Bootcamp: Interior Point Methods II

Bento Natura, Takashi Tsuchiya, and Yinyu Ye

Friday, September 01 2023
Simons Institute
The Various Notions of ‘Solving’ LP

...or how much error \(\varepsilon \) do we allow...

\[
\min \langle c, x \rangle : Ax = b, x \geq 0,
\]
\(m \) constraints, \(n \) variables

\(\varepsilon \)-approximate solution \(\bar{x} \):

\[
\langle c, \bar{x} \rangle \leq OPT + \varepsilon, \| A\bar{x} - b \| \leq \varepsilon, \| x^- \| \leq \varepsilon
\]

<table>
<thead>
<tr>
<th>Accuracy</th>
<th>Low</th>
<th>High</th>
<th>Exact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dependency on accuracy</td>
<td>(\text{poly}(1/\varepsilon))</td>
<td>(\text{poly}(\log(1/\varepsilon)))</td>
<td>(\varepsilon = 0)</td>
</tr>
<tr>
<td>Algorithms</td>
<td>Multiplicative weights, First order methods,…</td>
<td>Ellipsoid Method, Interior Point Methods,…</td>
<td>Simplex Method, proximity based solvers, specialized IPM</td>
</tr>
</tbody>
</table>
Improvement on weakly polynomial solvers for LP

...progress of recent years for high accuracy solvers...

\[\min \langle c, x \rangle: Ax = b, x \geq 0, \]
m constraints, \(n \) variables

\[\langle c, \bar{x} \rangle \leq OPT + \varepsilon, \| A\bar{x} - b \| \leq \varepsilon, \| x^- \| \leq \varepsilon \]

Running times (\(\log(1/\varepsilon) \) terms omitted):

\[\sqrt{m}(\text{nnz}(A) + m^2) \quad \text{Lee-Sidford '13-'19} \]

\[n^\omega \quad \text{Cohen, Lee, Song '19, van den Brand '20,}
\]
\[\text{Jiang, Song, Weinstein, Zhang '21} \]

\[nm + m^{2.5} \quad \text{van den Brand, Lee, Liu, Saranurak, Sidford, Song, Wang '21} \]

\[\omega \ldots \text{matrix multiplication exponent: It takes } O(n^\omega) \text{ to multiply two } n \times n \text{ matrices.} \]
Scaling Invariance in LP Algorithms

- Let \mathcal{D} be the set of diagonal matrices with positive nonzero diagonal entries, and let $D \in \mathcal{D}$.

\[
(P_{\text{scaled}}) \quad \min \ c^T Dx' \text{ s.t. } ADx' = b, \ x' \geq 0.
\]

\[
(D_{\text{scaled}}) \quad \max \ b^Ty \text{ s.t. } Dc - DA^Ty = s', \ s' \geq 0.
\]

(P_{scaled}) and (D_{scaled}) are equivalent to (P) and (D).

- An algorithm is called “scaling invariant” if it generates the (geometrically) the identical sequences when applied to (P) and (D), and (P_{scaled}) and (D_{scaled}).

- The simplex algorithm is not scaling invariant, whereas MTY-PC algorithm is scaling invariant.
Recall Predictor - Corrector Path Following
Mizuno-Todd-Y ‘93

- Given \(x^0 \) in ‘neighborhood’ around \(x_{\mu_0} \) for some \(\mu_0 > 0 \)
- Compute iterates \(x^1, \ldots, x^t \) by alternating between
 - **Predictor steps**: decrease \(\mu \) by moving ‘down’ the central path
 - **Corrector steps**: move back ‘closer’ to the central path for the same \(\mu \) (Newton step).

Each iteration requires a linear system solve.

Standard analysis as seen before: Decrease \(\mu \) by a factor of 2 in
\(O(\sqrt{n}) \) iterations.

\[
\min(c, x): A^T x \geq b, d \text{ variables, } n \text{ inequalities}
\]
Condition Numbers in LP Algorithms

- Let \mathcal{B} be a set of indices of columns of A, and let A_B be the submatrix associate with B.
- Let \mathcal{B} be the set of index set B such that A_B is invertible.
- The condition number $\bar{\chi}_A$ of A is defined as follows:
 \[\bar{\chi}_A = \max_{B \in \mathcal{B}} \| A_B^{-1} A \|. \]
- If the input bit length of A is L_A, then, $\bar{\chi}_A = 2^{O(L_A)}$.
- $\bar{\chi}_A$ is not scaling invariant; namely, $\bar{\chi}_{AD} \neq \bar{\chi}_A$.
 \[\bar{\chi}_A^* = \min_{D \in \mathcal{D}} \bar{\chi}_{AD} \]
 (\mathcal{D} is the set of diagonal matrices with positive diagonal entries.)

If an algorithm is scaling invariant, then we can use $\bar{\chi}_A^*$ for evaluating complexity.

Introduced by Dikin’67. Used in Stewart ’89, Todd ’90, Vavasis-Y ’96, Monteiro and Tsuchiya...
Condition Number Based Complexity Analyses

Theorem (Vavasis and Y ‘96):
LP of the form $\min(c, x), Ax = b, x \geq 0$ can be solved exactly within $O(n^{3.5}\log(\chi_A))$ many iterations, each of which requires $O(n)$ linear system solves.

Note: Number of iterations independent of bit-encoding b and c. This captures many combinatorial problems, with nice constraint matrix A but arbitrary b and c.

The key technique is the departure from affine-scaling to the layered-least-squares linear system solver.
Layered-Least-Squares Linear System

\[\min \langle c, x \rangle : Ax = b, x \geq 0, m \text{ constrains, } n \text{ variables} \]

Standard affine scaling:

\[\Delta x : = \arg \min \sum_{i=1}^{n} \left(\frac{x_i + \Delta x_i}{x_i} \right)^2 \text{ s.t. } A\Delta x = 0 \]

Vavasis-Y Layered-Least-Squares step:

Step 1: \(z : = \arg \min_{\Delta x} \sum_{i \in L_2} \left(\frac{x_i + \Delta x_i}{x_i} \right)^2 \text{ s.t. } A\Delta x = 0 \)

Step 2: \(\Delta x : = \arg \min_{\Delta x} \sum_{i \in [n]} \left(\frac{x_i + \Delta x_i}{x_i} \right)^2 \text{ s.t. } A\Delta x = 0, \Delta x_{L_2} = z_{L_2} \)
Key Idea of the V-Y Analysis

Central path consists of
• $O(n^2)$ short curved segments of length $O(\sqrt{\chi_A})$ in μ
 $\Rightarrow \sqrt{n} \cdot n \log(\chi_A)$ iterations required to traverse each.

• $O(n^2)$ long straight segments
 \Rightarrow single iteration of LLS step sufficient to traverse each, even if unbounded length in μ.

The algorithm is not scale-invariant.
Scale-Invariant Improvements

There is an exact algorithm (Vavasis and Ye 1996) that

- Finds an exact optimal solution in $O(n^{3.5} \log (\bar{\chi}_A + n))$ iterations. Thus, the computational complexity does not depend on b nor c.
- The algorithm is not scaling invariant.
- The number of iterations to reduce the duality gap by a factor of ε by MTY-PC algorithm [Monteiro and Tsuchiya 2004]:

 \[O(n^2 \log \log(1/\varepsilon) + n^{3.5} \log(\bar{\chi}_A^* + n)) \]

- Analysis is based on Vavasis-Ye framework. Compared with Vavasis-Ye algorithm, $\bar{\chi}_A$ is replaced by $\bar{\chi}_A^*$ (scaling invariance), but $n^2 \log \log(1/\varepsilon)$ is there (no finite termination).

Theorem (Dadush, Huiberts, Natura, Végh ’20):

LP of the form $\min(c, x), Ax = b, x \geq 0$ can be solved exactly within $O(n^{2.5} \log(\bar{\chi}_A^*))$ many iterations, each of which requires $O(n)$ linear system solves,
Key Question: How ‘Curved’ is the Central Path?

\[\min \langle c, x \rangle : A^T x \geq b, \ d \text{ variables, } n \text{ inequalities} \]

\[x_\mu := \arg\min \langle c, x \rangle - \mu \sum_{i=1}^{n} \log(\langle a_i, x \rangle - b_i) \]

- Parameter \(\mu \) - optimality gap
- Multiplicative decrease in \(\mu \) in each iteration
- \(x_\mu \) is ‘as far away as possible’ from constraints subject to having optimality gap \(\mu \)

Question: How many iterations to solve an LP exactly?

Can the condition numbers be bounded Polynomially in dimensions?

As \(c \to e_2 \) convergence to \(x^* \) is arbitrarily slow

Path can be arbitrarily curved or “long” in parameter space
The Central Path Curvature and Iteration # I

Let \((\dot{x}, \dot{s}, \dot{y})\) be the derivative of \((x(\nu), s(\nu), y(\nu))\), which satisfies

\[
\dot{x} \circ s + x \circ \dot{s} = -e, \quad A\dot{x} = 0, \quad A^T \dot{y} + \dot{s} = 0.
\]

Sonnevend Curvature [Sonnevend, Stoer, Zhao 1991]:

\[
\kappa(\nu) = \sqrt{\nu |\dot{x} \circ \dot{s}|}
\]

Sonnevend Curvature integral:

\[
I_{PD}(\nu_{ini}, \nu_{fin}) = \int_{\nu_{ini}}^{\nu_{fin}} \frac{\kappa(\nu)}{\nu} d\nu.
\]
The Central Path Curvature and Iteration # II for CP-Based IPMs

- The iteration number of IPM following C from ν_{ini} to ν_{fin} is approximated as follows:

$$\# \text{ of iterations} \sim \frac{l_{PD}(\nu_{\text{ini}}, \nu_{\text{fin}})}{\sqrt{\beta}}$$

((The value of integral) \sim (# of iterations when $\beta = 1$))

- By using Vavasis-Ye analysis, it can be shown that

$$l_{PD}(0, \infty) = O\left(n^{3.5} \log(\bar{x}_A + n)\right).$$

[Monteiro and Tsuchiya 2008]

- $l_{PD}(\nu_{\text{ini}}, \nu_{\text{fin}})$ is rigorously represented as differential geometric quantity [Kakihara, Ohara and Tsuchiya 2013] by using information geometry.
Lower Bounds I
Condition-Number vs Iteration Count

How many iterations needed to go from parameter μ_0 to parameter μ_1?

Lower bound:
$\min \text{ #pieces of any piecewise linear curve from } x_{\mu_0} \text{ to } x_{\mu_1} \text{ that stays inside some neighborhood.}$

...lower bound depends on which neighborhood we use.

$\min (c, x): A^T x \geq b,$
d variables, n inequalities
Central path can visit all (small) neighborhood of a variant of the Klee-Minty cube [Deza, Nematollahi and Terlaky 2008] \(n \sim m^3 2^{3m} \).

- Sonnevend curvature integral of a similar Klee-Minty type instance is exponential order [Mut and Terlaky 2014].

- It was an open problem to construct an instance with exponentially many sharp turns (in \(m \)) of central path with \(n = O(poly(m)) \). This problem is solved by using Tropical geometry [Allamigeon, Benchimol, Gaubert, Joswig 2018].

\[
\min (c, x) : A^T x \geq b, \\
d \text{variables}, n \text{ inequalities}
\]
New Prospect: Straight Line IPM Complexity (SLC)

- Initial \((x_0, \mu_0) \in N\) (a neighborhood of the path).

Straight Line Complexity:

\[
SLC(N, \mu_0) := \text{minimum \# of pieces of any piecewise-linear traversing } N \text{ from } (x_0, \mu_0) \text{ to } (x^*, 0)
\]

Multiplicative neighborhood \(N_\infty(\theta)\) for \(\theta \in (0,1)\):

\[
N_\infty(\theta): = \{(x, \mu): \frac{a_i^\top x_\mu - b_i}{a_i^\top x - b_i} \in [1 - \theta, (1 - \theta)^{-1}], i \\
\in [n]\}
\]

\[
\min(c, x): A^\top x \geq b,
\]

d variables, \(n\) inequalities
Straight Line Complexity to IPM complexity

THEOREM: (Allamigeon, Dadush, Loho, Natura, Végh ‘22):
Given \((x_0, \mu_0) \in N_2(0.1)\) there exists an IPM that stays in \(N_2(0.1)\) and solves the LP *exactly* using a number of iterations that is bounded by

\[O(n^{1.5} \log \left(\frac{n}{1 - \theta} \right) \text{SLC}(N_\infty(\theta), \mu_0)), \forall \theta \in (0,1) \]

- Every ‘reasonable’ IPM traverses \(N_\infty(1 - 1/\text{poly}(n))\)
- How large can the straight line complexity \(\text{SLC}(N_\infty(1 - 1/\text{poly}(n)), \mu_0)\) be?
 - Vavasis-Y ‘96: \(O(n^{3.5} \log(n \bar{X}_A))\)
 - Dadush, Huiberts, N., Végh ‘20: \(O(n^{2.5} \log(n \bar{X}_A))\)
- vertices of the polytope, i.e. \(\binom{n}{d}\)
Which LPs are strongly polynomially solvable?

Strongly polynomial (known before 2022) LP in small dimension \(d = O(\log^2(n) / \log \log n) \)

Strongly Polynomial Straight Line Complexity (SLC)

Combinatorial LP: \(A \) integral, \(\| A \|_\infty = 2^{O(\text{poly}(n))} \)

- Shortest Path
- Bipartite Matching
- Maximum flow
- Minimum-cost flow
- Multi-commodity flow
- Lattice polytopes
- Maximum generalized flow
- 2-variable-per-inequality feasibility systems
- Discounted Markov Decision Processes (MDP)
- Deterministic MDP

Klee-Minty cubes
Markov Decision Processes
Minimum-cost generalized flow

LP remains an open research field…