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Abstract

Diffusion-weighted (DW) Magnetic resonance imaging
(MRI) has become a very powerful tool that finds its appli-
cations in many different fields. Yet, one drawback is that
the time for image reconstruction is relatively long using
conventional reconstruction techniques. In this project, we
combine traditional convex optimization method with deep
neural networks to accelerate this process.

By replacing the presumed constraint with a U-net, we
significantly reduced the required number of iterations,
and the reconstruction time is reduced from 1 minute us-
ing conventional optimization algorithm to about 1 second.
The difference map and averaged percentage L1 difference
demonstrated that the proposed method had similar accu-
racies.

1. Introduction
MRI is a powerful and non-invasive imaging modality,

and data are acquired in the spatial frequency domain by
using spatially varying gradients. DW MRI, which mea-
sures diffusion rate of water, has been widely used in clin-
ical applications and neuroscience researches. To achieve
high-resolution diffusion-weighted images (DWIs) with re-
duced distortion, data are acquired by multiple segments
and then combined, a.k.a. multi-shot imaging [1]. Unfor-
tunately, significant aliasing artifacts and signal cancella-
tion may exist due to the motion-induced phase inconsis-
tencies between different shots. A relaxed convex model
with a locally low-rank constraint has been proposed to re-
construct multi-shot DWIs, while the long reconstruction
time has limited its application. In this work, we propose to
use deep learning to bypass this limitation, achieving almost
real-time reconstruction. In addition, we utilize the explicit
relationship between acquired data and reconstructed im-
ages by using an unrolled network.

The goal of this project is to accelerate the image recon-
struction process while maintaining similar accuracies and
achieving relatively convincing results compared with tra-
ditional convex optimization methods.

The raw measured data in the frequency domain (k-

space) will be the input for network and results from con-
ventional optimization methods will be treated as ground
truth. The loss function is set as L1-norm of the difference
between the output and the ground truth. About seventeen
hundreds brain DWIs are used to train the network, no data
augmentation method is used [2].

We evaluated the results in two aspects. Qualitatively,
we will check the existing of artifacts visually based on our
knowledge of brain anatomy and MRI, and compare them
to the ground truth images by eye. Quantitatively, we calcu-
lated the difference between images reconstructed by con-
ventional optimization algorithm/ground truth images and
the neural network.

2. Related Work

Deep learning has achieved a great success in many im-
age processing areas, e.g. image classification, by using
the knowledge and features extracted from huge amounts of
data. There has also been some work on using deep learn-
ing to solve optimization problems, especially for medical
image reconstruction [3]. It has been shown that neural
networks have the capability to learn gradients of the loss
function [4], as well as proximal operators [5, 6], which is
often used in optimization algorithms to update constraint
terms, achieving greater accuracies and a faster reconstruc-
tion speed compared with convex optimization methods.
Another advantage of using deep learning is that there is
no parameter to tune during testing time.

MRI data are usually under-sampled to reduced acqui-
sition time, and some efforts have been made to use CNN
to reconstruct MR images using different network structures
for different applications [7, 8, 9]. There are several reasons
why CNN is well-suited for MRI reconstruction. One is that
MRI data are acquired in frequency domain as described be-
fore, and some algorithms fill un-acquired data points by ap-
plying convolution in the frequency domain [10, 11, 12, 13].
It is expected that we can have a more accurate convolution
kernel by training on large amounts of data. Secondly, the
proximal operator of L1 regularization (compressed sens-
ing), which is also known as soft-thresholding and is a very
common regularization term for image reconstruction, is
analogical to non-linear activation function in CNN. To-
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gether, the structure of an iterative reconstruction algorithm
is similar to that of a CNN.

In this work, we apply CNN to reconstruct multi-shot
DW images, in which data are uniformly under-sampled,
and different acquisitions have different phase, thus leading
to a more challenging non-linear reconstruction problem.
A recent work is to use FISTA to solve a convex approx-
imated problem with a so-called locally low-rank (LLR)
constraint [14], but one limitation is the long reconstruc-
tion time required. Inspired by the idea of unrolled network
with deep priors from the work of Wetzstein, et al. [6], we
unrolled this algorithm, and replace the LLR constraint by a
U-net [15]. The U-net is originally used for image classifi-
cation, with the ability to capture images features of differ-
ent scales. This way, we hope to accelerate the conventional
reconstruction method while maintaining comparable accu-
racies.

3. Data

With approval from the institutional review board and
written informed consent, data were acquired on a 3 Tesla
(T) MRI system (Discovery MR750, GE Healthcare) using
a 2D single-refocused Stejskal-Tanner diffusion-weighted
spin-echo EPI sequence.

Figure 1. A typical input to our network.

2592 axial brain images have been acquired on seven
healthy volunteers using a 32-channel head receive coil
(Nova Medical) with the following parameters: TE/TR =
46/2000 ms, field-of-view (FOV) = 21 × 21 cm2, matrix
size = 248 × 244, slice thickness = 3/4 mm, number of

shots = 4, b-value = 1000s/mm2. Partial Fourier acqui-
sition was used and the number of extra ky lines was 14
(fully-sampled), leading to 17 lines per shot. The readout
direction was left-right.

The acquired data were first zero-filled to 256 × 256,
and normalized based on the non-diffusion-weighted im-
ages. Thus, the size of input to the network is 256 × 256 ×
32 (#channels) × 4 (#shots), and the size of output is 256
× 256 × 4. 1734 out of 2592 images and the left 858 im-
ages were used to train and test the network, respectively.
Sensitivity maps were calculated from the multi-shot non-
diffusion-weighted data using ESPIRiT [16] to construct the
encoding matrix A. The acquired data were reconstructed
by a convex optimization method, named shot-LLR, and the
results were set as target images. A typical input image in
real space is shown in Figure 1, and severe aliasing artifacts
exists due to undersampling.

4. Methods

4.1. Conventional convex optimization method

Traditional MRI reconstruction usually involves solving
an optimization problem as following,

min
x
‖Ax− y‖22 + λg(x) (1)

The first term is known as data consistency term, in
which A represents the encoding matrix, x is the image to be
reconstructed and y is the acquired signal. The second term
is a regularization term, in which lambda is the regulariza-
tion parameter, and g(x) is a constraint on the image, such
as L1-norm, L2-norm, total-variation and locally low-rank.
These constraints are usually convex and their proximal op-
erators are easy to calculate to make the problem easy to be
solved, while many straightforward constraints are usually
non-convex.

Solving these kinds of problems by conventional opti-
mization problems, e.g. ISTA, FISTA and ADMM [17, 18],
usually involve two steps, 1) updating x based on gradients
calculated from the first term in eq. (1), and 2) updating
variables based on the proximal operator of the regulariza-
tion term. In the real world, the optimization algorithm is
usually set to execute a predetermined number of iterations,
a.k.a. unrolling optimization. A large amount of iterations
is usually necessary to get a ”good” convergence, and this
leads to low reconstruction efficiency. Another drawback of
these kinds of algorithms is that they don’t make good use of
the huge amount previous data, while this is especially the
case for some medical imaging application. These model-
based reconstruction methods are very convincing, for the
reason that each term in the expression has a clear physical
meaning and the solving process can be tracked pretty well.
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Figure 2. Schematic diagram of unrolled network with deep priors

4.2. Unrolled Network

In order to accelerate the image reconstruction speed
while maintaining the advantages of these model-based
methods, it is encouraged to replace the proximal opera-
tor in conventional optimization methods with a much more
efficient function, e.g. a neural network. Within each it-
eration, the image is first updated based on the theoretical
gradient from the data consistency term, and the updated
image is then fed to the neural network to generate images
for the next iteration. The schematic diagram of unrolled
network with deep priors is shown in Figure 2. It has been
shown that this has the capability to solve inverse problems
in imaging, and only a small number of iterations, for exam-
ple 5, is needed, thus the reconstruction time is significantly
reduced [6].

The intuitive consideration is that using the regulariza-
tion terms based on presumed assumptions is not the best
choice. By training on huge amounts of data, we let the
network itself to automatically learn a reasonable way to
converge to the ”truth”, and networks in different iterations
can be pretty different to achieve different functionalities,
which might be another reason why it is more efficient than
a fixed constraint (proximal operator).

However, everything has its opposite side: using a neural
network, which is still a kind of black box, instead of a reg-
ularization term, gives us less knob to tune the update rule
if the final results are not good enough. With this in mind,
people might be less convinced that the MRI image recon-
struction results from deep learning are accurate enough to
for clinical diagnosis.

4.3. U-Net

The CNN part is where magic happens and the perfor-
mance of the network will determine how fast the image can
converge to the ground truth. One popular network structure
in MRI field is U-Net [15], as shown in Figure 3. U-Net is a
fancier version of ResNet and the idea is similar to Fractal-

Net. The results from upstream of convolution layers will
go different depths of downstream convolution layers and
the outputs from layers in different levels are combined to-
gether to get the final output. By using this structure, layers
at different levels tend to capture features in different scal-
ings, i.e. convolution layers at higher levels focus more on
local structures, while layers at bottom have a bigger vision.

The overall structure of our network is as follows: there
are N iterations in total (N is a hyper-parameter to be tuned),
and in each iteration, there is a specific U-net to update the
image, and between these U-nets in different iterations, the
output of previous network is updated based on the data
consistency term (this can be seen as taking some prior
knowledge to help improve the performance and make the
results more convincing), before it is given to the following
output.

Figure 3. Schematic diagram of U-Net network

4.4. k-i domain input for CNN

The intrinsic raw data of MRI image are collected in k
domain (frequency domain), while human understanding
images are in i domain (inverse Fourier transform of fre-
quency domain, i.e. image domain). One of the hyperpa-
rameters is to decide whether to use k domain or i domain
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Figure 4. Schematic diagram of network structure with k and i domain input for CNN

data as the input of the network. We tried three different
ideas of the network structures. The first is to use the k-
space data as the input to the U-net in each iterations and
therefore we need to perform Fourier transform and inverse
Fourier transform before and after each U-net, respectively.
The second idea is to use i domain for all the CNN input
(which we refer to as the i net), which requires perform in-
verse Fourier transform first before raw data enters our net-
work. The third idea is to alternatively use k domain or i do-
main data as the input of CNN network (which we refer to
as the k-i net), while Fourier and inverse Fourier transform
will be alternatively performed between before and after all
CNN iterations.

Figure 4 shows the schematic diagram of the network
structure that CNN processes data in either k domain, i do-
main or alternate between k and i domain. The physical
intuition why we alternate input of CNN between i domain
and k domain is that these two domains both have their own
advantages and it would be a better idea to combine them.
Since the signal is collected in k domain, CNN in k domain
can better learn how to reconstruct the data that are not col-
lected. Besides, the image is finally understood by doctor
in i domain, so it would be much straightforward to remove
structural artifacts in i domain.

5. Experiments
5.1. i net

As an initial experimentation, we implemented the i-net
for our unrolled network model, namely the input to the U-
net in each iteration is the real space input. The number of
iterations in the network is one of the hyperparameters we
played with. We have implemented our network with N =
5, 8, 10, 15 for the i-net. Our network with N = 5 is quite
shallow especially compared with optimization algorithms
with a few hundreds iterations and therefore the resulting
reconstructed images are not very close to the ground truth

Figure 5. Representative output images for N=5 and N=10 i-net.
Second row shows the difference from ground truth (not shown).

values, which are from conventional convex optimization
algorithms. As we increase the number of iterations in the
unrolled net- work, the model space becomes larger and we
should expect better reconstruction results (though this also
makes the network harder to train and lose a little bit its ad-
vantage over conventional optimization approaches). With
this in mind, we increased numbers of iterations to N = 8,
N = 10 and N = 15. As expected, with deeper networks, the
resulting images look better with fewer artifacts. Figure 5
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Figure 6. Representative reconstructed images from all three networks. Second row shows the difference from ground truth (amplified five
times).

compares the results from N = 5 and N = 10. The first col-
umn shows the images of the input, and outputs from N =
5 and N = 10 networks respectively and the second column
shows the L1 difference from the ground truth. Note that
the L1 difference for N = 5 and N = 10 is amplified five
times. However, we note that while increasing N from 5
to 10 yields significantly better images, further increasing
to N = 10 and N = 15 does not improve the reconstructed
images much. Even with 15 iterations in the unrolled net-
work, 10% ∼ 15% of the reconstructed images still have
noticeable artifacts. This saturation suggests that this cur-
rent model and architecture might be further modified and
improved.

5.2. k net

The next thing we tried is the k-net, where we have a
Fourier transform at the beginning of U-net so that the input
to the U-net in each iteration is the k-space data and we have
an inverse Fourier transform at the end of all the U-nets. As
seen fromFigure 6, the results from the i-net typically suf-
fer from aliasing problems while the results from the k-net
sometimes have structural artifacts. We also implemented
this network with different iteration depths, and increasing
the iteration numbers helped reduce the structural artifacts,
but not always.

5.3. k-i net

Having implemented both the i-net and the k-net and still
having noticeable artifacts in the reconstructed images, we
turned to the k-i net, whose input to the U-net alternates
from the k-space data and real space data from iteration to
iteration. The incentive is that by learning and operating on
the input in both image and frequency domains, the network
could better understand the underlying patterns and recon-
struction rules in our data, eliminate artifacts in results of
using a single net, and thus giving us better results. We im-
plemented this k-i net. The only difference from the i-net
is that before and after all the U-net in every other itera-
tion where the input is the k-space data there are a Fourier
transform step and an inverse Fourier transform step, re-
spectively. We experimented with N = 4, 6, 8 for the k-i net.
There is a significant improvement from N = 4 to N = 6, but
this improvement saturates for N = 8. Therefore we used N
= 6 in general since it is the shortest with good results.

Figure 7 shows the output of each of the six iterations
for the k-i net, which gives us a rough idea of the effect of
each iteration on the input data.

5.4. Comparison of three networks

The representative reconstructed images from all three
different networks, i.e. the i net, the k net and the k-i net, are
compared in Figure 6. The first image on the first row is the
ground truth value from the convex optimization method as
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Figure 7. Representative output images from each of the 6 itera-
tions in the network.

Figure 8. Percentage differences plot for 48 test images.

ground truth and the next three images are from these three
networks. The second row shows the L1 difference from the
ground truth amplified five times. As mentioned earlier, the
i net and the k net often have noticeable artifacts (usually
aliasing artifacts for the i-net and structural artifacts for the
k-net). However, the reconstructed image from the k-i-net
is quite close to the ground truth and the difference is very
small and looks like uniform random noise. Therefore, we
believe that the k-i net is the best performing model among

the three. The reconstruction results and their difference
from ground truth values for all three networks and for 48
test input images are shown in the supplementary material.

To better visualize the final loss for the test images from
three different networks, we plotted their percentage differ-
ences from the ground truth values in Figure 8. The x-axis
of this plot is the image index and the y-axis, the percentage
difference, indicates how different the resulting images are
from the targets. The curve for the k-i net in blue is the low-
est which has an averaged percentage difference of around
1%.

6. Conclusion
In this project, we implemented unrolled network with

deep priors (U-net as CNN) to accelerate DW MRI recon-
struction process while trying to maintaining the same ac-
curacy as conventional convex method. We experimented
with three network models and the main distinction among
the three is the type of input data we feed into the U-net
in each iteration. We also played with different hyperpa-
rameters such as the number of iterations. The best per-
forming model we have implemented and tested so far is
the k-i net with 6 iterations. With this network trained on
around 1700 MRI images of human brains, it makes the im-
age reconstruction process nearly 60 times faster than con-
ventional convex methods while the averaged L1 difference
from ground truth is only around 1%.

We note that there are still limitations and things we
might be able to further improve for our model. One major
limitation is that our data were all taken in a relatively sim-
ilar fashion and with the same resolution level. To be more
specific, the encoding matrix A for all our data is quite sim-
ilar while it could in principle be very different from case
to case. However, our data were all taken by the same MRI
facilities under the same sampling conditions. Therefore,
new test data from other sources might not be reconstructed
by our model as successfully as our current test data. There-
fore, more data as well as data taken under different condi-
tions could potentially improve the capability of our model.

So far, we have only tried the L1 and L2 norm from
the ground truth values as our loss function. The ground
truth values are calculated from conventional convex meth-
ods and can sometimes be non-ideal. Using the L1 loss
as the loss function prevent our model from outperform-
ing convex methods. One way of improving our model fur-
ther is to modify our loss function. We could use the first
term in Equation (1), the data consistent term, directly as
the loss function, or a combination of different loss func-
tions to instruct the model to optimize with a more direct
goal. As a result, our network might generate reconstructed
images even better than results from convex optimization al-
gorithms. Also, though we have varied the structure of the
U-net a little (depth, kernel size etc.), the parameter space is
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still largely unexplored. Different U-net architectures could
be tested and might improve our model further.
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