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INTRODUCTION METHODS

CONCLUSIONS
In this work, we replaced the presumed LLR regularization term
with a U-net to accelerate multi-shot DW MRI reconstruction. Our
main contributions are as follows:
1. k-i net achieved best performance
2. reconstruction time from 1min down to 1s
3. average L1 difference ~1%
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1. Conventional convex optimization method

Figure 1. A typical input to network.
Figure 4. Schematic diagram of network structure with k and i domain input for CNN

EXPERIMENTS

Figure 5. Representative output image for N=5 and N=10

Background

• DW MRI has been widely used in clinical applications and
neuroscience research

• A relaxed convex model has been proposed to do image 
reconstruction

• Convex optimization requires long reconstruction time

Previous Work

• Unrolled network with deep priors to accelerate convex 
optimization.

• A relaxed convex model with locally low-rank regularization 
for DW MRI reconstruction

• U-net for image classification

Data acquisition

• Number of shots = 4
• The acquired data was first zero-filled to 256 x 256 and then

normalized based on non-diffusion-weighted images.
• 1734 images used for training
• 858 images used for validation
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2. Unrolled Network

• Replace the proximal operator in conventional optimization 
methods with a much more efficient function (U-Net)

• Let the data self-pick the efficient function to converge
• Network in different iterations can be quite different

3. U-Net

Figure 2. Schematic diagram of unrolled network with deep priors

Figure 3. Schematic diagram of U-Net network

• Fancier version of ResNet and idea similar to FractalNet
• Kernels at different level capture features in different scalings
• Convolutions layers at top level focus more on local structures, 

while layers at bottom have a bigger version

4. k-i domain input for CNN

• Alternatively use k domain or i domain data as the input for
CNN network

• Reconstruction in k-space is more natural 
• In image domain help remove structural artifacts

1. Different #iterations
• Perform experiment with

N = 5, 8, 10, 15 for i-net

• Increasing N=5 to N=10
yields significantly better
images

• Further increasing N=10
to N=15 does not improve
the reconstructed image
much

• 10%-15% of recon images
still have noticeable
artifacts even with N=15

2. Outputs from different networks

Figure 6. Representative reconstructed images from all three networks.
Second row shows the difference from ground truth(5X).

• Setting input in image and
frequency domain
alternatively performs best

• For k-i net, significant
improvements from N=4 to
N=6

• Set N=6, reconstructed image
at each iteration are shown
on the left

Figure 7. Visualize output image at each iteration (N=6)

3. Test results

Figure 8. Percentage differences plot for 48 test images
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regularization

Why CNN can reconstruct MRI?

• Neural network can learn proximal operators
• MRI reconstruction by convolution in frequency domain 
• Proximal operator of L1-regularization is similar to ReLU

DISCUSSION & FUTURE WORK

• More data (data augmentation)

• Different network structures

• Different loss functions
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