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Diffusion-weighted imaging
« Single-shot imaging (fast, motion insensitive)
= Limited resolution and SNR

= Heavy distortion

« Multi-shot imaging

= Motion-induced phase variations

Stanford University



#0465

Reconstruction of multi-shot DWI

« Shot locally low-rank (shot-LLR)
v" Arelaxed model without phase estimation
v Robust to motion
% Slow (1 ~ 2 minutes per image)...
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Reconstruction of multi-shot DWI

« Shot locally low-rank (shot-LLR)
v" Arelaxed model without phase estimation
v Robust to motion
% Slow (1 ~ 2 minutes per image)...

* Deep learning reconstruction
v' Fast
*» Black-box
% Ghost artifacts (global) in multi-shot EPI
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Reconstruction of multi-shot DWI

« Shot locally low-rank (shot-LLR)
v" Arelaxed model without phase estimation
v Robust to motion
% Slow (1 ~ 2 minutes per image)...

* Deep learning reconstruction
v' Fast

% Blaek-bex—-> unrolled network, with the forward model
% Ghostartifacts{glebal-> CNN in k-space and image space
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Image reconstruction

: 2
min ||Ax = y|I3

A: encoding operator (sampling, FT, sensitivity encoding)

X: image to be estimated
y: acquired data

r(x): regularization term (l1, [1-way, 12, LLR, TV...)

N\ (.

Optimization algorithm

Given Xxo, A, Y
For k from O to N:
Gradient update:

Xksr/2 = Xk = |AT(Ax¢-y)

Proximal operator:
Xkl = I")r, A (xk+1/2)
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Unrolled ISTA/FISTA/ADMM

Proximal

operator
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Image reconstruction Optimization algorithm
min ||Ax — y||5 + A5G Given xo, A, Y
X For k from O to N:
A: encoding operator (sampling, FT, sensitivity encoding) Gradient update:
X: image to be estimated Xiat/z = Xk = IAT(AX-Y)
y: acquired data Proximal-operator:
r{x):regularizationterm (11, H-way 12, LLR TV ) ¥ar =P Xz
\_ VAN Xia1 = CNN (Xiy172) y.
(" )
Unrolled network
with deep priors > Pr. mal Deep
op ‘for learning

Xo * X1 \ ‘ * X \ * * XN-1 \ * XN \
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DL Reconstruction of multi-shot DWI

Data (k-space data and sensitivity map)

6 volunteers / 1734 images 2 volunteers / 48 images

Zero-filled and normalized

Network structure
Unrolled network

y N=6 - GT/Ll1-loss

k net /i net / k-i net
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DL Reconstruction of multi-shot DWI

Unrolled network

~ GT/Ll-loss J

k net /i net / k-i net

. oL . Gradient U-net:in Gradient U-net:in -
| domain: ’ Update ‘ I'domain * Update * I'domain ’

e Gradient U-net in Gradient U-net in e "
: . Gradient U-net in Gradient U-net in
k-i domain: * Update ee Update | domain *
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Results

Groynd Truth

Input

TEY

5 x difference

Structural arfifac!s
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Results

. Averaged |1 difference with shot-LLR
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PSNR compared with shot-LLR 0.018 RMSE compared with shot-LLR #04 65
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Results

shot-LLR Proposed method 3x difference

slice 1

slice 2
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Applied to 4-shot breast data

Coil compressed 4-shot breast data (1 x 1 x 5 mm?3)
Shot-LLR Unrolled network
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Summary
A faster recon method for multi-shot DWI by DL
* Including gradient updates
« Alternating inputs in k-space and image space

» Other applications: breast
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