DRSOM: A Dimension-Reduced Second-Order Method for Machine and Deep Learning

DISTINGUISHED LECTURES SEMINAR @ HKUST

SEPTEMBER 29, 2022

Yinyu Ye (joint work with many...)
Stanford University and CUHKSZ
(Currently Visiting CUHK and HK PolyU)

Today's Talk

(1) Motivation and Literature Review

(2) The Algorithm and Preliminary Convergence Analyses

(3) Computational Experiments

Part (1)

Motivation and Literature Review

Early Complexity Analyses for Nonconvex Optimization

$$\min f(x), x \in X \text{ in } \mathbb{R}^n$$
,

• where *f* is nonconvex and twice-differentiable,

$$g_k = \nabla f(x_k), H_k = \nabla^2 f(x_k)$$

• Goal: find x_k such that:

```
\|\nabla f(x_k)\| \le \epsilon (primary, first-order condition)
```

$$\lambda_{min}(H_k) \ge -\sqrt{\epsilon}$$
 (in active subspace, secondary, second-order condition)

- For the ball-constrained nonconvex QP: min cTx + 0.5xTQx s.t. $||x||_2 \le 1$ O(loglog(ϵ^{-1})); see Y (1989,93), Vavasis&Zippel (1990)
- For nonconvex QP with polyhedral constraints: $O(\epsilon^{-1})$; see Y (1998), Vavasis (2001)

Standard methods for general nonconvex optimization I

First-order Method (FOM): Gradient-Type Methods

- Assume f has L-Lipschitz cont. gradient
- Global convergence by, e.g., linear-search (LS)
- No guarantee for the second-order condition
- Worst-case complexity, $O(\epsilon^{-2})$; see the textbook by Nesterov (2004)

Each iteration requires O(n²) operations

Standard methods for general nonconvex optimization II

Second-order Method (SOM): Hessian-Type Methods

- Assume f has M-Lipschitz cont. Hessian
- Global convergence by, e.g., linear-search (LS), Trust-region (TR), or Cubic Regularization
- Convergence to second-order points
- No better than $O(\epsilon^{-2})$, for traditional methods (steepest descent and Newton); according to Cartis et al. (2010).

Each iteration requires O(n³) operations

Analyses of SOM for general nonconvex optimization since 2000

Variants of SOM

- Trust-region with the fixed-radius strategy, $O(\epsilon^{-3/2})$, see the lecture notes by Y since 2005
- Cubic regularization, $O(\epsilon^{-3/2})$, see Nesterov and Polyak (2006), Cartis, Gould, and Toint (2011)
- A new trust-region framework, $O(\epsilon^{-3/2})$, Curtis, Robinson, and Samadi (2017)
- With "slight" modification, complexity of SOM reduces from $O(\epsilon^{-2})$ to $O(\epsilon^{-3/2})$

Other complexity analyses for some structural nonconvex optimization

- Ge, Jiang, and Y (2011), $O(\epsilon^{-1}\log(1/\epsilon))$, for L_p minimization arisen from Comp. Sensing.
- Bian, Chen, and Y (2015), $O(\epsilon^{-3/2})$, for certain non-Lipschitz and nonconvex optimization.
- Chen et al. (2014) shows strongly NP-hardness for $L_2 L_p$ minimization; but later Ge, He, and He (2017) proposes a method with complexity of $O(\log(\epsilon^{-1}))$ to find a local minimum
- Haeser, Liu, and Y (2019) uses the first-order and second-order interior point trust-region method achieving first-order ϵ -KKT points with complexity of $O(\epsilon^{-2})$ and $O(\epsilon^{-3/2})$, respectively.

Recent efforts for general nonconvex optimization

FOM Improvements:

- FOM with Hessian negative curvature (NC) detections, $O(\epsilon^{-7/4}\log(1/\epsilon))$
 - Carmon et al. (2018), with Hessian-vector product (HVP) and Lanczos
 - cost $O(\epsilon^{-1/4})$ for each negative curvature request
 - Also, Carmon et al. (2017), does not require HVP (only first-order condition)
- Agarwal et al. (2016), also $O(\epsilon^{-7/4})$, using accelerated methods for fast approximate matrix inversion

They are hybrid and/or randomized methods and seem difficult to be implemented

Our approach: Reduce dimension in SOM

Part (2)

The Algorithm and Preliminary Convergence Analyses

Motivation from multi-directional FOM

• Two-directional FOM, with d_k being the momentum direction $(x_k - x_{k-1})$

$$x_{k+1} = x_k - \alpha_k^1 \nabla f(x_k) + \alpha_k^2 d_k = x_k + d_{k+1}$$

where step-sizes are constructed; including CG, PT, AGD, Polyak, and many others.

• In SOM, a method typically minimizes a full dimensional quadratic Taylor expansion to obtain direction vector d_{k+1} . For example, one TR step solves for d_{k+1} from

$$\min_d (g_k)^T d + 0.5 d^T H_k d \quad s.t. ||d||_2 \le \Delta_k$$

where Δ_k is the trust-region radius.

DRSOM: Dimension Reduced Second-Order Method

Motivation: using few directions in SOM

DRSOM I

The DRSOM in general uses m-independent directions

$$d(\alpha) := D_k \alpha$$
, $D_k \in \mathbb{R}^{nm}$, $\alpha \in \mathbb{R}^m$

• Plug the expression into the full-dimension TR quadratic minimization problem, we minimize a m-dimension trust-region subproblem to decide "m stepsizes":

min
$$m_k^{\alpha}(\alpha) := (c_k)^T \alpha + \frac{1}{2} \alpha^T Q_k \alpha$$

$$||\alpha||_{G_k} \le \Delta_k$$

$$G_k = D_k^T D_k$$
, $Q_k = D_k^T H_k D_k$, $C_k = (g_k)^T D_k$

How to choose D_k ? How great would m be? Rank of H_k ? (Randomized) rank reduction of a symmetric matrix to log(n) (So et al. 08)?

DRSOM II

• In following, as an example, DRSOM adopts two FOM directions

$$d = -\alpha^1 \nabla f(x_k) + \alpha^2 d_k := d(\alpha)$$
 where $g_k = \nabla f(x_k)$, $H_k = \nabla^2 f(x^k)$, $d_k = x_k - x_{k-1}$

• Then we minimize a 2-D trust-region problem to decide "two step-sizes":

$$\min \ m_k^{\alpha} (\alpha) \coloneqq f(x_k) + (c_k)^T \alpha + \frac{1}{2} \alpha^T Q_k \alpha$$

$$||\alpha||_{G_k} \le \Delta_k$$

$$G_k = \begin{bmatrix} g_k^T g_k & -g_k^T d_k \\ -g_k^T d_k & d_k^T d_k \end{bmatrix}, Q_k = \begin{bmatrix} g_k^T H_k g_k & -g_k^T H_k d_k \\ -g_k^T H_k d_k & d_k^T H_k d_k \end{bmatrix}, c_k = \begin{bmatrix} -||g_k||^2 \\ g_k^T d_k \end{bmatrix}$$

DRSOM III

DRSOM can be seen as:

- "Adaptive" Accelerated Gradient Method (Polyak's momentum 60)
- A second-order method minimizing quadratic model in the reduced 2-D

$$m_k(d) = f(x_k) + \nabla f(x_k)^T d + \frac{1}{2} d^T \nabla^2 f(x_k) d, d \in \text{span}\{-g_k, d_k\}$$

compare to, e.g., Dogleg method, 2-D Newton **Trust-Region Method** $d \in \text{span}\{g_k, [H(x_k)]^{-1}g_k\}$ (e.g., Powell 70)

- A conjugate direction method for convex optimization exploring the Krylov Subspace (e.g., Yuan&Stoer 95)
- For convex quadratic programming with no radius limit, terminates in n steps

Computing Hessian-Vector Product in DRSOM is the Key

In the DRSOM with two directions:

$$Q_{k} = \begin{bmatrix} g_{k}^{T} H_{k} g_{k} & -g_{k}^{T} H_{k} d_{k} \\ -g_{k}^{T} H_{k} d_{k} & d_{k}^{T} H_{k} d_{k} \end{bmatrix}, c_{k} = \begin{bmatrix} -||g_{k}||^{2} \\ g_{k}^{T} d_{k} \end{bmatrix}$$

How to cheaply obtain Q? Compute $H_k g_k$, $H_k d_k$ first.

• Finite difference:

$$H_k \cdot v \approx \frac{1}{\epsilon} [g(x_k + \epsilon \cdot v) - g_k],$$

Analytic approach to fit modern automatic differentiation,

$$H_k g_k = \nabla(\frac{1}{2}g_k^T g_k), H_k d_k = \nabla(d_k^T g_k),$$

• or use Hessian if readily available!

Subproblem adaptive strategies in DRSOM I

Recall 2-D quadratic model:

$$\min m_k^{\alpha}(\alpha) := f(x_k) + (c_k)^T \alpha + \frac{1}{2} \alpha^T Q_k \alpha$$

$$||\alpha||_{G_k} \le \Delta_k, G_k = \begin{bmatrix} g_k^T g_k & -g_k^T d_k \\ -g_k^T d_k & d_k^T d_k \end{bmatrix}, Q_k = \begin{bmatrix} g_k^T H_k g_k & -g_k^T H_k d_k \\ -g_k^T H_k d_k & d_k^T H_k d_k \end{bmatrix}, c_k = \begin{bmatrix} -||g_k||^2 \\ g_k^T d_k \end{bmatrix}$$

Apply two strategies that ensure global and convergence

Trust-region: Adaptive radius

$$\min_{\alpha} m_k^{\alpha}(\alpha), \parallel \alpha \parallel_{G_k} \leq \Delta_k, G_k = \begin{bmatrix} g_k^T g_k & -g_k^T d_k \\ -g_k^T d_k & d_k^T d_k \end{bmatrix}$$

• Radius-free: Apply Lagrangian multiplier λ_k

$$\min_{\alpha} m_k^{\alpha}(\alpha) + \lambda_k \|\alpha\|_{G_k}^2$$

• The subproblems can be solved efficiently.

Subproblem adaptive strategies in DRSOM II

At each iteration k, the DRSOM proceeds:

- Solving 2-D Quadratic trust-region model
- Computing quality of the approximation*

$$\rho^{k} := \frac{f(x^{k}) - f(x^{k} + d^{k+1})}{m_{p}^{k}(0) - m_{p}^{k}(d^{k+1})} = \frac{f(x^{k}) - f(x^{k} + d^{k+1})}{m_{\alpha}^{k}(0) - m_{\alpha}^{k}(\alpha^{k})}$$

- If ρ is too small, increase λ (Radius-Free) or decrease Δ (trust-region)
- Otherwise, decrease λ or increase Δ

^{*}Can be further improved by other acceptance criteria, e.g., Curtis et al. 2017

DRSOM: key assumptions and theoretical results (Zhang at al. SHUFE)

Assumption. (a) f has Lipschitz continuous Hessian. (b) DRSOM iterates with a fixed-radius strategy: $\Delta_k = \epsilon/\beta$ c) If the Lagrangian multiplier $\lambda_k < \sqrt{\epsilon}$, assume $\|(H_k - \widetilde{H}_k)d_{k+1}\| \le C \|d_{k+1}\|^2$ (Cartis et al.), where \widetilde{H}_k is the projected Hessian in the subspace (commonly adopted for approximate Hessian)

Theorem 1. If we apply DRSOM to QP, then the algorithms terminates in at most n steps to find a first-order stationary point

Theorem 2. (Global convergence rate) For f with second-order Lipschitz condition, DRSOM terminates in $O(\epsilon^{-3/2})$ iterations. Furthermore, the iterate x_k satisfies the first-order condition, and the Hessian is positive semi-definite in the subspace spanned by the gradient and momentum.

Theorem 3. (Local convergence rate) If the iterate x_k converges to a strict local optimum x^* such that $H(x^*) > 0$, and if **Assumption (c)** is satisfied as soon as $\lambda_k \le C_\lambda \parallel d_{k+1} \parallel$, then DRSOM has a local superlinear (quadratic) speed of convergence, namely: $\parallel x_{k+1} - x^* \parallel = O(\parallel x_k - x^* \parallel^2)$

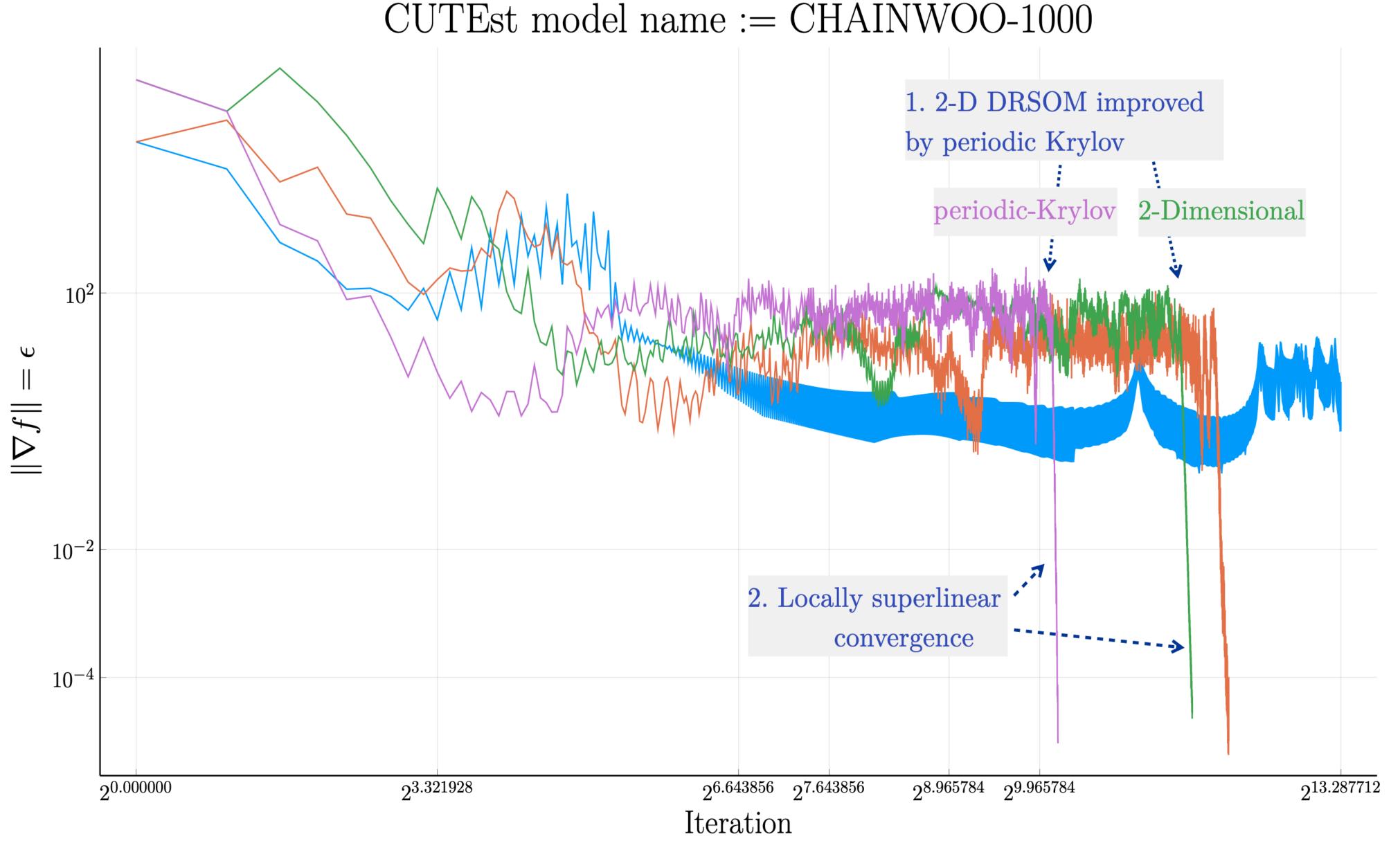
DRSOM: How to remove Assumption (c)?

- Global rate: ensure <u>Assumption (c)</u> holds *periodically* (whenever needed, e.g., switch to Krylov)
- Local rate: ensure Assumption (c) holds around x^* , we have the desired results.

Specifically, expand subspace if Assumption (c) does not hold...

- Carmon et al. (2018) find the NC ($O(\epsilon^{-1/4})$ for each step) and proceed
- Run Lanczos (worst-case without sparsity $O(n^3)$)
- Trade-off between $O(\epsilon^{-7/4})$ (more dimension-free) and $O(\epsilon^{-3/2})$

DRSOM: convergence behavior, an example



GD+Wolfe
LBFGS+Wolfe
DRSOM-F(2-D)
DRSOM-F(periodic-Krylov)

Example from the CUTEst dataset

- GD and LBFGS both use a Line-search (Hager-Zhang)
- DRSOM-F (2-D): original 2-dimensional version with g_k and d_k
- DRSOM-F (periodic-Krylov), guarantees $\| (H_k - \widetilde{H}_k) d_{k+1} \| \le C$ $\| d_{k+1} \|^2 \text{ periodically.}$

Part (3)

Computational Experiments

Nonconvex L₂-L_p Minimization in Compressed Sensing

Consider nonconvex L2-Lp minimization, p < 1

$$f(x) = ||Ax - b||_2^2 + \lambda ||x||_p^p$$

Smoothed version

$$f(x) = ||Ax - b||_2^2 + \lambda \sum_{i=1}^n s(x_i, \epsilon)^p$$

$$s(x,\epsilon) = egin{cases} |x| & ext{if } |x| > \epsilon \ rac{x^2}{2\epsilon} + rac{\epsilon}{2} & ext{if } |t| \leq \epsilon \end{cases}$$

	200	m	DRSOM			AGD			LBFGS			Newton TR		
	n		k	$\ abla f \ $	$ ext{time}$	k	$\ abla f\ $	$ ext{time}$	k	$\ abla f\ $	$_{ m time}$	k	$\ abla f\ $	$_{ m time}$
	100	10	28	5.8e-07	1.3e+00	58	8.5 e-06	4.3e-01	21	8.9e-06	1.4e-01	10	7.1e-07	1.4e-02
	100	20	47	6.0 e-07	1.0e-03	150	8.2e-06	7.0e-03	35	$6.2\mathrm{e}\text{-}06$	2.0e-03	9	$4.9\mathrm{e}\text{-}07$	9.0e-03
p	100	100	98	1.8e-06	1.1e-02	632	1.0e-05	4.6e-01	106	9.8e-06	7.3e-02	47	9.9e-07	7.3e + 00
	200	10	24	1.3e-06	1.0e-03	37	7.8e-06	1.0e-03	18	1.4e-06	1.0e-03	13	5.9e-10	4.0e-03
	200	20	47	9.3e-07	2.0e-03	115	9.4e-06	2.9e-02	33	6.2 e-06	2.0e-03	17	6.7e-06	5.2e-02
	200	100	107	4.3e-06	1.5e-02	814	9.9e-06	9.3e-01	85	6.2 e-06	1.1e-01	36	1.1e-07	7.6e + 00
	1000	10	25	4.2e-06	3.0e-03	97	9.0e-06	3.6e-02	18	2.2e-06	5.0e-03	16	3.2e-07	5.4e-02
	1000	20	27	5.8e-06	3.0e-03	68	7.6e-06	3.4e-02	27	4.5e-06	$4.7\mathrm{e}\text{-}02$	13	7.8e-06	1.6e-01
	1000	100	76	1.7e-05	2.6e-02	408	1.4e-05	2.6e + 00	73	6.4e-06	6.1e-01	32	8.3e-07	1.3e + 01

Iterations needed to reach $\varepsilon = 10e-6$

- Compare DRSOM to Accelerated Gradient Descend (AGD), LBFGS, and Newton Trust-region
- DRSOM is comparable to full-dimensional SOM in iteration number
- DRSOM is much better in computation time!

Sensor Network Location (SNL)

Consider Sensor Network Location (SNL)

$$N_x = \{(i,j) : ||x_i - x_j|| = d_{ij} \le r_d\}, N_a = \{(i,k) : ||x_i - a_k|| = d_{ik} \le r_d\}$$

where r_d is a fixed parameter known as the radio range. The SNL problem considers the following QCQP feasibility problem,

$$||x_i - x_j||^2 = d_{ij}^2, \forall (i, j) \in N_x$$

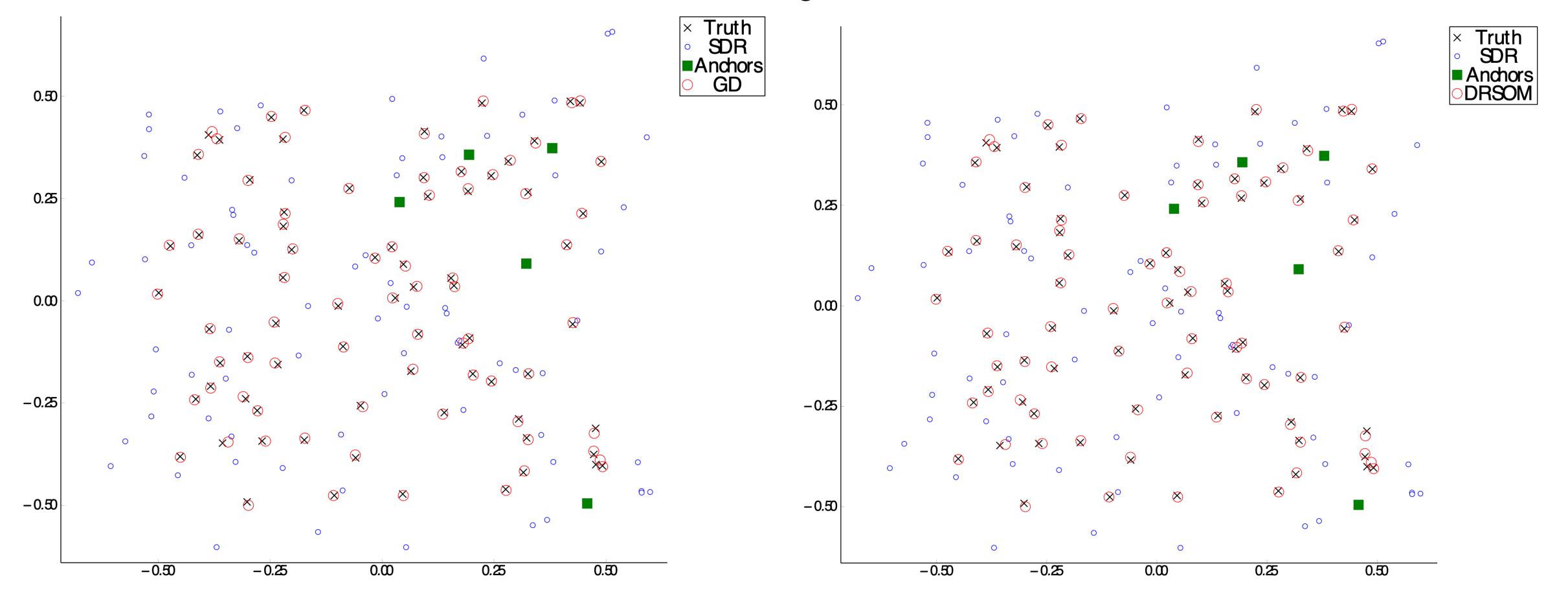
 $||x_i - a_k||^2 = \bar{d}_{ik}^2, \forall (i, k) \in N_a$

We can solve SNL by the nonconvex nonlinear least square (NLS) problem

$$\min_{X} \sum_{(i < j, j) \in N_x} (\|x_i - x_j\|^2 - d_{ij}^2)^2 + \sum_{(k, j) \in N_a} (\|a_k - x_j\|^2 - \bar{d}_{kj}^2)^2.$$

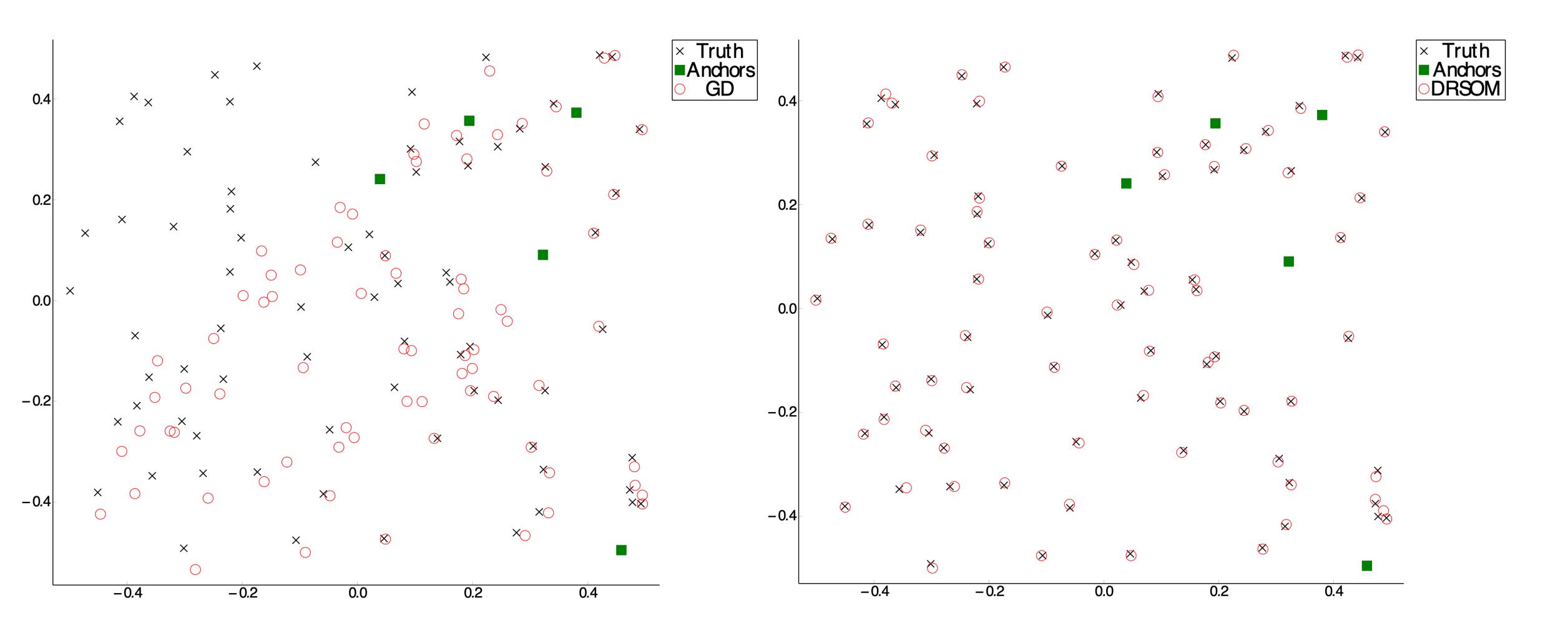
Sensor Network Location (SNL)

- Graphical results using SDP relaxation to initialize the NLS
- n = 80, m = 5 (anchors), radio range = 0.5, degree = 25, noise factor = 0.05
- Both Gradient Descent and DRSOM can find good solutions!



Sensor Network Location (SNL)

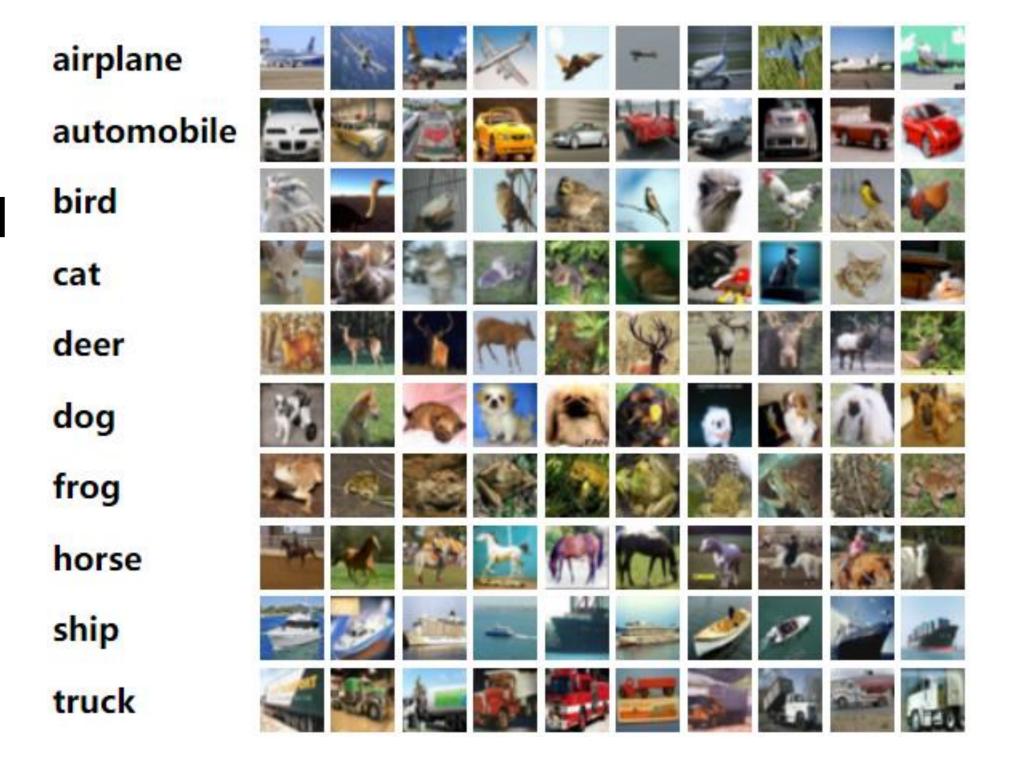
- Graphical results without SDP relaxation
- DRSOM can still converge to optimal solutions



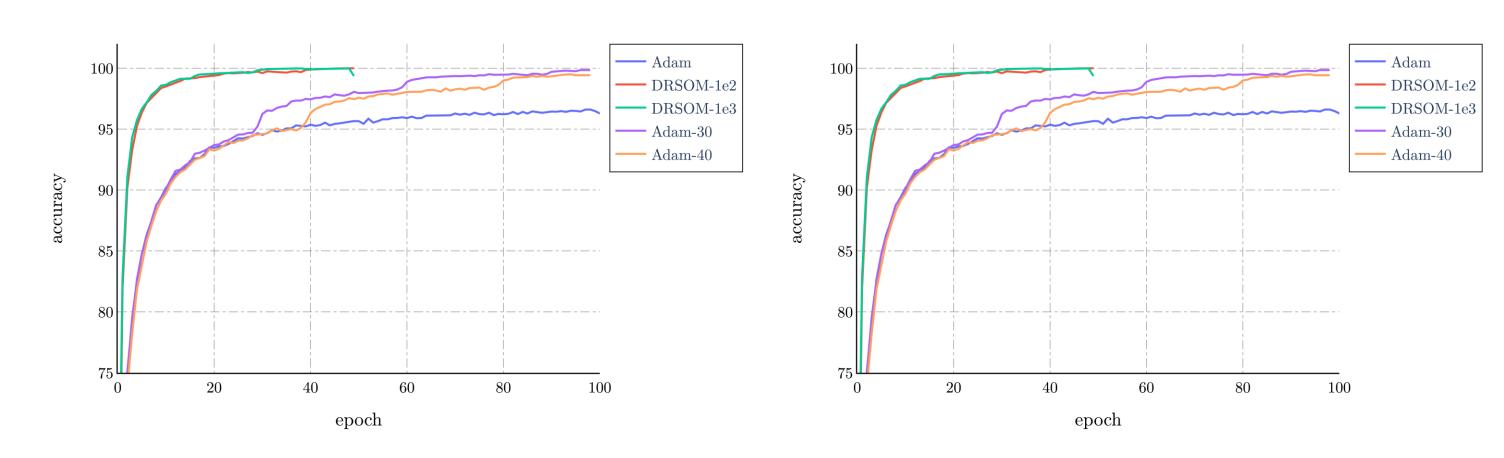
Neural Networks and Deep Learning

To use DRSOM in machine learning problems

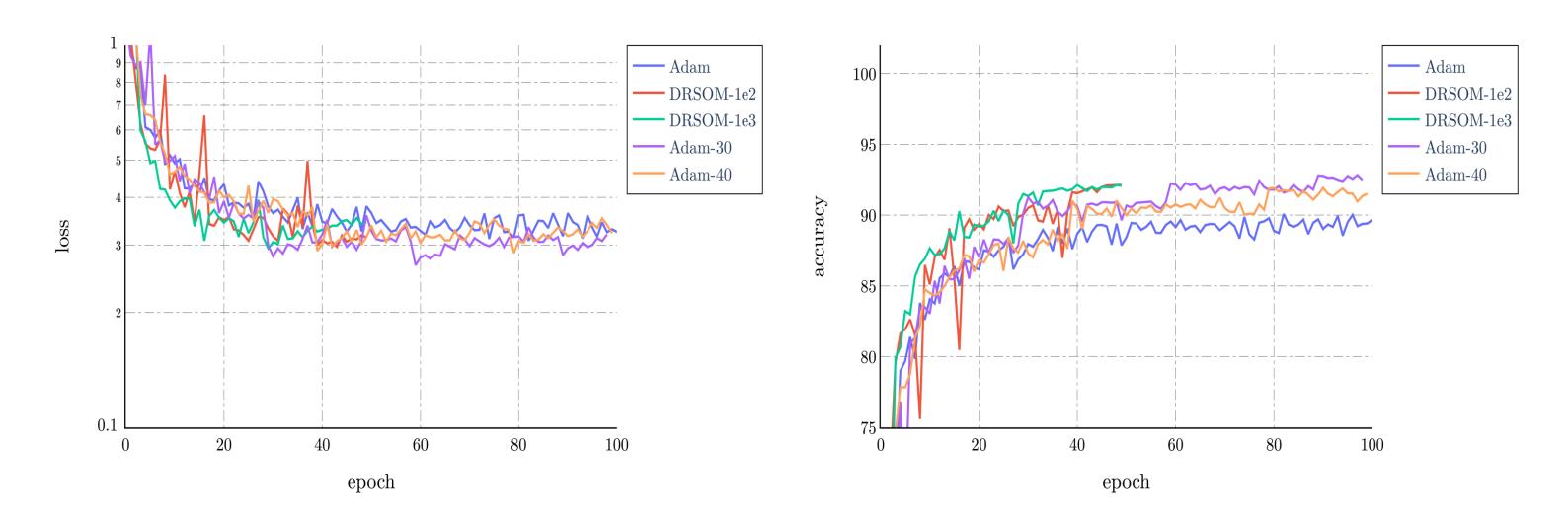
- We apply the mini-batch strategy to a vanilla DRSOM
- Use Automatic Differentiation to compute gradients
- Train ResNet18 Model with CIFAR 10
- Set Adam with initial learning rate 1e-3



Neural Networks and Deep Learning



Training results for ResNet18 with DRSOM and Adam



Test results for ResNet18 with DRSOM and Adam

Pros

- DRSOM has rapid convergence (30 epochs)
- DRSOM needs little tuning

Cons

- DRSOM may overfit the models
- Needs 4~5x time than Adam to run same number of epoch

Good potential to be a standard optimizer for deep learning!

Policy Optimization

$$\max_{\theta \in \mathbb{R}^d} J(\theta) := \mathbb{E}_{\tau \sim p(\tau \mid \theta)} [\mathcal{R}(\tau)] = \int \mathcal{R}(\tau) p(\tau \mid \theta) d\tau$$

Vanilla policy gradient: Apply gradient descent to find the policy that maximizes the expected return:

$$heta_{t+1} = heta_t + \eta_t \hat{
abla}_{ heta} J(heta)$$
 where $\hat{
abla}_{ heta} J(heta)$ is estimated stochastic gradient. Examples include:

- Runrukue (ขึ้นแล้นร์) ว์เmple statistical gradient-following algorithms for connectionist reinforcement learning, 1992)
- PGT (Sutton et al., Policy gradient methods for reinforcement learning with function approximation, 1999)

Policy gradient based on KL divergence

- Trust Region Policy Optimization (TRPO): Linearize objective function and update parameter under KL constraint (J. Schulman et al. "Trust region policy optimization", 2015)
- Proximal Policy Optimization (PPO): Update the parameter via KL-regularized gradient ascent (J. Schulman et al. "Proximal policy optimization algorithms", 2017)
- Mirror descent policy optimization (Tomar et al. 2021, Shani et al. 2020)

Many other recent developments

- Momentum policy gradient (Feihu Huang et al. 2021), Hessian-aided policy gradient (Zebang Shen et al. 2019), Variance reduced policy gradient (Papini et al. 2018)

DRSOM for Policy Gradient (PG) (Liu et al. SHUFE)

As mentioned above, the goal is to maximize the expected discounted trajectory reward:

$$\max_{\theta \in \mathbb{R}^d} J(\theta) := \mathbb{E}_{\tau \sim p(\tau \mid \theta)} [\mathcal{R}(\tau)] = \int \mathcal{R}(\tau) p(\tau \mid \theta) d\tau$$

The gradient can be estimated by:

$$\hat{\nabla} J(\theta) = \frac{1}{|\mathcal{B}|} \sum_{i \in \mathcal{B}} \hat{\nabla} \log p \left(\tau_i \mid \theta\right) \mathcal{R} \left(\tau_i\right)$$

• With the estimated gradient, we can apply DRSOM to get the step size α , and update the parameter by:

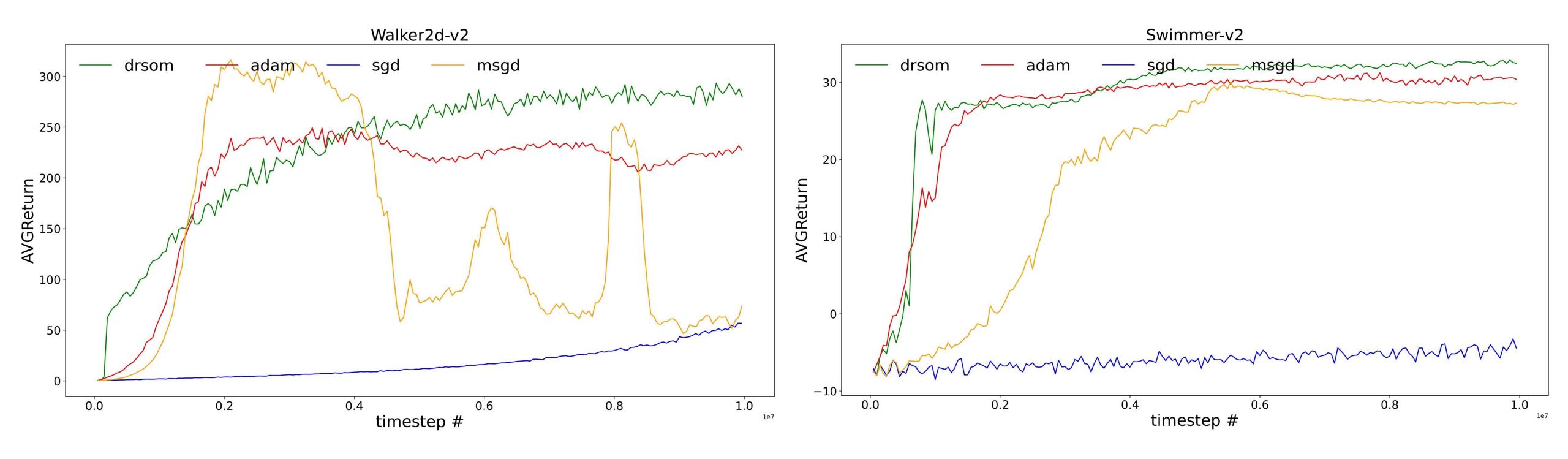
$$\theta_{t+1} = \theta_t + \alpha_t^1 \hat{\nabla} J(\theta_t) + \alpha_t^2 d_t$$

where d_t is the momentum direction.

DRSOM/ADAM/SGD Preliminary Results I

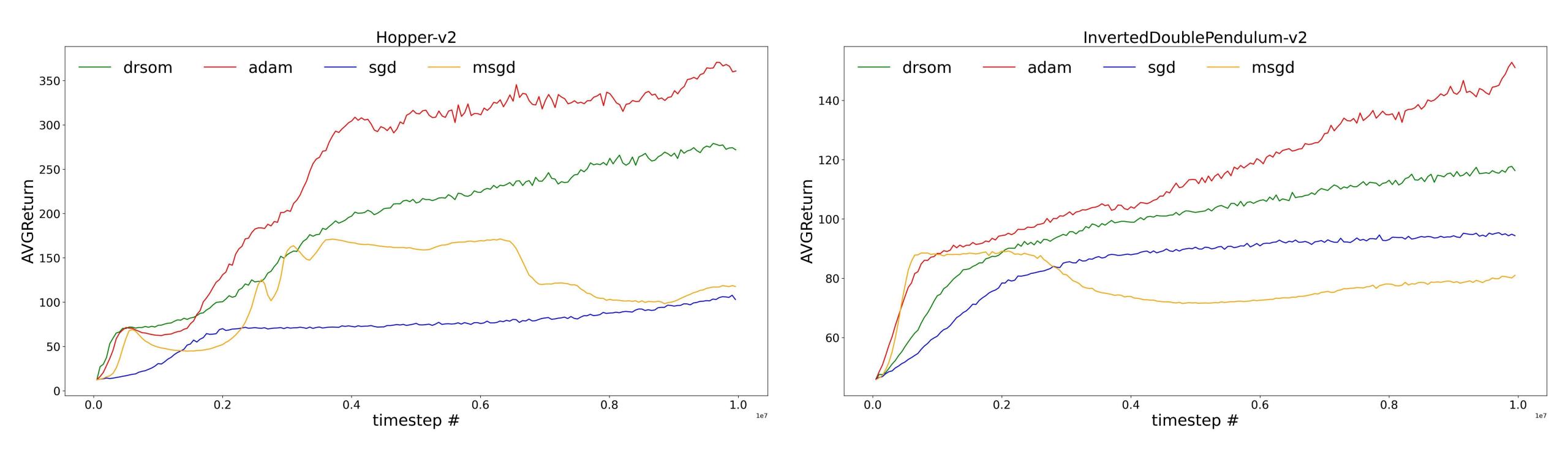
We compare the performance of DRSOM-based Reinforce with Adam-based reinforce and SGD-based reinforce(with(msgd) and without(sgd) momentum) on several GYM environments.

We set the learning rate of Adam and SGD both as 1e-3, and momentum of MSGD as 0.99



In these two cases, DRSOM converges faster and gain higher return than other algorithms. And also DRSOM seems to be more steady.

DRSOM/ADAM/SGD Preliminary Results II



In these two cases, DRSOM performs better than SGD but worse than ADAM.

DRSOM for TRPO I (Xue et al. SHUFE)

• TRPO attempts to optimize a surrogate function (based on the current iterate) of the objective function while keep a KL divergence constraint

$$\max_{ heta} \ L_{ heta_k}(heta)$$
 s.t. $\operatorname{KL}\left(\operatorname{Pr}_{\mu}^{\pi_{ heta_k}} \|\operatorname{Pr}_{\mu}^{\pi_{ heta}}\right) \leq \delta$

• In practice, it linearizes the surrogate function, quadratizes the KL constraint, and obtain

$$\max_{\theta} \quad g_k^T(\theta - \theta_k)$$

s.t.
$$\frac{1}{2}(\theta - \theta_k)^T F_k(\theta - \theta_k) \leq \delta$$

where F_k is the Hessian of the KL divergence.

DRSOM for TRPO II

 The problem admits a closed form solution, but requires solving a full dimension linear system,

$$F_k x = g_k$$

leading to high computational cost!

• With the idea of DRSOM, we restrict $\theta_{k+1} \in \text{span}\{g_k, d_k\}$, then update $\theta_{k+1} = \theta_k + \alpha_k^1 g_k + \alpha_k^2 d_k$. To choose the step size, we consider the following optimization problem:

$$\max_{lpha \in \mathbb{R}^2} c_k^T lpha$$

s.t.
$$\frac{1}{2}\alpha^T G_k \alpha \leq \delta$$

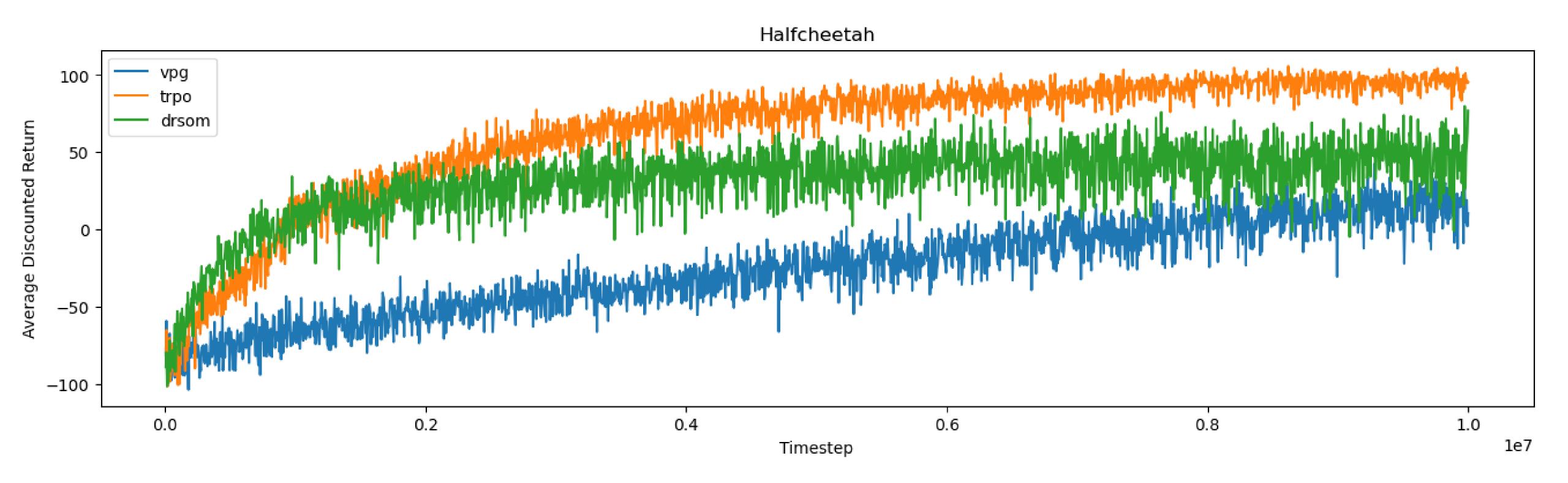
where

$$c_k = \begin{pmatrix} \|g_k\|^2 \\ g_k^T d_k \end{pmatrix} \in \mathbb{R}^2 \text{ and } G_k = \begin{pmatrix} g_k^T H_k g_k & d_k^T H_k g_k \\ d_k^T H_k g_k & d_k^T H_k d_k \end{pmatrix} \in \mathcal{S}^2$$

Still has a closed form solution, but we only need to solve a 2 dimension linear system!

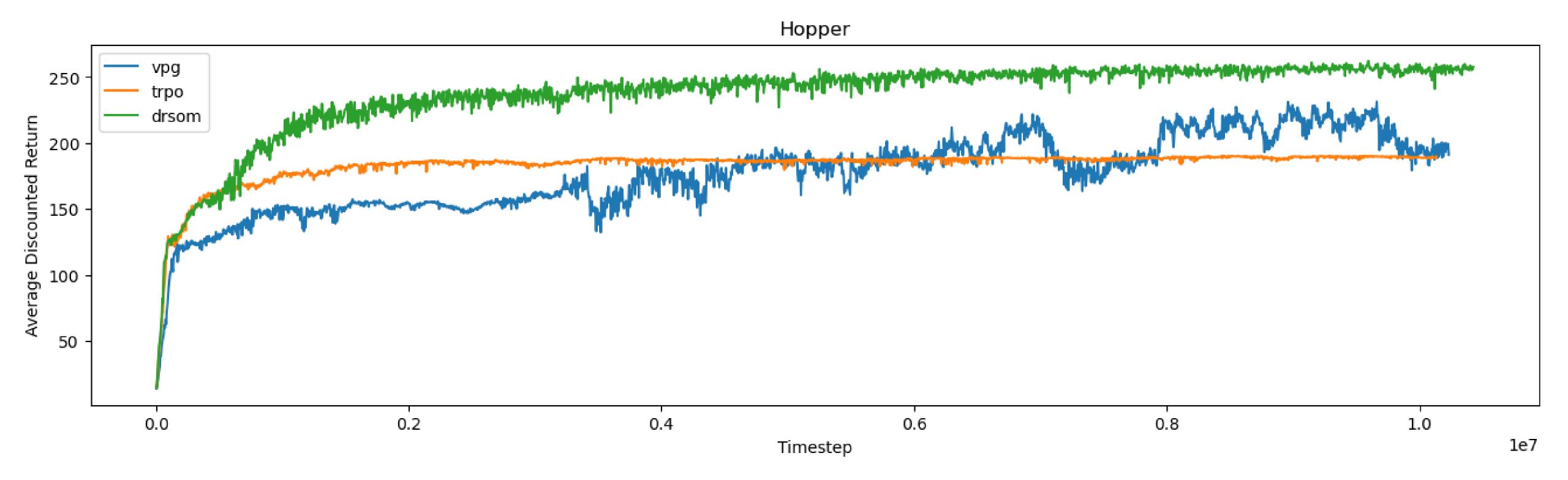
DRSOM/TRPO Preliminary Results I

 Although we only maintain the linear approximation of the surrogate function, surprisingly the algorithm works well in some RL environments



DRSOM/TRPO Preliminary Results II

Sometimes even better than TRPO!



DRSOM for TRPO (Incorporating the Natural Gradient Direction)

• We then consider restricting $\theta_{k+1} \in \text{span}\{F_k^{-1}g_k, d_k\}$, then update $\theta_{k+1} = \theta_k + \alpha_k^1 F_k^{-1}g_k + \alpha_k^2 d_k$ To choose the step size, we still consider the 2-dimensional optimization problem:

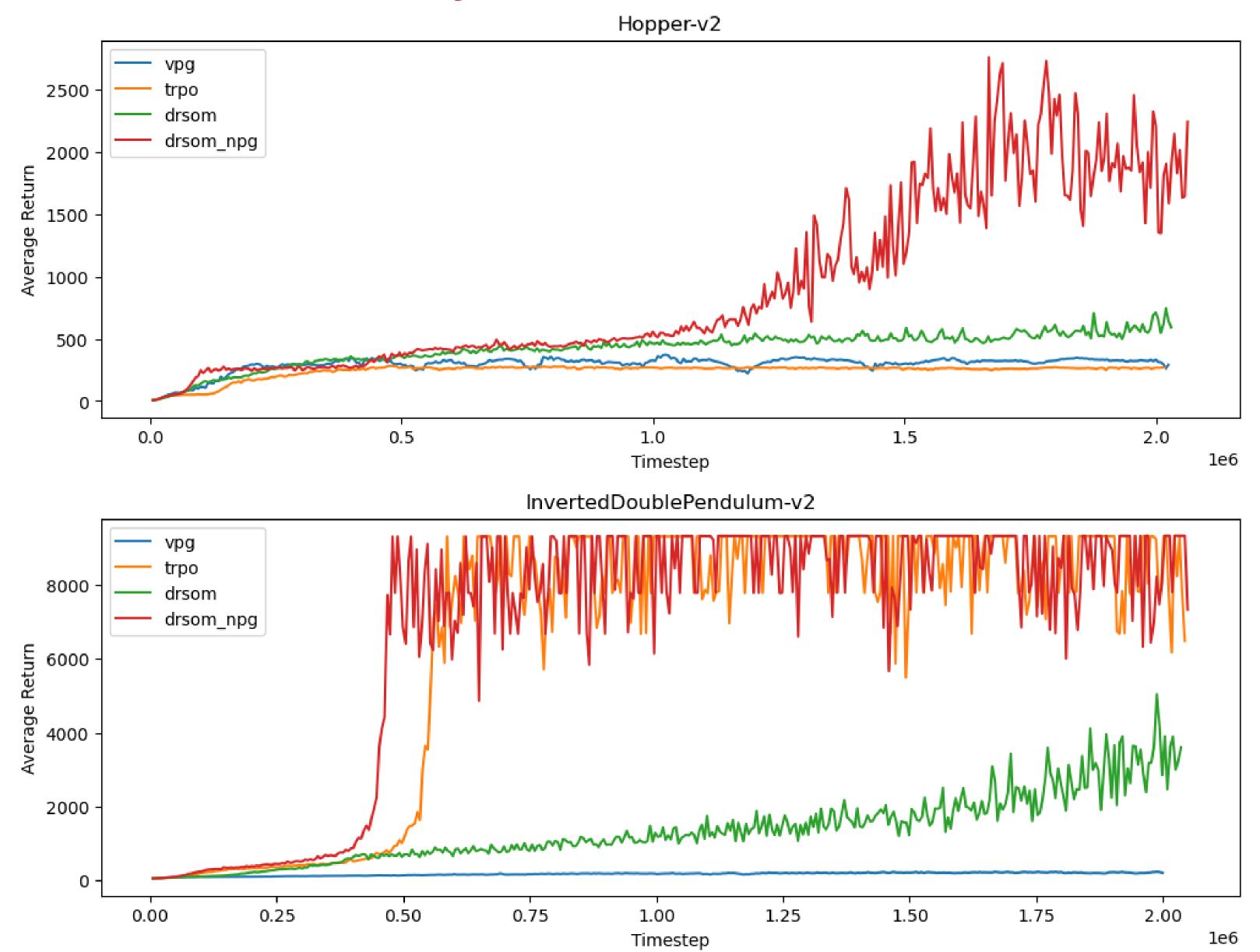
$$\max_{lpha \in \mathbb{R}^2} \ c_k^T lpha \ ext{s.t.} \ rac{1}{2} lpha^T G_k lpha \leq \delta$$

where

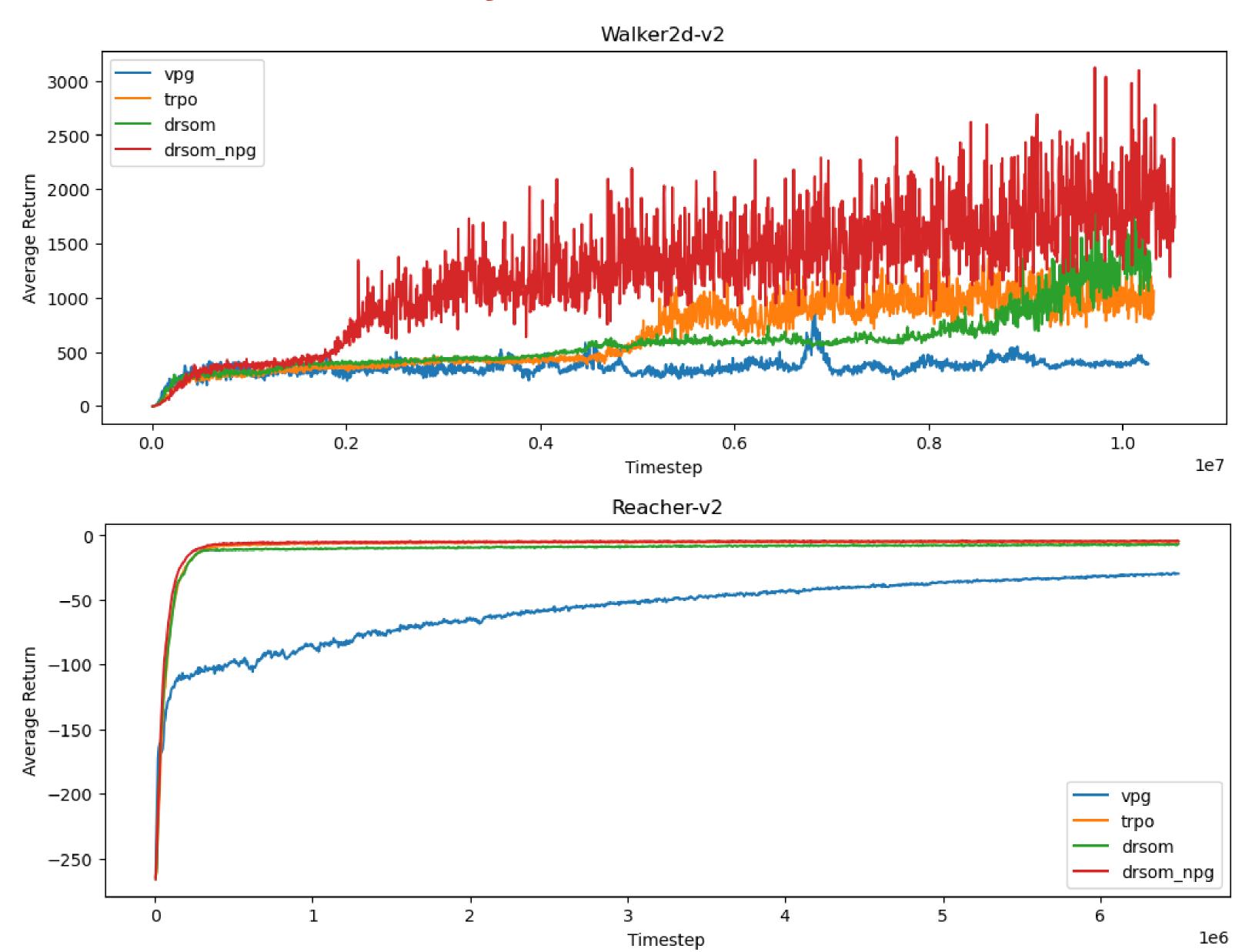
$$egin{aligned} oldsymbol{c}_k = egin{pmatrix} oldsymbol{g}_k^T oldsymbol{F}_k^{-1} oldsymbol{g}_k \\ oldsymbol{g}_k^T oldsymbol{d}_k \end{pmatrix} \in \mathbb{R}^2 ext{ and } oldsymbol{G}_k = egin{pmatrix} oldsymbol{g}_k^T oldsymbol{F}_k^{-1} oldsymbol{g}_k & oldsymbol{g}_k^T oldsymbol{d}_k \\ oldsymbol{g}_k^T oldsymbol{d}_k & oldsymbol{d}_k^T oldsymbol{F}_k oldsymbol{d}_k \end{pmatrix} \in \mathcal{S}^2 \end{aligned}$$

• It also can be seen that adding the momentum direction to TRPO improves the algorithm performance, at the cost of slightly more computation

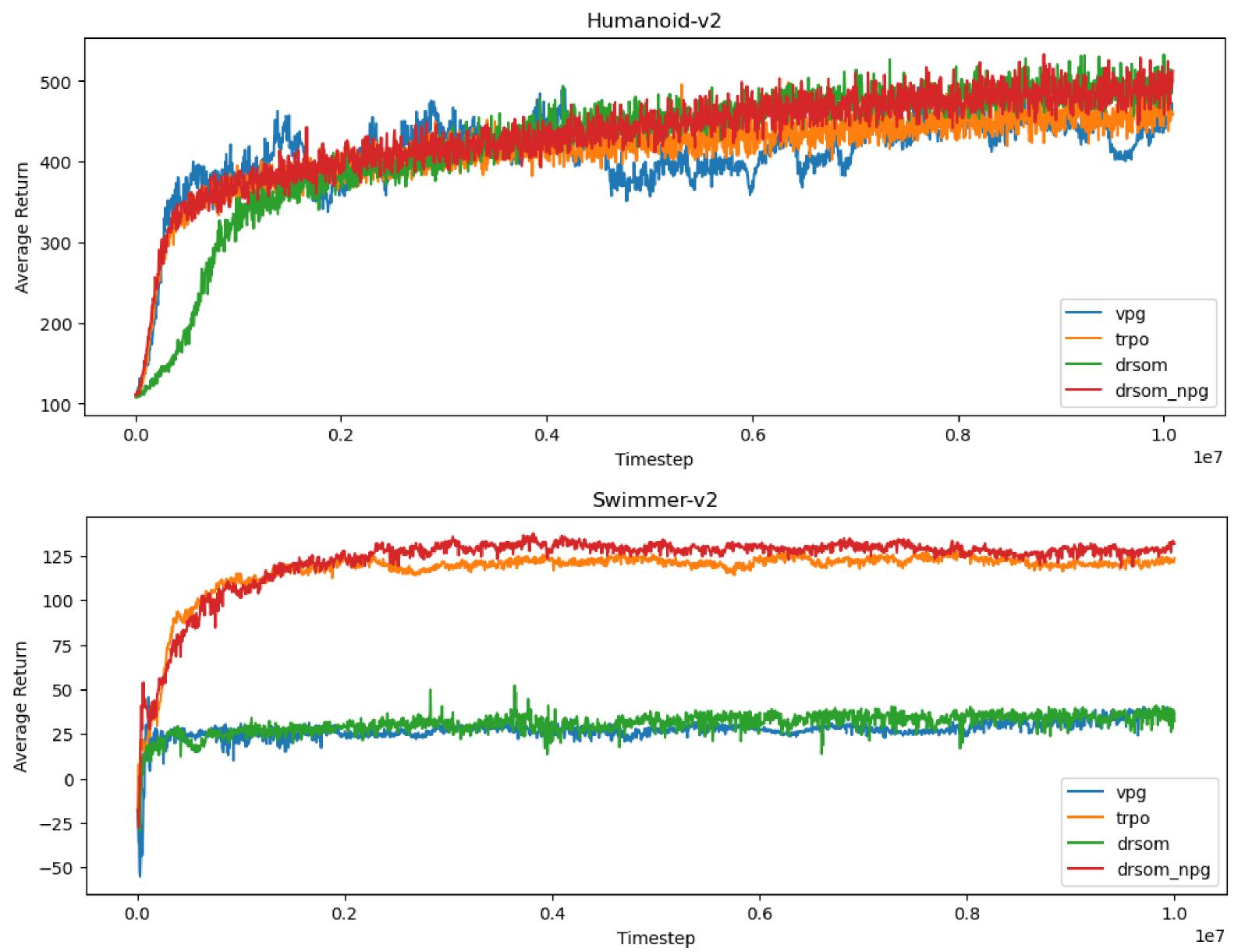
DRSOM/TRPO Preliminary Results III



DRSOM/TRPO Preliminary Results IV



DRSOM/TRPO Preliminary Results V



DRSOM for Riemannian Optimization (Tang et al. NUS)

$$\min_{x \in \mathcal{M}} f(x) \tag{ROP}$$

- ullet M is a Riemannian manifold embeded in Euclidean space \mathbb{R}^n .
- $f: \mathbb{R}^n \to \mathbb{R}$ is a second-order continuously differentiable function that is lower bounded in \mathcal{M} .

R-DRSOM: Choose an initial point $x_0 \in \mathcal{M}$, set k = 0, $p_{-1} = 0$;

for k = 0, 1, ..., T do

Step 1. Compute $g_k = \text{grad} f(x_k)$, $d_k = T_{x_k \leftarrow x_{k-1}}(p_{k-1})$, $H_k g_k = \text{Hess} f(x_k)[g_k]$ and $H_k d_k = \text{Hess} f(x_k)[d_k]$;

Step 2. Compute the vector $c_k = \begin{bmatrix} -\langle g_k, g_k \rangle_{x_k} \\ \langle g_k, d_k \rangle_{x_k} \end{bmatrix}$ and the following matrices

$$Q_{k} = \begin{bmatrix} \langle g_{k}, H_{k}g_{k} \rangle_{x_{k}} & \langle -d_{k}, H_{k}g_{k} \rangle_{x_{k}} \\ \langle -d_{k}, H_{k}g_{k} \rangle_{x_{k}} & \langle d_{k}, H_{k}d_{k} \rangle_{x_{k}} \end{bmatrix}, \quad G_{k} := \begin{bmatrix} \langle g_{k}, g_{k} \rangle_{x_{k}} & -\langle d_{k}, g_{k} \rangle_{x_{k}} \\ -\langle d_{k}, g_{k} \rangle_{x_{k}} & \langle d_{k}, d_{k} \rangle_{x_{k}} \end{bmatrix}.$$

Step 3. Solve the following 2 by 2 trust region subproblem with radius $\triangle_k > 0$

$$lpha_k := rg \min_{\|lpha_k\|_{G_k} \leq riangle_k} f(x_k) + c_k^ op lpha + rac{1}{2} lpha^ op Q_k lpha;$$

Step 4. $x_{k+1} := \mathcal{R}_{x_k} \left(x_k - \alpha_k^1 g_k + \alpha_k^2 d_k \right);$ end Return x_k .

Max-CUT SDP

Max-Cut: min
$$\{-\langle L, X \rangle : \operatorname{diag}(X) = e, X \in \mathbb{S}_+^n\}$$
. (1)

$$\min \left\{ -\left\langle L, RR^{\top} \right\rangle : \operatorname{diag}(RR^{\top}) = e, \ R \in \mathbb{R}^{n \times r} \right\}. \tag{2}$$

g67	Fval	-30977.7	-30977.7	-30977.7	-30977.7	-30977.7
n=10000	Residue	1.3e-10	2.4e-10	9.7e-10	2.6e-10	8.3e-09
m=20000	Time [s]	131.0	1371.4	177.8	1114.4	356.9
g70	Fval	-39446.1	-39446.1	-39446.1	-39446.1	-39446.1
n=10000	Residue	2.2e-10	3.7e-12	1.6e-09	2.3e-10	3.4e-09
m = 99999	Time [s]	36.2	288.4	63.5	250.8	100.7
g72	Fval	-31234.2	-31234.2	-31234.2	-31234.2	-31234.2
n=10000	Residue	8.2e-11	1.8e-12	5.8e-10	2.0e-10	1.1e-08
m=20000	Time [s]	110.4	881.2	191.9	907.5	359.2
g77	Fval	-44182.7	-44182.7	-44182.7	-44182.7	-44182.7
n=14000	Residue	7.8e-11	1.4e-10	7.1e-10	1.2e-10	1.0e-08
m=28000	Time [s]	268.3	1576.9	450.4	2402.6	603.8
g81	Fval	-62624.8	-62624.8	-62624.8	-62624.8	-62624.8
n=20000	Residue	4.6e-11	1.3e-10	1.4e-09	7.9e-11	2.0e-08
m=40000	Time [s]	650.1	4283.9	1219.0	6087.4	1062.1

1D-Kohn-Sham Equation

$$\min \left\{ \frac{1}{2} \operatorname{tr}(R^{\top} L R) + \frac{\alpha}{4} \operatorname{diag}(R R^{\top})^{\top} L^{-1} \operatorname{diag}(R R^{\top}) : R^{\top} R = I_p, R \in \mathbb{R}^{n \times r} \right\}, \quad (3)$$

where L is a tri-diagonal matrix with 2 on its diagonal and -1 on its subdiagonal and $\alpha > 0$ is a parameter. We terminate algorithms when $\|\operatorname{grad} f(R)\| < 10^{-4}$.

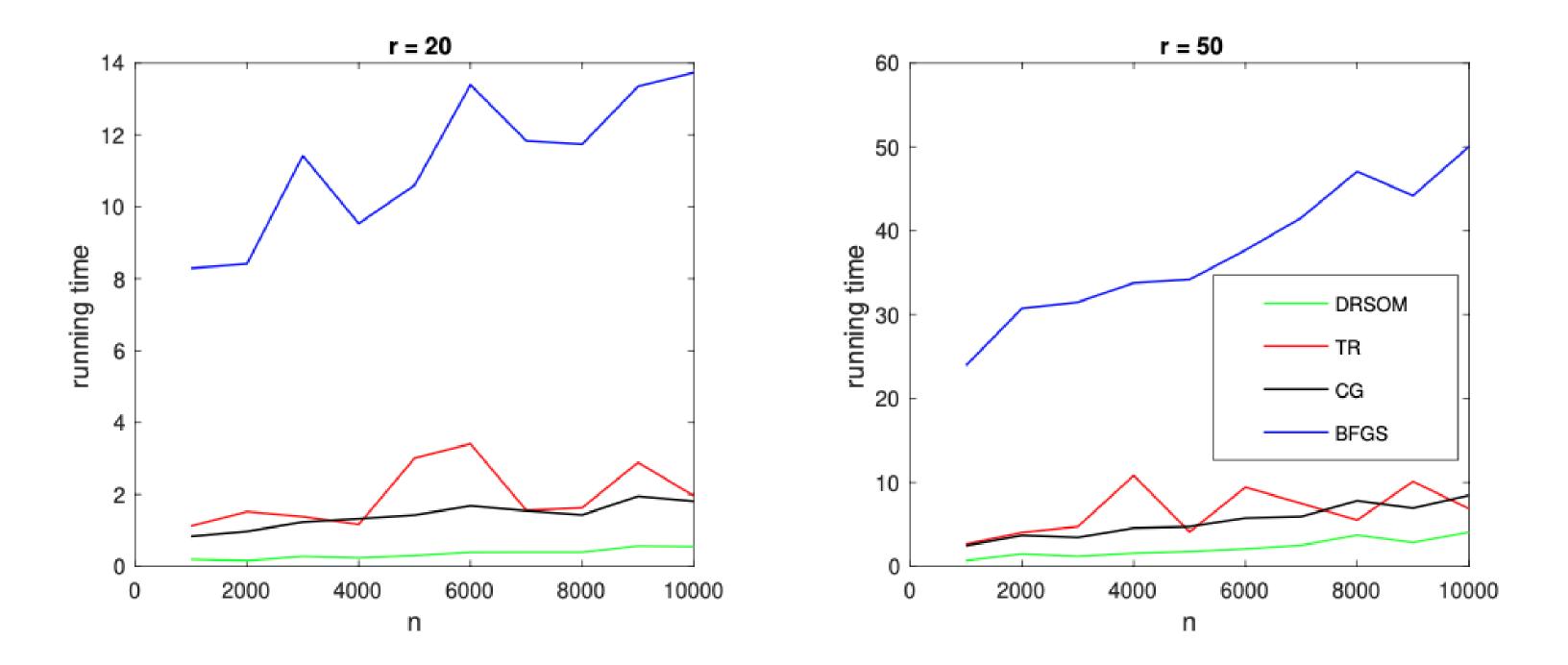


Figure 1: Results for Discretized 1D Kohn-Sham Equation. $\alpha=1$.

DRSOM for LP Potential Reduction (Gao et al. SHUFE)

We consider a simplex-constrained QP model

We wish to solve a standard LP (and its dual)

$$\min_{x} \quad \frac{1}{2} ||Ax||^{2} =: f(x)$$

$$\sup_{x} ||Ax||^{2} =: f(x)$$

$$\sup_{x} ||Ax||^{2} =: f(x)$$

$$\lim_{x} ||A$$

- •Thehewheodeoignementeneus nother sevents potential timedtion and apply DRSOM to it
- How to solve much more general LPs?

$$\phi(x) := \rho \log(f(x)) - \sum_{i=1}^{n} \log x_i$$

$$\nabla \phi(x) = \frac{\rho \nabla f(x)}{f(x)} - X^{-1}e$$

$$= -\frac{\rho \nabla f(x) \nabla f(x)^{\mathsf{T}}}{f(x)^2} + \rho \frac{A^{\mathsf{T}}A}{f(x)} + X^{-2}$$

Combined with scaled gradient(Hessian) projection, the method solves LPs

DR-Potential Reduction: Preliminary Results

One feature of the DR-Potential reduction is the use of negative curvature of

$$\nabla^2 \phi(x) = -\frac{\rho \nabla f(x) \nabla f(x)^{\mathsf{T}}}{f(x)^2} + \rho \frac{A^{\mathsf{T}} A}{f(x)} + X^{-2}$$

- Computable using Lanczos iteration
- Getting LPs to high accuracy $10^{-6} \sim 10^{-8}$ if negative curvature is efficiently computed

Problem	PInfeas DInfeas.		Compl.	Problem	PInfeas	DInfeas.	Compl.
ADLITTLE	1.347e-10	2.308e-10	2.960e-09	KB2	5.455e-11	6.417e-10	7.562e-11
AFIRO	7.641e-11	7.375e-11	3.130e-10	LOTFI	2.164e-09	4.155e-09	8.663e-08
AGG2	3.374e-08	4.859e-08	6.286e-07	MODSZK1	1.527e-06	5.415e-05	2.597e-04
AGG3	2.248e-05	1.151e-06	1.518e-05	RECIPELP	5.868e-08	6.300e-08	1.285e-07
BANDM	2.444e-09	4.886e-09	3.769e-08	SC105	7.315e-11	5.970e-11	2.435e-10
BEACONFD	5.765e-12	9.853e-12	1.022e-10	SC205	6.392e-11	5.710e-11	2.650e-10
BLEND	2.018e-10	3.729e-10	1.179e-09	SC50A	1.078e-05	6.098e-06	4.279e-05
BOEING2	1.144e-07	1.110e-08	2.307e-07	SC50B	4.647e-11	3.269e-11	1.747e-10
BORE3D	2.389e-08	5.013e-08	1.165e-07	SCAGR25	1.048e-07	5.298e-08	1.289e-06
BRANDY	2.702e-05	7.818e-06	1.849e-05	SCAGR7	1.087e-07	1.173e-08	2.601e-07
CAPRI	7.575e-05	4.488e-05	4.880e-05	SCFXM1	4.323e-06	5.244e-06	8.681e-06
E226	2.656e-06	4.742e-06	2.512e-05	SCORPION	1.674e-09	1.892e-09	1.737e-08
FINNIS	8.577e-07	8.367e-07	1.001e-05	SCTAP1	5.567e-07	8.430e-07	5.081e-06
FORPLAN	5.874e-07	2.084e-07	4.979e-06	SEBA	2.919e-11	5.729e-11	1.448e-10
GFRD-PNC	4.558e-05	1.052e-05	4.363e-05	SHARE1B	3.367e-07	1.339e-06	3.578e-06
GROW7	1.276e-04	4.906e-06	1.024e-04	SHARE2B	2.142e-04	2.014e-05	6.146e-05
ISRAEL	1.422e-06	1.336e-06	1.404e-05	STAIR	5.549e-04	8.566e-06	2.861e-05
STANDATA	5.645e-08	2.735e-07	5.130e-06	STANDGUB	2.934e-08	1.467e-07	2.753e-06
STOCFOR1	6.633e-09	9.701e-09	4.811e-08	VTP-BASE	1.349e-10	5.098e-11	2.342e-10

Now solving small and medium Netlib instances in 10 seconds

within 1000 iterations

In MATLAB and getting transferred into C for acceleration

Ongoing Research and Future Directions

- How to enforce or remove Assumption c) in algorithms/analyses
- How to design a more adaptive-radius mechanism with the same complexity bound, e.g., the trust-region framework of Curtis et al., 2017
- Incorporate the second-order steepest-descent direction, the eigenvector of the most negative Hessian eigenvalue
- Indefinite and Randomized Hessian rank-one updating vs BFGS
- Dimension Reduced Non-Smooth/Semi-Smooth Newton
- Dimension Reduced Second-Order Methods for optimization with more complicated constraints

THANK YOU