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Linear Programming

maximizex
∑n

t=1 rtxt
subject to

∑n
t=1 atxt ≤ b,

0 ≤ xt ≤ 1, ∀t = 1, ..., n.

Figure: Nobel Prize in Economics
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Linear Programming

maximizex
∑n

t=1 rtxt
subject to

∑n
t=1 atxt ≤ b,

0 ≤ xt ≤ 1, ∀t = 1, ..., n.
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Online Linear Programming: A Toy Example

Consider an auction/revenue-management problem:

Bid 1(t = 1) Bid 2(t = 2) ..... Inventory(b)
Reward(rt) $100 $30 ...
Decision x1 x2 ...
Pants 1 0 ... 100
Shoes 1 0 ... 50
T-shirts 0 1 ... 500
Jackets 0 0 ... 200
Hats 1 1 ... 1000

where the decision for each customer/bidder is “accept” (xt = 1) or
“reject” (xt = 0)

Ye, Yinyu (Stanford) Online Linear Programming
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Offline vs. Online Linear Programming

OPT (A, r) := maximizex
∑n

t=1 rtxt
subject to

∑n
t=1 atxt ≤ b,

xt ∈ {0, 1} (0 ≤ xt ≤ 1), ∀t = 1, ..., n.

rt : reward/revenue offered by the t-th customer/order

at ∈ Rm: the bundle of resources requested by the t-th order

xt : acceptance or rejection decision to the t-th order

b ∈ Rm: initially available budget/resource amounts

The objective
∑n

t=1 rtxt : the total collected revenue.

We know only b and n at the start.

the bidder data (rt , at) arrive sequentially.

an irrevocable decision must be made as soon as an order arrives
(without knowing the future data).

Conform to resource capacity constraints at the end.

Ye, Yinyu (Stanford) Online Linear Programming
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Offline vs. Online Linear Programming

OPT (A, r) := maximizex
∑n

t=1 rtxt
subject to

∑n
t=1 atxt ≤ b,

xt ∈ {0, 1} (0 ≤ xt ≤ 1), ∀t = 1, ..., n.

rt : reward/revenue offered by the t-th customer/order

at ∈ Rm: the bundle of resources requested by the t-th order

xt : acceptance or rejection decision to the t-th order

b ∈ Rm: initially available budget/resource amounts

The objective
∑n

t=1 rtxt : the total collected revenue.

We know only b and n at the start.

the bidder data (rt , at) arrive sequentially.

an irrevocable decision must be made as soon as an order arrives
(without knowing the future data).

Conform to resource capacity constraints at the end.

Ye, Yinyu (Stanford) Online Linear Programming
CUHK Business, October 6, 2022 5 /

46



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Offline vs. Online Linear Programming

OPT (A, r) := maximizex
∑n

t=1 rtxt
subject to

∑n
t=1 atxt ≤ b,

xt ∈ {0, 1} (0 ≤ xt ≤ 1), ∀t = 1, ..., n.

rt : reward/revenue offered by the t-th customer/order

at ∈ Rm: the bundle of resources requested by the t-th order

xt : acceptance or rejection decision to the t-th order

b ∈ Rm: initially available budget/resource amounts

The objective
∑n

t=1 rtxt : the total collected revenue.

We know only b and n at the start.

the bidder data (rt , at) arrive sequentially.

an irrevocable decision must be made as soon as an order arrives
(without knowing the future data).

Conform to resource capacity constraints at the end.
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Offline vs. Online Linear Programming

OPT (A, r) := maximizex
∑n

t=1 rtxt
subject to

∑n
t=1 atxt ≤ b,

xt ∈ {0, 1} (0 ≤ xt ≤ 1), ∀t = 1, ..., n.

rt : reward/revenue offered by the t-th customer/order

at ∈ Rm: the bundle of resources requested by the t-th order

xt : acceptance or rejection decision to the t-th order

b ∈ Rm: initially available budget/resource amounts

The objective
∑n

t=1 rtxt : the total collected revenue.

We know only b and n at the start.

the bidder data (rt , at) arrive sequentially.

an irrevocable decision must be made as soon as an order arrives
(without knowing the future data).

Conform to resource capacity constraints at the end.
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Offline vs. Online Linear Programming

OPT (A, r) := maximizex
∑n

t=1 rtxt
subject to

∑n
t=1 atxt ≤ b,

xt ∈ {0, 1} (0 ≤ xt ≤ 1), ∀t = 1, ..., n.

rt : reward/revenue offered by the t-th customer/order

at ∈ Rm: the bundle of resources requested by the t-th order

xt : acceptance or rejection decision to the t-th order

b ∈ Rm: initially available budget/resource amounts

The objective
∑n

t=1 rtxt : the total collected revenue.

We know only b and n at the start.

the bidder data (rt , at) arrive sequentially.

an irrevocable decision must be made as soon as an order arrives
(without knowing the future data).

Conform to resource capacity constraints at the end.
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Offline vs. Online Linear Programming

OPT (A, r) := maximizex
∑n

t=1 rtxt
subject to

∑n
t=1 atxt ≤ b,

xt ∈ {0, 1} (0 ≤ xt ≤ 1), ∀t = 1, ..., n.

rt : reward/revenue offered by the t-th customer/order

at ∈ Rm: the bundle of resources requested by the t-th order

xt : acceptance or rejection decision to the t-th order

b ∈ Rm: initially available budget/resource amounts

The objective
∑n

t=1 rtxt : the total collected revenue.

We know only b and n at the start.

the bidder data (rt , at) arrive sequentially.

an irrevocable decision must be made as soon as an order arrives
(without knowing the future data).

Conform to resource capacity constraints at the end.
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Price Mechanism for OLP I

The problem would be easy if there are “ideal itermized prices”:

Bid 1(t = 1) Bid 2(t = 2) ..... Inventory(b) p∗

Bid(rt) $100 $30 ...
Decision x1 = 0 x2 = 1 ...
Pants 1 0 ... 100 $45
Shoes 1 0 ... 50 $45
T-shirts 0 1 ... 500 $10
Jackets 0 0 ... 200 $55
Hats 1 1 ... 1000 $15

so that the online decision can be made by comparing the reward and
“bundle cost” for each bid.
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Primal and Dual Offline LPs

max r⊤x

P : s.t. Ax ≤ b

0 ≤ x ≤ e

min b⊤p+ e⊤s

D : s.t. A⊤p+ s ≥ r

p ≥ 0, s ≥ 0

where the decision variables are x ∈ Rn, p ∈ Rm, s ∈ Rn, where e is
the vector of all ones.

Denote the primal/dual optimal solution as x∗, p∗, s∗, then LP
duality/complementarity theory tells that for t = 1, ..., n,

x∗t =

{
1, rt > a⊤t p

∗

0, rt < a⊤t p
∗

(few x∗t may take non-integer value when rt = a⊤t p
∗).

Online LP algorithms are based on learning p∗ by dynamically solving
small sample-sized LPs based on revealed data.

Ye, Yinyu (Stanford) Online Linear Programming
CUHK Business, October 6, 2022 7 /

46



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Primal and Dual Offline LPs

max r⊤x

P : s.t. Ax ≤ b

0 ≤ x ≤ e

min b⊤p+ e⊤s

D : s.t. A⊤p+ s ≥ r

p ≥ 0, s ≥ 0

where the decision variables are x ∈ Rn, p ∈ Rm, s ∈ Rn, where e is
the vector of all ones.

Denote the primal/dual optimal solution as x∗, p∗, s∗, then LP
duality/complementarity theory tells that for t = 1, ..., n,

x∗t =

{
1, rt > a⊤t p

∗

0, rt < a⊤t p
∗

(few x∗t may take non-integer value when rt = a⊤t p
∗).

Online LP algorithms are based on learning p∗ by dynamically solving
small sample-sized LPs based on revealed data.
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Primal and Dual Offline LPs

max r⊤x

P : s.t. Ax ≤ b

0 ≤ x ≤ e

min b⊤p+ e⊤s

D : s.t. A⊤p+ s ≥ r

p ≥ 0, s ≥ 0

where the decision variables are x ∈ Rn, p ∈ Rm, s ∈ Rn, where e is
the vector of all ones.

Denote the primal/dual optimal solution as x∗, p∗, s∗, then LP
duality/complementarity theory tells that for t = 1, ..., n,

x∗t =

{
1, rt > a⊤t p

∗

0, rt < a⊤t p
∗

(few x∗t may take non-integer value when rt = a⊤t p
∗).

Online LP algorithms are based on learning p∗ by dynamically solving
small sample-sized LPs based on revealed data.
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Simple Price-Learning Algorithm

We illustrate a simple Learning Algorithm:

Set xt = 0 for all 1 ≤ t ≤ ϵn and average allocation per
bidder/buyer: d = b/n;

Solve the ϵ portion of the problem

maximizex
∑ϵn

t=1 rtxt
subject to

∑ϵn
t=1 aitxt ≤ (ϵn) · di i = 1, ...,m

0 ≤ xt ≤ 1 t = 1, ..., ϵn

and get the optimal dual solution p̂;

Determine the future allocation xt as:

xt =

{
0 if rt ≤ p̂Tat
1 if rt > p̂Tat

One may update the prices periodically and/or set xt = 0 as
soon as a resource is exhausted.

Ye, Yinyu (Stanford) Online Linear Programming
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Simple Price-Learning Algorithm

We illustrate a simple Learning Algorithm:

Set xt = 0 for all 1 ≤ t ≤ ϵn and average allocation per
bidder/buyer: d = b/n;

Solve the ϵ portion of the problem

maximizex
∑ϵn

t=1 rtxt
subject to

∑ϵn
t=1 aitxt ≤ (ϵn) · di i = 1, ...,m

0 ≤ xt ≤ 1 t = 1, ..., ϵn

and get the optimal dual solution p̂;

Determine the future allocation xt as:

xt =

{
0 if rt ≤ p̂Tat
1 if rt > p̂Tat

One may update the prices periodically and/or set xt = 0 as
soon as a resource is exhausted.
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Simple Price-Learning Algorithm

We illustrate a simple Learning Algorithm:

Set xt = 0 for all 1 ≤ t ≤ ϵn and average allocation per
bidder/buyer: d = b/n;

Solve the ϵ portion of the problem

maximizex
∑ϵn

t=1 rtxt
subject to

∑ϵn
t=1 aitxt ≤ (ϵn) · di i = 1, ...,m

0 ≤ xt ≤ 1 t = 1, ..., ϵn

and get the optimal dual solution p̂;

Determine the future allocation xt as:

xt =

{
0 if rt ≤ p̂Tat
1 if rt > p̂Tat

One may update the prices periodically and/or set xt = 0 as
soon as a resource is exhausted.
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Data/Model Assumptions for Analyses
Stochastic Input (i.i.d) Model:
(a) (rt , at)’s are i.i.d. from an unknown distribution

Random Permutation (RP) Model:
(a’) (rt , at)’s may be adversarially chosen but arrive in a random

order (sample without replacement)

Both assume boundedness:

(b) |rt | ≤ r̄ and ∥at∥∞ ≤ ā for all t
(c) The right-hand-side b = n · d(> 0) in Regret Analysis.

Early work assumes rt ≥ 0, at ≥ 0 (knapsack or one-sited market).

What are the necessary and sufficient conditions on the
right-hand-side b to achieve (1− ϵ)-competitive ratio of the
expected total online reward over the optimal total offline reword
OPT for all (A, r)?
If the right-hand-side b = O(n), what is the best achievable
sublinear gap or regret between the two?
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Data/Model Assumptions for Analyses
Stochastic Input (i.i.d) Model:
(a) (rt , at)’s are i.i.d. from an unknown distribution

Random Permutation (RP) Model:
(a’) (rt , at)’s may be adversarially chosen but arrive in a random

order (sample without replacement)

Both assume boundedness:

(b) |rt | ≤ r̄ and ∥at∥∞ ≤ ā for all t
(c) The right-hand-side b = n · d(> 0) in Regret Analysis.

Early work assumes rt ≥ 0, at ≥ 0 (knapsack or one-sited market).

What are the necessary and sufficient conditions on the
right-hand-side b to achieve (1− ϵ)-competitive ratio of the
expected total online reward over the optimal total offline reword
OPT for all (A, r)?
If the right-hand-side b = O(n), what is the best achievable
sublinear gap or regret between the two?
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Data/Model Assumptions for Analyses
Stochastic Input (i.i.d) Model:
(a) (rt , at)’s are i.i.d. from an unknown distribution

Random Permutation (RP) Model:
(a’) (rt , at)’s may be adversarially chosen but arrive in a random

order (sample without replacement)

Both assume boundedness:

(b) |rt | ≤ r̄ and ∥at∥∞ ≤ ā for all t
(c) The right-hand-side b = n · d(> 0) in Regret Analysis.

Early work assumes rt ≥ 0, at ≥ 0 (knapsack or one-sited market).

What are the necessary and sufficient conditions on the
right-hand-side b to achieve (1− ϵ)-competitive ratio of the
expected total online reward over the optimal total offline reword
OPT for all (A, r)?
If the right-hand-side b = O(n), what is the best achievable
sublinear gap or regret between the two?
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Data/Model Assumptions for Analyses
Stochastic Input (i.i.d) Model:
(a) (rt , at)’s are i.i.d. from an unknown distribution

Random Permutation (RP) Model:
(a’) (rt , at)’s may be adversarially chosen but arrive in a random

order (sample without replacement)

Both assume boundedness:

(b) |rt | ≤ r̄ and ∥at∥∞ ≤ ā for all t
(c) The right-hand-side b = n · d(> 0) in Regret Analysis.

Early work assumes rt ≥ 0, at ≥ 0 (knapsack or one-sited market).

What are the necessary and sufficient conditions on the
right-hand-side b to achieve (1− ϵ)-competitive ratio of the
expected total online reward over the optimal total offline reword
OPT for all (A, r)?

If the right-hand-side b = O(n), what is the best achievable
sublinear gap or regret between the two?
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Data/Model Assumptions for Analyses
Stochastic Input (i.i.d) Model:
(a) (rt , at)’s are i.i.d. from an unknown distribution

Random Permutation (RP) Model:
(a’) (rt , at)’s may be adversarially chosen but arrive in a random

order (sample without replacement)

Both assume boundedness:

(b) |rt | ≤ r̄ and ∥at∥∞ ≤ ā for all t
(c) The right-hand-side b = n · d(> 0) in Regret Analysis.

Early work assumes rt ≥ 0, at ≥ 0 (knapsack or one-sited market).

What are the necessary and sufficient conditions on the
right-hand-side b to achieve (1− ϵ)-competitive ratio of the
expected total online reward over the optimal total offline reword
OPT for all (A, r)?
If the right-hand-side b = O(n), what is the best achievable
sublinear gap or regret between the two?
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Competitive Ratio Summary of One-Sited Market

The conditions to design (1− ϵ)-competitive online algorithms based
on B = mini bi :

Sufficient Condition
Kleinberg (2005) B ≥ 1

ϵ2
for m = 1

Devanur et al (2009) OPT ≥ m2 log n
ϵ3

Feldman et al (2010) B ≥ m log n
ϵ3

and OPT ≥ m log n
ϵ

Agrawal/Wang/Y (2010,14) B ≥ m log n
ϵ2

or OPT ≥ m2 log n
ϵ2

Molinaro/Ravi (2013) B ≥ m2 logm
ϵ2

Kesselheim et al (2014) B ≥ logm
ϵ2

Gupta/Molinaro (2014) B ≥ logm
ϵ2

Agrawal/Devanur (2014) B ≥ logm
ϵ2

Necessary Condition

Agrawal/Wang/Y (2010,14) B ≥ logm
ϵ2
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ϵ2
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Devanur et al (2009) OPT ≥ m2 log n
ϵ3
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Remarks

The optimal online algorithms have been designed for the
competitive ratio analyses and for one-sited market and random
permutation data model!

Recent focuses are on dealing with

two-sited markets/platforms, dual convergence, and regret
analyses, and simple and fast algorithms,
online algorithm with interior-point LP solver,
extensions to bandit models and the Fisher market,
regret analysis with non i.i.d. input data.
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Table of Contents
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Regret Analysis

Let “offline” optimal solution be x∗ and “online” solution of n orders
be xn, and

R∗
n =

n∑
j=1

rjx
∗
j , Rn =

n∑
j=1

rjxj .

Then define

∆n = supE [R∗
n − Rn] , v(x) = supE

[
∥ (Ax− b)+ ∥2

]
where the expectation is taken with respect to i.i.d distribution or
random permutation, and the sup operator is over all permissible
distributions and admissible data.

Remark: A bi-criteria performance measure, but one can easily
modify the algorithms by early stopping such that the constraints are
always satisfied at the end of the process.
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Equivalent Form of the Dual Problem

Recall the dual problem

min b⊤p+
n∑

t=1

st s.t. st ≥ rt − a⊤t p, ∀t; p, s ≥ 0

can be rewritten as

min b⊤p+
n∑

t=1

(
rt − a⊤t p

)+
s.t. p ≥ 0

where (·)+ is the positive-part or ReLU function.

After normalizing the objective, it becomes

min
p≥0

d⊤p+
1

n

n∑
t=1

(
rt − a⊤t p

)+

which can be viewed as a simple-sample-average (SSA) (with n sample
points) of a stochastic optimization problem under an i.i.d distribution.
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(
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where (·)+ is the positive-part or ReLU function.

After normalizing the objective, it becomes
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Convergence of Sample Dual p∗
n

Theorem (Li & Y (2019, OR 2021))

Denote the n-sample SSA optimal solution by p∗
n. Then, for the

stochastic input model under moderate conditions that guarantee a
local strong convexity of the underlying stochastic program f (p)
around its optimal solution p∗, there exists a constant C such that

E∥p∗
n − p∗∥22 ≤

Cm log log n

n

holds for all n > m.

This is L2 convergence for the dual optimal solution. Heuristically,

p∗
n ≈ p∗ +

1√
n
·Noise
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Dual-Gradient Online Algorithm for Binary LP

LP-Solver Free Method:

1: Input: d = b/n and initialize p1 = 0
2: For t = 1, 2, ..., n

xt =

{
1, if rt > a⊤t pt

0, if rt ≤ a⊤t pt

3: Compute {
pt+1 = pt + γt (atxt − d)

pt+1 = p+
t+1

4: x = (x1, ..., xn)

Line 5 performs (projected) stochastic gradient descent in the dual,
where step-size γt =

1√
n
or γt =

1√
t
.

This seems a classical online convex optimization algorithm, but the
analysis is on rTx where x is obtained onlinely.
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1√
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Dual-Gradient Online Algorithm for Binary LP

LP-Solver Free Method:

1: Input: d = b/n and initialize p1 = 0
2: For t = 1, 2, ..., n

xt =
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1, if rt > a⊤t pt

0, if rt ≤ a⊤t pt

3: Compute {
pt+1 = pt + γt (atxt − d)
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t+1

4: x = (x1, ..., xn)

Line 5 performs (projected) stochastic gradient descent in the dual,
where step-size γt =

1√
n
or γt =

1√
t
.

This seems a classical online convex optimization algorithm, but the
analysis is on rTx where x is obtained onlinely.

Ye, Yinyu (Stanford) Online Linear Programming
CUHK Business, October 6, 2022 16 /

46



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Performance Analysis

Theorem (Li, Sun & Y (2020, NeurIPS))

With step size γt = 1/
√
n, the regret and expected constraint

violation of the algorithm satisfy

E[R∗
n − Rn] ≤ Õ(m

√
n), E [v(x)] ≤ Õ(m

√
n).

under both the stochastic input and the random permutation models
of two-sited data.

Õ omits the logarithm terms and the constants related to (ā, r̄),
but the algorithm does not require any prior knowledge on the
constants.

The optimal offline reward is in the range O(mn).

The algorithms runs in nm times - the time to read in the data.
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Adaptive Fast Online Algorithm for Binary LP

1: Initialize b1 = b and p1 = 0
2: For t = 1, 2, ..., n

xt =

{
1, if rt > a⊤t pt

0, if rt ≤ a⊤t pt

3: Compute
pt+1 = pt + γt

(
atxt − 1

n−t+1
bt

)
pt+1 = pt+1 ∨ 0

4: Update remaining inventory: bt+1 = bt − atxt .
5: Return x = (x1, ..., xn)

Only Difference: The average allocation vector b/n in Step 3 is
adaptively replaced based on the previous realizations/decisions – this
is a non-stationary approach.
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Nonadaptive vs. Adaptive

The first resource (sequential) usages in 10 runs of the algorithms.

Figure: Nonadaptive Figure: Adaptive
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Nonadaptive vs. Adaptive

The first resource (sequential) usages in 10 runs of the algorithms.

Figure: Nonadaptive

Figure: Adaptive
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Nonadaptive vs. Adaptive

The first resource (sequential) usages in 10 runs of the algorithms.
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Fast Algorithm as a Pre-Solver for the Offline LP

Solver Development

More precisely, the fast online LP solution can be interpreted as a
presolver and establish a “score” of how likely a variable is to be
optimal basic (nonzero).

We run online algorithm to obtain x̂, set a threshold ε and select the
columns in I{x̂>ε} in the column-generation scheme. For a benchmark
LP problem in the Mittelmann’s Simplex Benchmark, this reduces
solution time from hundreds to 8 seconds (or 3 seconds by IPM).

This technique has been adopted in the emerging LP solver COPT -
one of the state of art LP solvers nowadays.

Are other types of data learn-able?
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Solver Development

More precisely, the fast online LP solution can be interpreted as a
presolver and establish a “score” of how likely a variable is to be
optimal basic (nonzero).

We run online algorithm to obtain x̂, set a threshold ε and select the
columns in I{x̂>ε} in the column-generation scheme. For a benchmark
LP problem in the Mittelmann’s Simplex Benchmark, this reduces
solution time from hundreds to 8 seconds (or 3 seconds by IPM).
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Regenerative Data of Different Scales

Figure: 1) Simulated Regenerative Data; 2)Soybean price (years); 3)
Coffee Price (years); 4) TSLA (15 seconds)
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Regenerative Dual Convergence, Owen Shen 2022

Theorem (Regenerative Dual Convergence)

Suppose at follows an i.i.d process and rj follows a regenerative
process with bounded regenerative time, and under the same
boundedness and non-degeneracy assumptions as in the i.i.d Dual
Convergence Theorem, there exists a constant C such that

E
[
∥p∗

n − p
∗∥22

]
≤ Cm logm log log n

n

holds for all n ≥ max{m, 3},m ≥ 2. Additionally,

E [∥p∗
n − p

∗∥2] ≤ C

√
m logm log log n

n

.
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Regrets for Online Algorithms

Since the regenerative data has the same dual convergence rate, we
can show the regrets are as well bounded by the same order :

Theorem (Regenerative Regret by Using Optimal
Stochastic Prices)

With the online policy π1 specified by Algorithm 1 with regenerative
data,

∆n ≤ O(
√
n)

Theorem (Regenerative Regret by LP Learning)

With the online policy π2 specified by Algorithm 2 with regenerative
data,

∆n ≤ O(
√
n log n)
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A “Solution-Uniqueness” Assumption in Online LP

Algorithm
A Common Assumption: the learning target, solution of the offline LP
problem, is unique or non-generate.

Let T bidders (changed from n as in the literature) bidders have a finite
types, i = 1, ...,K , with P((rt , at) = (µi , ci )) = pi (unknown to the
decision maker). Then, the offline problem reduces to:

max
K∑
i=1

piµiyi s.t.
K∑
i=1

piciyi ≤ b/T , yi ∈ [0, 1]

where yi is the acceptance rate/probability for customer type i (some are
zeros or “nonbasic”!)

Benchmark Regret Bound Key Assumption(s)
Jasin and Kumar (2012) Fluid Bounded Nondeg., distrib. known

Jasin (2015) Fluid Õ(logT ) Nondeg.
Vera et al. (2019) Hindsight Bounded Distrib. known

Bumpensanti and Wang (2020) Hindsight Bounded Distrib. known
Asadpour et al. (2019) Full flex. Bounded Long-chain, ξ-Hall condition
Chen, Li & Y (2021) Fluid Bounded Partial Nondeg.
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Behavior of the Simplex and Interior-Point

The key in Chen et al. (2021) paper is to use the interior-point
algorithm for solving the sample LPs with sample proportion p̂j

max
K∑
i=1

p̂iµiyi s.t.
K∑
i=1

p̂iciyi ≤ b/T , yi ∈ [0, 1],

since the sample and offline LP may be degenerate or with multiple
optimal solutions - a common property for real-life LP problems.

Ye, Yinyu (Stanford) Online Linear Programming
CUHK Business, October 6, 2022 26 /

46



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Behavior of the Simplex and Interior-Point

The key in Chen et al. (2021) paper is to use the interior-point
algorithm for solving the sample LPs with sample proportion p̂j

max
K∑
i=1

p̂iµiyi s.t.
K∑
i=1

p̂iciyi ≤ b/T , yi ∈ [0, 1],

since the sample and offline LP may be degenerate or with multiple
optimal solutions - a common property for real-life LP problems.

Ye, Yinyu (Stanford) Online Linear Programming
CUHK Business, October 6, 2022 26 /

46



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Fairness Desiderata: Time and Individual

Time Fairness: The algorithm may tends to accept mainly the first
half (or the second half of the orders), which is unfair or unideal such
as Adwords application.

Individual Fairness: For certain customer types there exist multiple
optimal allocation rules. Unfortunately, the optimal object value
depends on the total resources spent, not on the resources spent on
which groups - some individual or group may be ignored by the online
algorithm/allocation-rule.

But these individuals/groups could have different sensitive features,
such as demographic, race, and gender, and areas in Hospital
Admission and Hotel/Flight booking application.

Could we design an online algorithm/allocation-rule such as, while
maintain the efficiency in objective value, all individual/groups get a
fairer allocation shares?
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Fairer Solution for the Offline Problem

We define y∗, the fair offline optimal solution of the LP problem

max
K∑
i=1

piµiyi , s.t.
K∑
i=1

piciyi ≤ b/T , yi ∈ [0, 1]

as the analytical center of the optimal solution set, which represents
an “average” of all the corner optimal solutions.

Let yt be allocation solution at time t which encodes the accepting
rates/probabilities under algorithm π. Then we define the cumulative
unfairness of the online algorithm π as

UFT (π) = E

[
T∑
t=1

∥yt − y∗∥22

]
.

This definition is consistent with the definition of so-called fair
classifiers/regressors in machine learning.
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Our Result

We develop an online algorithm [Chen, Li & Y (2021)] that achieves

UFT (π) = O(logT ) and RegT (π) = Bounded w.r.t T

Key ideas in algorithm design:

At each time t, we use interior-point method to obtain the
analytic-center solution yt of sampled LPs, and it is necessary to
achieve the performance under non-uniqueness assumption while
maintain fairness.

We also adaptively adjust the right-hand-side of the LP
constraints properly to ensure (i) the depletion of binding
resources and (ii) non-binding resources not affecting the
fairness.

An advantage of interior-point method over simplex method!
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Bandits with Knapsacks
Reverse the order of decisions and observations in online LP setting:
in each time t, the decision maker decides an arm(/customer/order)
among K arms to play/sell and then observe (r̂t , ĉt).

Horizon: T time periods (known a priori)

Bandits: K arms, where each arm i with an unknown mean reward µi .
Knapsacks: m types of resources with a known total resource
capacity b ∈ Rm, and the pull of each arm requires an unknown
resource bundle.
At each time t ∈ [T ], an arm i is selected to pull. The realized
reward r̂t and resources cost ĉt satisfying

E[r̂t |i ] = µi , E[ĉt |i ] = ci .

Goal: Select a subset of winning/optimal arms to pull in order to
maximize the total reward subject to the resource capacity
constraints - pro-actively explore arms and exploit learned data.
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Goal: Select a subset of winning/optimal arms to pull in order to
maximize the total reward subject to the resource capacity
constraints - pro-actively explore arms and exploit learned data.

Ye, Yinyu (Stanford) Online Linear Programming
CUHK Business, October 6, 2022 31 /

46



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Bandits with Knapsacks
Reverse the order of decisions and observations in online LP setting:
in each time t, the decision maker decides an arm(/customer/order)
among K arms to play/sell and then observe (r̂t , ĉt).
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Offline Linear Program (LP) and Regret
With mean reward µ = (µ1, ..., µK ) and mean resource-cost
(c1, ..., cK ) of arms, consider the following deterministic offline LP,

max
x

K∑
i=1

µixi s.t.
K∑
i=1

cixi ≤ b, xi ≥ 0, i ∈ [k]

Here xi represents the optimal times of playing i -th arm if everything
is deterministic and known – only m of them positive (basic).

Denote its optimal value as OPT (the benchmark) and let τ be the
stopping time as soon as one of the resources is depleted. Then the
problem-dependent regret

Regret(P) = OPT − E

[
τ∑

t=1

rt

]
,

where P encapsulates the parameters related to the underlying data
distribution.
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Literature and Our Result

Paper Result

P-Independent Badanidiyuru et. al. (13) O(poly(m, k) ·
√
T )

Agrawal and Devanur (14)

P-Dependent Flajolet and Jaillet (15) Õ(2m+k logT )

Sankararaman and Slivkins (20) Õ(k logT ) for m = 1

Li, Sun & Y (21) Õ
(
m4 + k logT

)
The problem-dependent bounds all involve parameters related to the
non-degeneracy and the reduced cost of the underlying LP, while our
work has the mildest assumption and requires no prior knowledge of
these parameters.
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Dual LP and Reduced Cost

Primal : max µ⊤x
s.t. Cx ≤ b, x ≥ 0

Dual : min b⊤y
s.t. C⊤y ≥ µ, y ≥ 0

Denote x∗ ∈ RK and y∗ ∈ Rm as optimal solutions
Define reduced cost (profit) for i-th arm ∆i := c⊤i y

∗ − µi and the
“nonbasic” variable set I ′ = {i : ∆i > 0}.

Proposition (Li, Sun & Y 2021, ICML)
The regret of a BwK algorithm has the following upper bound:

Regret(P) ≤
∑
i∈I′

∆iE[ni (τ)] + E[b(τ)]⊤y∗

b(t): remaining resources at time t

ni (t): the number of times that i-th (non-optimal) arm is played up
to time t.
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Implications of the Regret Upper Bound
Two tasks to accomplish to reduce the regret:

Task I: Control the number of plays ni(τ) for non-optimal arms
i ∈ I ′ which corresponds to the first component in the regret
bound ∑

i∈I′

∆iE[ni(τ)]

Playing each non-optimal arm will induce a cost/waste of ∆i .

Task II: Make sure no valuable resources b(τ)
j left unused, which

corresponds to the second component in the regret bound

E[b(τ)]⊤y∗

Recall τ is the time that one of the resources is exhausted.

Task II is often overlooked in the existing BwK literature.
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Our Approach: A Two-Phase Algorithm

Phase I: Identify the optimal arms with as fewer number of plays
as possible by designing an “importance score” for arm i :

OPTi := max µ⊤x

s.t. Cx ≤ b, xi = 0, x ≥ 0.

Implication: A larger value of OPT − OPTi ⇒ xi important
and likely to represent an optimal arm. Our algorithm then
maintains upper confidence bound (UCB)/lower confidence
bound (LCB) to estimate OPT and OPTi based are samples.

After t ′ = O(k logT
σ2δ2

) times of Phase I, the non-optimal arm
variables are identified as set I ′ and they would be removed
from further consideration, and then we start

Phase II: Use the remaining arms to exhaust the resource
through an adaptive procedure such that no valuable resources
are wasted.
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Our Approach: A Two-Phase Algorithm

Phase I: Identify the optimal arms with as fewer number of plays
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s.t. Cx ≤ b, xi = 0, x ≥ 0.

Implication: A larger value of OPT − OPTi ⇒ xi important
and likely to represent an optimal arm. Our algorithm then
maintains upper confidence bound (UCB)/lower confidence
bound (LCB) to estimate OPT and OPTi based are samples.

After t ′ = O(k logT
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Combining the Two Phases

Proposition (Li, Sun & Y 2021, ICML)

The regret of our two-phase algorithm is bounded by

O

(
m4

σ2δ2
+

k logT

δ2

)
.

Here the problem-dependent conditional numbers of the deterministic
BwK LP problem are:

σ is the minimum singular value of the sub-matrix of the
constraint matrix C that corresponds to the optimal basis.
δ measures the difficulty of identifying optimal basic variables:

min {min{x∗i |x∗i > 0},min{OPT − OPTi |x∗i > 0},min{∆i |x∗i = 0}} .
These condition numbers generalize the optimality gap for the
original (unconstrained) multi-armed bandits (Lai and Robbins
(1985), Auer et al. (2002)).

Ye, Yinyu (Stanford) Online Linear Programming
CUHK Business, October 6, 2022 37 /

46



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Combining the Two Phases

Proposition (Li, Sun & Y 2021, ICML)

The regret of our two-phase algorithm is bounded by

O

(
m4

σ2δ2
+

k logT

δ2

)
.

Here the problem-dependent conditional numbers of the deterministic
BwK LP problem are:

σ is the minimum singular value of the sub-matrix of the
constraint matrix C that corresponds to the optimal basis.

δ measures the difficulty of identifying optimal basic variables:

min {min{x∗i |x∗i > 0},min{OPT − OPTi |x∗i > 0},min{∆i |x∗i = 0}} .
These condition numbers generalize the optimality gap for the
original (unconstrained) multi-armed bandits (Lai and Robbins
(1985), Auer et al. (2002)).

Ye, Yinyu (Stanford) Online Linear Programming
CUHK Business, October 6, 2022 37 /

46



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Combining the Two Phases

Proposition (Li, Sun & Y 2021, ICML)

The regret of our two-phase algorithm is bounded by

O

(
m4

σ2δ2
+

k logT

δ2

)
.

Here the problem-dependent conditional numbers of the deterministic
BwK LP problem are:

σ is the minimum singular value of the sub-matrix of the
constraint matrix C that corresponds to the optimal basis.
δ measures the difficulty of identifying optimal basic variables:

min {min{x∗i |x∗i > 0},min{OPT − OPTi |x∗i > 0},min{∆i |x∗i = 0}} .

These condition numbers generalize the optimality gap for the
original (unconstrained) multi-armed bandits (Lai and Robbins
(1985), Auer et al. (2002)).

Ye, Yinyu (Stanford) Online Linear Programming
CUHK Business, October 6, 2022 37 /

46



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Combining the Two Phases

Proposition (Li, Sun & Y 2021, ICML)

The regret of our two-phase algorithm is bounded by

O

(
m4

σ2δ2
+

k logT

δ2

)
.

Here the problem-dependent conditional numbers of the deterministic
BwK LP problem are:

σ is the minimum singular value of the sub-matrix of the
constraint matrix C that corresponds to the optimal basis.
δ measures the difficulty of identifying optimal basic variables:

min {min{x∗i |x∗i > 0},min{OPT − OPTi |x∗i > 0},min{∆i |x∗i = 0}} .
These condition numbers generalize the optimality gap for the
original (unconstrained) multi-armed bandits (Lai and Robbins
(1985), Auer et al. (2002)).

Ye, Yinyu (Stanford) Online Linear Programming
CUHK Business, October 6, 2022 37 /

46



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Table of Contents

1 Online Linear Programming

2 Regret Analysis and Fast Algorithms for (Binary) Online Linear
Programming

3 A Fairer Online Interior-Point LP Algorithm

4 Online Bandits with Knapsacks

5 Online Fisher Markets

Ye, Yinyu (Stanford) Online Linear Programming
CUHK Business, October 6, 2022 38 /

46



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

The Fisher Social Optimization Problem

max
x′i s

∑
i∈B wi log(uT

i xi)

s.t.
∑

i∈B xij = (≤)cj , ∀j ∈ G , xij ≥ 0, ∀i , j ,
ui : linear utility coefficients of buyer i , cj : capacity of good j .

Theorem (Eisenberg and Gale (1959))

Optimal dual (Lagrange) multiplier vector of equality constraints is
an equilibrium price vector to clear the market.

Now, consider the online setting: n buyers/agents arrive Online and
an irrevocable allocation-bundle xi has to be made on time
(Agrawal/Devanur 2014; Lu et al. 2020).
Questions: Could the algorithm be implemented while protecting
privacy by a price-posting mechanism? How much would the
aggregated social welfare be deteriorated from the offline setting?
May the market be cleared?
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Regret Analysis and Model

Let “offline” optimal solution be x∗i and “online” solution be xi , and

R∗
n =

n∑
i=1

wi log(u
T
i x

∗
i ), Rn =

n∑
i=1

wi log(u
T
i xi)

Then define

∆n = supE [R∗
n − Rn] , v(x) = supE

[
∥ (Ax− b)+ ∥2

]
where the expectation is taken with respect to i.i.d distribution, and
the sup operator is over all permissible distributions and admissible
data.
Remark: Again this is a bi-criteria performance measure and, if
∆n ≤ o(n) (sublinear),

(
∏

i(u
T
i x

∗
i )

wi )1/n

(
∏

i(u
T
i xi)

wi )1/n
≤ eo(n)/n.
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Online Fisher Markets: Price-Posting Mechanism

How to setup pt for each good before buyer t comes so that the
social welfare is maximized and capacity constraint violation is
minimized for total n buyers?
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Stochastic Market Equilibrium: An Example

Theorem (Jelota & Y (2022))

There is an adaptive price-policy (path-dependent price vector) such
that the market is cleared and the expect optimal social value

n log(2)− 1 ≤ E[Rn] = E[R∗
n ] ≤ n log(2).

However, for any static pricing-policy, even using the expected
optimal equilibrium price-vector, either the expected regret or
constraint violation is at least Ω

√
n.
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Simple Price-Learning Algorithm

One may apply a similar primal price-learning algorithm, that is, solve
the aggregated social problem based on arrived ϵ portion of buyers:

maximizex
∑ϵn

t=1 wt log(uT
t xt)

subject to
∑ϵn

t=1 xt ≤ ϵcj , j = 1, ...,m
0 ≤ xt .

One can set an initial positive price vector p1 and determine
allocation xt as the optimal solution for the individual maximization
problem under price vector pt .

The price update needs to have full information of each buyer, which
could be private!

Could the prices be updated in a privacy-preserving manner?
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A Privacy-Preserving Algorithm

Consider the dual market:

min c⊤p−
n∑

t=1

wt log

(
min
j

pj
utj

)
+

n∑
t=1

wt(log(wt)− 1).

It can be, after removing the fixed part, equivalently rewritten as

min d⊤p− 1

n

n∑
t=1

wt log

(
min
j

pj
utj

)
which can be viewed as a simple-sample-average (SSA) (with n
buyers) of a stochastic optimization problem under an i.i.d
distribution, where d := 1

n
c is the average resource allocation to each

buyer.
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Dual-Gradient Online Algorithm for Fisher-Markets

1: Initialize p1 = e, and for t = 1, 2, ..., n
2: Let xt be the individual optimal bundle solution under price

vector pt .
3: Update prices pt+1 = pt − γt (d− xt)

pt+1 = p+
t+1

4: x = (x1, ..., xn)

Again, line 3 performs (projected) stochastic gradient step.

Theorem (Jelota & Y (2022))

Under i.i.d. budget and utility parameters and when good capacities
are O(n), the algorithm achieves an expected regret ∆n ≤ O(

√
n)

and the expected constraint violation v(x) ≤ O(
√
n), where n is the

number of arriving buyers.
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Dual-Gradient Online Algorithm for Fisher-Markets

1: Initialize p1 = e, and for t = 1, 2, ..., n
2: Let xt be the individual optimal bundle solution under price

vector pt .
3: Update prices pt+1 = pt − γt (d− xt)
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Theorem (Jelota & Y (2022))
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Takeaways and Open Problems

Learning-while-doing (taking actions) is common in today’s
decision making

The Off-line and On-line Regret measures the learning efficiency

Could more non-stationary data be learned with sub-linear
regret?

Could learning/decision be based on past data together with
future prediction?

Overall, Linear Programming continues to play a big role in
online learning and decisioning.

Long Live Linear Programming!
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Takeaways and Open Problems

Learning-while-doing (taking actions) is common in today’s
decision making

The Off-line and On-line Regret measures the learning efficiency

Could more non-stationary data be learned with sub-linear
regret?

Could learning/decision be based on past data together with
future prediction?

Overall, Linear Programming continues to play a big role in
online learning and decisioning.
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