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Today’s Talk

• New developments of ADMM-based interior point (ABIP) Method

(Q. Deng, W. Gao, B. Jiang, J. Liu, T. Liu, C. Xue, C. Zhang, et al.)

• HDSDP: Homogeneous Dual-Scaling SDP solver

(W. Gao, D. Ge and Y. Y)

• A Dimension Reduced Second-Order Method

(C. Zhang, D. Ge and Y. Y)



ABIP(Lin, Ma, Zhang and Y, 2021)

• The primal-dual pair of LP:

• For IPM, initial feasible interior solutions are hard to find 

• An ADMM based interior point method solver for LP problems 

• Consider homogeneous and self-dual (HSD) LP here!

where 



ABIP – Subproblem

where          is a barrier function 

• Introduce log-barrier penalty for HSD LP

• Traditional IPM, one uses Newton’s method to solve the KKT system of the above problem, the 

cost is too expensive when problem is large!

• Now we apply ADMM to solve it inexactly

The augmented Lagrangian function



ABIP – Rescale 

Consider the following LP:

Rescale the constraint matrix 𝐴 to  𝐴 = 𝐷1
−1𝐴𝐷2

−1 with positive diagonal matrices 𝐷1 and 𝐷2 to 

decrease the condition number of 𝐴

• Ruiz Rescaling: take 

• Pock-Chambolle Rescaling: take 

Do Pock-Chambolle Rescaling first (take 𝛼 = 1), then apply Ruiz Rescaling 10 times



ABIP – Restart (motivated from recent PDLP, Lu at al. and others) 

• Apply the fixed frequency restart, only in the inner problem of ABIP

• Parameterized by a restart threshold 𝑇𝐻 and a restart frequency 𝐹

• Break the inner ADMM Algorithm and restart when

𝑀 ≥ 𝑇𝐻 and    𝑀𝑘 mod 𝐹 = 0

where 𝑀 denotes # total ADMM iterations so far, and 𝑀𝑘 represents # ADMM iterations of the 

inner problem with respect to 𝜇𝑘

• Idea: Let the uniform average of the past 𝐹 iterates be the new iterate

• Significantly reduce # ADMM iterations!



ABIP – Restart 

Instance SC50B (only plot the first two dimension,)

• ABIP tends to induce a spiral trajectory

starting point

point after 100 ADMM iteration (ABIP)



ABIP – Restart 

Instance SC50B (only plot the first two dimension, after restart)

• After restart, ABIP moves more aggressively and converges faster (reduce almost 70% ADMM 

iterations)! 

ABIP trajectory

ABIP + Restart trajectory

point after 500 ADMM iteration (ABIP + Restart)

locally magnify

global convergence point



ABIP – Inner Loop Convergence Check

• We simultaneously use the last iterate and the ergodic iterate (i.e., the average of history 

iterates) to check the inner loop convergence

• We also check the global convergence in the inner loop when the barrier parameter 𝜇𝑘 < ϵ



ABIP – Half-update strategy

• The original update strategy of the ABIP

• Decrease # ADMM iterations on some specific dataset

• The half update strategy is updating the dual variable 𝒗 before 

updating the variable 𝒖, where α is the step size



ABIP – Adaptive barrier parameter 𝜇 reduction strategy

• Barrier parameter reduction is critical for ABIP

• Balance the progress of ADMM and IPM 

• Fully adaptive and nice empirical performance in practice 

• Currently three strategies are applied in different phases of ABIP 



ABIP – Strategy integration

• Different parameters may be significantly different 

• An integration strategy based on decision tree is integrated into ABIP

Dimension

Sparsity

Constraint

Coefficient

Null Objective

…

Strategy 1

Strategy 2

…

Strategy k

• A simple feature-to-strategy mapping is derived from a machine learning model

• For generalization limit the number of strategies (2 or 3 types)



An example of null objective problem– Primal feasibility problem

• Some LPs (e.g. PageRank) aim to find a primal feasible solution

• The dual problem is homogeneous and admits a trivial dual solution (0, 0) 

• Approximate dual solution can be scaled down to (0, 0)

• Dual feasibility check is turned off for these problems



ABIP – Netlib

• Hybrid 𝜇 : If 𝜇 > 𝜖 use the aggressive strategy, otherwise use the LOQO strategy

• ABIP3+ decreases both # IPM iterations and # ADMM iterations significantly

• Selected 105 Netlib instances

• ϵ = 10−6, use the direct method, 106 max ADMM iterations



ABIP – MIP2017

• 240 MIP2017 instances

• ϵ = 10−4, presolved by PaPILO, use the direct method, 106 max ADMM iterations

• PDLP (Lu et al. 2021) is a practical first-order method (i.e., the primal-dual hybrid 

gradient (PDHG) method) for linear programming, and it enhences PDHG by a few 

implementation tricks.



ABIP – PageRank 

• 122 instances, generated from sparse matrix datasets: DIMACS10, Gleich, Newman and SNAP. 

Second order methods in commercial solver fail in most of these instances.

• ϵ = 10−4, use the indirect method, 5000 max ADMM iterations.  

• Examples:



• Generated by Google code

• When # nodes equals to # edges, the generated instance is a staircase matrix. For example,

Staircase matrix instance (# nodes = 10)

410410

ABIP – PageRank

• In this case, ABIP3+ is significantly faster than PDLP!



ABIP – Quadratic Programming

For quadratic programs, our approach is through reformulation of QP as SOCP and then 

apply ABIP to solve the corresponding conic problem

where 𝒦 is cartesian product of (rotated) second-order cone and positive orthant.

Convex QP is converted into SOCP as follows:

𝑸𝑷 𝑺𝑶𝑪𝑷



ABIP iteration remains valid for general conic linear program 

● ABIP-subproblem requires to solve a proximal mapping 𝑥+ = argmin 𝜆𝐹 𝑥 +
1

2
𝑥 − 𝑐 2 with respect to the log-barrier 

functions 𝐹 𝑥 in 𝐵(𝑢, 𝑣, 𝜇𝑘)

Positive orthant

● 𝐹 𝑥 = −log 𝑥

● 𝑥 = argmin 𝜆𝐹 𝑥 +
1

2
𝑥 − 𝑐 2

=
𝑐+ 𝑐2+4𝜆

2

● The total IPM and ADMM iteration complexities of ABIP for conic linear program are respectively:

𝑇𝐼𝑃𝑀 = 𝑂 log
1

𝜀
,    𝑇𝐴𝐷𝑀𝑀 = 𝑂(

1

𝜀
log

1

𝜀
)

Positive Semidefinite cone

Second-order cone

● 𝐹 𝒙 = − log 𝑡2 − 𝑥 2 , 𝒙 = (𝑡; 𝑥)
● Can be solved by finding the root of 

quadratic functions

● 𝐹 𝒙 = − log det 𝑥
● Equivalent to solve −𝜆𝑥−1 − 𝑐 + 𝑥 = 0
● Can be solved by eigen decomposition

Positive semidefinite cone

ABIP – Extension to SOCP and Beyond



ABIP – Customization for ML

ABIP solves linear system:

elimination

● if 𝐴 is a general sparse matrix, we prefer augmented 

system, which is solved by sparse LDL decomposition
● If 𝐴 is dense or it has highly different row and col 

dimensionalities, we prefer normal equation 

For many QP problems in machine learning, we provide customized linear system solver by applying 

Sherman-Morrison-Woodbury formula and simplifying the normal equation

LASSO

● Data matrix  𝐴 of LASSO has 𝑛 features, 𝑚 samples

● The dimension of factorized matrix reduced from 

2𝑚 + 2𝑛 + 3 to min{𝑚, 𝑛}

SVM

● Data matrix  𝐴 of SVM has 𝑛 features, 𝑚 samples

● The dimension of factorized matrix reduced from 

3𝑚 + 4𝑛 + 5 to 𝑛 + 1



ABIP – LASSO 

• Randomly generate 48 instances with 𝑚 ∈ 2000,10000 ,𝑛 ∈ 50,20000

• ϵ = 10−3, time limit = 2000s



ABIP – SVM 

• For 6 large instances from LIBSVM, ϵ = 10−3, time limit = 2000s



ABIP – Conic Quadratic Programming

• For general QP without any structure information, SOCP reformulation may be 

inefficient. 

• We consider the following conic quadratic programming (CQP) and its dual:

The KKT condition is  

which corresponds to the  linear complementarity problem 𝐿𝐶𝑃(𝑀, 𝑞, 𝐶) in variable 𝑧 with:

(P) is infeasible when we find 𝑦 ∈ ℝ𝑚 that satisfies

−𝐴𝑇𝑦 ∈ 𝒦∗, 𝑏𝑇𝑦 > 0
(D) is infeasible when we find 𝑥 ∈ ℝ𝑛 that satisfies

𝑄𝑥 = 0, 𝐴𝑥 = 0, 𝑥 ∈ 𝒦, 𝑐𝑇𝑥 < 0



ABIP – Conic Quadratic Programming

Homogeneous Embedding (Andersen and Y 1999) 

• LCP feasibility encoded by homogeneous operator ℱ 𝑧, 𝜏 =
𝑀𝑧 + 𝑞𝜏

−
𝑧𝑇𝑀𝑧

𝜏
− 𝑧𝑇𝑞

• LCP infeasibility encoded by homogeneous operator ℐ 𝑧, 𝜏 =
𝑀𝑧
𝜅

𝜅 ≤ −𝑧𝑇𝑞 , dom ℐ = 𝑧, 0 : 𝑧𝑇𝑀𝑧 = 0

• The final embedding corresponds to solving a monotone complementarity problem 𝑀𝐶𝑃 𝑄, 𝐶+ :

find a 𝑢 ∈ ℝ𝑚+𝑛+1 for which ∃𝑣 ∈ 𝑄 𝑢 𝑠. 𝑡. 𝐶+ ∋ 𝑢 ⊥ 𝑣 ∈ 𝐶+
∗

where 𝑄 = ℱ ∪ ℐ dom 𝑄 = dom ℱ ∪ dom(ℐ) and 𝐶+ = 𝐶 × ℝ+.

• For solving such MCP, ABIP performs the update strategy similar to ABIP-LP



ABIP – General Convex QP

• Maros-Meszaros convex QP dataset contains 138 instances

• ABIP obtains significant improvement on convex QP
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HDSDP: Homogeneous Dual-Scaling SDP solver



Semi-definite programming (SDP)

• Linear optimization over the cone of positive semi-definite matrices

• Many applications in real practice

SDP is a mathematical programming problem taking form of 

Primal Dual



SDP and its applications

• Dynamic system and numerical analysis

Lyapunov equation and Linear matrix inequalities

SDP has been widely used in       

• Combinatorial optimization and relaxation

Well-known 0.878 algorithm for Max-Cut

• Graph realization and distance geometry

Sensor network localization and Biswas-Ye algorithm

SDP is popular for

powerful modeling ability + efficient numerical algorithms

• Engineering and structure design

Truss design optimization



Interior point method for SDPs

SDP is solvable in polynomial time using the interior point methods

• Take Newton step towards the perturbed KKT system

• Efficient numerical solvers have been developed

COPT, Mosek, SDPT3, SDPA, DSDP…

• Most IPM solvers adopt primal-dual path-following IPMs except DSDP

DSDP (Dual-scaling SDP) implements a dual potential reduction method



Dual-scaling and DSDP

DSDP(5.8) implements a dual-scaling interior point method that

• take Newton step towards 𝑋 = 𝜇𝑆−1. An easy inversion trick.

• only iterates in the dual space (𝑦, 𝑆)

• guides the iterations and barrier 𝜇 reduction/update via dual potential function (a delicate algorithm)

• proves a quite efficient and elegant implementation

• requires initial dual feasible solution from big-M method

But big-M is sometimes not stable. Can we improve? Yes! We can embed it.



Simplified homogeneous self-dual model (HSD)

HSD is a skew-symmetric system that 

• embeds the primal-dual information

• introduces homogenizing variables 𝜅, 𝜏 to detect infeasibility

• proves numerically stable

• solved by infeasible primal-dual path-following

Linearize 𝑋𝑆 = 𝜇𝐼, 𝜅𝜏 = 𝜇 and take Newton steps

How to integrate dual-scaling and HSD ?

Hint.
Apply the inversion trick!



Homogeneous dual-scaling algorithm

From arbitrary starting dual solution (𝑦, 𝑆 ≻ 0, 𝜏 > 0) with dual 

residual R

New strategies are tailored 

for the method 

• Primal iterations can still be fully eliminated

• inherits sparsity pattern of data

Less memory and since 𝑋 is generally dense

• Infeasibility or an early feasible solution can be detected via the 

embedding 



Computational aspects for HDSDP

To enhance performance, HDSDP is equipped with

• Pre-solving that detects special structure and 
dependency

• Line-searches over barrier to balance optimality & 
centrality

• Heuristics to update the barrier parameter 𝜇

• Corrector strategy to reuse the Schur matrix 

• A complete dual-scaling algorithm from DSDP5.8

• More delicate strategies for the Schur system



Computational aspects: Schur complement

In HDSDP, main computation comes from the large Schur complement 

system

• A generally dense 𝑚 × 𝑚 system

• Setting it up dominates computation

• Most interior point solvers implement special tricks for it

Exploit sparsity (SDPA) or low-rank structure (DSDP)



Computational aspects: Schur complement

• All the five strategies are implemented in HDSDP

• Each row of the Schur complement is set up by the cheapest technique in flops

• A permutation of the Schur matrix might be generated to minimize the flops

HDSDP optionally obtains the Eigen-decomposition of data 

To exploit low-rank structure (DSDP) To exploit sparsity (SDPA)



HDSDP Solver

• Compatible with state-of-the-art linear system solvers (e.g. Intel MKL and 
Pardiso)

• A complete solver interface and supports SDPA reading

• Automatically switches between HSD and original DSDP

HDSDP is written in ANSI C and now under active development



Computational results

• HDSDP is tuned and tested for many benchmark datasets

• Good performance on problems with both low-rank structure and sparsity

• Solve around 70/75 Mittelmann’s benchmark problems

• Solve 90/92 SDPLIB problems

(Results run on an intel i11700K machine)

Selected Mittelmann’s benchmark problems where HDSDP is fastest (all the constraints are rank-one)



Application: optimal diagonal pre-conditioner [QYZ20]

Given matrix 𝑀 = 𝑋⊤𝑋 ≻ 0, iterative method (e.g., CG) is often applied to 

solve

𝑀𝑥 = 𝑏

• Convergence of iterative methods depend on the condition number 𝜅(𝑀)

• Good performance needs pre-conditioning and we solve 𝑃−1/2𝑀𝑃−1/2𝑥′ = 𝑏

A good pre-conditioner reduces 𝜅(𝑃−1/2𝑀𝑃−1/2)

• Diagonal 𝑃 = 𝐷 is called diagonal pre-conditioner

Quality of diagonal pre-conditioner is hard to estimate

Is it possible to find optimal 𝐷∗
? SDP works!



Computational results: optimal diagonal pre-conditioner

• Finding the optimal diagonal pre-conditioner is an SDP

• Two SDP blocks and sparse coefficient matrices

• Trivial dual interior-feasible solution (𝛿, diag(𝐷)) = (−1,0)

• 1 is an uppbound for the optimal objective value

• An ideal formulation for HDSDP



Computational results: optimal diagonal pre-conditioner

(Results run on Mac Mini with Apple Silicon)

We generate random matrices 𝑀 and run different SDP methods



Summary

• a general purpose SDP solver 

• using dual-scaling and simplified HSD

• developed with heuristics and intuitions from 

DSDP

• equipped with several new computational tricks

HDSDP is 
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Dimension Reduced Second-Order Method : a motivation

• First-order Method (FOM), where d is a direction using gradient 

• Consider the following unconstrained convex/nonconvex optimization 

including: GD, AGD, and many others. 

• Second-order Method (SOM), where is an approximation to Hessian

including: Newton’s method, LBFGS, Trust-region Method, etc. 

• DRSOM: Dimension Reduced Second-Order Method

motivation: using gradient and (maybe) partial Hessian?



DRSOM: a first glance

where

• The DRSOM constructs iterations by two directions

• A new idea is to introduce a 2-D quadratic model to choose the “step-sizes”

• Minimize             for optimal stepsizes! (see the lecture notes by Ye† )

the paradigm is not new, e.g., Accelerated Gradient Method, Conjugate Gradient Method, etc.

† https://web.stanford.edu/class/msande311/lecture12.pdf



DRSOM: a first glance

compare to, e.g., Dogleg method, 2-D Newton Trust-Region Method 

DRSOM can be seen as:

• “Adaptive” Accelerated Gradient Method

• A second-order method in the reduced 2-D subspace

• A conjugate direction method exploring the Krylov subspace 

for convex quadratic programming, DRSOM is equivalent to CG.



DRSOM: computing Hessian-vector product

In the DRSOM:

How to cheaply obtain Q? Compute                       first.

• Finite difference:

• Analytic approach to fit modern automatic differentiation,

Then we compute Q therein.

• or use Hessian if readily available !



DRSOM: subproblem strategies

Recall 2-D quadratic model:

If Q is indefinite, apply two strategies that ensure global convergence

• Adaptive trust-region:

• Adaptive Lagrangian penalty, “Radius-free”

The two strategies are equivalent and each sub-problem can be solved efficiently.



DRSOM: general framework

At each iteration k, the DRSOM proceeds:

• Solving 2-D Quadratic model 

• Computing quality of the approximation 

• If ρ is too small, increase λ (Lagrangian penalty) or decrease Δ (trust-region)           

• Otherwise, decrease λ or increase Δ



Logistic Regression

• Solve the Multinomial Logistic Regression for the MNIST dataset.

• The MLR is convex, we compare DRSOM to SAGA and LBFGS

• DRSOM is comparable to FOM and SOM (not surprisingly)

A sample for MNIST dataset



Nonconvex L2-Lp minimization

• Consider nonconvex L2-Lp minimization, p < 1

• Smoothed version

Iterations needed to reach ε = 1e-6

• Compare DRSOM to Accelerated Gradient Descend (AGD), LBFGS, and Newton Trust-region

• DRSOM is comparable to full-dimensional SOM !



Sensor Network Location (SNL)

• Consider Sensor Network Location (SNL)

where  is a fixed parameter known as the radio range. The SNL problem considers the    

following QCQP feasibility problem,

• We can solve SNL by the nonconvex nonlinear least square (NLS) problem



Sensor Network Location (SNL)

• Otherwise, relaxed solution Z* can be used to initialize the NLS 

• We can also apply the SDP relaxation to SNL:

where

• If rank(Z) = 2, SDP relaxation is exact. 



Sensor Network Location (SNL)

• Graphical results using SDP relaxation to initialize the NLS

• n = 80, m = 5 (anchors), radio range = 0.5, degree = 25, noise factor = 0.05
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• Both Gradient Descend and DRSOM can find good solutions !



Sensor Network Location (SNL)

• DRSOM can still converge to optimal solutions

• Graphical results without SDP relaxation, is DRSOM better?
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Neural Networks and Deep Learning 

To use DRSOM in machine learning problems

• We apply the mini-batch strategy to a vanilla DRSOM

• Use Automatic Differentiation to compute gradients

• Train ResNet18 Model with CIFAR 10

• Set Adam with initial learning rate 1e-3



Neural Networks and Deep Learning 

Training results for ResNet18 with DRSOM and Adam

Test results for ResNet18 with DRSOM and Adam

Pros

• DRSOM has rapid convergence (30 epochs)

• DRSOM needs almost no tuning

Cons

• DRSOM may overfit the models

• Needs 4~5x time of Adam to run same 

number of epoch 

Huge potential to be a standard optimizer for 

deep learning!



DRSOM: A Summary

Dimension Reduced Second-order Method:

• Fast convergence in convex/nonconvex problems

• Comparable performance to SOM but no matrix inversion

• Typically better solutions than FOM for solving nonconvex problems

• Big potential for Deep Learning and other nonconvex learning tasks 

Takeaway: Asia can play a big role in developing Open-Source 

Numerical Optimization Solvers!


