Stanford University

High-Resolution Multishot Diffusion-Weighted Body and Breast MRI using Locally Low-rank regularization

YUXIN HU^{1,2}, EVAN G. LEVINE^{1,2}, CATHERINE J. MORAN¹, VALENTINA TAVIANI³, SHREYAS VASANAWALA¹, BRUCE L. DANIEL^{1,4}, AND BRIAN HARGREAVES^{1,2,4}

¹Department of Radiology, Stanford University, Stanford, CA, United States ²Department of Electrical Engineering, Stanford University, Stanford, CA, United States ³GE Healthcare, Menlo Park, CA, United States ⁴Department of Bioengineering, Stanford University, Stanford, CA, United States

Declaration of Financial Interests or Relationships

Speaker Name: Yuxin Hu

I have the following financial interest or relationship to disclose with regard to the subject matter of this presentation:

Company Name: GE Healthcare Type of Relationship: Research Support

Diffusion-weighted imaging

- DWI is sensitive to **molecular motion** and **bulk motion**.
- DWI: $I(x, y)e^{-bD(x,y)}e^{-i\theta(x,y)}$
- Spatially smooth phase $e^{-i\theta(x,y)}$ after diffusion encoding
 - Random: because bulk motion is **different** during each application of the diffusion encoding gradients (multi-shot, multi-nex).

#0992

#0992

Diffusion-weighted imaging

- Single-shot imaging (fast)
 - Limited resolution and SNR
 - Heavy distortion
- Multi-shot imaging (slow)
 - Motion sensitive

Multi-shot DWI

- Higher resolution; reduced distortion.
- Motion-induced phase $e^{-j\theta(x,y)}$ between shots (<u>random</u>).

#0992

Multi-shot DWI

- Motion-induced phase $e^{-j\theta(x,y)}$ (random and spatially smooth)
- MUSE/POCS-MUSE

$$\min_{x,\theta_{1,\ldots,N_s}} \sum_{i=1}^{N_s} \left\| D_i F S e^{j\theta_i x} - y_i \right\|_2^2$$

• Step1: parallel imaging on each shot*

and take the <u>low-resolution^{**}</u> results to estimate $e^{j\theta_i}$

• Step2: estimate *x*

x: image to be reconstructed
θ: motion-induced phase to be estimated
D_i and y_i: the sampling operator and acquired data of the ith shot.
F: Fourier transform
S: sensitivity map

Multi-shot DWI

- Motion-induced phase $e^{-j\theta(x,y)}$ (random and spatially smooth)
- Shot locally low-rank (shot-LLR)
 - "calibration-less parallel imaging*"
 - Spatial-shot matrices
 - Slow-phase variations = low-rank

$$\min_{x_{1,...,N_{s}}} \sum_{i=1}^{N_{s}} \|D_{i}FSx_{i} - y_{i}\|_{2}^{2} + \lambda \sum_{b \in \Omega} \|R_{b}\{x_{1,...,N_{s}}\}\|_{*}$$
Data consistency term
LLR regularization

Stanford University

*Trzasko J, et al. IEEE TMI 2011.

#0992

Multi-shot DWI

- Motion-induced phase $e^{-j\theta(x,y)}$ (random and spatially smooth)
- MUSE/POCS-MUSE (non-convex)

$$\min_{x,\theta_{1,\ldots,N_{s}}} \sum_{i=1}^{N_{s}} \left\| D_{i}FSe^{j\theta_{i}}x - y_{i} \right\|_{2}^{2}$$

Shot locally low-rank (shot-LLR) (convex)

x: image to be reconstructed **x**_i: the ith shot image to be reconstructed **θ**: motion-induced phase to be estimated **D**_i and y_i: the sampling operator and acquired data of the ith shot. **F**: Fourier transform

S: sensitivity map

$$\min_{x_{1,...,N_{s}}} \sum_{i=1}^{N_{s}} \|D_{i}FSx_{i} - y_{i}\|_{2}^{2} + \lambda \sum_{b \in \Omega} \|R_{b}\{x_{1,...,N_{s}}\}\|_{*}$$

Multi-shot DWI

- Motion-induced phase $e^{-j\theta(x,y)}$ (random and spatially smooth)
- MUSE/POCS-MUSE (non-convex)

$$\min_{x,\theta_{1,\ldots,N_{s}}} \sum_{i=1}^{N_{s}} \left\| D_{i}FSe^{j\theta_{i}}x - y_{i} \right\|_{2}^{2}$$

Shot locally low-rank (shot-LLR) (convex)

$$\min_{x_{1,\dots,N_{s}}} \sum_{i=1}^{N_{s}} \|D_{i}FSx_{i} - y_{i}\|_{2}^{2} + \lambda \sum_{b \in \Omega} \|R_{b}\{x_{1,\dots,N_{s}}\}\|_{*}$$

Flowchart of shot-LLR reconstruction with virtual conjugate shots

in-plane resolution = 1.44 mm slice thickness = 4 mm b-value = 600 s/mm^2

8-shot

4-shot

in-plane resolution = 1 mm slice thickness = 4 mm b-value = 600 s/mm²

POCS-MUSE

shot-LLR

POCS-ICE

conventional, R = 4, 1.44mm

Summary

Multi-shot DWI

- Reduced distortion and high resolution
- Shot-to-shot phase variations

Shot-LLR

- using a relaxed model, non-convex -> convex
- constraint on sum of ranks (rank of some matrix can still be high -> high frequency phase variations)