Bootcamp: Interior Point Methods II

Friday, September 01 2023 **Simons Institute**

Simons Institute Bootcamp IPM Part II

Bento Natura, Takashi Tsuchiya, and Yinyu Ye

The Various Notions of 'Solving' LP

... or how much error ε do we allow...

 $min\langle c, x \rangle$: $Ax = b, x \ge 0$, m constraints, n variables

Accuracy

Dependency on accuracy

Algorithms

Low

 $poly(1/\varepsilon)$

Multiplicative weights, First order methods,...

Simons Institute Bootcamp IPM Part II

specialized IPM

\mathcal{E}-approximate solution \overline{x} :

 $\langle c, \overline{x} \rangle \leq OPT + \varepsilon, \parallel A\overline{x} - b \parallel \leq \varepsilon, \parallel x^- \parallel \leq \varepsilon$

Methods,...

Improvement on weakly polynomial solvers for LP

$$min\langle c, x \rangle$$
: $Ax = b, x \ge 0$,
 m constraints, n variables
 $\langle c, \overline{x} \rangle \le OPT$
Running times ($\log(1/\varepsilon)$ **terms om**
 $\sqrt{m}(nnz(A) + m^2)$ Lee-Sidford '13-'1

- n^{ω} Cohen, Lee, Song '19, van den Brand '20, Jiang, Song, Weinstein, Zhang '21
- $nm + m^{2.5}$ van den Brand, Lee, Liu, Saranurak, Sidford, Song, Wang '21

Simons Institute Bootcamp IPM Part II

- ...progress of recent years for high accuracy solvers...
 - coximate solution \overline{x} :
 - $T + \varepsilon, \parallel A\overline{x} b \parallel \le \varepsilon, \parallel x^- \parallel \le \varepsilon$
 - nitted):
 - 9

Interior Point Methods

 ω ...matrix multiplication exponent: It takes $O(n^{\omega})$ to multiply two $n \times n$ matrices.

Simons Institute Bootcamp IPM Part II Bento Natura, Takashi Tsuchiya, Yinyu Ye **Scaling Invariance in LP Algorithms**

- and let $D \in \mathcal{D}$.
 - (P_{scaled}) min c' Dx' s.t. $ADx' = b, x' \ge 0$.
 - (D_{scaled}) max $b^T y$ s.t. $Dc DA^T y = s', s' \ge 0$.
- (P_{scaled}) and (D_{scaled}) are equivalent to (P) and (D). An algorithm is called "scaling invariant" if it generates the (geometrically) the identical sequences when applied to (P) and (D), and (P_{scaled}) and $(D_{scaled}).$
- The simplex algorithm is not scaling invariant, whereas MTY-PC algorithm is scaling invariant.

 \triangleright Let \mathcal{D} be the set of diagonal matrices with positive nonzero diagonal entries,

Recall Predictor - Corrector Path Following Mizuno-Todd-Y '93

- Given x^0 in 'neighborhood' around x_{μ_0} for some $\mu_0 > 0$
- Compute iterates x^1, \ldots, x^t by alternating between
 - Predictor steps: decrease μ by moving 'down' the central path
 - Corrector steps: move back 'closer' to the central path for the same μ (Newton step).

Each iteration requires a linear system solve.

Standard analysis as seen before: Decrease μ by a factor of 2 in $O(\sqrt{n})$ iterations

Simons Institute Bootcamp IPM Part II

 $min\langle c, x \rangle$: $A^{\top}x \ge b$, d variables, n inequalities

 x_{μ_2}

Simons Institute Bootcamp IPM Part II Bento Natura, Takashi Tsuchiya, Yinyu Ye **Condition Numbers in LP Algorithms** \triangleright Let B be a set of indicies of columns of A, and let A_B be the submatrix

- associate with B.
- \triangleright Let \mathcal{B} be the set of index set B such that A_B is invertible.
- \blacktriangleright The condition number $\bar{\chi}_A$ of A is defined as follows:

 $\bar{\chi}_{A}$

lf the input bit length of A is L_A , then, $\bar{\chi}_A = 2^{O(L_A)}$. $\succ \bar{\chi}_A$ is not scaling invariant; namely, $\bar{\chi}_{AD} \neq \bar{\chi}_A$.

complexity.

$$= \max_{B\in\mathcal{B}} \|A_B^{-1}A\|.$$

Introduced by Dikin'67. Used in Stewart '89, Todd '90, Vavasis-Y 96', Monteiro and Tsuchiya

 $\bar{\chi}_A^* = \min_{D \in \mathcal{D}} \bar{\chi}_{AD}$

(\mathcal{D} is the set of diagonal matrices with positive diagonal entries.) If an algorithm is scaling invariant, then we can use $ar{\chi}_A^*$ for evaluating

Condition Number Based Complexity Analyses

Theorem (Vavasis and Y '96): many iterations, each of which requires O(n) linear system solves.

Note: Number of iterations independent of bit-encoding b and c. This captures many combinatorial problems, with *nice* constraint matrix A but arbitrary b and c

Simons Institute Bootcamp IPM Part II

LP of the form min(c, x), Ax = b, $x \ge 0$ can be solved **exactly** within $O(n^{3.5}\log(\overline{\chi}))$

The key technique is the departure from affine-scaling to the layeredleast-squares linear system solver

Layered-Least-Squares Linear System

min(c, x): $Ax = b, x \ge 0, m$ constrains, n variables

Standard affine scaling:

$$\Delta x := \operatorname{argmin}_{i=1}^{n} \left(\frac{x_i + \Delta x_i}{x_i} \right)^2 \text{ s.t. } A\Delta x = 0$$

Vavasis-Y Layered-Least-Squares step:

Step 1:
$$z := \operatorname{argmin}_{\Delta x} \sum_{i \in L_2} \left(\frac{x_i + \Delta x_i}{x_i} \right)^2$$
 s.t. $A\Delta x =$
Step 2: $\Delta x := \operatorname{argmin}_{\Delta x} \sum_{i \in [n]} \left(\frac{x_i + \Delta x_i}{x_i} \right)^2$ s.t. $A\Delta x =$

Key Idea of the V-Y Analysis

Central path consists of

• $O(n^2)$ short curved segments of length $O(\overline{\chi_A})$ in μ $\Rightarrow \sqrt{n} \cdot n \log(\overline{\chi_A})$ iterations required to traverse each.

• $O(n^2)$ long straight segments \Rightarrow single iteration of LLS step sufficient to traverse each, even if unbounded length in μ .

The algorithm is not scale-invariant.

There is an exact algorithm (Vavasis and YE 1996) that

- Finds an exact optimal solution in $O(n^{3.5}\log(\bar{\chi}_A + n))$ iterations. Thus, the computational complexity does not depend on b nor c.
- The algorithm is not scaling invariant.
- > The number of iterations to reduce the duality gap by a factor of ε by MTY-PC algorithm [Monteiro and Tsuchiya 2004]:

 $O(n^2 \log \log(1))$

Analysis is based on Vavasis-Ye framework. Compared with Vavasis-Ye algorithm, $\bar{\chi}_A$ is replaced by $\bar{\chi}_A^*$ (scaling invariance), but $n^2 \log \log(1/\varepsilon)$ is there (no finite termination).

Theorem (Dadush, Huiberts, Natura, Végh '20):

iterations, each of which requires O(n) linear system solves,

Simons Institute Bootcamp IPM Part II Scale-Invariant Improvements

$$1/\varepsilon) + n^{3.5} \log(\bar{\chi}_A^* + n))$$

LP of the form min(c, x), Ax = b, $x \ge 0$ can be solved **exactly** within $O(n^{2.5}\log(\overline{\chi}_{A}^{*}))$ many

Key Question: How 'Curved' is the Central Path?

 $min(c, x): A^{\top}x \ge b, d$ variables, n inequalities

$$x_{\mu} := \operatorname{argmin} \langle c, x \rangle - \mu \sum_{i=1}^{n} \log(\langle a_i, x \rangle - \mu \sum_{i=1}^{n}$$

- Parameter μ optimality gap
- Multiplicative decrease in μ in each iteration
- x_{μ} is 'as far away as possible' from constraints subject to having optimality gap μ

Question: How many iterations to solve an LP exactly?

Can the condition numbers be bounded Polynomially in dimensions?

Simons Institute Bootcamp IPM Part II

As $c \rightarrow e_2$ convergence to x^* is arbitrarily slow

Path can be *arbitrarily curved or "long"* in parameter space

The Central Path Curvature and Iteration # I

Let $(\dot{x}, \dot{s}, \dot{y})$ be the derivative of $(x(\nu), s(\nu), y(\nu))$, which satisfies

 $\dot{x} \circ s + x \circ \dot{s} = -e, \ A\dot{x} = 0, \ A^T\dot{y} + \dot{s} = 0.$

Sonnevend Curvature [Sonnevend, Stoer, Zhao 1991]:

$$\kappa(
u) = \sqrt{
u |\dot{\mathbf{x}} \circ \dot{\mathbf{s}}|}$$

Sonnevend Curvature integral:

$$I_{PD}(
u_{ini},
u_{fin}) = \int_{
u_{ini}}^{
u_{fin}}$$

Simons Institute Bootcamp IPM Part II

(
u)), which satisfies $0, \ A^T \dot{y} + \dot{s} = 0.$ (b) 1991]:

$$\frac{\kappa(\nu)}{\nu}d\nu$$

The Central Path Curvature and Iteration # II for CP-Based IPMs

The iteration number of IPM following C from ν_{ini} to ν_{fin} is approximated as follows:

 $\# ext{ of iterations } \sim rac{I_{PD}(
u_{ ext{ini}},
u_{ ext{fin}})}{\sqrt{eta}}$

((The value of integral) ~ (# of iterations when β
 By using Vavasis-Ye analysis, it can be shown that

 $I_{PD}(0,\infty) = O(n^{3.5}\log(ar{\chi}_A^* + n))$

[Monteiro and Tsuchiya 2008]

 \blacktriangleright $I_{PD}(\nu_{ini}, \nu_{fin})$ is rigorously represented as differential geometric quantity [Kakihara, Ohara and Tsuchiya 2013] by using information geometry.

$$= 1))$$

Lower Bounds I Condition-Number vs Iteration Count

How many iterations needed to go from parameter μ_0 to parameter μ_1 ?

Lower bound: min #pieces of any piecewise linear curve from x_{μ_0} to x_{μ_1} that stays inside some neighborhood.

...lower bound depends on which neighborhood we use.

Simons Institute Bootcamp IPM Part II

 $min\langle c, x \rangle: A^{\top}x \geq b$,

Lower Bounds II Condition-Number vs Iteration Count

- Central path can visit all (small) neighborhood of a variant of the Klee-Minty cube [Deza, Nematollahi and Terlaky 2008] ($n \sim m^3 2^{3m}$).
- Sonnevend curvature integral of a similar Klee-Minty type instance is exponential order [Mut and Terlaky 2014].
- It was an open problem to construct an instance with exponentially many sharp turns (in m) of central path with n = O(poly(m)). This problem is solved by using Tropical geometry [Allamigeon, Benchimol, Gaubert, Joswig 2018].

Simons Institute Bootcamp IPM Part II

$min\langle c, x \rangle: A^{\top}x \geq b$, d variables, n inequalities

New Prospect: Straight Line IPM Complexity (SLC)

• Initial $(x_0, \mu_0) \in N$ (a neighborhood of the path).

Straight Line Complexity:

 $SLC(N, \mu_0) := minimum \# of pieces of any piecewise$ linear traversing N from (x_0, μ_0) to $(x^*, 0)$

Multiplicative neighborhood $N_{\infty}(\theta)$ for $\theta \in (0,1)$:

$$N_{\infty}(\theta) := \{(x,\mu) : \frac{a_i^{\top} x_{\mu} - b_i}{a_i^{\top} x - b_i} \in [1 - \theta, (1 - \theta)] \in [n]\}$$

 $min\langle c, x \rangle: A^{\top}x \geq b$, d variables, n inequalities

Straight Line Complexity to IPM complexity

THEOREM : (Allamigeon, Dadush, Loho, Natura, Végh (22):

Given $(x_0, \mu_0) \in N_2(0.1)$ there exists an IPM that stays in $N_2(0.1)$ and solves the LP exactly using a number of iterations that is bounded by

$$O(n^{1.5}\log(\frac{n}{1-\theta})SLC(N_{\infty}(\theta),\mu_{0})), \forall \theta \in ($$

- Every 'reasonable' IPM traverses $N_{\infty}(1 1/\text{poly}(n))$
- •How large can the straight line complexity $SLC(N_{\infty}(1 1/\text{poly}(n)), \mu_0)$ be?
 - •Vavasis-Y '96 : $O(n^{3.5}\log(n\overline{\chi}_A))$
 - •Dadush, Huiberts, N., Végh '20: $O(n^{2.5}\log(n\overline{\chi}_A))$
 - vertices of the polytope, i.e. $\binom{n}{d}$

Bento Natura, Takashi Tsuchiya, Yinyu Ye Which LPs are strongly polynomially solvable?

LP remains an open research field...

