Bootcamp: Interior Point Algorithms I

Yinyu Ye

Friday, September 012023
Simons Institute

LP Algorithms at a Glance

Figure 1: Slide from Daniel Dadush and Bento Natura 2023

Interior-Point Algorithms for LP

Consider linear program:

$$
\begin{gathered}
\min \quad \mathbf{c}^{T} \mathbf{x} \text { s.t. } A \mathbf{x}=\mathbf{b}, \mathbf{x} \geq \mathbf{0} \\
\operatorname{int} \mathcal{F}_{p}=\{\mathbf{x}: A \mathbf{x}=\mathbf{b}, \mathbf{x}>\mathbf{0}\} \neq \emptyset \\
\operatorname{int} \mathcal{F}_{d}=\left\{(\mathbf{y}, \mathbf{s}): \mathbf{s}=\mathbf{c}-A^{T} \mathbf{y}>\mathbf{0}\right\} \neq \emptyset
\end{gathered}
$$

Let z^{*} denote the optimal value and

$$
\mathcal{F}=\mathcal{F}_{p} \times \mathcal{F}_{d}
$$

We are interested in finding an ϵ-approximate solution for the LP problem:

$$
\mathbf{c}^{T} \mathbf{x}-\mathbf{b}^{T} \mathbf{y} \leq \epsilon
$$

For simplicity, we assume that an interior-point pair $\left(\mathbf{x}^{0}, \mathbf{y}^{0}, \mathrm{~s}^{0}\right)$ is known, and we will use it as our initial point pair.

Karmarkar 1984, Renegar 1986...

Logarithmic Barrier Functions for LP

Consider the logarithmic barrier function optimization

$$
\begin{array}{cl}
(P B) \quad \text { minimize } & -\sum_{j=1}^{n} \log x_{j} \\
\text { s.t. } & \mathbf{x} \in \operatorname{int} \mathcal{F}_{p}
\end{array}
$$

and

$$
\begin{array}{cl}
(D B) \quad \text { maximize } & \sum_{j=1}^{n} \log s_{j} \\
\text { s.t. } & (\mathbf{y}, \mathbf{s}) \in \operatorname{int} \mathcal{F}_{d}
\end{array}
$$

They are linearly constrained convex programs (LCCP).
Much much earlier...

Analytic Center for the Primal Polytope

The maximizer $\overline{\mathbf{x}}$ of (PB) is called the analytic center of polytope \mathcal{F}_{p}. From the optimality condition theorem, we have

$$
-(\bar{X})^{-1} \mathbf{e}-A^{T} \mathbf{y}=\mathbf{0}, A \overline{\mathbf{x}}=\mathbf{b}, \overline{\mathbf{x}}>\mathbf{0}
$$

where e is the vector of all ones; or

$$
\begin{align*}
\bar{X} \mathbf{s} & =\mathbf{e} \\
A \overline{\mathbf{x}} & =\mathbf{b} \\
-A^{T} \mathbf{y}-\mathbf{s} & =\mathbf{0} \tag{1}\\
\overline{\mathbf{x}} & >\mathbf{0}
\end{align*}
$$

where X is the diagonal matrix generated from vector \mathbf{x}.
Sonnevend 1988, Bayer and Lagarias 1989, Megiddo 1989...

Analytic Center for the Dual Polytope

The maximizer $(\overline{\mathbf{y}}, \overline{\mathbf{s}})$ of (DB) is called the analytic center of polytope \mathcal{F}_{d}, and we have

Figure 2: Analytic center maximizes the product of slacks.

Volumetric Center for the Dual Polytope

The maximizer $(\overline{\mathbf{y}}, \overline{\mathbf{s}})$ of the following problem is called the volumetric center of polytope \mathcal{F}_{d}, and we have

$$
\begin{array}{cl}
(D B) \quad \text { maximize } & -\log \operatorname{det}\left(A S^{-2} A^{T}\right) \\
\text { s.t. } & (\mathbf{y}, \mathbf{s}) \in \operatorname{int} \mathcal{F}_{d}
\end{array}
$$

More details see Vaidya 1996, Lee-Sidford 13-'19, van den Brand, Lee, Liu, Saranurak, Sidford, Song, Wang 21, etc.

Why Analytic

The analytic center of polytope \mathcal{F}_{d} is an analytic function of input data A, \mathbf{c}.
Consider $\Omega=\{y \in R:-y \leq 0, y \leq 1\}$, which is interval $[0,1]$. The analytic center is $\bar{y}=1 / 2$ with $\mathbf{x}=(2,2)^{T}$.

Consider

$$
\Omega^{\prime}=\{y \in R: \overbrace{-y \leq 0, \cdots,-y \leq 0}^{n \text { times }}, y \leq 1\}
$$

which is, again, interval $[0,1]$ but " $-y \leq 0$ " is copied n times. The analytic center for this system is $\bar{y}=n /(n+1)$ with $\mathbf{x}=((n+1) / n, \cdots,(n+1) / n,(n+1))^{T}$.

Analytic Volume of Polytope and Cutting Plane

$$
A V\left(\mathcal{F}_{d}\right):=\prod_{j=1}^{n} \bar{s}_{j}=\prod_{j=1}^{n}\left(c_{j}-\mathbf{a}_{j}^{T} \overline{\mathbf{y}}\right)
$$

can be viewed as the analytic volume of polytope \mathcal{F}_{d} or simply \mathcal{F} in the rest of discussions.
If one inequality in \mathcal{F}, say the first one, needs to be translated, change $\mathbf{a}_{1}^{T} \mathbf{y} \leq c_{1}$ to $\mathbf{a}_{1}^{T} y \leq \mathbf{a}_{1}^{T} \overline{\mathbf{y}}$; i.e., the first inequality is parallelly moved and it now cuts through $\overline{\mathbf{y}}$ and divides \mathcal{F} into two bodies. Analytically, c_{1} is replaced by $\mathbf{a}_{1}^{T} \overline{\mathbf{y}}$ and the rest of data are unchanged. Let

$$
\mathcal{F}^{+}:=\left\{\mathbf{y}: \mathbf{a}_{j}^{T} \mathbf{y} \leq c_{j}^{+}, j=1, \ldots, n\right\}
$$

where $c_{j}^{+}=c_{j}$ for $j=2, \ldots, n$ and $c_{1}^{+}=\mathbf{a}_{1}^{T} \overline{\mathbf{y}}$.

Figure 3: Translation of a hyperplane through the AC.

Analytic Volume Reduction of the New Polytope

Let $\overline{\mathbf{y}}^{+}$be the analytic center of \mathcal{F}^{+}. Then, the analytic volume of \mathcal{F}^{+}

$$
A V\left(\mathcal{F}^{+}\right)=\prod_{j=1}^{n}\left(c_{j}^{+}-\mathbf{a}_{j}^{T} \overline{\mathbf{y}}^{+}\right)=\left(\mathbf{a}_{1}^{T} \overline{\mathbf{y}}-\mathbf{a}_{1}^{T} \overline{\mathbf{y}}^{+}\right) \prod_{j=2}^{n}\left(c_{j}-\mathbf{a}_{j}^{T} \overline{\mathbf{y}}^{+}\right)
$$

We have the following volume reduction theorem:
Theorem 1

$$
\frac{A V\left(\mathcal{F}^{+}\right)}{A V(\mathcal{F})} \leq \exp (-1)
$$

Proof

Since $\overline{\mathrm{y}}$ is the analytic center of \mathcal{F}, there exists $\overline{\mathrm{x}}>0$ such that

$$
\bar{X} \overline{\mathbf{s}}=\bar{X}\left(\mathbf{c}-A^{T} \overline{\mathbf{y}}\right)=\mathbf{e} \quad \text { and } \quad A \overline{\mathbf{x}}=\mathbf{0}
$$

Thus,

$$
\overline{\mathbf{s}}=\left(\mathbf{c}-A^{T} \overline{\mathbf{y}}\right)=\bar{X}^{-1} \mathbf{e} \quad \text { and } \quad \mathbf{c}^{T} \overline{\mathbf{x}}=\left(\mathbf{c}-A^{T} \overline{\mathbf{y}}\right)^{T} \overline{\mathbf{x}}=\mathbf{e}^{T} \mathbf{e}=n
$$

We have

$$
\begin{aligned}
\mathbf{e}^{T} \bar{X} \overline{\mathbf{s}}^{+} & =\mathbf{e}^{T} \bar{X}\left(\mathbf{c}^{+}-A^{T} \overline{\mathbf{y}}^{+}\right)=\mathbf{e}^{T} \bar{X} \mathbf{c}^{+} \\
& =\mathbf{c}^{T} \overline{\mathbf{x}}-\bar{x}_{1}\left(c_{1}-\mathbf{a}_{1}^{T} \overline{\mathbf{y}}\right)=n-1
\end{aligned}
$$

$$
\begin{aligned}
\frac{A V\left(\mathcal{F}^{+}\right)}{A V(\mathcal{F})} & =\prod_{j=1}^{n} \frac{\bar{s}_{j}^{+}}{\bar{s}_{j}} \\
& =\prod_{j=1}^{n} \bar{x}_{j} \bar{s}_{j}^{+} \\
& \leq\left(\frac{1}{n} \sum_{j=1}^{n} \bar{x}_{j} \bar{s}_{j}^{+}\right)^{n} \\
& =\left(\frac{1}{n} \mathbf{e}^{T} \bar{X} \overline{\mathbf{s}}^{+}\right)^{n} \\
& =\left(\frac{n-1}{n}\right)^{n} \leq \exp (-1)
\end{aligned}
$$

Analytic Volume of Polytope and Multiple Cutting Planes

Now suppose we translate $k(<n)$ hyperplanes, say $1,2, \ldots, k$, moved to cut the analytic center $\overline{\mathbf{y}}$ of \mathcal{F}, that is,

$$
\mathcal{F}^{+}:=\left\{\mathbf{y}: \mathbf{a}_{j}^{T} \mathbf{y} \leq c_{j}^{+}, j=1, \ldots, n\right\}
$$

where $c_{j}^{+}=c_{j}$ for $j=k+1, \ldots, n$ and $c_{j}^{+}=\mathbf{a}_{j}^{T} \overline{\mathbf{y}}$ for $j=1, \ldots, k$.
Corollary 1

$$
\frac{A V\left(\mathcal{F}^{+}\right)}{A V(\mathcal{F})} \leq \exp (-k)
$$

The Analytic Center Cutting-Plane Method

Problem: Find a solution in the feasible set $\mathcal{F}:=\left\{\mathbf{y}: \mathbf{a}_{j}^{T} \mathbf{y} \leq c_{j}, j=1, \ldots, n\right\}$.
Start with the initial polytope

$$
\mathcal{F}^{0}:=\left\{\mathbf{y}: \mathbf{a}_{j}^{T} \mathbf{y} \leq c_{j}^{0}:=c_{j}+R, j=1, \ldots, n\right\}
$$

where R is sufficiently large such that $\overline{\mathbf{y}}^{0}=0$ is an (approximate) analytic center of \mathcal{F}^{0}.
Check if the (approximate) analytic center $\overline{\mathbf{y}}^{k}$ of \mathcal{F}^{k} is in \mathcal{F} or not. If not, define a new polytope \mathcal{F}^{k+1} by translating one or multiple violated constraint hyperplanes through $\overline{\mathbf{y}}^{k}$ as defined earlier, and compute an approximate analytic center \bar{y}^{k+1} of \mathcal{F}^{k+1}.

Continue this step till $\overline{\mathbf{y}}^{k} \in \mathcal{F}$.

Fair Pareto Optimal Solutions of Multiple Objectives

Problem: Find a solution in the feasible set $\mathcal{F}:=\left\{\mathbf{y}: \mathbf{a}_{j}^{T} \mathbf{y} \leq c_{j}, j=1, \ldots, n\right\}$ such that it is Pareto-Maximal for k objective function $\mathbf{b}_{i}^{T} \mathbf{y}, i=1, \ldots, k$

- Weighted-Sum Objective Maximization: $\sum_{i} w_{i} \mathbf{b}_{i}^{T} \mathbf{y}$
- Alternating Cuting-Plane: Cuting the AC alternatively, or simultaneously with fixed proportions?

Trajectory of Analytic Centers: Central Path for LP

Now consider the problem

$$
\begin{array}{cl}
\operatorname{maximize} & \mathbf{b}^{T} \mathbf{y} \\
\text { s.t. } & A^{T} \mathbf{y} \leq \mathbf{c}
\end{array}
$$

Assume that the feasible region is bounded, and the analytic center of the region is y^{0}.
Start with a polytope

$$
\mathcal{F}(R):=\{\mathbf{y}: A^{T} \mathbf{y} \leq \mathbf{c}, \overbrace{\mathbf{b}^{T} \mathbf{y} \geq R, \cdots, \mathbf{b}^{T} \mathbf{y} \geq R}^{k \text { times }}\}
$$

where R is so low such that \mathbf{y}^{0} is also an (approximate) analytic center of $\mathcal{F}(R)$.
Define a family of polytopes $\mathcal{F}(R)$ by continuously increasing R toward the maximal value and consider its analytic center $\mathbf{y}(R)$: it forms a path of analytic centers from \mathbf{y}^{0} toward the optimal solution set.

Better Parameterization: LP Regularized by the Barrier Function

An equivalent algebraic representation of the path is to consider the LP problem with the weighted barrier function

$$
\begin{array}{cl}
(L D B) \quad \text { maximize } & \mathbf{b}^{T} \mathbf{y}+\mu \sum_{j=1}^{n} \log s_{j} \\
\text { s.t. } & (\mathbf{y}, \mathbf{s}) \in \operatorname{int} \mathcal{F}_{d}
\end{array}
$$

and also
$(L P B) \quad$ minimize $\quad \mathbf{c}^{T} \mathbf{x}-\mu \sum_{j=1}^{n} \log x_{j}$

$$
\text { s.t. } \quad \mathbf{x} \in \operatorname{int} \mathcal{F}_{p}
$$

where μ is called the barrier (weight) parameter.
They are again linearly constrained convex programs (LCCP).

Self-Duality of LPB and LDB

They share the same first-order KKT conditions:

$$
\begin{aligned}
X \mathbf{s} & =\mu \mathbf{e} \\
A \mathbf{x} & =\mathbf{b} \\
-A^{T} \mathbf{y}-\mathbf{s} & =-\mathbf{c}
\end{aligned}
$$

where we have

$$
\mu=\frac{\mathbf{x}^{T} \mathbf{s}}{n}=\frac{\mathbf{c}^{T} \mathbf{x}-\mathbf{b}^{T} \mathbf{y}}{n}
$$

so that it's the average of complementarity or duality gap.
Denote by $(\mathbf{x}(\mu), \mathbf{y}(\mu), \mathbf{s}(\mu))$ the (unique) solution satisfying the conditions. As μ decreases to zero, $\mathbf{x}(\mu)$ form a path in the primal feasible region and $\mathbf{y}(\mu)$ form a path in the dual feasible region to-warding optimality respectively.

Figure 4: The central path of $\mathbf{y}(\mu)$ in a dual feasible region.

Central Path for Linear Programming Parametrized by μ

Theorem 2 Let $(\mathbf{x}(\mu), \mathbf{y}(\mu), \mathrm{s}(\mu))$ be on the central path of an linear program in standard form.
i) The central path point $(\mathbf{x}(\mu), \mathbf{s}(\mu))$ is bounded for $0<\mu \leq \mu^{0}$ and any given $0<\mu^{0}<\infty$.
ii) For $0<\mu^{\prime}<\mu$,

$$
\mathbf{c}^{T} \mathbf{x}\left(\mu^{\prime}\right)<\mathbf{c}^{T} \mathbf{x}(\mu) \quad \text { and } \quad \mathbf{b}^{T} \mathbf{y}\left(\mu^{\prime}\right)>\mathbf{b}^{T} \mathbf{y}(\mu)
$$

if both primal and dual have nontrivial optimal solutions.
iii) ($\mathbf{x}(\mu), \mathbf{s}(\mu))$ converges to an optimal solution pair for (LP) and (LD). Moreover, the limit point $\mathbf{x}(0)_{P^{*}}>\mathbf{0}$ and the limit point $\mathbf{s}(0)_{Z^{*}}>\mathbf{0}$, where $\left(P^{*}, Z^{*}\right)$ are the analytic centers on the primal and dual optimal faces, respectively (G'uler and Y 1993).

Proof of (i)

$$
\left(\mathbf{x}\left(\mu^{0}\right)-\mathbf{x}(\mu)\right)^{T}\left(\mathbf{s}\left(\mu^{0}\right)-\mathbf{s}(\mu)\right)=0
$$

since $\left(\mathbf{x}\left(\mu^{0}\right)-\mathbf{x}(\mu)\right) \in \mathcal{N}(A)$ and $\left(\mathbf{s}\left(\mu^{0}\right)-\mathbf{s}(\mu)\right) \in \mathcal{R}\left(A^{T}\right)$. This can be rewritten as

$$
\sum_{j}^{n}\left(s\left(\mu^{0}\right)_{j} x(\mu)_{j}+x\left(\mu^{0}\right)_{j} s(\mu)_{j}\right)=n\left(\mu^{0}+\mu\right) \leq 2 n \mu^{0}
$$

or

$$
\sum_{j}^{n}\left(\frac{x(\mu)_{j}}{x\left(\mu^{0}\right)_{j}}+\frac{s(\mu)_{j}}{s\left(\mu^{0}\right)_{j}}\right) \leq 2 n
$$

Thus, $\mathbf{x}(\mu)$ and $\mathbf{s}(\mu)$ are bounded, which proves (i).

The Path-Following Algorithms

In general, one can start from an (approximate) central path point $\mathbf{x}\left(\mu^{0}\right),\left(\mathbf{y}\left(\mu^{0}\right), \mathbf{s}\left(\mu^{0}\right)\right)$, or $\left(\mathbf{x}\left(\mu^{0}\right), \mathbf{y}\left(\mu^{0}\right), \mathbf{s}\left(\mu^{0}\right)\right)$ where μ^{0} is sufficiently large.

Then, let μ^{1} be a slightly smaller parameter than μ^{0}. Then, we compute an (approximate) central path point $\mathbf{x}\left(\mu^{1}\right),\left(\mathbf{y}\left(\mu^{1}\right), \mathbf{s}\left(\mu^{1}\right)\right)$, or $\left(\mathbf{x}\left(\mu^{1}\right), \mathbf{y}\left(\mu^{1}\right), \mathbf{s}\left(\mu^{1}\right)\right)$. They can be updated from the previous point at μ^{0} using the Newton method.
μ might be reduced at each stage by a specific factor, giving $\mu^{k+1}=\gamma \mu^{k}$ where γ is at most $1-\frac{1}{3 \sqrt{n}}$, wheere k is the iteration count.

This is called the primal, dual, or primal-dual path-following method; see Renegar 1988, Gonzagar 1989, Kojima et al. 1989, Monteiro and Adler 1989,...

The Newton Method of Primal-Dual Path-Following

Given a pair $\left(\mathbf{x}^{k}, \mathbf{y}^{k}, \mathbf{s}^{k}\right) \in \operatorname{int} \mathcal{F}$ closely to the central path, that is,

$$
\left\|X^{k} S^{k} \mathbf{e}-\mu^{k} \mathbf{e}\right\| \leq \eta \mu^{k}
$$

for a small positive constant η, we compute direction vectors $\mathrm{d}_{x}, \mathrm{~d}_{y}$ and d_{s} from the system equations:

$$
\begin{align*}
S^{k} \mathbf{d}_{x}+X^{k} \mathbf{d}_{s} & =\gamma \mu^{k} \mathbf{e}-X^{k} S^{k} \mathbf{e} \\
A \mathbf{d}_{x} & =\mathbf{0} \tag{3}\\
-A^{T} \mathbf{d}_{y}-\mathbf{d}_{s} & =\mathbf{0}
\end{align*}
$$

where $\gamma=\left(1-\frac{1}{3 \sqrt{n}}\right)$. Then we update

$$
\mathbf{x}^{k+1}=\mathbf{x}^{k}+\mathbf{d}_{x}>\mathbf{0}, \mathbf{y}^{k+1}=\mathbf{y}^{k}+\mathbf{d}_{y}, \mathbf{s}^{k+1}=\mathbf{s}^{k}+\mathbf{d}_{s}>\mathbf{0}
$$

Then one can prove

$$
\left\|X^{k+1} S^{k+1} \mathbf{e}-\mu^{k+1} \mathbf{e}\right\| \leq \eta\left(1-\frac{1}{3 \sqrt{n}}\right) \mu^{k}=\eta \mu^{k+1}
$$

This leads to \sqrt{n} iteration complexity.

Adaptive Path-Following Algorithms

Here we describe and analyze the Predictor-Corrector interior-point algorithm (Mizuno-Todd-Y 1993, Mehrotra 1993). Consider the neighborhood

$$
\mathcal{N}_{2}(\eta)=\left\{(\mathbf{x}, \mathbf{s}) \in \operatorname{int} \mathcal{F}:\|X \mathbf{s}-\mu \mathbf{e}\| \leq \eta \mu \quad \text { where } \quad \mu=\frac{\mathbf{x}^{T} \mathbf{s}}{n}\right\} \text { for some } \eta \in(0,1)
$$

Given $\left(\mathbf{x}^{0}, \mathbf{s}^{0}\right) \in \mathcal{N}_{2}(\eta)$ with $\eta=1 / 4$. Set $k:=0$.
While $\left(\mathbf{x}^{k}\right)^{T} \mathbf{S}^{k}>\epsilon \mathbf{d o}$:

1. Predictor step: set $(\mathbf{x}, \mathbf{s})=\left(\mathbf{x}^{k}, \mathbf{s}^{k}\right)$ and compute $\mathbf{d}=\mathbf{d}(\mathbf{x}, \mathbf{s}, 0)$ from (3); compute the largest $\bar{\theta}$ so that

$$
(\mathbf{x}(\theta), \mathbf{s}(\theta)) \in \mathcal{N}_{2}(2 \eta) \text { for } \theta \in[0, \bar{\theta}]
$$

2. Corrector step: set $\left(\mathbf{x}^{\prime}, \mathrm{s}^{\prime}\right)=(\mathbf{x}(\bar{\theta}), \mathrm{s}(\bar{\theta}))$ and compute $\mathrm{d}^{\prime}=\mathbf{d}\left(\mathbf{x}^{\prime}, \mathbf{s}^{\prime}, 1\right)$ from (3); set $\left(\mathbf{x}^{k+1}, \mathbf{s}^{k+1}\right)=\left(\mathbf{x}^{\prime}+\mathbf{d}_{x}^{\prime}, \mathbf{s}^{\prime}+\mathbf{d}_{s}^{\prime}\right)$.
3. Let $k:=k+1$ and return to Step 1 .

Center path

Figure 5: Illustration of the predictor-corrector algorithm.

Reduce the Analytical Volume Directly: Potential Reduction

Problem: Find a solution in the feasible set $\mathcal{F}:=\left\{\mathbf{y}: \mathbf{a}_{j}^{T} \mathbf{y} \leq c_{j}, j=1, \ldots, n\right\}$.
For $\mathbf{x} \in \operatorname{int} \mathcal{F}_{p}$, Karmarkar's primal potential function is defined by

$$
\psi_{n}(\mathbf{x}):=n \log \left(\mathbf{c}^{T} \mathbf{x}-z^{*}\right)-\sum_{j=1}^{n} \log \left(x_{j}\right)
$$

where z^{*} is the optimal objective value of the LP problem.
This leads to n iteration complexity.

Primal-Dual Potential Function for LP

Typically, a single merit-function driven algorithm is preferred since it can adaptively take large step sizes as long as the merit value is sufficiently reduced, comparing to check and balance of hyper-parameters/measures of the path-following type of algorithms.

For $\mathrm{x} \in \operatorname{int} \mathcal{F}_{p}$ and $(\mathbf{y}, \mathbf{s}) \in \operatorname{int} \mathcal{F}_{d}$, the joint Tanabe-Todd-Ye primal-dual potential function is defined by

$$
\psi_{n+\rho}(\mathbf{x}, \mathbf{s}):=(n+\rho) \log \left(\mathbf{x}^{T} \mathbf{s}\right)-\sum_{j=1}^{n} \log \left(x_{j} s_{j}\right)
$$

where $\rho \geq 0$ and it is fixed.

$$
\psi_{n+\rho}(\mathbf{x}, \mathbf{s})=\rho \log \left(\mathbf{x}^{T} \mathbf{s}\right)+\psi_{n}(\mathbf{x}, \mathbf{s}) \geq \rho \log \left(\mathbf{x}^{T} \mathbf{s}\right)+n \log n
$$

then, for $\rho>0, \psi_{n+\rho}(\mathbf{x}, \mathbf{s}) \rightarrow-\infty$ implies that $\mathbf{x}^{T} \mathbf{s} \rightarrow 0$. More precisely, we have

$$
\mathbf{x}^{T} \mathbf{s} \leq \exp \left(\frac{\psi_{n+\rho}(\mathbf{x}, \mathbf{s})-n \log n}{\rho}\right)
$$

Choosing $\rho=\sqrt{n}$ leads to \sqrt{n} iteration complexity.

Description of Algorithm

Given $\left(\mathbf{x}^{0}, \mathbf{y}^{0}, \mathbf{s}^{0}\right) \in \operatorname{int} \mathcal{F}$. Set $\rho \geq \sqrt{n}$ and $k:=0$.
While $\left(\mathbf{x}^{k}\right)^{T} \mathbf{S}^{k} \geq \epsilon$ do

1. Set $(\mathbf{x}, \mathbf{s})=\left(\mathbf{x}^{k}, \mathbf{s}^{k}\right)$ and $\gamma=n /(n+\rho)$ and compute $\left(\mathbf{d}_{x}, \mathbf{d}_{y}, \mathbf{d}_{s}\right)$ from (3).
2. Let $\mathbf{x}^{k+1}=\mathbf{x}^{k}+\bar{\alpha} \mathbf{d}_{x}, \mathbf{y}^{k+1}=\mathbf{y}^{k}+\bar{\alpha} \mathbf{d}_{y}$, and $\mathbf{s}^{k+1}=\mathbf{s}^{k}+\bar{\alpha} \mathbf{d}_{s}$ where

$$
\bar{\alpha}=\arg \min _{\alpha \geq 0} \psi_{n+\rho}\left(\mathbf{x}^{k}+\alpha \mathbf{d}_{x}, \mathbf{s}^{k}+\alpha \mathbf{d}_{s}\right)
$$

3. Let $k:=k+1$ and return to Step 1.

Allow to take longer step-size α !

Alternating Direction Method

Recall that for $\mathrm{x} \in \operatorname{int} \mathcal{F}_{p}$ and $(\mathbf{y}, \mathbf{s}) \in \operatorname{int} \mathcal{F}_{d}$, the joint primal-dual potential function is defined as

$$
\begin{aligned}
\psi_{n+\rho}(\mathbf{x}, \mathbf{s}) & :=(n+\rho) \log \left(\mathbf{x}^{T} \mathbf{s}\right)-\sum_{j=1}^{n} \log \left(x_{j} s_{j}\right) \\
& =(n+\rho) \log \left(\mathbf{c}^{T} \mathbf{x}-\mathbf{b}^{T} \mathbf{y}\right)-\sum_{j=1}^{n} \log \left(x_{j}\right)-\sum_{j=1}^{n} \log \left(s_{j}\right)
\end{aligned}
$$

Alternate Updating of primal \mathbf{x} and (\mathbf{y}, \mathbf{s}) : at the k th step, $\mathrm{fix}\left(\mathbf{y}^{k}, \mathbf{s}^{k}\right)$ and reduce the potential function by a constant via updating from \mathbf{x}^{k} to \mathbf{x}^{k+1} while keep $\left(\mathbf{y}^{k+1}, \mathbf{s}^{k+1}\right)=\left(\mathbf{y}^{k}, \mathbf{s}^{k}\right)$:

$$
\psi_{n+\rho}\left(\mathbf{x}^{k+1}, \mathbf{s}^{k+1}\right)-\psi_{n+\rho}\left(\mathbf{x}^{k}, \mathbf{s}^{k}\right) \leq-\delta
$$

Once can prove that, if by updating primal only one cannot reduce the potential function by a constant anymore, then one must be able to update the dual from $\left(\mathbf{y}^{k}, \mathrm{~s}^{k}\right)$ to $\left(\mathrm{y}^{k+1}, \mathrm{~s}^{k+1}\right)$ (while keep $\mathbf{x}^{k+1}=\mathbf{x}^{k}$) and reduce the potential function by a constant; see Y 1989 . The sample complexity result holds and it was the first one extended to solving SDP by Alizadeh 1992.

First-Order Potential Reduction

At the k th iteration, we compute the direction vectors $\left(\mathbf{d}_{x}, \mathbf{d}_{y}, \mathbf{d}_{s}\right)$ using the steepest descent direction:

$$
\begin{array}{rcl}
\min & \nabla_{x} \phi\left(\mathbf{x}^{k}, \mathbf{s}^{k}\right)^{T} \mathbf{d}_{x}+\nabla_{s} \phi\left(\mathbf{x}^{k}, \mathbf{s}^{k}\right)^{T} \mathbf{d}_{s} & \\
\text { s.t. } & A \mathbf{d}_{x} & =\mathbf{0} \\
& A^{T} \mathbf{d}_{y}+\mathbf{d}_{s} & =\mathbf{0}
\end{array}
$$

Thus,

$$
\begin{aligned}
\mathbf{d}_{x} & =-\left(I-A^{T}\left(A A^{T}\right)^{-1} A\right) \nabla_{x} \phi\left(\mathbf{x}^{k}, \mathbf{s}^{k}\right), \\
\mathbf{d}_{y} & =A \nabla_{s} \phi\left(\mathbf{x}^{k}, \mathbf{s}^{k}\right) \\
\mathbf{d}_{s} & =-A^{T} A \nabla_{s} \phi\left(\mathbf{x}^{k}, \mathbf{s}^{k}\right) .
\end{aligned}
$$

First-Order Potential Reduction as a Presolver

- First-order method solves to 1e-02 accuracy and then switch to second-order
- An average solution reduction of 30%

Accuracy	$1 \mathrm{e}-04$	$1 \mathrm{e}-06$	$1 \mathrm{e}-08$	$1 \mathrm{e}-10$
First-order	7.5	798.0	>1200	>1200
Second-order	33.0	56.7	89.3	93.3
First + Second	5.4	12.1	14.1	15.2

Figure 6: Speed-Up on QAP-LP

Potential Reduction for General Linear Complementarity

Given $M \in R^{n \times n}$ and $\mathrm{q} \in R^{n}$, find (\mathbf{x}, \mathbf{s})

$$
\mathbf{s}=M \mathbf{x}+\mathbf{q}, \mathbf{x} \geq \mathbf{0}, \mathbf{s} \geq \mathbf{0}, \quad \text { and } \quad \mathbf{x}^{T} \mathbf{s}=0
$$

- LP: M skew symmetric
- Convex QP: M symmetric and monotone: $(\mathbf{x}-\mathbf{y})^{T} M(\mathbf{x}-\mathbf{y}) \geq 0$
- Monotone LCP: $M+M^{T}$ is Positive Semidefinite. The PRA terminates in $O\left(\sqrt{n} \log \left(\epsilon^{-1}\right)\right)$ iterations for above three problems.
- P-matrix: $0<\gamma=\max _{j} \min \frac{\mathbf{x}^{T} M^{T} \mathbf{x}}{\|\mathbf{x}\|^{2}}$. The PRA terminates in
$O\left(n^{2} \max (|\lambda| /(\gamma n), 1) \log \left(\epsilon^{-1}\right)\right)$ iterations, where $\lambda\left(\right.$ is the least eigenvalue of $\left(M+M^{T}\right) / 2$; see Kojima et al. 1992
- General QP: M symmetric but non-convex: The PRA terminates in $O\left(n^{2} \epsilon^{-1} \log \left(\epsilon^{-1}\right)+n \log (n)\right)$ iterations (no condition-numbers!) with a solution that is ϵ accurate on both the first and second order
optimality conditions; see Y 1998.

Initialization

- Combining the primal and dual into a single linear feasibility problem, then applying LP algorithms to find a feasible point of the problem. Theoretically, this approach can retain the currently best complexity result.
- The big M method, i.e., add one or more artificial column(s) and/or row(s) and a huge penalty parameter M to force solutions to become feasible during the algorithm.
- Phase I-then-Phase II method, i.e., first try to find a feasible point (and possibly one for the dual problem), and then start to look for an optimal solution if the problem is feasible and bounded.
- Combined Phase I-Phase II method, i.e., approach feasibility and optimality simultaneously. To our knowledge, the "best" complexity of this approach is $O(n \log (R / \epsilon))$.

Homogeneous and Self-Dual Algorithm

- It solves the linear programming problem without any regularity assumption concerning the existence of optimal, feasible, or interior feasible solutions, while it retains the currently best complexity result
- It can start at any positive primal-dual pair, feasible or infeasible, near the central ray of the positive orthant (cone), and it does not use any big M penalty parameter or lower bound.
- Each iteration solves a system of linear equations whose dimension is almost the same as that solved in the standard (primal-dual) interior-point algorithms.
- If the LP problem has a solution, the algorithm generates a sequence that approaches feasibility and optimality simultaneously; if the problem is infeasible or unbounded, the algorithm will produce an infeasibility certificate for at least one of the primal and dual problems.

Primal-Dual Alternative Systems

A pair of LP has two alternatives

$$
\begin{aligned}
& \text { (Solvable) } \quad A \mathrm{x}-\mathbf{b}=\mathbf{0} \\
& -A^{T} \mathbf{y}+\mathbf{c} \geq \mathbf{0}, \\
& \mathbf{b}^{T} \mathbf{y}-\mathbf{c}^{T} \mathbf{x}=0, \\
& \mathbf{y} \text { free, } \mathrm{x} \geq \mathbf{0} \\
& \text { (Infeasible) } \\
& A \mathrm{x}=\mathbf{0} \\
& -A^{T} \mathbf{y} \geq \mathbf{0}, \\
& \mathbf{b}^{T} \mathbf{y}-\mathbf{c}^{T} \mathbf{x} \quad>0, \\
& \mathbf{y} \text { free, } \mathrm{x} \geq \mathbf{0}
\end{aligned}
$$

An Integrated Homogeneous System

The two alternative systems can be homogenized as one:

$$
\begin{aligned}
(H P) & =\mathbf{0}-\mathbf{b} \tau \\
-A^{T} \mathbf{y}+\mathbf{c} \tau & =\mathbf{s} \geq \mathbf{0} \\
\mathbf{b}^{T} \mathbf{y}-\mathbf{c}^{T} \mathbf{x} & =\kappa \geq 0 \\
\mathbf{y} \text { free, }(\mathbf{x} ; \tau) & \geq \mathbf{0}
\end{aligned}
$$

where the two alternatives are

$$
\text { (Solvable) : }(\tau>0, \kappa=0) \text { or (Infeasible) }:(\tau=0, \kappa>0)
$$

The Homogeneous System is Self-Dual

$$
\begin{aligned}
& (H P) \quad A \mathbf{x}-\mathbf{b} \tau=\mathbf{0},\left(\mathbf{y}^{\prime}\right) \\
& -A^{T} \mathbf{y}+\mathbf{c} \tau \quad=\mathbf{s} \geq \mathbf{0},\left(\mathbf{x}^{\prime}\right) \\
& \mathbf{b}^{T} \mathbf{y}-\mathbf{c}^{T} \mathbf{x}=\kappa \geq 0,\left(\tau^{\prime}\right) \\
& \mathbf{y} \text { free, }(\mathbf{x} ; \tau) \geq \mathbf{0} \\
& \begin{aligned}
A \mathbf{x}^{\prime}-\mathbf{b} \tau^{\prime} & =\mathbf{0}, \\
A^{T} \mathbf{y}^{\prime}-\mathbf{c} \tau^{\prime} & \leq \mathbf{0}, \\
-\mathbf{b}^{T} \mathbf{y}^{\prime}+\mathbf{c}^{T} \mathbf{x}^{\prime} & \leq 0, \\
\mathbf{y}^{\prime} \text { free, }\left(\mathbf{x}^{\prime} ; \tau^{\prime}\right) & \geq \mathbf{0}
\end{aligned}
\end{aligned}
$$

Theorem 3 System (HP) is feasible (e.g. all zeros) and any feasible solution ($\mathbf{y}, \mathrm{x}, \tau, \mathrm{s}, \kappa)$ is self-complementary:

$$
\mathbf{x}^{T} \mathbf{s}+\tau \kappa=0 .
$$

Furthermore, it has a strictly self-complementary feasible solution

$$
\binom{\mathbf{x}+\mathbf{s}}{\tau+\kappa}>\mathbf{0}
$$

Start from any infeasible but interior-solution pair in the primal and dual cones, and apply IPM to solve the Phase I problem; see Y-Todd-Mizuno 1994.

