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Multi-Armed Bandits

A fundamental reinforcement learning problem

First studied by Robbins in 1952

Imagine a gambler at a row of slot machines

Each “arm” represents a candidate system

Objective is to identify the best system through experimentation in the
most effective way so as to minimize the number of arms pulled.

In this talk, we examine the problem under a setting where there is a more
complicated cost structure associated with playing each arm/simulating
candidate system
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Bandits with Knapsacks

Horizon: T time periods (T known a priori)

Bandits: m arms. Each arm i with an unknown mean reward µi , i ∈ [m]

Knapsacks: d types of resources. The total resource capacity B ∈ Rd .
Each arm i with an unknown mean resource consumption ci ∈ Rd , i ∈ [m]

At each time t ∈ [T ], an arm i is selected to play. The realized reward rt
and cost Ct satisfying

E[rt |i ] = µi ,E[Ct |i ] = ci .

Goal: To maximize the total reward subject to the resource capacity
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Deterministic Linear Program (LP)

With mean reward µ = (µ1, ..., µm) and mean cost C = (c1, ..., cm) of all
arms, consider the following LP,

max
x

m∑
i=1

µixi

s.t.
m∑
i=1

cixi ≤ B

xi ≥ 0, i ∈ [m]

Denote its optimal solution as OPT

xi represents the optimal fractional number of playing i-th arm if
everything is deterministic and known

WLOG, we assume all the entries are in [0, 1] and that B = (B,B, ...,B).
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Bandits with Knapsacks (BwK)

Knowledge-wise:

Known: T

Unknown: mean reward µ = (µ1, ..., µm) and mean cost/resource
consumption C = (c1, ..., cm)

Notation: i = 1, ...,m to index arm, j = 1, ..., d to index constraint,
t = 1, ...,T to index time period
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Applications

As a general framework, BwK covers a wide range of problems

Dynamic pricing with limited supply

Network revenue management
Bundling and volume pricing

Dynamic procurement and crowd-sourcing markets

Ad allocation

Repeated auction

Network routing and scheduling

...
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Performance Metric: Regret

τ : Stopping time that one of the resources is depleted

The problem-dependent regret

Regret(P) = OPT − E

[
τ∑

t=1

rt

]
,

where P encapsulates all the parameters related to the underlying
distribution.

Questions:

(1) logT dependence achievable?

(2) What are the key quantities in characterizing the regret upper bound?
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Contribution of Our Work

Problem-independent bounds with O(
√
T )-dependency

Badanidiyuru et. al. (2013), Agrawal and Devanur (2014)

Problem-dependent bounds with O(logT )-dependency

Flajolet and Jaillet (2015): achieves O(2m+d logT ) regret bound but
assumes prior knowledge on a number of LP’s structural parameters

Sankararaman and Slivkins (2020): the setting with one-single
constraint and deterministic cost (correctness of the proof remains to
be seen)

Our work:

General setting and no prior knowledge
O
(
d4 + m logT

)
regret
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Revisiting LP

The underlying LP

max
x

m∑
i=1

µixi

s.t.
m∑
i=1

cixi ≤ B

xi ≥ 0, i ∈ [m]

Notation:

I∗ ⊂ [m]: optimal basic variables of the LP or optimal arms

I ′ ⊂ [m]: optimal non-basic variables of the LP or sub-optimal arms

J ∗ ⊂ [d ]: binding constraints of the LP

J ′ ⊂ [d ]: non-binding constraints of the LP

By definition,
I∗ ∪ I ′ = [m],J ∗ ∪ J ′ = [d ]
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Non-degeneracy Assumption

We assume the underlying LP is non-degenerate and it has a unique
optimal solution

Denote x∗ = (x∗1 , ..., x
∗
m). Then, from LP’s complementarity, it implies

i ∈ I∗ ⇔ x∗i > 0

j ∈ J ∗ ⇔ B −
m∑
i=1

cijx
∗
i = 0

and |I∗| = |J ∗|

Any LP satisfies above assumption under a small perturbation.
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Dual LP and Reduced Cost

Primal:

max µ>x
s.t. Cx ≤ B

x ≥ 0

Dual:

min B>y

s.t. C>y ≥ µ

y ≥ 0

Denote x∗ ∈ Rm and y∗ ∈ Rd as optimal solutions
Define reduced cost (profit) for i-th arm

∆i := c>i y∗ − µi

From the strict complementarity, we know

∆i = 0⇔ i ∈ I∗

∆i > 0⇔ i ∈ I ′

A suboptimality measure for the arms!
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Knapsack Process

Define B(0) = B and
B(t+1) = B(t) − Ct

Recall that Ct is the resource consumption of the arm played at time
period t

B(t) denotes the remaining resource capacity at the end of time period t
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Our First Regret Upper Bound

Proposition

The regret of a BwK algorithm has the following upper bound:

Regret(P) ≤ E[B(τ)]>y∗ +
∑
i∈I′

∆iE[ni (τ)]

τ : Stopping time of the procedure

y∗: dual optimal solution

B(τ): remaining resource when the process is terminated

∆i : Reduced cost of the i-th arm

ni (t): the number of times that i-th arm is played up to time t

The regret representation inspired by our previous works on online LP: Agrawal
et. al. (2014), Li & Ye (2019)
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Implications of the Regret Upper Bound

Two tasks to accomplish to minimize the regret:

Task I: Control the number of plays ni (τ) for sub-optimal arms i ∈ I ′
which corresponds to the first component in the regret bound∑

i∈I′
∆iE[ni (τ)]

Playing each arm i ∈ I ′ will induce a cost of ∆i

Task II: Control the remaining binding resources B(τ)
j for j ∈ J ∗

which corresponds to the second component in the regret bound

E[B(τ)]>y∗

Recall τ is the time that one of the resource is exhausted

Task II is overlooked in the existing BwK literature.
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Our Solution

A two-phase algorithm

Phase I: Distinguish the basic variable set I∗ from the non-basic
variable set with as fewer number of plays as possible

Phase II: Use the arms in I∗ to exhaust the resource through an
adaptive procedure
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Phase I

Identify I∗ from sampling (playing arms)

Objective: Identify I∗ but avoid playing arms in I ′ too many times

From an LP’s perspective: Identify the optimal basis with noisy
observations of the LP’s input
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LP Stability under Perturbation (I)

Primal LP:

max
x

µ>x

s.t. Cx ≤ B
x ≥ 0,

Perturbed LP:

max
x

µ̂>x

s.t. Ĉx ≤ B
x ≥ 0,

Denote

Primal LP: optimal basis I∗, binding constraints J ∗

Perturbed LP: optimal basis Î∗, binding constraints Ĵ ∗

Question: What is the condition for I∗ = Î∗ and J ∗ = Ĵ ∗?

Motivation for the question: The perturbed LP can be viewed as an
estimation for the primal LP based on playing arms and making
observations
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LP Stability under Perturbation (II)

Lemma (LP Stability)

If the following conditions hold for all i = 1, ...,m:

‖ĉi − ci‖∞ ≤
σ∆

min{md , d2}
,

|µ̂i − µi | ≤
σ∆√

min{md , d2}
,

then the two LPs share the same optimal basis, i.e., I∗ = Î∗ and J ∗ = Ĵ ∗.

σ is a constant related to the smallest singular value of matrix C

∆ = mini∈I′ ∆i smallest sub-optimality gap (smallest non-zero reduced cost)

Perturbed coefficients µ̂ and Ĉ can be interpreted as the estimators in
bandits problem
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Interpretations of the Parameters

σ : Indicate the linearity between LP’s columns

∆ = mini∈I′ ∆i : Represent the sub-optimality gap for the “best”
non-basic variable

A smaller value for the above two quantities increases the difficulty of
identifying I∗

Bandits with Knapsacks 19/32



High Probability Event

Denote µ̂i (t) and Ĉji (t) as the sample mean of history observations up to time t
for µi and Cji , respectively.

Lemma (Concentration)

With probability no less than 1− 4md
T 2 , the following

µi ∈

(
µ̂i (t)−

√
2 logT

ni (t)
, µ̂i (t) +

√
2 logT

ni (t)

)
,

Cji ∈

(
Ĉji (t)−

√
2 logT

ni (t)
, Ĉji (t) +

√
2 logT

ni (t)

)
,

hold for all i ∈ [m], j ∈ [d ], t ∈ T .

Confidence intervals for µi and Cji : A standard method in bandits literature
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Phase I of Our Algorithm

Identify the optimal basis I∗ with as fewer samples as possible

From the LP stability lemma, we consider two cases:

Known parameters ∆, σ: Direct application of the lemma

No prior knowledge: More challenging! A primal-dual perspective
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Case I – Known Parameters ∆, σ

Algorithm:

1 Play each arm for m3d2 log T
σ2∆2 times (omitting the constant here)

2 Compute Ĉ (t) and µ̂(t) based on sample mean

3 Solve the following LP

max
x

µ̂(t)>x

s.t. Ĉ (t)x ≤ B
x ≥ 0

Denote its optimal basis and binding constraints as Î∗ and Ĵ ∗

Analysis: From LP stability lemma, we know that Î∗ = I∗ and Ĵ ∗ = J ∗
hold with probability 1− 4md

T 2
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Case II – No Prior Knowledge – Intuition

There are in total O(2m+d) possible candidates for the optimal basis and
binding constraints, (I∗,J ∗)

Our approach: Through experimentation, eliminate all the “false”
candidate. The remaining ones are the true candidates

The elimination procedure can be very efficient by taking advantage of the
LP’s structure.
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Case II – No Prior Knowledge – Motivation

Lesson learned so far: the optimal arm set I∗ and the binding constraint
set J ∗ are equally important

↓
A new notion of sub-optimality from a primal-dual perspective

OPTi := max µ>x
s.t. Cx ≤ b

xi = 0, x ≥ 0

OPTj := min b>y

s.t. C>y ≥ µ

yj free , y−j ≥ 0

OPTi : importance of arm i (if i-th arm not played)
OPTj : importance of constraint j (if j-th constraint wrongly exhausted)

Define (as the bottleneck of BwK problem)

δ = OPT −max

{
max
i∈I′

OPTi , max
j∈J ∗

OPTj

}
,
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Lower/Upper Confidence Bound for LP

At each time t,

max
x

m∑
i=1

(
µ̂i (t)−

√
2 logT

ni (t)

)
xi

s.t.
m∑
i=1

(
Ĉi (t) +

√
2 logT

ni (t)

)
xi ≤ B

x ≥ 0

max
x

m∑
i=1

(
µ̂i (t) +

√
2 logT

ni (t)

)
xi

s.t.
m∑
i=1

(
Ĉi (t)−

√
2 logT

ni (t)

)
xi ≤ B

x ≥ 0

Provide a lower bound and upper bound for LP
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No Prior Knowledge – Algorithm

1 Initialize Î∗ = Ĵ ′ = ∅, n=0

2 While |Î∗|+ |Ĵ ′| < d

(1) Play each arm once and update estimates µ̂ and Ĉ

(2) Compute an UCB estimate of OPTi for each arm i and OPTj for each
constraint j ; Denote the estimate as OPTU

i and OPTU
j

(3) Compute an LCB estimate for the primal LP; Denote it as OPT L

(4) For all i /∈ Î∗, if OPT L > OPTU
i , then

Î∗ = Î∗ ∪ {i}

For all j /∈ Ĵ ′, if OPT L > OPTU
j , then

Ĵ ′ = Ĵ ′ ∪ {j}
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Analysis

Intuition for the algorithm:

OPT L > OPTU
i : the i-th arm is important

OPT L > OPTU
j : the j-th constraint is non-binding

Proposition

With probability no less than 1− 4md
T 2 , the algorithm terminates within

O(m log T
σ2δ2 ) rounds and it can identify the optimal basis of the underlying

LP, i.e., Î∗ = I∗ and Ĵ ′ = J ′.

Take-away: Without any prior knowledge, the algorithm identifies the
structure of the underlying LP in O(m logT ) rounds

Surprising: There are O(2m+d) possible configurations of (I∗,J ′), but
identifiable with O(m logT ) sample complexity
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Phase II of Our Algorithm

After identifying I∗, we will not play any arm in I ′ afterwards

The remaining task: To exhaust the resource using arms in I∗

We propose an adaptive method. Without the method, the regret of an
BwK algorithm is Ω(

√
T )
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Filling the Knapsacks/Exhausting the Resources

For simplicity, suppose after the t′ = O(m log T
σ2δ2 ) rounds of exploration, I∗ and J ∗ are identified.

Adaptive algorithm for filling the knapsacks:

For t = t′ + 1, ...,T

1 Solve the UCB-LP and denote its optimal solution as x̃

max
x

m∑
i=1

(
µ̂i (t) +

√
2 log T

ni (t)

)
xi

s.t.
m∑
i=1

(
Ĉi (t)−

√
2 log T

ni (t)

)
xi ≤ B(t−1)

x ≥ 0, xi = 0 for i ∈ I′

2 Normalize x̃ into a probability and play an arm accordingly

3 Update the knapsack process B(t) (remaining resource)

Interpretation:

µ̂i (t) and Ĉi (t) are sample mean estimate√
2 log T
ni (t)

term encourages exploration to better learn the parameters
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Analysis of the Adaptive Algorithm

The algorithm adaptively changes the right-hand-side of the LP (aligned
with our works on online LP, Li & Ye (2019), Chen et. al. (2021))

Proposition

Under the adaptive algorithm,

E[B
(τ)
j ] = O

(
d3

σ2

)
for j ∈ J ∗

Surprising: The remaining resource is not dependent on T . Without the

adaptive mechanism, τ ≈ T implies E[B
(τ)
j ] ≈ O(

√
T ).

Implication: The regret’s dependency on T only comes from the first task
– identifying the LP’s structure
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Combining the Two Phases

Proposition

The regret of our two-phase algorithm

O

(
d4

σ2
+

m logT

σ2δ2

)

Summary:

LP-based characterization of the BwK problem

The symmetry between arms and knapsack

The importance of (i) identifying optimal arms and (ii) stabilizing the
knapsack process

Adaptive algorithm

Open question: Can xi be updated by a fast algorithm rather than solving
an LP at each time t?
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Thank you!
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