Bootcamp: Interior Point Methods II

Bento Natura, Takashi Tsuchiya, and Yinyu Ye

Friday, September 012023
Simons Institute

The Various Notions of 'Solving' LP

...or how much error ε do we allow...
$\min \langle c, x\rangle: A x=b, x \geq 0$, m constraints, n variables
ε-approximate solution \bar{x} :

$$
\langle c, \bar{x}\rangle \leq O P T+\varepsilon,\|A \bar{x}-b\| \leq \varepsilon,\left\|x^{-}\right\| \leq \varepsilon
$$

Accuracy
Dependency on
accuracy

High

$\operatorname{poly}(\log (1 / \varepsilon))$

Ellipsoid Method, Interior Point Methods,...

Exact

$\varepsilon=0$
weights,
Low

$$
\operatorname{poly}(1 / \varepsilon)
$$

Multiplicative First order methods,...

Simplex Method, proximity based solvers, specialized IPM

Improvement on weakly polynomial solvers for LP

...progress of recent years for high accuracy solvers...
$\min \langle c, x\rangle: A x=b, x \geq 0$,
ε-approximate solution \bar{x} :
m constraints, n variables

$$
\langle c, \bar{x}\rangle \leq O P T+\varepsilon,\|A \bar{x}-b\| \leq \varepsilon,\left\|x^{-}\right\| \leq \varepsilon
$$

Running times $(\log (1 / \varepsilon)$ terms omitted):
$\sqrt{m}\left(\operatorname{nnz}(A)+m^{2}\right)$ Lee-Sidford '13-'19
Interior Point Methods

n^{ω}	Cohen, Lee, Song '19, van den Brand '20,
Jiang, Song, Weinstein, Zhang '21	

$n m+m^{2.5}$
van den Brand, Lee, Liu, Saranurak, Sidford, Song, Wang '21
$\omega \ldots$ matrix multiplication exponent: It takes $O\left(n^{\omega}\right)$ to multiply two $n \times n$ matrices.

Scaling Invariance in LP Algorithms

- Let \mathcal{D} be the set of diagonal matrices with positive nonzero diagonal entries, and let $D \in \mathcal{D}$.

$$
\begin{gathered}
\left(\mathrm{P}_{\text {scaled }}\right) \min c^{T} D x^{\prime} \text { s.t. } A D x^{\prime}=b, x^{\prime} \geq 0 . \\
\left(\mathrm{D}_{\text {scaled }}\right) \max b^{T} y \text { s.t. } D c-D A^{T} y=s^{\prime}, s^{\prime} \geq 0 . \\
\left(\mathrm{P}_{\text {scaled }}\right) \text { and }\left(\mathrm{D}_{\text {scaled }}\right) \text { are equivalent to }(\mathrm{P}) \text { and }(\mathrm{D}) .
\end{gathered}
$$

- An algorithm is called "scaling invariant" if it generates the (geometrically) the identical sequences when applied to (P) and (D), and ($P_{\text {scaled }}$) and ($\mathrm{D}_{\text {scaled }}$).
- The simplex algorithm is not scaling invariant, whereas MTY-PC algorithm is scaling invariant.

Recall Predictor - Corrector Path Following

Mizuno-Todd-Y '93

$$
\min \langle c, x\rangle: A^{\top} x \geq b
$$

d variables, n inequalities

- Given x^{0} in 'neighborhood' around $x_{\mu_{0}}$ for some $\mu_{0}>0$
- Compute iterates x^{1}, \ldots, x^{t} by alternating between
- Predictor steps: decrease μ by moving 'down' the central path
- Corrector steps: move back 'closer' to the central path for the same μ (Newton step).

Each iteration requires a linear system solve.
Standard analysis as seen before: Decrease μ by a factor of 2 in $O(\sqrt{n})$ iterations

Condition Numbers in LP Algorithms

- Let B be a set of indicies of columns of A, and let A_{B} be the submatrix associate with B.
- Let \mathcal{B} be the set of index set B such that A_{B} is invertible.
- The condition number $\bar{\chi}_{A}$ of A is defined as follows:

$$
\bar{\chi}_{A}=\max _{B \in \mathcal{B}}\left\|A_{B}^{-1} A\right\| .
$$

Introduced by Dikin'67. Used in Stewart '89,
Todd '90, Vavasis-Y 96', Monteiro and Tsuchiya

- If the input bit length of A is L_{A}, then, $\bar{\chi}_{A}=2^{O\left(L_{A}\right)}$.
- $\bar{\chi}_{A}$ is not scaling invariant; namely, $\bar{\chi}_{A D} \neq \bar{\chi}_{A}$.

$$
\bar{\chi}_{A}^{*}=\min _{D \in \mathcal{D}} \bar{\chi}_{A D}
$$

(\mathcal{D} is the set of diagonal matrices with positive diagonal entries.) If an algorithm is scaling invariant, then we can use $\bar{\chi}_{A}^{*}$ for evaluating complexity.

Condition Number Based Complexity Analyses

Theorem (Vavasis and \mathbf{Y} '96):
LP of the form $\min \langle c, x\rangle, A x=b, x \geq 0$ can be solved exactly within $O\left(n^{3.5} \log \left(\bar{\chi}_{A}\right)\right.$ many iterations, each of which requires $O(n)$ linear system solves.

Note: Number of iterations independent of bit-encoding b and c. This captures many combinatorial problems, with nice constraint matrix A but arbitrary b and c

The key technique is the departure from affine-scaling to the layered-least-squares linear system solver

Layered-Least-Squares Linear System

$$
\min \langle c, x\rangle: A x=b, x \geq 0, m \text { constrains, } n \text { variables }
$$

Standard affine scaling:

$$
\Delta x:=\operatorname{argmin} \sum_{i=1}^{n}\left(\frac{x_{i}+\Delta x_{i}}{x_{i}}\right)^{2} \text { s.t. } A \Delta x=0
$$

Vavasis-Y Layered-Least-Squares step:

Step 1: $z:=\operatorname{argmin}_{\Delta x} \sum_{i \in L_{2}}\left(\frac{x_{i}+\Delta x_{i}}{x_{i}}\right)^{2}$ s.t. $A \Delta x=0$
Step 2: $\Delta x:=\operatorname{argmin}_{\Delta x} \sum_{i \in[n]}\left(\frac{x_{i}+\Delta x_{i}}{x_{i}}\right)^{2}$ s.t. $A \Delta x=0, \Delta x_{L_{2}}=z_{L_{2}}$

Key Idea of the V-Y Analysis

Central path consists of

- $O\left(n^{2}\right)$ short curved segments of length $O\left(\overline{\chi_{A}}\right)$ in μ
$\Rightarrow \sqrt{n} \cdot n \log \left(\overline{\chi_{A}}\right)$ iterations required to traverse each.
- O(n^{2}) long straight segments
\Rightarrow single iteration of LLS step sufficient to traverse each, even if unbounded length in μ.

The algorithm is not scale-invariant.

Scale-Invariant Improvements

There is an exact algorithm (Vavasis and YE 1996) that

- Finds an exact optimal solution in $O\left(n^{3.5} \log \left(\bar{\chi}_{A}+n\right)\right)$ iterations. Thus, the computational complexity does not depend on b nor c.
- The algorithm is not scaling invariant.
- The number of iterations to reduce the duality gap by a factor of ε by MTY-PC algorithm [Monteiro and Tsuchiya 2004]:

$$
O\left(n^{2} \log \log (1 / \varepsilon)+n^{3.5} \log \left(\bar{\chi}_{A}^{*}+n\right)\right)
$$

- Analysis is based on Vavasis-Ye framework. Compared with Vavasis-Ye algorithm, $\bar{\chi}_{A}$ is replaced by $\bar{\chi}_{A}^{*}$ (scaling invariance), but $n^{2} \log \log (1 / \varepsilon)$ is there (no finite termination).

Theorem (Dadush, Huiberts, Natura, Végh '20):
LP of the form $\min \langle c, x\rangle, A x=b, x \geq 0$ can be solved exactly within $O\left(n^{2.5} \log \left(\bar{\chi}_{A}^{*}\right)\right)$ many iterations, each of which requires $O(n)$ linear system solves,

Key Question: How 'Curved' is the Central Path?

$$
\begin{aligned}
& \min \langle c, x\rangle: A^{\top} x \geq b, d \text { variables, } n \text { inequalities } \\
& x_{\mu}:=\operatorname{argmin}\langle c, x\rangle-\mu \sum_{i=1}^{n} \log \left(\left\langle a_{i}, x\right\rangle-b_{i}\right)
\end{aligned}
$$

- Parameter μ - optimality gap
- Multiplicative decrease in μ in each iteration
- x_{μ} is 'as far away as possible' from constraints subject to having optimality gap μ
Question: How many iterations to solve an LP exactly?

As $c \rightarrow e_{2}$ convergence to x^{*} is arbitrarily slow

Can the condition numbers be bounded Polynomially in dimensions?

Path can be arbitrarily curved or "long" in parameter space

The Central Path Curvature and Iteration \# I

Let $(\dot{x}, \dot{s}, \dot{y})$ be the derivative of $(x(\nu), s(\nu), y(\nu))$, which satisfies

$$
\dot{x} \circ s+x \circ \dot{s}=-e, A \dot{x}=0, A^{T} \dot{y}+\dot{s}=0 .
$$

Sonnevend Curvature [Sonnevend, Stoer, Zhao 1991]:

$$
\kappa(\nu)=\sqrt{\nu|\dot{x} \circ \dot{\boldsymbol{s}}|}
$$

Sonnevend Curvature integral:

$$
I_{P D}\left(\nu_{i n i}, \nu_{\text {fin }}\right)=\int_{\nu_{\text {ini }}}^{\nu_{\text {fin }}} \frac{\kappa(\nu)}{\nu} d \nu .
$$

The Central Path Curvature and Iteration \# II for CP-Based IPMs

- The iteration number of IPM following \mathcal{C} from $\nu_{\text {ini }}$ to $\nu_{\text {fin }}$ is approximated as follows:

$$
\# \text { of iterations } \sim \frac{I_{P D}\left(\nu_{i n i}, \nu_{f i n}\right)}{\sqrt{\beta}}
$$

((The value of integral) \sim (\# of iterations when $\beta=1$))

- By using Vavasis-Ye analysis, it can be shown that

$$
I_{P D}(0, \infty)=O\left(n^{3.5} \log \left(\bar{\chi}_{A}^{*}+n\right)\right) .
$$

[Monteiro and Tsuchiya 2008]

- $I_{P D}\left(\nu_{i n i}, \nu_{\text {fin }}\right)$ is rigorously represented as differential geometric quantity [Kakihara, Ohara and Tsuchiya 2013] by using information geometry.

Lower Bounds I

Condition-Number vs Iteration Count

How many iterations needed to go from parameter μ_{0} to parameter μ_{1} ?

Lower bound:
min \#pieces of any piecewise
linear curve from $x_{\mu_{0}}$ to $x_{\mu_{1}}$ that stays inside some neighborhood.
...lower bound depends on which neighborhood we use.

$$
\min \langle c, x\rangle: A^{\top} x \geq b
$$

d variables, n inequalities

Lower Bounds II

Condition-Number vs Iteration Count

$$
\min \langle c, x\rangle: A^{\top} x \geq b
$$

d variables, n inequalities

- Central path can visit all (small) neighborhood of a variant of the Klee-Minty cube [Deza, Nematollahi and Terlaky 2008] ($n \sim m^{3} 2^{3 m}$).
- Sonnevend curvature integral of a similar Klee-Minty type instance is exponential order [Mut and Terlaky 2014].
- It was an open problem to construct an instance with exponentially many sharp turns (in m) of central path with $n=O($ poly (m)). This problem is solved by using Tropical geometry [Allamigeon, Benchimol, Gaubert, Joswig 2018].

New Prospect: Straight Line IPM Complexity (SLC)

- Initial $\left(x_{0}, \mu_{0}\right) \in N$ (a neighborhood of the path).

Straight Line Complexity:

$\operatorname{SLC}\left(N, \mu_{0}\right):=$ minimum \# of pieces of any piecewiselinear traversing N from $\left(x_{0}, \mu_{0}\right)$ to $\left(x^{*}, 0\right)$

Multiplicative neighborhood $N_{\infty}(\theta)$ for $\theta \in(0,1)$:

$$
\begin{aligned}
& N_{\infty}(\theta):=\left\{(x, \mu): \frac{a_{i}^{\top} x_{\mu}-b_{i}}{a_{i}^{\top} x-b_{i}} \in\left[1-\theta,(1-\theta)^{-1}\right], i\right. \\
& \in[n]\}
\end{aligned}
$$

$$
\min \langle c, x\rangle: A^{\top} x \geq b
$$

d variables, n inequalities

Straight Line Complexity to IPM complexity

THEOREM : (Allamigeon, Dadush, Loho, Natura, Végh '22):
Given $\left(x_{0}, \mu_{0}\right) \in N_{2}(0.1)$ there exists an IPM that stays in $N_{2}(0.1)$ and solves the LP exactly using a number of iterations that is bounded by
$O\left(n^{1.5} \log \left(\frac{n}{1-\theta}\right) \operatorname{SLC}\left(N_{\infty}(\theta), \mu_{0}\right)\right), \forall \theta \in(0,1)$
-Every 'reasonable' IPM traverses $N_{\infty}(1-1 / \operatorname{poly}(n))$
-How large can the straight line complexity $\operatorname{SLC}\left(N_{\infty}(1-1 / \operatorname{poly}(n)), \mu_{0}\right)$ be?
-Vavasis-Y '96: $O\left(n^{3.5} \log \left(n \bar{\chi}_{A}\right)\right)$
-Dadush, Huiberts, N., Végh '20: $O\left(n^{2.5} \log \left(n \bar{\chi}_{A}\right)\right)$

- vertices of the polytope, i.e. $\binom{n}{d}$

Which LPs are strongly polynomially solvable?

Strongly polynomial (known before 2022) LP in small dimension $d=O\left(\log ^{2}(n) / \log \log n\right)$
Strongly Polynomial Straight Line Complexity (SLC)
Klee-Minty cubes
Combinatorial LP: $\quad A$ integral, $\|A\|_{\infty}=2^{O(\operatorname{poly}(n)}$

- Shortest Path
- Bipartite Matching
- Maximum flow
- Minimum-cost flow
- Multi-commodity flow
- lattice polytopes
- Maximum generalized flow
- 2-variable-per-inequality feasibility systems
- Discounted Markov Decision Processes (MDP)
- Deterministic MDP

Markov Decision
Processes
Minimum-cost generalized flow

LP remains an open research field...

