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Part (1)

Motivation and Literature Review



min 𝑓(𝑥), 𝑥 ∈ 𝑋 𝑖𝑛 ℝ𝑛,

• where  𝑓 is nonconvex and twice-differentiable,

𝑔𝑘 = 𝛻𝑓(𝑥𝑘), 𝐻𝑘 = 𝛻2𝑓(𝑥𝑘)

• Goal: find 𝑥𝑘 such that:

∥ 𝛻𝑓(𝑥𝑘) ∥≤ 𝜖 (primary)

𝜆𝑚𝑖𝑛(𝐻𝑘) ≥ − 𝜖 (in active subspace, secondary) 

• For the ball-constrained nonconvex QP (trust-region subproblem): O(loglog(𝜖-1)); 

see Y (1989,93), Vavasis&Zippel (1990)

• For nonconvex QP with a polyhedral constraint: O(𝜖-1); see Y (1998), Vavasis

(2001)

Early Complexity Analyses for Nonconvex Optimization



Standard methods for nonconvex optimization I

First-order Method (FOM)

• Assume 𝑓 has 𝐿-Lipschitz cont. gradient 

• Global convergence by, e.g., linear-search (LS)

• No guarantee for second-order conditions

• Worst-case complexity, 𝑂 𝜖−2 ; see the textbook by Nesterov (2004)

Each iteration requires O(n2) operations



Second-order Method (SOM): Newton-type methods

• Assume 𝑓 has 𝑀-Lipschitz cont. Hessian 

• Global convergence by, e.g., linear-search (LS), Trust-region (TR), or 

Cubic Regularization 

• Convergence to second-order points

• No better than 𝑂 𝜖−2 , for traditional methods (steepest descent and 

Newton); according to Cartis et al. (2010) .

Each iteration requires O(n3) operations

Standard methods for nonconvex optimization II



Variants of SOM

• Trust-region with the fixed-radius strategy, 𝑂(𝜖−3/2), see the lecture notes 

by Ye† since 2005

• Cubic regularization, 𝑂(𝜖−3/2), see Nesterov and Polyak (2006), Cartis, 

Gould, and Toint (2011)

• A new trust-region framework, 𝑂(𝜖−3/2), Curtis, Robinson, and Samadi

(2017)

With “slight” modification, SOM reduces from 𝑂(𝜖−2) to 𝑂(𝜖−3/2)

Analyses of SOM for nonconvex optimization since 2000



• Ge, Jiang, and Y (2011), 𝑂(𝜖−1log(1/𝜖)), for 𝐿𝑝 minimization.

• Bian, Chen, and Y (2015), 𝑂(𝜖−3/2), for certain non-Lipschitz and nonconvex 

optimization.

• Bian and Chen (2013), 𝑂(𝜖−2), smoothing quadratic regularization for non-Lipschitzian

function

• Chen et al. (2014) shows strongly NP-hardness for 𝐿2 − 𝐿𝑝 minimization; later Ge, He, 

and He (2017) proposes a method with complexity of 𝑂(log(𝜖−1))

• Haeser, Liu, and Y (2019) uses the first-order and second-order interior point trust-region 

method achieving first-order 𝜖-KKT points with complexity of 𝑂(𝜖−2) and 𝑂(𝜖−3/2), 

respectively.

Other complexity analyses for some structural nonconvex 

optimization



FOM Improvements:

• FOM with Hessian negative curvature (NC) detections, 𝑂(𝜖−7/4log(1/𝜖))

• Carmon et al. (2018), with Hessian-vector product (HVP) and Lanczos

• cost 𝑂(𝜖−1/4) for each negative curvature request

• Also, Carmon et al. (2017), does not require HVP (only first-order condition)

• Agarwal et al. (2016), also 𝑂(𝜖−7/4), using accelerated methods for fast approximate 

matrix inversion

They are hybrid and/or randomized methods and seem difficult to be implemented

Our approach: Reduce dimension in SOM

Recent efforts for nonconvex optimization



Part (2)

The Algorithm and Preliminary Convergence Analyses



• Recall two-direction FOM, with 𝑑𝑘 being the momentum direction (𝑥𝑘 − 𝑥𝑘−1)

𝑥𝑘+1= 𝑥𝑘 − 𝛼𝑘
1𝛻𝑓(𝑥𝑘) + 𝛼𝑘

2𝑑𝑘 = 𝑥𝑘+ 𝑑𝑘+1

where step-sizes are constructed; including CG, PT, AGD, Polyak, and many others. 

• In SOM, a method typically minimizes a full dimensional quadratic Taylor expansion to 

obtain direction vector 𝑑𝑘+1. For example, one TR step solves for 𝑑𝑘+1 from

min𝑑 𝑔𝑘
𝑇𝑑 + 0.5𝑑𝑇𝐻𝑘𝑑 𝑠. 𝑡. ||d||2 ≤ Δ𝑘

where Δ𝑘 is the trust-region radius.

• DRSOM: Dimension Reduced Second-Order Method

Motivation: using few directions and solving a smaller quadratic problem 

DRSOM : motivation from multi-directional FOM and SOM



• The DRSOM constructs direction using two directions

𝑑 = −𝛼1 𝛻𝑓 𝑥𝑘 + 𝛼2 𝑑𝑘 ∶= 𝑑(α)

where 𝑔𝑘 = 𝛻𝑓 𝑥𝑘 , 𝐻𝑘 = 𝛻2𝑓 𝑥𝑘 , 𝑑𝑘 = 𝑥𝑘 − 𝑥𝑘−1

• Plug the expression into the TR quadratic minimization problem, we minimize a  

2-D trust-region problem to decide “two stepsizes”:

min 𝑚𝑘
α α ≔ 𝑓 𝑥𝑘 + 𝑐𝑘

𝑇α +
1

2
α𝑇𝑄𝑘𝛼

||α||𝐺𝑘 ≤ Δ𝑘

𝐺𝑘 =
𝑔𝑘
𝑇𝑔𝑘 −𝑔𝑘

𝑇𝑑𝑘
−𝑔𝑘

𝑇𝑑𝑘 𝑑𝑘
𝑇𝑑𝑘

, 𝑄𝑘 =
𝑔𝑘
𝑇𝐻𝑘𝑔𝑘 −𝑔𝑘

𝑇𝐻𝑘𝑑𝑘
−𝑔𝑘

𝑇𝐻𝑘𝑑𝑘 𝑑𝑘
𝑇𝐻𝑘𝑑𝑘

, 𝑐𝑘 =
−||𝑔𝑘||

2

𝑔𝑘
𝑇𝑑𝑘

DRSOM: a first glance



DRSOM: a first glance

DRSOM can be seen as:

• “Adaptive” Accelerated Gradient Method (Polyak’s momentum)

• A second-order method minimizing quadratic model in the reduced 2-D 

𝑚𝑘(𝑑) = 𝑓(𝑥𝑘) + 𝛻𝑓(𝑥𝑘)
𝑇𝑑 +

1

2
𝑑𝑇𝛻2𝑓(𝑥𝑘)𝑑, 𝑑 ∈ 𝗌𝗉𝖺𝗇{−𝑔𝑘, 𝑑𝑘}

compare to, e.g., Dogleg method, 2-D Newton Trust-Region Method

𝑑 ∈ 𝗌𝗉𝖺𝗇{𝑔𝑘 , [𝐻(𝑥𝑘)]
−1𝑔𝑘}

• A conjugate direction method exploring the Krylov Subspace

• For quadratic programming with no radius limit, terminates in n steps – either 

finds a minimal solution or detects unboundedness



DRSOM: Computing Hessian-vector product

In the DRSOM:

𝑄𝑘 =
𝑔𝑘
𝑇𝐻𝑘𝑔𝑘 −𝑔𝑘

𝑇𝐻𝑘𝑑𝑘
−𝑔𝑘

𝑇𝐻𝑘𝑑𝑘 𝑑𝑘
𝑇𝐻𝑘𝑑𝑘

, 𝑐𝑘 =
−||𝑔𝑘||

2

𝑔𝑘
𝑇𝑑𝑘

How to cheaply obtain Q? Compute  𝐻𝑘𝑔𝑘 , 𝐻𝑘𝑑𝑘 first.

• Finite difference:

𝐻𝑘 ⋅ 𝑣 ≈
1

𝜖
𝑔(𝑥𝑘 + 𝜖 ⋅ 𝑣) − 𝑔𝑘 ,

• Analytic approach to fit modern automatic differentiation,

𝐻𝑘𝑔𝑘 = 𝛻(
1

2
𝑔𝑘
𝑇𝑔𝑘), 𝐻𝑘𝑑𝑘 = 𝛻(𝑑𝑘

𝑇𝑔𝑘),

• or use Hessian if readily available !



DRSOM: subproblem adaptive strategies

Recall 2-D quadratic model:

min𝑚𝑘
α α ≔ 𝑓 𝑥𝑘 + 𝑐𝑘

𝑇α +
1

2
α𝑇𝑄𝑘𝛼

||α||𝐺𝑘 ≤ Δ𝑘 , 𝐺𝑘 =
𝑔𝑘
𝑇𝑔𝑘 −𝑔𝑘

𝑇𝑑𝑘
−𝑔𝑘

𝑇𝑑𝑘 𝑑𝑘
𝑇𝑑𝑘

, 𝑄𝑘 =
𝑔𝑘
𝑇𝐻𝑘𝑔𝑘 −𝑔𝑘

𝑇𝐻𝑘𝑑𝑘
−𝑔𝑘

𝑇𝐻𝑘𝑑𝑘 𝑑𝑘
𝑇𝐻𝑘𝑑𝑘

, 𝑐𝑘 =
−||𝑔𝑘||

2

𝑔𝑘
𝑇𝑑𝑘

Apply two strategies that ensure global and convergence

• Trust-region: Adaptive radius

min
𝛼

𝑚𝑘
𝛼 𝛼 , ∥ 𝛼 ∥𝐺𝑘≤ Δ𝑘 , 𝐺𝑘 =

𝑔𝑘
𝑇𝑔𝑘 −𝑔𝑘

𝑇𝑑𝑘
−𝑔𝑘

𝑇𝑑𝑘 𝑑𝑘
𝑇𝑑𝑘

• Radius-free

min
𝛼

𝑚𝑘
𝛼(𝛼) + 𝜆𝑘 𝛼 𝐺𝑘

2

• The subproblems can be solved efficiently.



DRSOM: general framework

At each iteration k, the DRSOM proceeds:

• Solving 2-D Quadratic model 

• Computing quality of the approximation* 

• If ρ is too small, increase λ (Radius-Free) or decrease Δ (trust-region)           

• Otherwise, decrease λ or increase Δ

𝜌𝑘: =
𝑓 𝑥𝑘 − 𝑓 𝑥𝑘 + 𝑑𝑘+1

𝑚𝑝
𝑘(0) − 𝑚𝑝

𝑘 𝑑𝑘+1
=
𝑓 𝑥𝑘 − 𝑓 𝑥𝑘 + 𝑑𝑘+1

𝑚𝛼
𝑘(0) − 𝑚𝛼

𝑘 𝛼𝑘

* Can be further improved by other acceptance criteria, e.g., Curtis et al. 2017



DRSOM: key assumptions and complexity results

Theorem 1. If we apply DRSOM to convex QP, then the iterates are the same as those 

by the Conjugate Gradient Method

Theorem 2. (Global convergence rate) For f with second-order Lipschitz condition, 

DRSOM terminates in 𝑂(𝜖  −3 2) iterations.  Furthermore, the iterate 𝑥𝑘 satisfies the first-

order condition, and the Hessian is positive semi-definite in the subspace spanned by the 

gradient and momentum.

Assumption. (a)  𝑓 has Lipschitz continuous Hessian. (b) DRSOM iterates with a fixed-

radius strategy: Δ𝑘 = 𝜖/𝛽) c) If the Lagrangian multiplier 𝜆𝑘 < 𝜖 , assume 

∥ (𝐻𝑘 −  𝐻𝑘)𝑑𝑘+1 ∥≤ 𝐶 ∥ 𝑑𝑘+1 ∥
2 , where  𝐻𝑘 is the projected Hessian in the subspace 

(commonly adopted for approximate Hessian)

Theorem 3. (Local convergence rate) If the iterate 𝑥𝑘 converges to a strict local optimum 

𝑥∗ such that 𝐻(𝑥∗) ≻ 0, and if Assumption (c) is satisfied as soon as 𝜆𝑘 ≤ 𝐶𝜆 ∥ 𝑑𝑘+1 ∥, then 

DRSOM has a local superlinear (quadratic) speed of convergence, namely: ∥ 𝑥𝑘+1 − 𝑥∗ ∥
= 𝑂(∥ 𝑥𝑘 − 𝑥∗ ∥2)



DRSOM: outline of analyses

Assumption (c): ∥ (𝐻𝑘 −  𝐻𝑘)𝑑𝑘+1 ∥≤ 𝐶 ∥ 𝑑𝑘+1 ∥
2

Analysis of global convergence rate

• Show that 

∥ 𝑔𝑘+1 ∥≤∥ 𝑔𝑘+1 − 𝑔𝑘 −  𝐻𝑘𝑑𝑘+1 ∥+∥ 𝑔𝑘 +  𝐻𝑘𝑑𝑘+1 ∥

≤
1

2
𝑀 ∥ 𝑑𝑘+1 ∥

2 +𝜆𝑘 ∥ 𝑑𝑘+1 ∥+∥ (𝐻𝑘 −  𝐻𝑘)𝑑𝑘+1 ∥

• With the fixed-radius strategy ∥ 𝑑𝑘+1 ∥≤ 𝜖/𝛽, 𝛽 = 𝑀/2

Analysis of local convergence rate

• Show that 

∥ 𝑥𝑘+1 − 𝑥∗ ∥≤
𝑀

𝜇
∥ 𝑥𝑘 − 𝑥∗ ∥2 +

1

𝜇
∥ (𝐻𝑘 −  𝐻𝑘)𝑑𝑘+1 ∥ +

2𝑀

𝜇2
+
1

𝜇
𝜆𝑘 ∥ 𝑑𝑘+1 ∥,

Remark

• The analyses show that both global and local behaviors rely on Assumption (c)



DRSOM: how to remove Assumption (c)？

Notice

(i) Step reduction: ( implying at most 𝑂 6𝛽2(𝑓(𝑥0) − 𝑓inf)𝜖
−3/2 iterations )

𝑓(𝑥𝑘+1) ≤ 𝑓(𝑥𝑘) −
1

2
𝜆𝑘Δ

2 +
1

3
𝛽Δ3

) ii) Assumption (c): ∥ (𝐻𝑘 −  𝐻𝑘)𝑑𝑘+1 ∥≤ 𝐶 ∥ 𝑑𝑘+1 ∥
2.

• Global rate: ensure Assumption (c) holds periodically (when 𝜆𝑘 < 𝜖) (e.g., switch to Krylov)

• Local rate: ensure Assumption (c) holds around 𝑥∗ ,we have the desired results.

Expand subspace if Assumption (c) does not hold…

• Carmon et al. (2018) Find the NC (𝑂(𝜖−1/4) for each) and proceed (𝜆𝑘 increases)

• Run Lanczos (worst-case without sparsity 𝑂(𝑛3)

• Trade-off between 𝑂(𝜖−7/4)) more dimension-free) and 𝑂(𝜖−3/2)



DRSOM: convergence behavior, an example

Example from the 

CUTEst dataset

• GD and LBFGS both 

use a Line-search 

(Hager-Zhang)

• DRSOM-F (2-D):

original 2-dimensional 

version with 𝑔𝑘 and 

𝑑𝑘

• DRSOM-F (periodic-

Krylov), guarantees 

∥ (𝐻𝑘 −  𝐻𝑘)𝑑𝑘+1 ∥≤ 𝐶

∥ 𝑑𝑘+1 ∥
2 periodically.



Part (3)

Computational Experiments



Logistic Regression

• Solve the Multinomial Logistic Regression for the MNIST 
dataset.

• The MLR is convex, we compare DRSOM to SAGA and 
LBFGS

• DRSOM is comparable to FOM and SOM (not surprisingly), 
but faster than full dimension SOM

A sample for MNIST dataset



Nonconvex L2-Lp minimization

• Consider nonconvex L2-Lp minimization, p < 1

• Smoothed version

• Compare DRSOM to Accelerated Gradient Descend (AGD), LBFGS, and Newton Trust-region

• DRSOM is comparable to full-dimensional SOM in iteration number

• DRSOM is much better in computation time !

Iterations needed to reach ε = 10e-6



Sensor Network Location (SNL)

• Consider Sensor Network Location (SNL)

where       is a fixed parameter known as the radio range. The SNL problem considers 

the    following QCQP feasibility problem,

• We can solve SNL by the nonconvex nonlinear least square (NLS) problem



Sensor Network Location (SNL)

• Graphical results using SDP relaxation to initialize the NLS

• n = 80, m = 5 (anchors), radio range = 0.5, degree = 25, noise factor = 0.05

• Both Gradient Descent and DRSOM can find good solutions !



Sensor Network Location (SNL)

• DRSOM can still converge to optimal solutions

• Graphical results without SDP relaxation



Neural Networks and Deep Learning 

To use DRSOM in machine learning problems

• We apply the mini-batch strategy to a vanilla DRSOM

• Use Automatic Differentiation to compute gradients

• Train ResNet18 Model with CIFAR 10

• Set Adam with initial learning rate 1e-3



Neural Networks and Deep Learning 

Training results for ResNet18 with DRSOM and Adam

Test results for ResNet18 with DRSOM and Adam

Pros

• DRSOM has rapid convergence 

(30 epochs)

• DRSOM needs little tuning

Cons

• DRSOM may overfit the models

• Needs 4~5x time than Adam to 

run same number of epoch 

Good potential to be a standard 

optimizer for deep learning!



• Vanilla policy gradient: Apply gradient descent to find the policy that maximizes the expected return:

where  𝛻𝜃𝐽(𝜃) is estimated stochastic gradient. Examples include:

- REINFORCE (Williams, Simple statistical gradient-following algorithms for connectionist reinforcement learning, 

1992)

- PGT (Sutton et al., Policy gradient methods for reinforcement learning with function approximation, 1999) 

Policy Optimization

• Policy gradient based on KL divergence

- Trust Region Policy Optimization (TRPO): Linearize objective function and update parameter under KL constraint (J. 

Schulman et al. “Trust region policy optimization”, 2015)                                                                                                                            

- Proximal Policy Optimization (PPO) : Update the parameter via KL-regularized gradient ascent (J. Schulman et al. 

“Proximal policy optimization algorithms”, 2017)

- Mirror descent policy optimization (Tomar et al. 2021, Shani et al. 2020)

• Many other recent developments

- Momentum policy gradient (Feihu Huang et al. 2021), Hessian-aided policy gradient (Zebang Shen et al. 2019), 

Variance reduced policy gradient (Papini et al. 2018)



DRSOM for Policy Gradient (PG)

• As mentioned above, the goal is to maximize the expected discounted trajectory reward:

• The gradient can be estimated by:

• With the estimated gradient, we can apply DRSOM to get the step size 𝛼, and update the 
parameter by:

where 𝑑𝑡 is the momentum direction.



Preliminary results

We compare the performance of DRSOM-based Reinforce with Adam-based reinforce and standard Reinforce on

several GYM environments.

We set the learning rate of Adam-based and standard Reinforce both as 1e-3

In these two cases, DRSOM converges relatively faster than standard reinforce. And the performance of DRSOM

is similar to ADAM.



Preliminary Results



• TRPO attempts to optimize a surrogate function (based on the current iterate) of the 
objective function while keep a KL divergence constraint

• In practice, it linearizes the surrogate function, quadratizes the KL constraint, and obtain

where 𝐹𝑘 is the Hessian of the KL divergence. 

DRSOM for TRPO



DRSOM for TRPO

• With the idea of DRSOM, we restrict                               , then update                                       . To 

choose the step size, we consider the following optimization problem:

• The problem admits a closed form solution, but requires solving a full dimension linear 

system, 

leading to high computational cost ! 

where

Still has a closed form solution, but we only need to solve a 2 dimension linear system!



Preliminary Results I

• Although we only maintain the linear approximation of the surrogate function, surprisingly the 

algorithm works well in some RL environments (the green line, better than VPG)



Preliminary Results II

• Sometimes even better than TRPO ! 



Preliminary Results III



Linear Programing using DR-Potential Reduction

𝑚𝑖𝑛
𝑥

1

2
‖𝐴𝑥‖2 =: 𝑓 𝑥

subject to 𝑒⊤𝑥 = 1
𝑥 ≥ 0

We consider a simplex-constrained QP model We wish to solve a standard LP (and its dual)

𝑚𝑖𝑛
𝑥

𝑐⊤𝑥

subject to 𝐴𝑥 = 𝑏
𝑥 ≥ 0

𝑚𝑎𝑥
𝑦,𝑠

𝑏⊤𝑦

subject to 𝐴⊤𝑦 + 𝑠 = 𝑐
𝑠 ≥ 0

• The homogeneous QP seems so restrictive!

• How to solve much more general LPs?

𝐴𝑥 − 𝑏𝜏 = 0
−𝐴⊤𝑦 − 𝑠 + 𝑐𝜏 = 0

𝑏⊤𝑦 − 𝑐⊤𝑥 − 𝜅 = 0

𝑒𝑛
⊤𝑥 + 𝑒𝑛

⊤𝑠 + 𝜅 + 𝜏 = 1

The self-dual embedding builds a bridge

Then we define the (nonconvex) potential function and apply DRSOM to it

𝜙 𝑥 := 𝜌log(𝑓 𝑥 ) − ∑
𝑖=1

𝑛

log 𝑥𝑖

𝛻𝜙 𝑥 =
𝜌𝛻𝑓 𝑥

𝑓 𝑥
− 𝑋−1𝑒

𝛻2𝜙 𝑥

= −
𝜌𝛻𝑓 𝑥 𝛻𝑓 𝑥 ⊤

𝑓 𝑥 2
+ 𝜌

𝐴⊤𝐴

𝑓 𝑥
+ 𝑋−2

Combined with scaled gradient(Hessian) projection, the method solves LPs



DR-Potential Reduction: Preliminary Results

One feature of the DR-Potential reduction is the use of negative curvature of

𝛻2𝜙 𝑥 = −
𝜌𝛻𝑓 𝑥 𝛻𝑓 𝑥 ⊤

𝑓 𝑥 2
+ 𝜌

𝐴⊤𝐴

𝑓 𝑥
+ 𝑋−2

• Computable using Lanczos iteration

• Getting LPs to high accuracy 10−6 ∼ 10−8 if negative curvature is efficiently computed

• Now solving small and medium Netlib

instances in 10 seconds

within 1000 iterations

• In MATLAB and getting transferred into C 

for acceleration



Ongoing Research and Future Directions

• How to enforce or remove assumption c) in analyses

• How to design an adaptive-radius mechanism with the same complexity bound, 

e.g., Curtis trust-region framework [Curtis et al., 2017]

• Incorporate the second-order steepest-descent direction, the eigenvector of the 

most negative Hessian eigenvalue 

• Indefinite Hessian rank-one updating vs BFGS 

• Dimension Reduced Non-Smooth/Semi-Smooth Newton [Qi, Sun et al. ]

• Dimension Reduced Second-Order Methods for optimization on manifolds


