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Comparison of shot-LLR and MUSSELS  

for multi-shot diffusion-weighted image reconstruction 

1. Introduction 

As a non-invasive imaging method, diffusion-weighted MRI has been widely used in clinical 

applications (1, 2) and neuroscientific research (3, 4). Single-shot echo planar imaging (EPI) 

is the most commonly used method because of its fast acquisition speed and immunity to 

motion. It is, however, limited by image blurring and distortion due to the long readout window 

(5). Multi-shot EPI has been shown to provide high-resolution diffusion-weighted images 

(DWIs) with reduced distortion (5). Unfortunately, significant aliasing artifacts and signal 

cancellation exist due to the mismatch of the motion-induced phase between different shots (5). 

The reconstruction becomes non-convex and intractable to solve when this phase is included 

in the forward model. 

Many methods have been developed to estimate the motion-induced phase, either by navigator 

(6, 8) or parallel imaging (9-11). Unfortunately, acquisition of navigator data increases scan 

time and there might be a mismatch between the extra-navigator and the data to be 

reconstructed. Parallel imaging based on phase estimation methods might fail in case of high-

frequency phase variations due to large motion. 

We have proposed a locally low-rank reconstruction approach to reconstruct multi-shot DWIs, 

named shot-LLR. This method bypasses the challenging phase estimation step by using a 

relaxed model. We also notice several papers have been published to solve the phase mismatch 

problem by forming a block-Hankel matrix in k-space domain, called MUSSELS (12). In this 

work, we want to evaluate the performance of these two methods in vivo. 

2. Theory 

The formulation of shot-LLR and MUSSELS mirror CLEAR (13) and SAKE (14), respectively, 

which are two kinds of calibration-less image reconstruction methods. Interestingly, to the best 

of my knowledge, no comparison between SAKE and CLEAR has been done. In this section, 

we will introduce CLEAR and SAKE first, then shot-LLR and MUSSELS. 

2.1 CLEAR 
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The formulation of CLEAR is  

𝑃1: 		 min
(),…,,-

∑ ‖𝐷𝐹𝑥3	 − 𝑦3‖66 + 𝜆	 ∑ 9𝑅;{𝑥=,…,>-}9∗;	∈	B
>-
3C= (1) 

where Nc is the number of coils, 𝑥3 and 𝑦3 are the images to be reconstructed, acquired data of 

the 𝑖EF  coil, D is the sampling operator, F is Fourier transform, and l is a regularization 

parameter. The first term is known as data fidelity term or data consistency term, no sensitivity 

information is needed here, and images of all coils will be reconstructed. The second term is a 

constraint on these images. This constraint is based on the assumption that sensitivity map is 

spatially smooth. We define an operator 𝑅;, which extracts one small block at pixel index b in 

the image domain, reshapes it into a vector, and concatenates vectors from all shots into one 

matrix. With n pixels in one block, and 𝑁H  coils, an n-by-𝑁H  spatial-coil matrix is constructed, 

in which 𝑅;{𝑥=,…,>-}3,I  represents the image at the 𝑖EF  pixel and 𝑗EF  shot. The spatial-coil 

matrix can be decomposed into the product of two matrices (Eq. 2).  

Each element of the diagonal matrix I represents the target image, and matrix S contains the 

sensitivity encoding information. If the sensitivity map is spatially smooth, then the rank of S 

would be low. Thus, the production of S and I would have a low rank. W is the set of all non-

overlapping blocks which uniformly tile the image domain. In addition, the nuclear norm 

instead of rank is used to make the optimization problem convex and easy to solve. 

2.2 SAKE 

Different from CLEAR which constructs lots of small spatial-coil matrices, one block-Hankel 

matrix A is constructed with all k-space data in SAKE as in Fig 1. This construction is similar 

to 𝑅; in CLEAR except two differences, (1) it is in k-space, and (2) each time, the block is 

shifted by only 1 pixel to make better use of the data, while in CLEAR these blocks are non-

overlapped. It is proven that rank(A) ≤ (𝑤 + 𝑠 − 1)6, where w is the chosen window size and 

s is the coil sensitivity bandwidth in k-space (14). If the sensitivity is band limited in k-space 

which is equivalent to say that it is spatially smooth, then A is rank-deficient. Then similar to 

CLEAR, we can add a constraint on the rank of A, and the formulation is as follows, 

𝑅;{𝑥=,…,>-} =  Q
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⋮ ⋱ ⋮
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where 𝑧3  is the k-space to be reconstructed of the 𝑖EF  coil, H represents the operation to 

construct matrix A, and other parameters are defined the same as in CLEAR. 

 

Fig 1. Construction of block-Hankel matrix with k-space from all coils (14). 

2.3 Shot-LLR 

In multi-shot DWI, different shots differ by a spatially smooth phase. Similar to calibration-

less parallel imaging, we can also use locally low-rank regularization to reconstruct multi-shot 

DWIs. Different from CLEAR, sensitivity information is needed, and it is used to combine 

multi-channel images within one shot before forming the low-rank matrices, and the difference 

between different coil combined images comes from the motion-induced phase instead of 

sensitivity encoding. We formulate the reconstruction as the following optimization problem, 

 

where 	𝑁d  is the number of shots, 𝐷3  and 𝑥3  are sampling operator and images to be 

reconstructed of the 𝑖EF shot, S represents sensitivity encoding. Using the same operator 𝑅; as 

in CLEAR, we can construct spatial-shot LLR matrix from images of all shots as shown in Fig 

2., and this matrix can be decomposed into the product of two matrices (Eq. 5). Each element 

of diagonal matrix I represents the target complex image without motion-induced phase. Matrix 

𝑃3: 		 min
(),…,,e

∑ ‖𝐷3𝐹𝑆𝑥3	 − 𝑦3‖66 + 𝜆	∑ 9𝑅;{𝑥=,…,>e}9∗;	∈	B
>e
3C= (4) 

𝑃2: 		 min
g),…,,-
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j contains the motion-induced phase q of each shot. 

If the motion-induced phase q is spatially smooth, the rank of matrix j is low. Consequently, 

𝑅;{𝑥=,…,>e} is also a low rank matrix. Intuitively, we can combine parallel imaging with a 

constraint on the rank of 𝑅;{𝑥=,…,>e}.  

It should be noticed that because we parameterize the image by multiple images rather than 

motion-induced phase and one single image, no phase estimation is needed.  

 
Fig. 2. Construction of the “spatial-shot” matrix containing a block of pixels from each of the 

shots.  Because the motion-induced phase is slowly varying in the image domain, the spatial-

shot matrices are low-rank.  Therefore, constraints on the rank of these matrices can be used to 

remove the phase inconsistency.  

2.4 MUSSELS 

MUSSELS can be viewed as an extension of SAKE for multi-shot DWI reconstruction. Similar 

to shot-LLR, sensitivity information is included in the forward model to do coil combination 

before forming the block-Hankel matrix. The formulation is as follows: 

 

𝑅;{𝑥=,…,>e} =  Q
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𝑃4: 		 min
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Where 𝑧3  is the k-space to be reconstructed of the 𝑖EF  shot, 𝐹p  represents inverse Fourier 

transform and other variables are defined the same as before. The first term is data consistency 

term and the second term is the constraint on the rank of the block-Hankel matrix. This matrix 

is constructed with the coil-combined k-space data of each shot. Since the motion-induced 

phase are spatially smooth, they are also band limited in k-space, and this matrix will be rank-

deficient.  

3. Methods 

3.1 Simulation (CLEAR vs SAKE) 

Since there is no gold standard for multi-shot DWI and it is hard to simulate the motion-induced 

phase, instead of comparing shot-LLR and MUSSELS, we compared SAKE and CLEAR to 

evaluate the influence of different constraints. We retrospectively under-sampled Shepp-Logan 

phantom data and brain data with different sampling patterns and reduction factors, and 

calculated the root-mean-square error (RMSE) and structural similarity (SSIM) of the 

reconstructed results compared with the fully sampled data. 

3.2 In-vivo data (shot-LLR vs MUSSELS)  

With approval from the institutional review board and written informed consent, brain, breast, 

and pelvis data were acquired on a 3 Tesla (T) MRI system (Discovery MR750, GE Healthcare) 

using a 2D single-refocused Stejskal-Tanner diffusion-weighted spin-echo EPI sequence. 

The scan parameters are shown in Table 1. Bandwidth was set to 250 kHz, and partial Fourier 

acquisition was on for all experiments. Each time one non-diffusion-weighted image was 

acquired first, then diffusion-weighted data were acquired. In experiment (3), the volunteer 

was asked to breathe deeply to simulate severe respiratory motion.  

3.3 Image reconstruction and implementation 

CLEAR and shot-LLR were implemented based on the open-source Berkeley Advanced 

Reconstruction Toolbox (BART) with a block size of 8 × 8 (15). The optimization was solved 

using an iterative thresholding algorithm (FISTA).  SAKE was implemented as original paper 

in Matlab using the projection onto convex sets (POCS) algorithm. MUSSELS was 

implemented based on SAKE.  
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POCS-MUSE, which is a commonly used multi-shot DWI reconstruction method, was also 

implemented for comparison. The number of iterations is 200 for all methods. Sensitivity maps 

were calculated from the multi-shot non-diffusion-weighted data by ESPIRiT (16). Homodyne 

was used for partial Fourier reconstruction (17). 

Table 1. Scan parameters of all experiments. 

Experiments 

In-plane 

resolution 

(mm2) 

Slice 

thickness 

(mm) 

Matrix size 
b-value 

(s/mm2) 
Comments 

(1) 4-shot brain 

0.85 × 0.85 3 

248 × 244 

1000 

-- 

(2) 8-shot brain 248 × 232 -- 

(3) 4-shot brain 248 × 244 severe motion 

(4) 8-shot breast 1 × 1 4 360 × 360 600 no breath hold 

(5) 4-shot pelvis 1.1 × 1.1 4 254 × 256 500 no breath hold 

 

4. Results and Discussion 

4.1 Simulation (CLEAR vs SAKE)  

CLEAR and SAKE show pretty similar performance on these three different patterns as in Fig. 

1: neither of them works on uniform under-sampled data, they work on Poisson-disc under-

sampled data with some ACS lines, and they both work pretty well on variable density under-

sampled data (up to a reduction factor of 7). We also evaluate the performance of these two 

methods on the Shepp-Logan phantom with simulated sensitivity map, and the same conclusion 

can be drawn. 

We have checked the values of the constraint used for SAKE on the under-sampled data, and 

fully-sampled data. Surprisingly, uniformly under-sampled data has a lower value (not sure 

why? maybe because there are many zeros in it). But the singular values of the block-Hankel 

matrix from the fully-sampled data are more centralized. This suggests that sum of these 
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singular values may be not a good constraint for uniformly under-sampled data, and how 

these values are allocated may be more important.  

4.2 In-vivo data (shot-LLR vs MUSSELS) 

For brain DWI, shot-LLR and MUSSELS provide comparable image quality to POCS-MUSE 

for 4-shot acquisitions (Fig. 4.1) and markedly reduced aliasing artifact in comparison to 

POCS-MUSE for 8-shot acquisitions (Fig. 4.2). For 8-shot brain data, results of shot-LLR start 

to have some regions of signal loss (indicated by a white box in Fig. 4.2b), and results of 

MUSSELS have an un-expected dark region (highlighted by a yellow triangle in Fig. 4.2c) in 

comparison to 4-shot results. The reason for these artifacts is that these two methods both treat 

each shot as a separate image, and if some shot doesn’t have central k-space data, then the 

recovery of that shot may fail, and this can even influence the reconstruction of other shots. 

For EPI, when the number of shots is high, there are always some shots which don’t have 

central k-space lines. Using variable density sampling patterns, e.g. variable density spiral 

and FSE, helps solve this problem, but this is beyond the scope of this work. 

When the volunteer breathed heavily, these two methods (Fig. 4.3b and 4.3c) are still very 

robust and there is no ghost artifact compared with POCS-MUSE (Fig. 4.3a). Interestingly, for 

breast and pelvis imaging, which are more susceptible to motion artifacts due to the proximity 

to the lungs and heart, severe aliasing artifacts are shown in MUSSELS (Fig. 5.1c and 5.2c), 

and shot-LLR has significantly fewer artifacts (Fig. 5.1b and 5.2b). By forming only one block-

Hankel matrix in k-space, MUSSELS may utilize the inner-shot and inter-shot relationships 

better as shown in 8-shot brain DWI (Fig 4.3c). While shot-LLR has the capability to handle 

more complicated phase variations in body imaging (Fig 5.1 and 5.2). This motion robustness 

property of shot-LLR benefits from the fact that the constraint is on the sum of the ranks in 

shot-LLR, some blocks can still have high-frequency phase variations. 
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Fig 3. Reconstruction results on 1) uniform, 2) Poisson-disc and 3) variable density 

retrospectively under-sampled data (b) with CLEAR (c) and SAKE (d). (e) shows the sampling 

pattern. (f -h) show the 3 × error maps compared with the fully-sampled image (a). The table 

below the image shows SSIM (higher is better) and RMSE (lower is better). 
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Fig 4. Multi-shot DW images reconstructed by POCS-MUSE (a), shot-LLR (b) and MUSSELS 

(c). In (3), the volunteer was asked to breathe deeply to simulate severe respiratory motion, and 

POCS-MUSE had ghosting artifacts (3a). 
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Fig 5. 8-shot breast and 4-shot pelvis images reconstructed by POCS-MUSE (a), shot-LLR (b) 

and MUSSELS (c). Yellow triangles pointed where the ghost artifacts were. 

5. Summary 

In this work, we compare two multi-shot DWI reconstruction method, shot-LLR and 

MUSSELS. They both outperform the conventional phase-estimation based methods and shot-

LLR’s motion robustness property can be very beneficial to body imaging.  

It should be also noticed that these image-domain methods (CLEAR and shot-LLR) have a 

computational advantage compared with kspace-domain methods (SAKE and MUSSELS) 

since the spatial-coil/spatial-shot matrices are small and non-overlapping and computing SVD 

is O(mn2) for an m-by-n matrix (assuming m is big than n). This might explain why LLR is 

more commonly used in some other applications, e.g. dynamic image reconstruction. 
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