Multishot high-resolution brain diffusionweighted imaging using phase regularized reconstruction

YUXIN HU^{1,2}, XIAOLE WANG³, EVAN G. LEVINE^{1,2}, QIYUAN TIAN^{1,2}, VALENTINA TAVIANI⁴, FRANK ONG⁵, SHREYAS VASANAWALA¹, JENNIFER A MCNAB¹, BRUCE L. DANIEL^{1,6}, AND BRIAN HARGREAVES^{1,2,6}

¹Department of Radiology, Stanford University, Stanford, CA, United States ²Department of Electrical Engineering, Stanford University, Stanford, CA, United States ³Biomedical Engineering, Tsinghua University, Beijing, China ⁴GE Healthcare, Menlo Park, CA, United States ⁵Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, United States

Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, United States ⁶Department of Bioengineering, Stanford University, Stanford, CA, United States

Declaration of Financial Interests or Relationships

Speaker Name: Yuxin Hu

I have the following financial interest or relationship to disclose with regard to the subject matter of this presentation:

Company Name: GE Healthcare Type of Relationship: Research Support

Diffusion-weighted imaging

Single-shot imaging (fast, motion insensitive)

- Limited resolution and SNR
- Heavy distortion

Multi-shot imaging

Motion sensitive

#0750

#0750

Multi-shot DWI

- Motion-induced phase $e^{-j\theta(x,y)}$ (random and spatially smooth)
- MUSE/POCS-MUSE

$$\min_{x,\theta_{1,\dots,N_{s}}}\sum_{i=1}^{N_{s}}\left\|D_{i}FSe^{j\theta_{i}}x-y_{i}\right\|_{2}^{2}$$

• Step1: parallel imaging on each shot*

x: image to be reconstructed
θ: motion-induced phase to be estimated
D_i and y_i: the sampling operator and acquired data of the ith shot.
F: Fourier transform
S: sensitivity map

and take the <u>low-resolution^{**}</u> results to estimate $e^{j\theta_i}$

• Step2: estimate *x*

Multi-shot DWI

- Motion-induced phase $e^{-j\theta(x,y)}$ (random and spatially smooth)
- Shot locally low-rank (shot-LLR)
 - "calibration-less parallel imaging^{*}"
 - Spatial-shot matrices
 - Slow-phase variations = low-rank

$$\min_{x_{1,\dots,N_{s}}} \sum_{i=1}^{N_{s}} \|D_{i}FSx_{i} - y_{i}\|_{2}^{2} + \lambda \sum_{b \in \Omega} \|R_{b}\{x_{1,\dots,N_{s}}\}\|_{*}$$
Data consistency term LLR regularization

Stanford University

*Trzasko J, et al. IEEE TMI 2011.

Multi-shot DWI

- Motion-induced phase $e^{-j\theta(x,y)}$ (random and spatially smooth)
- MUSE/POCS-MUSE (non-convex) $\min_{x,\theta_{1},\dots,N_{s}} \sum_{i=1}^{N_{s}} \left\| D_{i}FSe^{j\theta_{i}x} - y_{i} \right\|_{2}^{2}$

Shot locally low-rank (shot-LLR) (convex)

x: image to be reconstructed
 x_i: the ith shot image to be reconstructed
 θ: motion-induced phase to be estimated
 D_i and y_i: the sampling operator and acquired data of the ith shot.
 F: Fourier transform

S: sensitivity map

$$\min_{x_{1,\dots,N_{s}}} \sum_{i=1}^{N_{s}} \|D_{i}FSx_{i} - y_{i}\|_{2}^{2} + \lambda \sum_{b \in \Omega} \|R_{b}\{x_{1,\dots,N_{s}}\}\|_{*}$$

Multi-shot DWI

- Motion-induced phase $e^{-j\theta(x,y)}$ (random and spatially smooth)
- MUSE/POCS-MUSE (non-convex)

$$\min_{x,\theta_{1,\ldots,N_{s}}}\sum_{i=1}^{N_{s}}\left\|D_{i}FSe^{j\theta_{i}}x-y_{i}\right\|_{2}^{2}$$

Shot locally low-rank (shot-LLR) (convex)

$$\min_{x_{1,...,N_{s}}} \sum_{i=1}^{N_{s}} \|D_{i}FSx_{i} - y_{i}\|_{2}^{2} + \lambda \sum_{b \in \Omega} \|R_{b}\{x_{1,...,N_{s}}\}\|_{*}$$

Flowchart of shot-LLR reconstruction with virtual conjugate shots

4-shot, nex = 6 a-c: normal d-f: with severe motion

#0750

Non-convex model

$$\min_{m,\theta_1,\dots,\theta_{Ns}} \sum_{i=1}^{Ns} \frac{1}{2} ||D_i FSm \cdot e^{j\theta_i} - y_i||_2^2 + \lambda_1 g_m(m) + \lambda_2 \sum_{i=1}^{Ns} g_\theta(\theta_i)$$

- Using shot-LLR as initialization
- Regularization terms on magnitude and phase
 - to improve the results
 - constraints on phase helps avoid partial Fourier reconstruction
- Phase cycling to solve artifacts from phase wrapping^{*}

*Ong, F., Cheng, J. Y., & Lustig, M., MRM 2018.

m: real-valued image to be reconstructed $\boldsymbol{\theta}$: motion-induced phase to be estimated $\mathbf{D}_{\mathbf{i}}$ and $\mathbf{y}_{\mathbf{i}}$: the sampling operator and acquired data of the ith shot. F: Fourier transform S: sensitivity map g_m and g_{θ} : regularization terms on magnitude and phase

#0750

4-shot brain DW images (res: $0.85 \times 0.85 \times 3 \text{ mm}^3$, b-value = 1000 s/mm^2 , nex = 1) reconstructed by Fourier transform (a), shot-LLR (b), proposed method with zero-filled data as initialization (c), proposed method with shot-LLR as initialization and without/with phase cycling (d/e). The yellow triangles point where the errors are.

4-shot DTI <u>res = 0.8 mm isotropic</u> b-value = 1000 s/mm² #directions = 45

4-shot double-diffusion encoding imaging res = 1 x 1 x 2 mm³ b-value = 2000 s/mm² #directions = 120

Summary

To solve inter-shot phase variations in multi-shot DWI without navigator

- MUSE/POCS-MUSE/POCS-ICE
 - two steps: 1) explicit phase estimation; 2) final image reconstruction
- Shot-LLR
 - a relaxed model without phase estimation
- Shot-LLR initialized non-convex method
 - works well when SNR is low (high resolution/high b-value brain imaging)
 - inherits the property of handling big phase variations from shot-LLR.