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The Various Notions of ‘Solving’ LP

…or how much error 𝜀 do we allow…

Accuracy Low High Exact

Dependency on 

accuracy

Algorithms

Multiplicative 

weights,

First order 

methods,…

Ellipsoid Method, 

Interior Point 

Methods,…

Simplex Method, 

proximity based 

solvers, 

specialized IPM

poly(1/𝜀) poly(log(1/𝜀)) 𝜀 = 0

⟨𝑐, 𝑥⟩ ≤ 𝑂𝑃𝑇 + 𝜀, ∥ 𝐴𝑥 − 𝑏 ∥≤ 𝜀, ∥ 𝑥− ∥≤ 𝜀

𝜀-approximate solution 𝑥:𝑚𝑖𝑛⟨𝑐, 𝑥⟩: 𝐴𝑥 = 𝑏, 𝑥 ≥ 0, 

𝑚 constraints, 𝑛 variables
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…progress of recent years for high accuracy solvers…

𝑚(nnz(𝐴) + 𝑚2) Lee-Sidford ’13-'19 

𝑛𝜔 Cohen, Lee, Song ’19, van den Brand ’20,  
Jiang, Song, Weinstein, Zhang ’21

𝑛𝑚 +𝑚2.5 van den Brand, Lee, Liu, Saranurak, Sidford, Song, Wang ‘21

𝜔…matrix multiplication exponent: It takes 𝑂
˜

(𝑛𝜔) to multiply two 𝑛 × 𝑛 matrices.

Interior Point Methods

Improvement on weakly polynomial solvers for LP

Running times (log(1/𝜀) terms omitted):

⟨𝑐, 𝑥⟩ ≤ 𝑂𝑃𝑇 + 𝜀, ∥ 𝐴𝑥 − 𝑏 ∥≤ 𝜀, ∥ 𝑥− ∥≤ 𝜀

𝜀-approximate solution 𝑥:𝑚𝑖𝑛⟨𝑐, 𝑥⟩: 𝐴𝑥 = 𝑏, 𝑥 ≥ 0, 

𝑚 constraints, 𝑛 variables
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Scaling Invariance in LP Algorithms
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Recall Predictor - Corrector Path Following

• Given 𝑥0 in ‘neighborhood’ around 𝑥𝜇0 for some 𝜇0 > 0

• Compute iterates 𝑥1, … , 𝑥𝑡 by alternating between

• Predictor steps: decrease 𝜇 by moving ‘down’ the central 
path

• Corrector steps: move back ‘closer’ to the central path 
for the same 𝜇 (Newton step).

Mizuno-Todd-Y ‘93

Each iteration requires a linear system solve.

Standard analysis as seen before: Decrease 𝜇 by a factor of 2 in 

𝑂( 𝑛) iterations

𝑚𝑖𝑛⟨𝑐, 𝑥⟩: 𝐴⊤𝑥 ≥ 𝑏, 

𝑑 variables, 𝑛 inequalities
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Condition Numbers in LP Algorithms

Introduced by Dikin’67. 
Used in Stewart '89, 

Todd '90, Vavasis-Y 96’,
Monteiro and Tsuchiya

…
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Condition Number Based Complexity Analyses

Theorem (Vavasis and Y ‘96):

LP of the form 𝑚𝑖𝑛⟨𝑐, 𝑥⟩, 𝐴𝑥 = 𝑏, 𝑥 ≥ 0 can be solved exactly within 𝑂(𝑛3.5log(𝜒𝐴)
many iterations, each of which requires 𝑂(𝑛) linear system solves.

Note: Number of iterations independent of bit-encoding 𝑏 and 𝑐. This captures many 

combinatorial problems, with nice constraint matrix 𝐴 but arbitrary 𝑏 and 𝑐

The key technique is the departure from affine-scaling to the layered-
least-squares linear system solver
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Layered-Least-Squares Linear System

𝑚𝑖𝑛⟨𝑐, 𝑥⟩: 𝐴𝑥 = 𝑏, 𝑥 ≥ 0, 𝑚 constrains, 𝑛 variables

𝐿1 … Layer 1 𝐿2 … Layer. 2

Standard affine scaling:

Δ𝑥:= argmin ∑
𝑖=1

𝑛 𝑥𝑖 + Δ𝑥𝑖
𝑥𝑖

2

s.t. 𝐴Δ𝑥 = 0

Vavasis-Y Layered-Least-Squares step:

Step 1:   𝑧:= argminΔ𝑥 ∑
𝑖∈𝐿2

𝑥𝑖+Δ𝑥𝑖

𝑥𝑖

2

s.t. 𝐴Δ𝑥 = 0

Step 2: Δ𝑥:= argminΔ𝑥 ∑
𝑖∈[𝑛]

𝑥𝑖+Δ𝑥𝑖

𝑥𝑖

2

s.t.𝐴Δ𝑥 = 0, Δ𝑥𝐿2 = 𝑧𝐿2

𝑐

𝑥∗

Central 
path



Simons Institute Bootcamp IPM Part IIBento Natura, Takashi Tsuchiya, Yinyu Ye

Key Idea of the V-Y Analysis

Central path consists of 
• 𝑂(𝑛2) short curved segments of length 𝑂(𝜒𝐴 ) in 
𝜇
⇒ 𝑛 ⋅ 𝑛log(𝜒𝐴) iterations required to traverse 

each.

•𝑂(𝑛2) long straight segments 
⇒ single iteration of LLS step sufficient to 

traverse each, even if unbounded length in 𝜇.

The algorithm is not scale-invariant.
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Scale-Invariant Improvements
There is an exact algorithm (Vavasis and YE 1996) that

Theorem (Dadush, Huiberts, Natura, Végh ’20):

LP of the form 𝑚𝑖𝑛⟨𝑐, 𝑥⟩, 𝐴𝑥 = 𝑏, 𝑥 ≥ 0 can be solved exactly within 𝑂
˜

(𝑛2.5log(𝜒
∗

𝐴 )) many 

iterations, each of which requires 𝑂(𝑛) linear system solves, 
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Key Question: How ‘Curved’ is the Central Path?

• Parameter 𝜇 - optimality gap

• Multiplicative decrease in 𝜇 in each 
iteration

• 𝑥𝜇 is ‘as far away as possible’ from 

constraints subject to having optimality 

gap 𝜇

𝑥𝜇: = argmin⟨𝑐, 𝑥⟩ − 𝜇 ∑
𝑖=1

𝑛

log(⟨𝑎𝑖 , 𝑥⟩ − 𝑏𝑖)

As 𝑐 → 𝑒2 convergence to 𝑥∗ is arbitrarily 
slow

Path can be arbitrarily curved or “long” in 
parameter space

𝑚𝑖𝑛⟨𝑐, 𝑥⟩: 𝐴⊤𝑥 ≥ 𝑏,  𝑑 variables, 𝑛 inequalities

Question: How many iterations to solve an LP exactly? 

Can the condition numbers be bounded 
Polynomially in dimensions?
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The Central Path Curvature and Iteration # I
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The Central Path Curvature and Iteration # II for 
CP-Based IPMs
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Lower Bounds I
Condition-Number vs Iteration Count

How many iterations needed to go from parameter 

𝜇0 to parameter 𝜇1?

Lower bound: 
min #pieces of any piecewise

linear curve from 𝑥𝜇0 to 𝑥𝜇1 that stays

inside some neighborhood.

…lower bound depends on which neighborhood we use.

𝑚𝑖𝑛⟨𝑐, 𝑥⟩: 𝐴⊤𝑥 ≥ 𝑏, 

𝑑 variables, 𝑛 inequalities
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Lower Bounds II
Condition-Number vs Iteration Count

𝑚𝑖𝑛⟨𝑐, 𝑥⟩: 𝐴⊤𝑥 ≥ 𝑏, 

𝑑 variables, 𝑛 inequalities
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New Prospect: Straight Line IPM Complexity (SLC)

• Initial 𝑥0, 𝜇0 ∈ 𝑁 (𝑎 neighborhood of the path).

Straight Line Complexity:

SLC(𝑁, 𝜇0) := minimum # of pieces of any piecewise-

linear traversing 𝑁 from (𝑥0, 𝜇0) to (𝑥∗, 0)

Multiplicative neighborhood 𝑁∞(𝜃) for 𝜃 ∈ (0,1):

𝑁∞(𝜃):= {(𝑥, 𝜇):
𝑎𝑖
⊤𝑥𝜇 − 𝑏𝑖

𝑎𝑖
⊤𝑥 − 𝑏𝑖

∈ [1 − 𝜃, (1 − 𝜃)−1], 𝑖

∈ [𝑛]}

𝑚𝑖𝑛⟨𝑐, 𝑥⟩: 𝐴⊤𝑥 ≥ 𝑏, 

𝑑 variables, 𝑛 inequalities
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Straight Line Complexity to IPM complexity

•Every ‘reasonable’ IPM traverses 𝑁∞(1 − 1/poly(𝑛))
•How large can the straight line complexity SLC(𝑁∞(1 − 1/poly(𝑛)), 𝜇0)
be ?

•Vavasis-Y ‘96 : 𝑂(𝑛3.5log(𝑛𝜒𝐴))
•Dadush, Huiberts, N., Végh ‘20: 𝑂(𝑛2.5log(𝑛𝜒𝐴))

• vertices of the polytope, i.e.  
𝑛
𝑑

THEOREM : (Allamigeon, Dadush, Loho, Natura, 
Végh ‘22):

Given (𝑥0, 𝜇0) ∈ 𝑁2(0.1) there exists an IPM that 

stays in 𝑁2(0.1) and solves the LP exactly using a 
number of iterations that is bounded by

𝑂(𝑛1.5log(
𝑛

1 − 𝜃
)SLC(𝑁∞(𝜃), 𝜇0)), ∀𝜃 ∈ (0,1)
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Which LPs are strongly polynomially solvable?

LP

Combinatorial LP:      𝐴 integral,∥ 𝐴 ∥∞= 2𝑂(poly(𝑛))

Klee-Minty cubes

Markov Decision 
Processes 

Minimum-cost 
generalized flow

• Maximum generalized flow
• 2-variable-per-inequality 

feasibility systems
• Discounted Markov Decision 

Processes (MDP)
• Deterministic MDP

Strongly Polynomial Straight Line Complexity (SLC)

Strongly polynomial (known before 2022) LP in small dimension 𝑑 = 𝑂(log2(𝑛)/loglog𝑛)

Shortest Path 

Input: weighted directed graph 𝐺 = (𝑉, 𝐸),  𝑤:𝐸 → ℝ , 

distinct vertex 𝑠
Task: Find a shortest directed path from 𝑠 to all other vertices 

𝑣 ∈ 𝑉

Strongly Polynomial: Bellman-Ford

𝑠

2
10

2
1

6

1

-51

-2
1

1

1 -4
1

1
2

-2
2

3

0

4Bipartite Matching

Input: weighted directed bipartite graph 𝐺 = (𝑉, 𝐸) with 

vertex partition 𝑉 = 𝐴 ∪ 𝐵 and edge weights 𝑤:𝐸 → ℝ
Task: Find a matching 𝑀 that maximizes the weight 𝑤(𝑀) =
∑
𝑒∈𝑀

𝑤𝑒

Strongly Polynomial: Hungarian Method, …

𝐴

𝐵

Maximum Flow
Input: capacitated directed graph 𝐺 = (𝑉, 𝐸), capacities 𝑐: 𝐸
→ ℝ+ , distinct vertices 𝑠, t 

Task: Find a maximum flow 𝑓 from 𝑠 to 𝑡, that is maximize 
∑𝑒∈𝛿+(𝑠) 𝑓𝑒 subject to: 0 ≤ 𝑓𝑒 ≤ 𝑐𝑒 for all 𝑒 ∈ 𝐸 and ∑

𝑒∈𝛿−(𝑣)
𝑓𝑒

− ∑
𝑒∈𝛿+(𝑣)

𝑓𝑒 = 0 for all 𝑣 ∈ 𝑉 ∖ {𝑠, 𝑡}

Strongly Polynomial: Edmonds Karp, …

𝑠

2
10

2
1

6

1

21

3
1

1

1 5
1

1
2

4
2

3

8

4

𝑡

Minimum-cost flow
Input: weighted directed graph 𝐺 = (𝑉, 𝐸), cost 𝑐: 𝐸 → ℝ , node 

demands 𝑏: 𝑉 → ℝ
Task: Find a flow 𝑓 that minimizes ⟨𝑐, 𝑓⟩ subject to:

• Non-negativity: 𝑓𝑒 ≥ 0 for all 𝑒 ∈ 𝐸

• Fulfilled node demands: ∑
𝑒∈𝛿−(𝑣)

𝑓𝑒 − ∑
𝑒∈𝛿+(𝑣)

𝑓𝑒 = 𝑏𝑣 for all 𝑣

∈ 𝑉(𝐺)

2
10

2
1

6

1

-51

-2
1

1

1 -4
1

1
2

-2
2

3

0

4

2

- 3 

4

2

2

2

2
2

2

2

-3-5

Multi-commodity flow
Input: weighted directed graph 𝐺 = (𝑉, 𝐸), cost 𝑐: 𝐸 → ℝ , node demands 𝑏1: 𝑉 → ℝ, 𝑏2: 𝑉 → ℝ capacities 𝑢 ∈ ℝ𝑉

Task: Find a flows 𝑓1 and 𝑓2 that minimizes ⟨𝑐, 𝑓1 + 𝑓2⟩ subject to:
• Non-negativity: 𝑓1 ≥ 0, 𝑓2 ≥ 0, respect capacities:  𝑓1 + 𝑓2 ≤ 𝑢

• Fulfill node demands: ∑
𝑒∈𝛿−(𝑣)

𝑓𝑖𝑒 − ∑
𝑒∈𝛿+(𝑣)

𝑓𝑖𝑒 = 𝑏𝑖𝑣 for all 𝑣 ∈ 𝑉(𝐺) and 𝑖 = 1,2

Strongly Polynomial: Tardos ‘86

• Shortest Path
• Bipartite Matching
• Maximum flow

• Minimum-cost flow
• Multi-commodity flow
• lattice polytopes

Lattice polytopes

Vertices of polytope 𝑃 = {𝑥: 𝐴𝑥 = 𝑏, 𝑥 ≥ 0} are in {0,1, … , 𝑘}𝑑 for some fixed 𝑘

Combinatorial LP

𝐴 integral, ∥ 𝐴 ∥∞= 2𝑂(poly(𝑛))

Maximum generalized flow

Every column in 𝐴 has exactly two non-zeros: -1 and 𝛾 for some 𝛾 > 0
Objective is ∑𝑒∈𝛿−(𝑡) 𝑓𝑒 ,i.e., the in-flow to a vertex 𝑡.

Strongly polynomial: Végh’13

2-variable-per-inequality feasibility systems

Find feasible solutions to 𝐴𝑥 ≥ 𝑏, where each row of 𝐴
has at most 2 non-zeros

Discounted Markov Decision Processes (MDP)

Given: state space 𝒮. Every state 𝑠 ∈ 𝒮 has an action space 𝒜(𝑠). 
Every action 𝑎 ∈ 𝒜(𝑠) has a reward 𝑟𝑎 and a probability distribution 𝑝𝑎: 𝒮 → [0,1] on the next state, fixed discount 

discount factor 𝛾.

Task: maximize the expected total reward ∑
𝑖=0

∞

𝛾𝑖𝑟𝑖.       Strongly polynomial: Ye’05

LP in small dimension 𝑑 = 𝑂(log2𝑛/loglog𝑛)

Strongly polynomial: Combination of Clarkson’s algorithm and Randomized Simplex [e.g. Kalai] 

Klee-Minty cubes

Allamigeon - Gaubert - Vandame ’22
“No self-concordant barrier is 

strongly polynomial”

Discounted Markov Decision Processes (MDP)

Given: state space 𝒮. Every state 𝑠 ∈ 𝒮 has an action space 𝒜(𝑠). 
Every action 𝑎 ∈ 𝒜(𝑠) has a reward 𝑟𝑎 and a probability distribution 𝑝𝑎: 𝒮 → [0,1] on the next state, fixed discount 

discount factor 𝛾.   Undiscounted 𝛾 = 1

Task: maximize the expected total reward ∑
𝑖=0

∞

𝛾𝑖𝑟𝑖.     

LP remains an open research field…


