Stanford University

Reconstruction of multi-shot diffusionweighted MRI using unrolled network with U-nets as priors

Yuxin Hu¹, Xinwei Shi¹, Qiyuan Tian², Hengkai Guo³, Minda Deng⁴, Miao Yu¹, Catherine Moran⁵, Grant Yang¹, Jennifer A McNab⁵, Bruce Daniel^{5,6}, and Brian Hargreaves^{1,5,6}

 ¹Department of Electrical Engineering, Stanford University, Stanford, CA, United States
²Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, MGH, Boston, MA, United States
³ByteDance AI Lab, Beijing, China
⁴Department of Applied Physics, Stanford University, Stanford, CA, United States
⁵Department of Radiology, Stanford University, Stanford, CA, United States
⁶Department of Bioengineering, Stanford University, Stanford, CA, United States

Palais des congrès de Montréal 🦊 Montréal, QC, Canada 💥 11–16 May 2019

Declaration of Financial Interests or Relationships

Speaker Name: Yuxin Hu

I have the following financial interest or relationship to disclose with regard to the subject matter of this presentation:

Company Name: GE Healthcare Type of Relationship: Research Support

Diffusion-weighted imaging

- Single-shot imaging (fast, motion insensitive)
 - Limited resolution and SNR
 - Heavy distortion

- Multi-shot imaging
 - Motion-induced phase variations

#0465

Reconstruction of multi-shot DWI

- Shot locally low-rank (shot-LLR)
 - ✓ A relaxed model without phase estimation
 - Robust to motion
 - ✤ Slow (1 ~ 2 minutes per image)...

Reconstruction of multi-shot DWI

- Shot locally low-rank (shot-LLR)
 - ✓ A relaxed model without phase estimation
 - Robust to motion
 - ✤ Slow (1 ~ 2 minutes per image)...

- Deep learning reconstruction
 - ✓ Fast
 - Black-box
 - Ghost artifacts (global) in multi-shot EPI

Reconstruction of multi-shot DWI

- Shot locally low-rank (shot-LLR)
 - ✓ A relaxed model without phase estimation
 - Robust to motion
 - ✤ Slow (1 ~ 2 minutes per image)...

- Deep learning reconstruction
 - ✓ Fast
 - Black-box -> unrolled network, with the forward model
 - Ghost artifacts (global) -> CNN in k-space and image space

Optimization algorithm

Given x_0 , A, y For k from 0 to N: Gradient update: $x_{k+1/2} = x_k - lA^T(Ax_k-y)$ Proximal operator: $x_{k+1} = P_{r, \lambda} (x_{k+1/2})$

DL Reconstruction of multi-shot DWI

Data (k-space data and sensitivity map)

6 volunteers / 1734 images	2 volunteers / 48 images
Zero-filled and normalized	

Network structure

Unrolled network

y \Rightarrow N = 6 \Rightarrow GT/L1-loss k net / i net / k-i net

DL Reconstruction of multi-shot DWI

Results

Input

Results

46

44

42

40

38

36

~ 1% difference for most of the test images using K-I net

DL takes less than 1s per image

Results

Stanford University

23

Applied to 4-shot breast data

Coil compressed 4-shot breast data (1 x 1 x 5 mm³)

Shot-LLR

Unrolled network

Summary

A faster recon method for multi-shot DWI by DL

- Including gradient updates
- Alternating inputs in k-space and image space
- Other applications: breast

