DRSOM: A Dimension-Reduced Second-Order Method for Nonconvex Optimization

distinguished lectures to commemorate HK PolyU and AMA anniversary

September 19, 2022

Yinyu Ye (joint work with many...) Stanford University and CUHKSZ (Currently Visiting CUHK and HK PolyU)

Today's Talk

(1) Motivation and Literature Review
(2) The Algorithm and Preliminary Convergence Analyses
(3) Computational Experiments

Part (1)

Motivation and Literature Review

Early Complexity Analyses for Nonconvex Optimization

$\min f(x), x \in X$ in \mathbb{R}^{n},

- where f is nonconvex and twice-differentiable,

$$
g_{k}=\nabla f\left(x_{k}\right), H_{k}=\nabla^{2} f\left(x_{k}\right)
$$

- Goal: find x_{k} such that:

$$
\begin{array}{ll}
\left\|\nabla f\left(x_{k}\right)\right\| \leq \epsilon & \text { (primary) } \\
\lambda_{\min }\left(H_{k}\right) \geq-\sqrt{\epsilon} & \text { (in active subspace, secondary) }
\end{array}
$$

- For the ball-constrained nonconvex QP (trust-region subproblem): $\mathrm{O}\left(\log \log \left(\epsilon^{-1}\right)\right)$; see Y (1989,93), Vavasis\&Zippel (1990)
- For nonconvex QP with a polyhedral constraint: $\mathrm{O}\left(\epsilon^{-1}\right)$; see Y (1998), Vavasis (2001)

Standard methods for nonconvex optimization I

First-order Method (FOM)

- Assume f has L-Lipschitz cont. gradient
- Global convergence by, e.g., linear-search (LS)
- No guarantee for second-order conditions
- Worst-case complexity, $O\left(\epsilon^{-2}\right)$; see the textbook by Nesterov (2004)

Each iteration requires $\mathrm{O}\left(\mathrm{n}^{2}\right)$ operations

Standard methods for nonconvex optimization II

Second-order Method (SOM): Newton-type methods

- Assume f has M-Lipschitz cont. Hessian
- Global convergence by, e.g., linear-search (LS), Trust-region (TR), or Cubic Regularization
- Convergence to second-order points
- No better than $O\left(\epsilon^{-2}\right)$, for traditional methods (steepest descent and Newton); according to Cartis et al. (2010) .

Each iteration requires $\mathrm{O}\left(\mathrm{n}^{3}\right)$ operations

Analyses of SOM for nonconvex optimization since 2000

Variants of SOM

- Trust-region with the fixed-radius strategy, $O\left(\epsilon^{-3 / 2}\right)$, see the lecture notes by Ye^{\dagger} since 2005
- Cubic regularization, $O\left(\epsilon^{-3 / 2}\right)$, see Nesterov and Polyak (2006), Cartis, Gould, and Toint (2011)
- A new trust-region framework, $O\left(\epsilon^{-3 / 2}\right)$, Curtis, Robinson, and Samadi (2017)

With "slight" modification, SOM reduces from $O\left(\epsilon^{-2}\right)$ to $O\left(\epsilon^{-3 / 2}\right)$

Other complexity analyses for some structural nonconvex optimization

- Ge, Jiang, and $Y(2011), O\left(\epsilon^{-1} \log (1 / \epsilon)\right)$, for L_{p} minimization.
- Bian, Chen, and Y (2015), $O\left(\epsilon^{-3 / 2}\right)$, for certain non-Lipschitz and nonconvex optimization.
- Bian and Chen (2013), $O\left(\epsilon^{-2}\right)$, smoothing quadratic regularization for non-Lipschitzian function
- Chen et al. (2014) shows strongly NP-hardness for $L_{2}-L_{p}$ minimization; later Ge, He, and $\mathrm{He}(2017)$ proposes a method with complexity of $O\left(\log \left(\epsilon^{-1}\right)\right)$
- Haeser, Liu, and Y (2019) uses the first-order and second-order interior point trust-region method achieving first-order ϵ-KKT points with complexity of $O\left(\epsilon^{-2}\right)$ and $O\left(\epsilon^{-3 / 2}\right)$, respectively.

Recent efforts for nonconvex optimization

FOM Improvements:

- FOM with Hessian negative curvature (NC) detections, $O\left(\epsilon^{-7 / 4} \log (1 / \epsilon)\right)$
- Carmon et al. (2018), with Hessian-vector product (HVP) and Lanczos
- cost $O\left(\epsilon^{-1 / 4}\right)$ for each negative curvature request
- Also, Carmon et al. (2017), does not require HVP (only first-order condition)
- Agarwal et al. (2016), also $O\left(\epsilon^{-7 / 4}\right)$, using accelerated methods for fast approximate matrix inversion

They are hybrid and/or randomized methods and seem difficult to be implemented Our approach: Reduce dimension in SOM

Part (2)

The Algorithm and Preliminary Convergence Analyses

DRSOM : motivation from multi-directional FOM and SOM

- Recall two-direction FOM, with d_{k} being the momentum direction $\left(x_{k}-x_{k-1}\right)$

$$
x_{k+1}=x_{k}-\alpha_{k}^{1} \nabla f\left(x_{k}\right)+\alpha_{k}^{2} d_{k}=x_{k}+d_{k+1}
$$

where step-sizes are constructed; including CG, PT, AGD, Polyak, and many others.

- In SOM, a method typically minimizes a full dimensional quadratic Taylor expansion to obtain direction vector d_{k+1}. For example, one TR step solves for d_{k+1} from

$$
\min _{d}\left(g_{k}\right)^{T} d+0.5 d^{T} H_{k} d \quad \text { s.t. }\|\mathrm{d}\|_{2} \leq \Delta_{k}
$$

where Δ_{k} is the trust-region radius.

- DRSOM: Dimension Reduced Second-Order Method

Motivation: using few directions and solving a smaller quadratic problem

DRSOM: a first glance

- The DRSOM constructs direction using two directions

$$
d=-\alpha^{1} \nabla f\left(x_{k}\right)+\alpha^{2} d_{k}:=d(\alpha)
$$

where $g_{k}=\nabla f\left(x_{k}\right), H_{k}=\nabla^{2} f\left(x^{k}\right), d_{k}=x_{k}-x_{k-1}$

- Plug the expression into the TR quadratic minimization problem, we minimize a

2-D trust-region problem to decide "two stepsizes":

$$
\begin{aligned}
& \min m_{k}^{\alpha}(\alpha):=f\left(x_{k}\right)+\left(c_{k}\right)^{T} \alpha+\frac{1}{2} \alpha^{T} Q_{k} \alpha \\
& \quad\|\alpha\|_{G_{k}} \leq \Delta_{k} \\
& \quad G_{k}=\left[\begin{array}{cc}
g_{k}^{T} g_{k} & -g_{k}^{T} d_{k} \\
-g_{k}^{T} d_{k} & d_{k}^{T} d_{k}
\end{array}\right], Q_{k}=\left[\begin{array}{cc}
g_{k}^{T} H_{k} g_{k} & -g_{k}^{T} H_{k} d_{k} \\
-g_{k}^{T} H_{k} d_{k} & d_{k}^{T} H_{k} d_{k}
\end{array}\right], c_{k}=\left[\begin{array}{c}
-\left\|g_{k}\right\|^{2} \\
g_{k}^{T} d_{k}
\end{array}\right]
\end{aligned}
$$

DRSOM: a first glance

DRSOM can be seen as:

- "Adaptive" Accelerated Gradient Method (Polyak's momentum)
- A second-order method minimizing quadratic model in the reduced 2-D

$$
m_{k}(d)=f\left(x_{k}\right)+\nabla f\left(x_{k}\right)^{T} d+\frac{1}{2} d^{T} \nabla^{2} f\left(x_{k}\right) d, d \in \operatorname{span}\left\{-g_{k}, d_{k}\right\}
$$

compare to, e.g., Dogleg method, 2-D Newton Trust-Region Method $d \in \operatorname{span}\left\{g_{k},\left[H\left(x_{k}\right)\right]^{-1} g_{k}\right\}$

- A conjugate direction method exploring the Krylov Subspace
- For quadratic programming with no radius limit, terminates in n steps - either finds a minimal solution or detects unboundedness

DRSOM: Computing Hessian-vector product

In the DRSOM:
$Q_{k}=\left[\begin{array}{cc}g_{k}^{T} H_{k} g_{k} & -g_{k}^{T} H_{k} d_{k} \\ -g_{k}^{T} H_{k} d_{k} & d_{k}^{T} H_{k} d_{k}\end{array}\right], c_{k}=\left[\begin{array}{c}-\left\|g_{k}\right\|^{2} \\ g_{k}^{T} d_{k}\end{array}\right]$
How to cheaply obtain Q? Compute $H_{k} g_{k}, H_{k} d_{k}$ first.

- Finite difference:

$$
H_{k} \cdot v \approx \frac{1}{\epsilon}\left[g\left(x_{k}+\epsilon \cdot v\right)-g_{k}\right]
$$

- Analytic approach to fit modern automatic differentiation,

$$
H_{k} g_{k}=\nabla\left(\frac{1}{2} g_{k}^{T} g_{k}\right), H_{k} d_{k}=\nabla\left(d_{k}^{T} g_{k}\right),
$$

- or use Hessian if readily available !

DRSOM: subproblem adaptive strategies

Recall 2-D quadratic model:

$$
\begin{aligned}
& \min m_{k}^{\alpha}(\alpha):=f\left(x_{k}\right)+\left(c_{k}\right)^{T} \alpha+\frac{1}{2} \alpha^{T} Q_{k} \alpha \\
& \qquad\|\alpha\|_{G_{k}} \leq \Delta_{k}, G_{k}=\left[\begin{array}{cc}
g_{k}^{T} g_{k} & -g_{k}^{T} d_{k} \\
-g_{k}^{T} d_{k} & d_{k}^{T} d_{k}
\end{array}\right], Q_{k}=\left[\begin{array}{cc}
g_{k}^{T} H_{k} g_{k} & -g_{k}^{T} H_{k} d_{k} \\
-g_{k}^{T} H_{k} d_{k} & d_{k}^{T} H_{k} d_{k}
\end{array}\right], c_{k}=\left[\begin{array}{c}
-\left\|g_{k}\right\|^{2} \\
g_{k}^{T} d_{k}
\end{array}\right]
\end{aligned}
$$

Apply two strategies that ensure global and convergence

- Trust-region: Adaptive radius

$$
\min _{\alpha} m_{k}^{\alpha}(\alpha),\|\alpha\|_{G_{k}} \leq \Delta_{k}, G_{k}=\left[\begin{array}{cc}
g_{k}^{T} g_{k} & -g_{k}^{T} d_{k} \\
-g_{k}^{T} d_{k} & d_{k}^{T} d_{k}
\end{array}\right]
$$

- Radius-free

$$
\min _{\alpha} m_{k}^{\alpha}(\alpha)+\lambda_{k}\|\alpha\|_{G_{k}}^{2}
$$

- The subproblems can be solved efficiently.

DRSOM: general framework

At each iteration k, the DRSOM proceeds:

- Solving 2-D Quadratic model
- Computing quality of the approximation*

$$
\rho^{k}:=\frac{f\left(x^{k}\right)-f\left(x^{k}+d^{k+1}\right)}{m_{p}^{k}(0)-m_{p}^{k}\left(d^{k+1}\right)}=\frac{f\left(x^{k}\right)-f\left(x^{k}+d^{k+1}\right)}{m_{\alpha}^{k}(0)-m_{\alpha}^{k}\left(\alpha^{k}\right)}
$$

- If ρ is too small, increase λ (Radius-Free) or decrease Δ (trust-region)
- Otherwise, decrease λ or increase Δ
* Can be further improved by other acceptance criteria, e.g., Curtis et al. 2017

DRSOM: key assumptions and complexity results

Assumption. (a) f has Lipschitz continuous Hessian. (b) DRSOM iterates with a fixedradius strategy: $\Delta_{k}=\epsilon / \beta$) c) If the Lagrangian multiplier $\lambda_{k}<\sqrt{\epsilon}$, assume $\left\|\left(H_{k}-\widetilde{H}_{k}\right) d_{k+1}\right\| \leq C\left\|d_{k+1}\right\|^{2}$, where \widetilde{H}_{k} is the projected Hessian in the subspace (commonly adopted for approximate Hessian)
Theorem 1. If we apply DRSOM to convex QP, then the iterates are the same as those by the Conjugate Gradient Method
Theorem 2. (Global convergence rate) For f with second-order Lipschitz condition, DRSOM terminates in $O\left(\epsilon^{-3 / 2}\right)$ iterations. Furthermore, the iterate x_{k} satisfies the firstorder condition, and the Hessian is positive semi-definite in the subspace spanned by the gradient and momentum.

Theorem 3. (Local convergence rate) If the iterate x_{k} converges to a strict local optimum x^{*} such that $H\left(x^{*}\right)>0$, and if Assumption (c) is satisfied as soon as $\lambda_{k} \leq C_{\lambda}\left\|d_{k+1}\right\|$, then DRSOM has a local superlinear (quadratic) speed of convergence, namely: \| $x_{k+1}-x^{*} \|$ $=O\left(\left\|x_{k}-x^{*}\right\|^{2}\right)$

DRSOM: outline of analyses

Assumption (c): $\left\|\left(H_{k}-\widetilde{H}_{k}\right) d_{k+1}\right\| \leq C\left\|d_{k+1}\right\|^{2}$

Analysis of global convergence rate

- Show that
$\left\|g_{k+1}\right\| \leq\left\|g_{k+1}-g_{k}-\widetilde{H}_{k} d_{k+1}\right\|+\left\|\left(g_{k}+\widetilde{H}_{k} d_{k+1}\right)\right\|$

$$
\leq \frac{1}{2} M\left\|d_{k+1}\right\|^{2}+\lambda_{k}\left\|d_{k+1}\right\|+\left\|\left(H_{k}-\widetilde{H}_{k}\right) d_{k+1}\right\|
$$

- With the fixed-radius strategy $\left\|d_{k+1}\right\| \leq \sqrt{\epsilon} / \beta, \beta=M / 2$

Analysis of local convergence rate

- Show that
$\left\|x_{k+1}-x^{*}\right\| \leq \frac{M}{\mu}\left\|x_{k}-x^{*}\right\|^{2}+\frac{1}{\mu}\left\|\left(H_{k}-\widetilde{H}_{k}\right) d_{k+1}\right\|+\left(\frac{2 M}{\mu^{2}}+\frac{1}{\mu}\right) \lambda_{k}\left\|d_{k+1}\right\|$,
Remark
- The analyses show that both global and local behaviors rely on Assumption (c)

DRSOM: how to remove Assumption (c)?

Notice

(i) Step reduction: (implying at most $O\left(6 \beta^{2}\left(f\left(x_{0}\right)-f_{\text {inf }}\right) \epsilon^{-3 / 2}\right)$ iterations)

$$
f\left(x_{k+1}\right) \leq f\left(x_{k}\right)-\frac{1}{2} \lambda_{k} \Delta^{2}+\frac{1}{3} \beta \Delta^{3}
$$

) ii) Assumption (c): $\left\|\left(H_{k}-\widetilde{H}_{k}\right) d_{k+1}\right\| \leq C\left\|d_{k+1}\right\|^{2}$.

- Global rate: ensure Assumption (c) holds periodically (when $\lambda_{k}<\sqrt{\epsilon}$) (e.g., switch to Krylov)
- Local rate: ensure Assumption (c) holds around x^{*}, we have the desired results.

Expand subspace if Assumption (c) does not hold...

- Carmon et al. (2018) Find the NC ($O\left(\epsilon^{-1 / 4}\right)$ for each) and proceed (λ_{k} increases)
- Run Lanczos (worst-case without sparsity $O\left(n^{3}\right)$
- Trade-off between $O\left(\epsilon^{-7 / 4}\right)$) more dimension-free) and $O\left(\epsilon^{-3 / 2}\right)$

DRSOM: convergence behavior, an example

CUTEst model name $:=$ CHAINWOO-1000

-	GD+Wolfe
-	LBFGS+Wolfe
DRSOM-F(2-D)	
- DRSOM-F(periodic-Krylov)	

Example from the

 CUTEst dataset- GD and $\angle B F G S$ both use a Line-search (Hager-Zhang)
- DRSOM-F (2-D):
original 2-dimensional version with g_{k} and d_{k}
- DRSOM-F (periodic-

Krylov), guarantees
$\left\|\left(H_{k}-\widetilde{H}_{k}\right) d_{k+1}\right\| \leq C$ $\left\|d_{k+1}\right\|^{2}$ periodically.

Part (3)

Computational Experiments

Logistic Regression

- Solve the Multinomial Logistic Regression for the MNIST dataset.
- The MLR is convex, we compare DRSOM to SAGA and LBFGS
- DRSOM is comparable to FOM and SOM (not surprisingly), but faster than full dimension SOM

Epoch	Method	Test Error Rate
10	SAGA	0.0754
10	LBFGS	0.1175
10	DRSOM	0.1108
40	SAGA	0.0754
40	LBFGS	0.0783
40	DRSOM	0.0790

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6
7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7
8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8
9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9

A sample for MNIST dataset

Nonconvex L2-Lp minimization

- Consider nonconvex L2-Lp minimization, $\mathrm{p}<1$

$$
f(x)=\|A x-b\|_{2}^{2}+\lambda\|x\|_{p}^{p}
$$

- Smoothed version

$$
\begin{aligned}
f(x) & =\|A x-b\|_{2}^{2}+\lambda \sum_{i=1}^{n} s\left(x_{i}, \epsilon\right)^{p} \\
s(x, \epsilon) & = \begin{cases}|x| & \text { if }|x|>\epsilon \\
\frac{x^{2}}{2 \epsilon}+\frac{\epsilon}{2} & \text { if }|t| \leq \epsilon\end{cases}
\end{aligned}
$$

n	m	DRSOM			AGD			LBFGS			Newton TR		
100	10	28	5.8e-07	$1.3 \mathrm{e}+00$	58	8.5e-06	$4.3 \mathrm{e}-01$	21	8.9e-06	$1.4 \mathrm{e}-01$	10	7.1e-07	$1.4 \mathrm{e}-02$
100	20	47	$6.0 \mathrm{e}-07$	$1.0 \mathrm{e}-03$	150	$8.2 \mathrm{e}-06$	$7.0 \mathrm{e}-03$	35	$6.2 \mathrm{e}-06$	$2.0 \mathrm{e}-03$	9	$4.9 \mathrm{e}-07$	$9.0 \mathrm{e}-03$
100	100	98	$1.8 \mathrm{e}-06$	$1.1 \mathrm{e}-02$	632	$1.0 \mathrm{e}-05$	$4.6 \mathrm{e}-01$	106	$9.8 \mathrm{e}-06$	$7.3 \mathrm{e}-02$	47	$9.9 \mathrm{e}-07$	$7.3 \mathrm{e}+00$
200	10	24	1.3e-06	$1.0 \mathrm{e}-03$	37	$7.8 \mathrm{e}-06$	$1.0 \mathrm{e}-03$	18	$1.4 \mathrm{e}-06$	$1.0 \mathrm{e}-03$	13	$5.9 \mathrm{e}-10$	$4.0 \mathrm{e}-03$
200	20	47	$9.3 \mathrm{e}-07$	$2.0 \mathrm{e}-03$	115	$9.4 \mathrm{e}-06$	$2.9 \mathrm{e}-02$	33	$6.2 \mathrm{e}-06$	$2.0 \mathrm{e}-03$	17	$6.7 \mathrm{e}-06$	$5.2 \mathrm{e}-02$
200	100	107	$4.3 \mathrm{e}-06$	$1.5 \mathrm{e}-02$	814	9.9e-06	$9.3 \mathrm{e}-01$	85	$6.2 \mathrm{e}-06$	$1.1 \mathrm{e}-01$	36	$1.1 \mathrm{e}-07$	$7.6 \mathrm{e}+00$
1000	10	25	$4.2 \mathrm{e}-06$	$3.0 \mathrm{e}-03$	97	9.0e-06	$3.6 \mathrm{e}-02$	18	$2.2 \mathrm{e}-06$	$5.0 \mathrm{e}-03$	16	$3.2 \mathrm{e}-07$	$5.4 \mathrm{e}-02$
1000	20	27	$5.8 \mathrm{e}-06$	3.0e-03	68	7.6e-06	$3.4 \mathrm{e}-02$	27	$4.5 \mathrm{e}-06$	$4.7 \mathrm{e}-02$	13	$7.8 \mathrm{e}-06$	$1.6 \mathrm{e}-01$
1000	100	76	$1.7 \mathrm{e}-05$	$2.6 \mathrm{e}-02$	408	$1.4 \mathrm{e}-05$	$2.6 \mathrm{e}+00$	73	$6.4 \mathrm{e}-06$	$6.1 \mathrm{e}-01$	32	8.3e-07	$1.3 \mathrm{e}+01$

Iterations needed to reach $\varepsilon=10 \mathrm{e}-6$

- Compare DRSOM to Accelerated Gradient Descend (AGD), LBFGS, and Newton Trust-region
- DRSOM is comparable to full-dimensional SOM in iteration number
- DRSOM is much better in computation time !

Sensor Network Location (SNL)

- Consider Sensor Network Location (SNL)

$$
N_{x}=\left\{(i, j):\left\|x_{i}-x_{j}\right\|=d_{i j} \leq r_{d}\right\}, N_{a}=\left\{(i, k):\left\|x_{i}-a_{k}\right\|=d_{i k} \leq r_{d}\right\}
$$

where r_{d} is a fixed parameter known as the radio range. The SNL problem considers the following QCQP feasibility problem,

$$
\begin{aligned}
& \left\|x_{i}-x_{j}\right\|^{2}=d_{i j}^{2}, \forall(i, j) \in N_{x} \\
& \left\|x_{i}-a_{k}\right\|^{2}=\bar{d}_{i k}^{2}, \forall(i, k) \in N_{a}
\end{aligned}
$$

- We can solve SNL by the nonconvex nonlinear least square (NLS) problem

$$
\min _{X} \sum_{(i<j, j) \in N_{x}}\left(\left\|x_{i}-x_{j}\right\|^{2}-d_{i j}^{2}\right)^{2}+\sum_{(k, j) \in N_{a}}\left(\left\|a_{k}-x_{j}\right\|^{2}-\bar{d}_{k j}^{2}\right)^{2}
$$

Sensor Network Location (SNL)

- Graphical results using SDP relaxation to initialize the NLS
- $\mathrm{n}=80, \mathrm{~m}=5$ (anchors), radio range $=0.5$, degree $=25$, noise factor $=0.05$
- Both Gradient Descent and DRSOM can find good solutions !

Sensor Network Location (SNL)

- Graphical results without SDP relaxation
- DRSOM can still converge to optimal solutions

Neural Networks and Deep Learning

To use DRSOM in machine learning problems

- We apply the mini-batch strategy to a vanilla DRSOM
- Use Automatic Differentiation to compute gradients
- Train ResNet18 Model with CIFAR 10
- Set Adam with initial learning rate $1 \mathrm{e}-3$
airplane automobile

Neural Networks and Deep Learning

Trainina results for ResNet18 with DRSOM and Adam

Test results for ResNet18 with DRSOM and Adam

Pros

- DRSOM has rapid convergence (30 epochs)
- DRSOM needs little tuning

Cons

- DRSOM may overfit the models
- Needs $4 \sim 5 x$ time than Adam to run same number of epoch

Good potential to be a standard optimizer for deep learning!

Policy Optimization

$$
\max _{\theta \in \mathbb{R}^{d}} J(\theta):=\mathbb{E}_{\tau \sim p(\tau \mid \theta)}[\mathcal{R}(\tau)]=\int \mathcal{R}(\tau) p(\tau \mid \theta) d \tau
$$

- Vanilla policy gradient: Apply gradient descent to find the policy that maximizes the expected return:

$$
\theta_{t+1}=\theta_{t}+\eta_{t} \hat{\nabla}_{\theta} J(\theta) \text { where } \hat{\nabla}_{\theta} J(\theta) \text { is estimated stochastic gradient. Examples include: }
$$

 1992)

- PGT (Sutton et al., Policy gradient methods for reinforcement learning with function approximation, 1999)
- Policy gradient based on KL divergence
- Trust Region Policy Optimization (TRPO): Linearize objective function and update parameter under KL constraint (J. Schulman et al. "Trust region policy optimization", 2015)
- Proximal Policy Optimization (PPO) : Update the parameter via KL-regularized gradient ascent (J. Schulman et al. "Proximal policy optimization algorithms", 2017)
- Mirror descent policy optimization (Tomar et al. 2021, Shani et al. 2020)

- Many other recent developments

- Momentum policy gradient (Feihu Huang et al. 2021), Hessian-aided policy gradient (Zebang Shen et al. 2019), Variance reduced policy gradient (Papini et al. 2018)

DRSOM for Policy Gradient (PG)

- As mentioned above, the goal is to maximize the expected discounted trajectory reward:

$$
\max _{\theta \in \mathbb{R}^{d}} J(\theta):=\mathbb{E}_{\tau \sim p(\tau \mid \theta)}[\mathcal{R}(\tau)]=\int \mathcal{R}(\tau) p(\tau \mid \theta) d \tau
$$

- The gradient can be estimated by:

$$
\hat{\nabla} J(\theta)=\frac{1}{|\mathcal{B}|} \sum_{i \in \mathcal{B}} \nabla \log p\left(\tau_{i} \mid \theta\right) \mathcal{R}\left(\tau_{i}\right)
$$

- With the estimated gradient, we can apply DRSOM to get the step size α, and update the parameter by:

$$
\theta_{t+1}=\theta_{t}+\alpha_{t}^{1} \hat{\nabla} J\left(\theta_{t}\right)+\alpha_{t}^{2} d_{t}
$$

where d_{t} is the momentum direction.

Preliminary results

We compare the performance of DRSOM-based Reinforce with Adam-based reinforce and standard Reinforce on several GYM environments.
We set the learning rate of Adam-based and standard Reinforce both as $1 \mathrm{e}-3$

In these two cases, DRSOM converges relatively faster than standard reinforce. And the performance of DRSOM is similar to ADAM.

Preliminary Results

Results on InvertedDoublePendulum-v2

DRSOM for TRPO

- TRPO attempts to optimize a surrogate function (based on the current iterate) of the objective function while keep a KL divergence constraint

$$
\begin{array}{cl}
\max _{\theta} & L_{\theta_{k}}(\theta) \\
\text { s.t. } & \operatorname{KL}\left(\operatorname{Pr}_{\mu}^{\pi_{\theta_{k}}} \| \operatorname{Pr}_{\mu}^{\pi_{\theta}}\right) \leq \delta
\end{array}
$$

- In practice, it linearizes the surrogate function, quadratizes the KL constraint, and obtain

$$
\begin{array}{cl}
\max _{\theta} & g_{k}^{T}\left(\theta-\theta_{k}\right) \\
\text { s.t. } & \frac{1}{2}\left(\theta-\theta_{k}\right)^{T} F_{k}\left(\theta-\theta_{k}\right) \leq \delta
\end{array}
$$

where F_{k} is the Hessian of the KL divergence.

DRSOM for TRPO

- The problem admits a closed form solution, but requires solving a full dimension linear system,

$$
F_{k} x=g_{k}
$$

leading to high computational cost !

- With the idea of DRSOM, we restrict $\theta_{k+1} \in \operatorname{span}\left\{g_{k}, d_{k}\right\}$, then update $\theta_{k+1}=\theta_{k}+\alpha_{k}^{1} g_{k}+\alpha_{k}^{2} d_{k}$. To choose the step size, we consider the following optimization problem:

$$
\begin{aligned}
\max _{\alpha \in \mathbb{R}^{2}} & c_{k}^{T} \alpha \\
\text { s.t. } & \frac{1}{2} \alpha^{T} G_{k} \alpha \leq \delta
\end{aligned}
$$

where

$$
c_{k}=\binom{\left\|g_{k}\right\|^{2}}{g_{k}^{T} d_{k}} \in \mathbb{R}^{2} \text { and } G_{k}=\left(\begin{array}{ll}
g_{k}^{T} H_{k} g_{k} & d_{k}^{T} H_{k} g_{k} \\
d_{k}^{T} H_{k} g_{k} & d_{k}^{T} H_{k} d_{k}
\end{array}\right) \in \mathcal{S}^{2}
$$

Still has a closed form solution, but we only need to solve a 2 dimension linear system!

Preliminary Results I

- Although we only maintain the linear approximation of the surrogate function, surprisingly the algorithm works well in some RL environments (the green line, better than VPG)

Preliminary Results II

- Sometimes even better than TRPO!

Preliminary Results III

Reacher

Linear Programing using DR-Potential Reduction

We consider a simplex-constrained QP model
We wish to solve a standard LP (and its dual)

$$
\begin{aligned}
& e_{n}^{\top} x+e_{n}^{\top} s+\kappa+\tau=1 \\
& \max _{y, s} \quad b^{\top} y \\
& \text { subject to } A^{\top} y+s=c \\
& s \geq 0
\end{aligned}
$$

- How to solve much more general LPs?

$$
\begin{gathered}
\phi(x):=\rho \log (f(x))-\sum_{i=1}^{n} \log x_{i} \\
\nabla \phi(x)=\frac{\rho \nabla f(x)}{f(x)}-X^{-1} e \quad=-\frac{\rho \nabla f(x) \nabla f(x)^{\top}}{f(x)^{2}}+\rho \frac{A^{\top} A}{f(x)}+X^{-2}
\end{gathered}
$$

Combined with scaled gradient(Hessian) projection, the method solves LPs

DR-Potential Reduction: Preliminary Results

One feature of the DR-Potential reduction is the use of negative curvature of

$$
\nabla^{2} \phi(x)=-\frac{\rho \nabla f(x) \nabla f(x)^{\top}}{f(x)^{2}}+\rho \frac{A^{\top} A}{f(x)}+X^{-2}
$$

- Computable using Lanczos iteration
- Getting LPs to high accuracy $10^{-6} \sim 10^{-8}$ if negative curvature is efficiently computed

Problem	Plnfeas	DInfeas.	Compl.	Problem	Plnfeas	DInfeas.	Compl.
ADLITTLE	$1.347 \mathrm{e}-10$	$2.308 \mathrm{e}-10$	$2.960 \mathrm{e}-09$	KB2	$5.455 \mathrm{e}-11$	$6.417 \mathrm{e}-10$	$7.562 \mathrm{e}-11$
AFIRO	$7.641 \mathrm{e}-11$	$7.375 \mathrm{e}-11$	$3.130 \mathrm{e}-10$	LOTFI	$2.164 \mathrm{e}-09$	$4.155 \mathrm{e}-09$	$8.663 \mathrm{e}-08$
AGG2	$3.374 \mathrm{e}-08$	$4.859 \mathrm{e}-08$	$6.286 \mathrm{e}-07$	MODSZK1	$1.527 \mathrm{e}-06$	$5.415 \mathrm{e}-05$	$2.597 \mathrm{e}-04$
AGG3	$2.248 \mathrm{e}-05$	$1.151 \mathrm{e}-06$	$1.518 \mathrm{e}-05$	RECIPELP	$5.868 \mathrm{e}-08$	$6.300 \mathrm{e}-08$	$1.285 \mathrm{e}-07$
BANDM	$2.444 \mathrm{e}-09$	$4.886 \mathrm{e}-09$	$3.769 \mathrm{e}-08$	SC105	$7.315 \mathrm{e}-11$	$5.970 \mathrm{e}-11$	$2.435 \mathrm{e}-10$
BEACONFD	$5.765 \mathrm{e}-12$	$9.853 \mathrm{e}-12$	$1.022 \mathrm{e}-10$	SC205	$6.392 \mathrm{e}-11$	$5.710 \mathrm{e}-11$	$2.650 \mathrm{e}-10$
BLEND	$2.018 \mathrm{e}-10$	$3.729 \mathrm{e}-10$	$1.179 \mathrm{e}-09$	SC50A	$1.078 \mathrm{e}-05$	$6.098 \mathrm{e}-06$	$4.279 \mathrm{e}-05$
BOEING2	$1.144 \mathrm{e}-07$	$1.110 \mathrm{e}-08$	$2.307 \mathrm{e}-07$	SC50B	$4.647 \mathrm{e}-11$	$3.269 \mathrm{e}-11$	$1.747 \mathrm{e}-10$
BORE3D	$2.389 \mathrm{e}-08$	$5.013 \mathrm{e}-08$	$1.165 \mathrm{e}-07$	SCAGR25	$1.048 \mathrm{e}-07$	$5.298 \mathrm{e}-08$	$1.289 \mathrm{e}-06$
BRANDY	$2.702 \mathrm{e}-05$	$7.818 \mathrm{e}-06$	$1.849 \mathrm{e}-05$	SCAGR7	$1.087 \mathrm{e}-07$	$1.173 \mathrm{e}-08$	$2.601 \mathrm{e}-07$
CAPRI	$7.575 \mathrm{e}-05$	$4.488 \mathrm{e}-05$	$4.880 \mathrm{e}-05$	SCFXM1	$4.323 \mathrm{e}-06$	$5.244 \mathrm{e}-06$	$8.681 \mathrm{e}-06$
E226	$2.656 \mathrm{e}-06$	$4.742 \mathrm{e}-06$	$2.512 \mathrm{e}-05$	SCORPION	$1.674 \mathrm{e}-09$	$1.892 \mathrm{e}-09$	$1.737 \mathrm{e}-08$
FINNIS	$8.577 \mathrm{e}-07$	$8.367 \mathrm{e}-07$	$1.001 \mathrm{e}-05$	SCTAP1	$5.567 \mathrm{e}-07$	$8.430 \mathrm{e}-07$	$5.081 \mathrm{e}-06$
FORPLAN	$5.874 \mathrm{e}-07$	$2.084 \mathrm{e}-07$	$4.979 \mathrm{e}-06$	SEBA	$2.919 \mathrm{e}-11$	$5.729 \mathrm{e}-11$	$1.448 \mathrm{e}-10$
GFRD-PNC	$4.558 \mathrm{e}-05$	$1.052 \mathrm{e}-05$	$4.363 \mathrm{e}-05$	SHARE1B	$3.367 \mathrm{e}-07$	$1.339 \mathrm{e}-06$	$3.578 \mathrm{e}-06$
GROW7	$1.276 \mathrm{e}-04$	$4.906 \mathrm{e}-06$	$1.024 \mathrm{e}-04$	SHARE2B	$2.142 \mathrm{e}-04$	$2.014 \mathrm{e}-05$	$6.146 \mathrm{e}-05$
ISRAEL	$1.422 \mathrm{e}-06$	$1.336 \mathrm{e}-06$	$1.404 \mathrm{e}-05$	STAIR	$5.549 \mathrm{e}-04$	$8.566 \mathrm{e}-06$	$2.861 \mathrm{e}-05$
STANDATA	$5.645 \mathrm{e}-08$	$2.735 \mathrm{e}-07$	$5.130 \mathrm{e}-06$	STANDGUB	$2.934 \mathrm{e}-08$	$1.467 \mathrm{e}-07$	$2.753 \mathrm{e}-06$
STOCFOR1	$6.633 \mathrm{e}-09$	$9.701 \mathrm{e}-09$	$4.811 \mathrm{e}-08$	VTP-BASE	$1.349 \mathrm{e}-10$	$5.098 \mathrm{e}-11$	$2.342 \mathrm{e}-10$

- Now solving small and medium Netlib instances in 10 seconds
within 1000 iterations
- In MATLAB and getting transferred into C for acceleration

Ongoing Research and Future Directions

- How to enforce or remove assumption c) in analyses
- How to design an adaptive-radius mechanism with the same complexity bound, e.g., Curtis trust-region framework [Curtis et al., 2017]
- Incorporate the second-order steepest-descent direction, the eigenvector of the most negative Hessian eigenvalue
- Indefinite Hessian rank-one updating vs BFGS
- Dimension Reduced Non-Smooth/Semi-Smooth Newton [Qi, Sun et al.]
- Dimension Reduced Second-Order Methods for optimization on manifolds

