choosing D, we need to consider the following:

Tractability (fast algorithm available)

Practical (Statistical) Meanings (utilize observed/training data)

Performance (the potential loss comparing to the benchmark
cases)

Ye, Yinyu (Stanford) Robust and Online Optimization June 2, 2020 8 / 60



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Distributionally Robust Optimization

A solution to the above-mentioned question is to take the following
Distributionally Robust Optimization/Learning (DRO) model:

maximizex∈X minFξ∈D EFξ
[h(x, ξ)] (3)

In DRO, we consider a set of distributions D and choose one to
maximize the expected value for any given x ∈ X .

When choosing D, we need to consider the following:

Tractability (fast algorithm available)

Practical (Statistical) Meanings (utilize observed/training data)

Performance (the potential loss comparing to the benchmark
cases)

Ye, Yinyu (Stanford) Robust and Online Optimization June 2, 2020 8 / 60



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Distributionally Robust Optimization

A solution to the above-mentioned question is to take the following
Distributionally Robust Optimization/Learning (DRO) model:

maximizex∈X minFξ∈D EFξ
[h(x, ξ)] (3)

In DRO, we consider a set of distributions D and choose one to
maximize the expected value for any given x ∈ X .

When choosing D, we need to consider the following:

Tractability (fast algorithm available)

Practical (Statistical) Meanings (utilize observed/training data)

Performance (the potential loss comparing to the benchmark
cases)

Ye, Yinyu (Stanford) Robust and Online Optimization June 2, 2020 8 / 60



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Brief History of DRO
First introduced by Scarf [1958] in the context of inventory
control problem with a single random demand variable.
Distribution set based on moments: Dupacova [1987], Prekopa
[1995], Bertsimas and Popescu [2005], Delage and Y
[2007,2010], etc
Distribution set based on Likelihood/Divergences: Nilim and El
Ghaoui [2005], Iyanger [2005], Wang, Glynn and Y [2012], etc
Distribution set based on Wasserstein ambiguity set: Mohajerin
Esfahani and Kuhn [2015], Blanchet, Kang, Murthy [2016],
Duchi, Glynn, Namkoong [2016]
Axiomatic motivation for DRO: Delage et al. [2017]; Ambiguous
Joint Chance Constraints Under Mean and Dispersion
Information: Hanasusanto et al. [2017]
Lagoa and Barmish [2002] and Shapiro [2006] simply considers a
set containing unimodal distributions, Kleinberg et al. [1997]
and M’́ohring et al. [1999] considers the product distribution
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DRO with Moment Bounds

Define

D =

Fξ

∣∣∣∣∣∣
P(ξ ∈ Ξ) = 1
(E[ξ]− µ0)

TΣ−1
0 (E[ξ]− µ0) ≤ γ1

E[(ξ − µ0)(ξ − µ0)
T ] ≼ γ2Σ0


That is, the distribution set is defined based on the support, first
and second order moments constraints, where µ0 and Σ0 are sample
mean vector and variance matrix.

Theorem
Under mild technical conditions, the DRO model can be solved to any
precision ϵ in time polynomial in log (1/ϵ) and the sizes of x and ξ

Delage and Y [2010]

Ye, Yinyu (Stanford) Robust and Online Optimization June 2, 2020 11 / 60
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Confidence Region on Fξ

Does the construction of D make a statistical sense?

Theorem
Consider

D(γ1, γ2) =

Fξ

∣∣∣∣∣∣
P(ξ ∈ Ξ) = 1
(E[ξ]− µ0)

TΣ−1
0 (E[ξ]− µ0) ≤ γ1

E[(ξ − µ0)(ξ − µ0)
T ] ≼ γ2Σ0


where again µ0 and Σ0 are point estimates from the empirical data
(of size m) and Ξ lies in a ball of radius R such that ||ξ||2 ≤ R a.s..

Then for γ1 = O(R
2

m
log (4/δ)) and γ2 = O( R2

√
m

√
log (4/δ)),

P(Fξ ∈ D(γ1, γ2)) ≥ 1− δ
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.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Confidence Region on Fξ

Does the construction of D make a statistical sense?

Theorem
Consider

D(γ1, γ2) =

Fξ

∣∣∣∣∣∣
P(ξ ∈ Ξ) = 1
(E[ξ]− µ0)

TΣ−1
0 (E[ξ]− µ0) ≤ γ1

E[(ξ − µ0)(ξ − µ0)
T ] ≼ γ2Σ0


where again µ0 and Σ0 are point estimates from the empirical data
(of size m) and Ξ lies in a ball of radius R such that ||ξ||2 ≤ R a.s..

Then for γ1 = O(R
2

m
log (4/δ)) and γ2 = O( R2

√
m

√
log (4/δ)),

P(Fξ ∈ D(γ1, γ2)) ≥ 1− δ

Ye, Yinyu (Stanford) Robust and Online Optimization June 2, 2020 12 / 60



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

DRO with Likelihood Bounds

Define the distribution set by the constraint on the likelihood ratio.
With observed Data: ξ1, ξ2, ...ξN , we define

DN =

{
Fξ

∣∣∣∣ P(ξ ∈ Ξ) = 1
L(ξ, Fξ) ≥ γ

}
where γ adjusts the level of robustness and N represents the sample
size.

For example, assume the support of the uncertainty is finite

ξ1, ξ2, ...ξn

and we observed mi samples on ξi . Then, Fξ has a finite discrete
distribution p1, ..., pn and the likelihood/entropy function

L(ξ, Fξ) =
n∑

i=1

mi

n
log pi or L(ξ, Fξ) =

n∑
i=1

−pi log(pi
n

mi
).
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Theory on Likelihood Bounds

The model is a convex optimization problem, and connects to many
statistical theories:

Statistical Divergence theory: provide a bound on KL divergence

Bayesian Statistics with the threshold γ estimated by samples:
confidence level on the true distribution

Non-parametric Empirical Likelihood theory: inference based on
empirical likelihood by Owen

Asymptotic Theory of the likelihood region

Possible extensions to deal with Continuous Case

Wang, Glynn and Y [12,16]
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DRO using Wasserstein Ambiguity Set
By the Kantorovich-Rubinstein theorem, the Wasserstein distance
between two distributions can be expressed as the minimum cost of
moving one to the other, which is a semi-infinite transportation LP.

Theorem
When using the Wasserstein ambiguity set

DN := {Fξ | P(ξ ∈ Ξ) = 1 & d(Fξ, F̂N) ≤ εN},

where d(F1, F2) is the Wasserstein distance function and N is the
sample size, the DRO model satisfies the following properties:

Finite sample guarantee : the correctness probability P̄N is high

Asymptotic guarantee : P̄∞(limN→∞ x̂εN = x∗) = 1

Tractability : DRO is in the same complexity class as SAA

Mohajerin Esfahani & Kuhn [15, 17], Blanchet, Kang, Murthy [16], Duchi, Glynn, Namkoong

[16]
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DRO using Wasserstein Ambiguity Set
By the Kantorovich-Rubinstein theorem, the Wasserstein distance
between two distributions can be expressed as the minimum cost of
moving one to the other, which is a semi-infinite transportation LP.
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DRO with Wasserstein Ambiguity for Logistic

Regression

Let {(ξ̂i , λ̂i)}Ni=1 be a feature-label training set i.i.d. from P , and
consider applying logistic regression :

min
x

1

N

N∑
i=1

ℓ(x , ξ̂i , λ̂i) where ℓ(x , ξ, λ) = ln(1 + exp(−λxT ξ))

DRO suggests solving minx supF∈DN
EF [ℓ(x , ξi , λi)] with the

Wasserstein ambiguity set.

When labels are considered to be error free, DRO with DN

reduces to regularized logistic regression:

min
x

1

N

N∑
i=1

ℓ(x , ξ̂i , λ̂i) + ε∥x∥∗

Shafieezadeh Abadeh, Mohajerin Esfahani, & Kuhn, NIPS, [2015]
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Results of the DRO Learning

Sinha, Namkoong and Duchi [2017]
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Medical Application

Liu at all. [2017]
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Distributionally Robust Non-parametric

Conditional Estimation

Conditional estimation given specific covariate values (i.e., local
conditional estimation or functional estimation) is ubiquitously useful
with applications in engineering, social and natural sciences. We may

min
ψ

E[∥Y − ψ(X )∥22],

where the min is taken over all infinite measurable functions.

Or it can be cast into solving a family of finite-dimensional
optimization problems parametrically in x0:

min
β

EF [ℓ(Y , β)|X = x0] (4)

with an appropriately chosen statistical loss function ℓ and a response
variable Y , given the value or observation over a covariate X .
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Local Conditional Estimator

But it may happen that there is no or little training data with the
exact covariate X = x0. Then one can consider solving a Local
conditional estimation problem:

min
β

EF [ℓ(Y , β)|X ∈ Nγ(x0)] (5)

where the expectation is conditioned on a neighborhood Nγ(x0)
around x0 of radius γ. Under reasonable regularity assumptions,
problem (4) can be viewed as the limit of (5) as the radius γ of the
neighborhood shrinks to zero.

There are always added errors which may be due to finite sampling,
noise and corrupted data. This motivates us to investigate potential
strategies to robustify the local conditional estimation problem (5)
under the framework of distributionally robust optimization.
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Performance (Nguyen et al. 2020)

We compare to DRLE k-nearest neighbour (KNN), Nadaraya-Watson
(N-W), and Nadaraya-Epanechnikov (N-E) estimators on a digit
estimation problem using the MNIST database. We executed 100
experiments where training and test sets were randomly drawn
without replacement from the 60,000 training examples of this
dataset.

Method N = 50 N = 100 N = 500
KNN 25%± 2% 30%± 2% 59%± 2%
N-W 29%± 2% 39%± 2% 63%± 1%
N-E 26%± 1% 34%± 1% 48%± 1%
DRLE 34%± 2% 47%± 2% 70%± 1%

Table: Comparison of expected out-of-sample classification accuracy when
rounding the estimators’ outputs under different training set sizes. The
90% confidence interval are estimated based on 100 experiments.

Ye, Yinyu (Stanford) Robust and Online Optimization June 2, 2020 21 / 60



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Summary of DRO under Moment, Likelihood or

Wasserstein Ambiguity Set

The DRO models yield a solution with a guaranteed confidence
level to the possible distributions. Specifically, the confidence
region of the distributions can be constructed upon the historical
data and sample distributions.

The DRO models are tractable, and sometimes maintain the
same computational complexity as the stochastic optimization
models with known distribution.

This approach can be applied to a wide range of problems,
including inventory problems (e.g., newsvendor problem),
portfolio selection problems, image reconstruction, machine
learning, etc., with reported superior numerical results
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Background

Consider a store that sells a number of goods/products

There is a fixed selling period or number of buyers

There is a fixed inventory of goods

Customers come and require a bundle of goods and bid for
certain prices

Decision: To sell or not to each individual customer?

Objective: Maximize the revenue.
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An Example

Bid 1(t = 1) Bid 2(t = 2) ..... Inventory(b)
Reward(rt) $100 $30 ...
Decision x1 x2 ...
Pants 1 0 ... 100
Shoes 1 0 ... 50
T-shirts 0 1 ... 500
Jackets 0 0 ... 200
Hats 1 1 ... 1000
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Online Linear Programming Model

The classical offline version of the above program can be formulated
as a linear (integer) program as all information data would have
arrived: compute xt , t = 1, ..., n and

maximizex
∑n

t=1 rtxt
subject to

∑n
t=1 aitxt ≤ bi , ∀i = 1, ...,m

xt ∈ {0, 1} (0 ≤ xt ≤ 1), ∀t = 1, ..., n.

Now we consider the online or streamline and data-driven version of
this problem:

We only know b and n at the start

the bidder information is revealed sequentially along with the
corresponding objective coefficient.

an irrevocable decision must be made as soon as an order arrives
without observing or knowing the future data.
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Model Assumptions

Main Assumptions

0 ≤ ait ≤ 1, for all (i , t);
rt ≥ 0 for all t
The bids (at , rt) arrive in a random order (rather than from
some iid distribution).

Denote the offline LP maximal value by OPT (A, r). We call an
online algorithm A to be c-competitive if and only if

Eσ

[
n∑

t=1

rtxt(σ,A)

]
≥ c · OPT (A, r) ∀(A, r),

where σ is the permutation of arriving orders.
In what follows, we let

B = min
i
{bi}(> 0).

Ye, Yinyu (Stanford) Robust and Online Optimization June 2, 2020 27 / 60



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Model Assumptions

Main Assumptions

0 ≤ ait ≤ 1, for all (i , t);
rt ≥ 0 for all t
The bids (at , rt) arrive in a random order (rather than from
some iid distribution).

Denote the offline LP maximal value by OPT (A, r). We call an
online algorithm A to be c-competitive if and only if

Eσ

[
n∑

t=1

rtxt(σ,A)

]
≥ c · OPT (A, r) ∀(A, r),

where σ is the permutation of arriving orders.
In what follows, we let

B = min
i
{bi}(> 0).

Ye, Yinyu (Stanford) Robust and Online Optimization June 2, 2020 27 / 60



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Main Results: Necessary and Sufficient Conditions

Theorem
For any fixed 0 < ϵ < 1, there is no online algorithm for solving the
linear program with competitive ratio 1− ϵ if

B <
log(m)

ϵ2
.

Theorem
For any fixed 0 < ϵ < 1, there is a 1− ϵ competitive online algorithm
for solving the linear program if

B ≥ Ω

(
m log (n/ϵ)

ϵ2

)
.

Agrawal, Wang and Y [2010, 2014]
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Theorem
For any fixed 0 < ϵ < 1, there is no online algorithm for solving the
linear program with competitive ratio 1− ϵ if

B <
log(m)

ϵ2
.

Theorem
For any fixed 0 < ϵ < 1, there is a 1− ϵ competitive online algorithm
for solving the linear program if

B ≥ Ω

(
m log (n/ϵ)

ϵ2

)
.

Agrawal, Wang and Y [2010, 2014]
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Price Observation of Online Learning I

The problem would be easy if there are ”ideal prices”:

Bid 1(t = 1) Bid 2(t = 2) ..... Inventory(b) p∗

Bid(rt) $100 $30 ...
Decision x1 x2 ...
Pants 1 0 ... 100 $45
Shoes 1 0 ... 50 $45
T-shirts 0 1 ... 500 $10
Jackets 0 0 ... 200 $55
Hats 1 1 ... 1000 $15
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Price Observation of Online Learning II

Pricing the bid: The optimal dual price vector p∗ of the offline
LP problem can play such a role, that is x∗t = 1 if rt > aTt p

∗ and
x∗t = 0 otherwise, yields a near-optimal solution.

Based on this observation, our online algorithm works by
learning a threshold price vector p̂ and using p̂ to price the bids.

One-time learning algorithm: learn the price vector once using
the initial ϵn input.

Dynamic learning algorithm: dynamically update the prices at a
carefully chosen pace.
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Price Observation of Online Learning II

Pricing the bid: The optimal dual price vector p∗ of the offline
LP problem can play such a role, that is x∗t = 1 if rt > aTt p

∗ and
x∗t = 0 otherwise, yields a near-optimal solution.

Based on this observation, our online algorithm works by
learning a threshold price vector p̂ and using p̂ to price the bids.

One-time learning algorithm: learn the price vector once using
the initial ϵn input.
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One-Time Learning Algorithm

We illustrate a simple One-Time Learning Algorithm:

Set xt = 0 for all 1 ≤ t ≤ ϵn;

Solve the ϵ portion of the problem

maximizex
∑ϵn

t=1 rtxt
subject to

∑ϵn
t=1 aitxt ≤ (1− ϵ)ϵbi i = 1, ...,m

0 ≤ xt ≤ 1 t = 1, ..., ϵn

and get the optimal dual solution p̂;

Determine the future allocation xt as:

xt =

{
0 if rt ≤ p̂Tat
1 if rt > p̂Tat

as long as aitxt ≤ bi −
∑t−1

j=1 aijxj for all i ; otherwise, set xt = 0.
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One-Time Learning Algorithm Result

Theorem
For any fixed ϵ > 0, the one-time learning algorithm is (1− ϵ)
competitive for solving the linear program when

B ≥ Ω
(

m log (n/ϵ)
ϵ3

)

This is one ϵ worse than the optimal lower bound.
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Dynamic Learning Algorithm

In the dynamic price learning algorithm, we update the price at time
ϵn, 2ϵn, 4ϵn, ..., till 2kϵ ≥ 1.

At time ℓ ∈ {ϵn, 2ϵn, ...}, the price vector is the optimal dual solution
to the following linear program:

maximizex
∑ℓ

t=1 rtxt
subject to

∑ℓ
t=1 aitxt ≤ (1− hℓ)

ℓ
n
bi i = 1, ...,m

0 ≤ xt ≤ 1 t = 1, ..., ℓ

where

hℓ = ϵ

√
n

ℓ
;

and this price vector is used to determine the allocation for the next
immediate period.
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Geometric Pace/Grid of Price Updating
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Comments on Dynamic Learning Algorithm

In the dynamic algorithm, we update the prices log2 (1/ϵ) times
during the entire time horizon. One can also update prices or
resolve an LP problem after every bid to achieve a lightly better
competitive ratio.

The numbers hℓ play an important role in improving the
condition on B in the main theorem. It basically balances the
probability that the inventory ever gets violated and the lost of
revenue due to possible left-over goods.

Does the price vector converges?

Can the model handle the double-market?

Could the online algorithm avoid solving LPs?
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Recent Results: Dual Convergence I

The offline dual problem again

min
∑m

i=1 bipi +
∑n

j=1 yj

s.t.
∑m

i=1 aijpi + yj ≥ rj , j = 1, ..., n.

pi , yj ≥ 0 for all i , j .

can be rewritten, with d = b/n, as:

min
∑m

i=1 dipi +
∑n

j=1 (rj −
∑m

i=1 aijpi)
+

s.t. pi ≥ 0, i = 1, ...,m.

Here, entries of (rj , aj) can be either positive or negative!
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Recent Results: Dual Convergence II

Normalize the objective,

min fn(p) :=
∑m

i=1 dipi +
1
n

∑n
j=1 (rj −

∑m
i=1 aijpi)

+

s.t. pi ≥ 0, i = 1, ...,m.

Define the stochastic program

min f (p) := d⊤p+ E(r ,a)∼P
[
(r − a⊤p)+

]
s.t. p ≥ 0,

Observation: fn(p) is a sample average approximation for f (p)

The optimal dual solution p∗
n converges to the (unique) optimal

solution p∗ of the stochastic program. But at what rate?
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Recent Results: Dual Convergence III

Theorem
(Li and Y 2019) Define the binding index set B = {i : p∗i = 0} and
the non-binding index set N = {i : p∗

i ̸= 0}. Under standard
stochastic assumptions (iid...), there exists a universal constant C
such that

P (∥p∗
n(B)− p∗(B)∥2 ≥ ϵ) ≤ m exp

(
−Cnϵ2

m

)

P (∥p∗
n(N)− p∗(N)∥2 ≥ ϵ) ≤ m exp

(
−Cnϵ

m

)
for any ϵ > 0, m, n ∈ N+ and P ∈ Ξ. Here p∗

n(B), p
∗(B), p∗

n(N),
p∗(N) denote the sub-vectors corresponding to the indexes in B, N.
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Performance Metrics

“Offline” optimal solution x∗ = (x∗1 , ..., x
∗
n ) and “online” solution x.

R∗
n =

n∑
j=1

rjx
∗
j and Rn =

n∑
j=1

rjxj .

Objective: Minimize the worst-case gap, Regret, between the offline
and online objective values

∆n = supP∈Ξ EP [R∗
n − Rn] (Stochastic Input)

δn = supD∈ΞD
R∗
n − E [Rn] (Random Permutation)

Also, we measure the constraint violation of the online solution

v(x) = ∥ (Ax− b)+ ∥2
Remark: A bi-objective performance measure
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Recent Results: Action-Dependent Learning I

Earlier Online Algorithms

At each time t, compute the dual
optimal solution for the problem:

max
t−1∑
j=1

rjxj

s.t.
t−1∑
j=1

aijxj ≤ bi (t − 1)/n, ∀i

0 ≤ xj ≤ 1, j = 1, ..., t − 1

The algorithms are estimating p∗

purely using data.

Action-Dependent Learning

At each time t, compute the dual
optimal solution for the problem:

max
t−1∑
j=1

rjxj

s.t.
t−1∑
j=1

aijxj ≤
b̃i (t − 1)

n − t + 1
, ∀i

0 ≤ xj ≤ 1, j = 1, ..., t − 1

where b̃i = bi −
∑t−1

j=1 aij x̃j – the
new algorithm also considers
actions already taken.
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Recent Results: Action-Dependent Learning II

Provable regret performance curves with m = 4 when b = o(n),
where A1, A2, and A3 stand for Algorithm 1 (Early Dynamic
Learning), Algorithm 2 (Action-Dependent), and Algorithm 3 (Using
p∗), respectively.
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Fast LP-Free Algorithm

Input: d = b/n and Initialize p1 = 0

For t = 1, ..., n

Set

xt =

{
1, rt > a⊤t pt

0, rt ≤ a⊤t pt

Compute

pt+1 = pt + γt (atxt − d)

pt+1 = pt+1 ∨ 0

Output: x = (x1, ..., xn).

Stochastic subgradient descent for the dual equivalent form!
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Performance of the Stochastic Input Model

Theorem (Li, Sun, & Ye (2020))

With step size γt = 1/
√
n, the regret and expected constraint

violation of the algorithm satisfy

E[R∗
n − Rn] ≤ O(m

√
n)

E [v(x)] ≤ O(m
√
n).

hold for all m, n ∈ N+ and distribution P ∈ Ξ.

Remark: The proof utilizes the structure of the LP and largely
mimics the analyses of the online gradient descent algorithm.
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Performance of the Random Permutation Model

Theorem (Li, Sun, & Ye (2020))

With the step size γt =
1√
n
, the regret and expected constraint

violation of the algorithm satisfy

R∗
n − E[Rn] ≤ O((m + log n)

√
n)

E [v(x)] ≤ O(m
√
n).

for all m, n ∈ N+ and D ∈ ΞD .

An extra log(n)
√
n in the Regret for the Permutation Input Model

compared with that in the Stochastic iid Input Model. The proof
builds upon the notion of Permutational Rademacher Complexity
(Tolstikhin et al. 2015) which is originally used for analyzing
transductive learning.
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Two LP-Based Dynamic Algorithms

Theorem (Li, Sun, & Ye (2020))

Under the random permutation model, the regret and expected
constraint violation of the two algorithms (Agrawal et al. 2014,
Kesselheim et al. 2014) both satisfy

R∗
n − E[Rn] ≤ O

(√
mn

)
E[v(x)] ≤ O(

√
mn log n)

for all m, n ∈ N+ and D ∈ ΞD.

Remark: Compared with the fast algorithm, the regret and constraint
violation are reduced by a factor of

√
m with the price of more

computation cost.
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Numerical Experiments I

Multi-knapsack instances: Chu and Beasley (1998), Drake et al. (2016).

Gurobi Fast Alg. Alg. 1 Alg. 2

m = 5, n = 500 CPU time 0.260 0.039 487 487
Cmpt. Ratio 100% 94.6% 95.0% 94.9%

m = 10, n = 500 CPU time 0.350 0.029 373 373
Cmpt. Ratio 100% 95.74% 94.09% 93.94%

m = 30, n = 500 CPU time 0.310 0.039 491 491
Cmpt. Ratio 100% 95.6% 93.9% 92.2%

Alg. 1: Agrawal et al. (2014); Alg. 2: Kesselheim et al. (2014)

Gurobi computes the optimal solution in an offline fashion while the
other three algorithms are online.

Gurobi is set to solve the binary LP problem. The optimality ratio is
reported against the objective value of the Gurobi’s binary solution.
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Numerical Experiments II

Large-scale multi-knapsack problem:

Gurobi Fast Alg.

m = 100, n = 10, 000 CPU time 34.7 1.04
Cmpt. Ratio 100% 97.1%

m = 500, n = 10, 000 CPU time 267 1.05
Cmpt. Ratio 100% 95.2%

m = 1000, n = 10, 000 CPU time 764 1.47
Cmpt. Ratio 100% 94.9%

The other two algorithms are too slow to finish while Gurobi is set to
solve the relaxed LP problem.

The optimality ratio is reported against the objective value of the
relaxed LP, and it decreases as m grows with fixed n.
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Summary and Future Questions on Online

Optimization

B = logm
ϵ2

is now a necessary and sufficient condition (differing
by a constant factor).

Thus, they are optimal online algorithms for a very general class
of online linear programs.

The algorithms are distribution-free and/or non-parametric,
thereby robust to distribution/data uncertainty.

Better to do dynamic learning, that is, “learning-while-doing”,
and the Action-Dependent dynamic learning is even better.

Multi-item price-posting market?

More general online optimization?

Approximately solve large-scale offline binary LPs with the
proposed fast algorithm?
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Capacity Constraints on “Public Goods”

A pandemic adds capacity restriction to shops, gyms, schools, and
public spaces such as parks and beaches, which seems limitless under
normal times.
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“Time-of-Use” on “Public Goods”

To achieve an intermediate between the two extreme scenarios, open
or closed, through Time-of-Use goods. More precisely, create
different time periods and people “book/purchase” permits to use
the public spaces at one time-period so that the population density
on spaces can be upper limited.
(Jalota, Pavone and Y 2020)
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Market-Based Mechanism Design
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Market-Based Solution

How to setup “prices” for each time-period/good so that resources
can be efficiently allocated while keep each individual satisfied?
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The Model: Fisher’s Equilibrium Price

Buyer i ∈ B ’s optimization problem for given prices pj , j ∈ G .

max uT
i xi :=

∑
j∈G uijxij

s.t. pTxi :=
∑

j∈G pjxij ≤ wi ,

xij ≥ 0, ∀j ,

Assume that the given amount of each good is s̄j . The equilibrium
price vector is the one that for all j ∈ G∑

i∈B

x∗(p)ij = s̄j

where x∗(p) is a maximizer of the utility maximization problem for
every buyer i .
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The Fisher Market Illustration
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The Aggregated Social Optimization Problem

max
∑

i∈B wi log(uT
i xi)

s.t.
∑

i∈B xij = s̄j , ∀j ∈ G

xij ≥ 0, ∀i , j ,

Theorem
(Eisenberg and Gale 1959) Optimal dual (Lagrange) multiplier vector
of equality constraints is an equilibrium price vector.

Proof: The optimality conditions of the social problem are identical
to the equilibrium conditions.
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The Model with Individual Physical Constraints

Buyer i ∈ B ’s optimization problem for given prices pj , j ∈ G .

max uT
i xi :=

∑
j∈G uijxij

s.t. pTxi :=
∑

j∈G pjxij ≤ wi ,

Aixi ≤ bi ,

xij ≥ 0, ∀j ,

Could we still solve (?)

max
∑

i∈B wi log(uT
i xi)

s.t.
∑

i∈B xij = s̄j , ∀j ∈ G

Aixi ≤ bi , ∀i ∈ B ,

xij ≥ 0, ∀i , j ,
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The Budget Adjust Mechanism

max
∑

i∈B(wi + δi) log(uT
i xi)

s.t.
∑

i∈B xij = s̄j , ∀j ∈ G

Aixi ≤ bi , ∀i ∈ B ,

xij ≥ 0, ∀i , j ,

by adding δi ≥ 0’s at ideal levels, which itself becomes a fixed-point
computation problem.

Theorem
There is one-one correspondence of an equilibrium price vector p∗

and a fixed-point solution of δ∗i s, that is, δ
∗
i = bT

i y
∗
i , ∀i where y∗i is

the optimal multiplier vector of constraint Aixi ≤ bi with input δ∗i s.

Implementation: There is no need to solve the problem to the
individual level but a clusters of buyers who have similar
behaviors/preferences.
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The Budget Adjustment Iterative Process

Adjust δk+1
i = bT

i y
k
i for all i iteratively where yki the optimal

multiplier vector of constraint Aixi ≤ bi with input δki .
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Summary of the Model with Physical Constraints

The equilibrium price vector exist under mild technical
conditions.

The problem seems able to be solved efficiently from a simple
iterative procedure as described.

Open questions

Is the equilibrium price vector unique?

Is the simple iterative procedure provably convergent?

Is the fixed-point problem Tarski’s type?

Is the problem in the class of PPAD or there exists a polynomial
time algorithm?
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