
A THEORY OF LOCAL-TO-GLOBAL ALGORITHMS FOR
ONE-DIMENSIONAL SPATIAL MULTI-AGENT SYSTEMS

A dissertation presented

by

Daniel Yamins

to the

School of Engineering and Applied Sciences
in partial fulfillment of the requirements

for the degree of
Doctor of Philosophy

in the subject of

Applied Mathematics

Harvard University
Cambridge, Massachusetts

November 2007

c© Copyright by Daniel Yamins 2008
All Rights Reserved

ii

Abstract
A spatial multi-agent system is a decentralized system composed of numerous identically programmed agents
that either form or are embedded in a geometric space. The agents’ computational constraints are spatially
local. Each agent has limited internal memory and processing power, and communicates only with neigh-
boring agents. The systems’ computational goals, however, are typically defined relative to the global
spatial structure.

In this thesis, I develop the beginnings of theory of spatial multi-agent systems, for the simple case of
pattern formation in a one-dimensional discrete model. First, I characterize those patterns that are robustly
self-organizable in terms of a simple “necessary condition on solvability”. I then solve the inverse problem,
constructing an algorithmic procedure that generates robust local rule solutions to any desired solvable
pattern. Next, I analyze resource usage and runtime properties of such local rule solutions.

I apply this suite of mathematical techniques to two diverse “global-to-local” problems: the engineering
goal of developing a generic “global-to-local” compilation procedure, and the scientific goal of analyzing
an embryological development process.

iii

Acknowledgments
I would like to acknowledge the members of the Fontana lab for their support and engagement: Javier
Apfeld, Eric Deeds, Jerome Foret, Thomas Kolokotrones, Debora Marks, Catalina Romero, Van Savage, and
Nicholas Stroustrup.

I gratefully acknowledge Walter Fontana for paying me, and giving me a great place to work.

I happily thank members of the Nagpal group for their ideas and involvement: Julius Degesys, Radhika
Nagpal, Ankit Patel, Ian Rose, Justin Werfel, and Chih-han Yu.

I am deeply indebted to Radhika Nagpal for being a true adviser.

I thank Richard Lewontin, Jake Beal, Gerry Sussman, Zak Stone, Lea Goentoro, Aneil Mallavarapu, James
McLurkin, Hal Abelson, Stephen Maturin, Vincent Danos, Jeremy Gunawardena, Michael Rabin, Harry
Lewis, Pamela Silver, Salil Vadhan, Chris Sander, Cris Moore, Van Parunak, Eric Smith, Stuart Shieber,
Margot Seltzer, Harold Morowitz, Sam Lipoff, and Stu Lipoff for their very valuable scientific contributions
and their lively interest.

I especially thank Eric Deeds, Catalina Romero, Thomas Barnet-Lamb, and Ankit Patel for their tremendous
scientific insight, numerous fun and relevant contributions, and unparalleled enthusiasm.

I owe Sam Lipoff, Roxanne Yamins, Chenling Zhang, Yanjun Wang, HPAIR, Vikas Prabhakar, Catalina
Romero, Lea Goentoro, Jack Aubrey, Jennifer Haraguchi, Larry Abramson, Debbie Marks, Maria Kim,
Oliver Jacob, Ari Lamstein, and Joanna Yeo, for putting up with me and trying to keep my mind on other
things.

Tian Mayimin has been my constant.

Above all, I thank my parents Janice and David Yamins, who have been my constant and most ardent
supporters, my most respected advisors, and greatest sources of inspiration.

iv

Contents

1 A Simple Model 7
1.1 Static Configurations . 7
1.2 Local Rule Dynamics . 9

1.2.1 Timing Models . 10
1.3 Patterns . 11

1.3.1 Pattern Properties . 12
1.3.2 Admissible Sizes and Pattern Growth . 14

1.4 Solutions . 14
1.5 Illustrative Examples . 16
1.6 Related Work . 19

2 Local Checkability: A Necessary Condition 20
2.1 Local Checkability: A Necessary Condition . 20
2.2 Local Checks Are Part Lists . 23

2.2.1 Generating Configurations . 23
2.3 LCSs are Graphs . 25

2.3.1 Meaning of the Graph Structure . 26
2.3.2 Admissible Sizes . 31
2.3.3 Pattern Growth . 33
2.3.4 Summary . 36

2.4 Local Checkability and Formal Languages . 36

3 Local Checkability is Sufficient: Generic Constructions 39
3.1 Single-Choice Patterns: A Gradient Algorithm . 39
3.2 The Naive Backtracking Algorithm . 40

3.2.1 Distributed, Virtual, Robust Heads . 43
3.2.2 A Turing Operator Basis . 44
3.2.3 Other Orderings . 44
3.2.4 Viewing FO

Θ
on G(Θ). 45

3.2.5 The Effect of the Ordering Function O . 47
3.3 Run-Time Analysis of Naive Backtracking Algorithm . 47

3.3.1 Several Examples . 50
3.3.2 The Maximally Futile Subgraph . 52

4 Faster Algorithms and Pattern Classification 57
4.1 A Linear Time Algorithm . 57

4.1.1 The Strategy . 58
4.1.2 Single Terminus Graphs . 60
4.1.3 The General Case . 63

4.2 Locally Patchable Patterns . 66
4.2.1 Dynamic Local Patching . 69
4.2.2 Getting Almost Correct . 71

4.3 Pattern Complexity Classes . 75

v

5 Lower Bounds and Measure of Global Order 77
5.1 Elementary Arguments . 78
5.2 Discrete Fourier Analysis of Configurations . 79
5.3 P as a Slowly-Growing Order Measure . 82

5.3.1 . 84
5.4 A More Robust Fourier Transform . 88
5.5 Graph-Based Computation of P . 91
5.6 A Frequency Independent Approach . 95

6 The Radius-State Tradeoff 99
6.1 The Static Tradeoff . 99

6.1.1 Example: The Coordinate Pattern . 99
6.1.2 Trading Radius for State . 101
6.1.3 Trading State for Radius . 103

6.2 The Dynamic Trade-Off . 107
6.2.1 Isolated Turing Head Algorithms . 107

7 Pattern Space Analysis 111
7.1 D(r,m) and the DeBruijn Graph . 111
7.2 Simple Properties of DeBruijn Graphs . 114
7.3 A General Realization of DB . 115
7.4 A Useful Fact . 117
7.5 Two Operations . 118
7.6 Subgraph Geometry . 121
7.7 The Interpretation ofD(r,m) Structure . 123

7.7.1 k = 0: Topological Structure and Static Encodings . 124
7.7.2 k = 1: Induced Topology and Local Checkability . 125
7.7.3 k > 1: Local Geometry and Robustness . 126

8 Two Applications 129
8.1 A Prototype Global-to-Local Compiler . 129

8.1.1 What Kind of a Thing is a Global-to-Local Compiler? 129
8.1.2 Pattern Description for Input Specification . 130
8.1.3 The Compiler . 131

8.2 Analyzing a Drosophila Gene Network . 133
8.2.1 Drosophila melanogaster . 133
8.2.2 Multi-Agent Model . 135
8.2.3 Analysis . 137

9 Conclusions and Future Work 143
9.1 Discussion . 143
9.2 Future Work . 143
9.3 Generalization . 143

9.3.1 Application . 145
9.3.2 Deeper Analysis . 148

Bibliography 149

A Local Balls and Parts 151
A.1 Counting Ball Types . 151
A.2 Reduction to Parts . 152

B Naive Backtracking Proofs 155
B.1 Appendix: Proof of Prop. 14 . 155
B.2 Appendix to §3.3 . 157

vi

C Details of Faster Algorithm Proofs 164
C.1 Proofs for §4.1.2 . 164
C.2 Details of the General Algorithm . 168
C.3 Proof of Prop. 22 . 171

D Details of P̃ 175
D.1 P̃ is More Robust . 175
D.2 Computing P̃ from F . 176
D.3 Computing Examples of P̃ . 179

E Generic Dynamic Encoding 181

F Other Approaches to Pattern Description 184
F.1 Direct Specification . 184
F.2 Formal Logic . 184

G Details of Pattern Space Analysis 187
G.1 Gross Structure of Pattern Space . 187
G.2 Proof of Prop. 40 . 189
G.3 Proof of Prop. 43 . 191
G.4 Proof of Prop. 45 . 192

H Drosphila Regulatory Networks 197
H.1 The Chao-Tang Model . 197
H.2 Analysis . 199

vii

viii

Introduction

Spatial Multi-Agent Systems

A spatial multi-agent system is a decentralized system composed of numerous identically programmed
agents that either form or are embedded in a geometric space. The agents’ computational constraints are
spatially local. Each agent has limited internal memory and processing power, and communicates only
with neighboring agents. The systems’ computational goals, however, are typically defined relative to the
global spatial structure.

The world is filled with examples of spatial multi-agent systems. Embryonic development is a proto-
typical biological example, where large numbers of identically-programmed cells interact through coupled
gene regulatory networks to generate a spatially complex organism from an undifferentiated embryo [38, 6].
Swarms of agents, both natural and engineered, cooperate to achieve apparently intelligent search, con-
struction and transport tasks from innumerable local actions [25, 31, 32, 4]. Sensor networks distributed
over large open regions or embedded in buildings react to dynamic global environments by collectively
processing spatially localized data [13, 36]. A “paintable computer” that could form image displays and data
storage devices on-the-fly would be an interesting, if not yet entirely accessible, form of spatial computing
[3].

The Need for a Theory

Computer scientists who come into contact with natural spatial multi-agent systems often are intrigued
with the idea of adding those systems’ capabilities to their programming repertoire. But when trying
to figure out exactly how, they quickly encounter the challenge of programmable self-organization. How
does one design local interaction rules to achieve prespecified global goals? Despite the many compelling
examples in nature, decentralized systems seem difficult to reason about. Any would-be programmer of
spatial computers has probably experienced the feeling that iterated local rules sometimes generate spiraling
cascades of complexity – and sometimes don’t – for no immediately discernible reason.

The difficulty of rationalizing local rule behavior is compounded by the desire to replicate the robustness
that many natural decentralized systems possess. Local rule programs should be stable to significant
variations in both initial conditions and agent timing, so that unexpected initializations and perturbations
are automatically self-repaired, and unplanned communications delays and temporary hardware failures
are not fatal. Furthermore, some global tasks may not be solvable at all, given the local agents’ computational
and informational limitations. It would be very useful to have an idea ahead of time of whether a given
problem is solvable by local interactions using given resources – and if not, be able (if possible) to shift
resource allocations accordingly.

Converse to these software engineering concerns is the possibility that thinking about natural spatial
computers, qua computers, would be helpful scientifically. A programming language that systematically
generates the spatial patterns created by biological embryos might provide reasonable null hypotheses to
which the real biological programs – i.e. the development gene networks – could be compared. Following
the tradeoffs between resources like internal cellular “memory” usage and intercellular communications
throughput could indicate the shape of evolutionary constraints.

For all these reasons, it would be useful to have a systematic theory of local-to-global algorithms in
spatially distributed multi-agent systems.

1

2

(a) An embryo of the
fruit fly Drosophila
melanogaster.

(b) Cell interaction
causes differentiation,

(c) resulting in complex
morphological changes,

(d) which produce the
adult fly.

(e) A Polistes humilis wasp be-
gins nest construction.

(f) Structure grows as wasps in-
dependently apply local build-
ing rules.

(g) Highly organized
structure emerges from
stigmergic interaction.

(h) A flock of white Ibis solves a distributed con-
sensus in determining which direction to fly.

(i) Mobile robot swarms can
perform search functions.

(j) Sensor networks aggregrate and pro-
cess local data (e.g. temperature) before
uploading to central receiver.

(k) In a paintable computer, individual mi-
croscale spray-on light-emitting processors
decide which color to display by communicat-
ing with nearby processors, forming an image.

3

Thesis Statement

In this thesis, I develop the beginnings of theory of spatial multi-agent systems, for the simple case of
pattern formation in a one-dimensional discrete model. First, I characterize those patterns that are robustly
self-organizable in terms of a simple “necessary condition on solvability”. I then solve the inverse problem,
constructing an algorithmic procedure that generates robust local rule solutions to any desired solvable
pattern. Next, I analyze resource usage and runtime properties of such local rule solutions.

I apply this suite of mathematical techniques to two diverse “global-to-local” problems: the engineering
goal of developing a generic “global-to-local” compilation procedure, and the scientific goal of analyzing
an embryological development process.

Specific Contributions

I begin by dividing the larger problem of one-dimensional pattern formation into a series of subproblems,
and then develop solutions to each. These are:

• An existence problem: I demonstrate a simple criterion, called local checkability, that any robustly
solvable pattern must satisfy. Local checkability is a “necessary condition:” if a pattern is not locally
checkable, no robust local rule can self-organize it.

• A construction problem: I show that local checkability is also a “sufficient condition,” by describing
a generic construction which yields robust local solutions to any locally checkable pattern. The
construction exploits a distributed signalling system implemented by a self-organizing Turing machine.

• An optimization problem: The initial construction above is slow. I show how to greatly improve
runtime performance by building smart decision pruning protocols into the signals sent by the self-
organized Turing machine.

• A resource management problem: I show that there is a resource tradeoff continuum between the two
main resource parameters of the multi-agent system: the agent communication radius and agent
memory size. I describe algorithms for“ tuning” solutions along the continuum.

• A performance limitation problem: I show how to obtain tight lower bounds on how fast any local
rule can create local checkable patterns, both in average- and worst-case. The technique behind these
results is the analysis of a quantitative measure of global order, derived as a form of Fourier analysis of
patterns.

Each of these problems/solutions are aided by a graph-theoretic characterization of locally checkable patterns,
a tool at the foundation of my theory.

Together, these ideas constitute a suite of techniques that can be combined into global-to-local applications.
In this thesis, I sketch their application to two contrasting uses:

• Building a Global-to-Local Compiler: This is a procedure which takes as input a target pattern and
set of resource limits, and whose output is an optimized local rule generating the pattern using no
more than the specified resources. The utility of such a compiler is that it “takes out the work” of
having to figure out exactly how to program local rules, and allows global design intent to be directly
transduced into local agent programs.

• Analyzing the structure of a developmental gene regulatory network in the common fruit fly
Drosophila melanogaster. Building a toy model of Drosophila embryo as a spatial multi-agent system, I
show how features of the known genetic regulatory structure might be consequences of local-to-global
information constraints.

The methods presented concentrate only address one-dimensional pattern formation. However, many of
the techniques developed here naturally generalize to more complicated underlying spaces, as I discuss
briefly at the end of the thesis.

4

An Illustrative Example

Imagine that we’re given a distributed multi-agent system embedded in an ellipsoidal surface. Each agent
has some internal state, whose value is indicated to the external environment by color:

Let’s assume each agent can only see local information. That is, the rule each agent uses to update its own
state (e.g. change color) can only be a function of the states of agents within a neighborhood of some fixed
“locality radius” R:

= radius 2
neighborhood

Now, suppose our goal is to find local rules – with radius no larger than R – which, when run separately and
identically on each agent, cause the system to robustly form various spatial patterns. For example, given
any of these (or similar) patterns:

or or or

we’d like to find local rules that robustly generate the patterns – meaning, that the rules cause the pattern to
form regardless of initial conditions or temporary agent failures.
A robust glocal-to-local compiler is a procedure that allows us to achieve this in an automated fashion. It takes
as input a description of a desired spatial pattern, as well as a statement of some bounds on the resources
available to the system, and produces as output a local rule that will construct the pattern robustly. This
thesis provides a set of tools that can be combined both to make a global-to-local compiler and to analyze its
outputs, including the following ingredients: an “existence module,” which determines if the input pattern
is solvable via local rules at all, and if so, what the minimal locality radius r required to solve the pattern is;
a “construction module,” which synthesizes a local program that, when possible, achieves the input pattern
within the given resource limitations; a “resource tradeoff module,” which re-balances the use of certain
resources in the system to accommodate the limitations on the others – e.g. increasing the amount of state
memory used by each agent, to compensate a limitation of agents to only using nearest neighbor (r = 1)
communication; and, analysis tools – including, for example, a “measure of global order” which provides
a quantitative observable of the system’s self-organization.

The figure on the facing page shows such a compiler in action:

• A) shows the console of the compiler implemented in Matlab, interactively taking commands from
the user. In this case, pattern is inputted via a “unit” to be repeated along the ellipsoid’s major axis
(here, [1 2 0 0 0 0 0 3]). The compiler determines minimal required radius (here, 3) and receives input
about user’s maximal available radius (in this case, 1). When the former is larger than the latter (as in
this case), the compiler invokes the radius-state tradeoffmodule.

5

• B) shows snapshots at various points along the trajectory of the local rule produced by the compiler
on a randomly chosen initial condition. The rule is robust both to initial conditions and timing delays.

• C) shows a measure of global order used to analyze the system. The measure increases over time as
self-organization occurs.

0 10 20 30 40 50 60 70 80 90 100

Time

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

G
lo

b
a

l
O

rd
e

r

Global Order Measure

A) B)

C)

6

Related Work

Connections to two related lines of research arise repeatedly throughout this thesis: the theory of Cellular
Automata, and the theory of formal languages.

Cellular Automata: The one-dimensional multi-agent model I use is similar to that of Cellular Automata.
Studies of cellular automata go back over 50 years, from the pioneering work of Ulam and von Neumann
to the more recent attempts to classify automata rules, and their use in modeling real biological systems
[33, 37]. Specific rules, like Conway’s Game of Life, have been shown to generate a variety of complex
behaviors from varying initial conditions [5]. The main emphasis of these studies has been to understand
the local-to-global connection: given a local agent rule, what types of patterns can it produce?

In contrast, engineering emphasizes the inverse global-to-local question: given a pattern, which agent
rules will robustly produce it? Genetic algorithms have been used to “evolve” CA rules that, although
somewhat difficult to analyze, approximately achieve target computations [27]. Recent work has shown
that a more principled approach is tractable, allowing the creation of pattern formation languages for
CA-like amorphous computers and modular robots [29, 15, 32, 1]. This thesis develops the “principled
approach” further, obtaining more comprehensive theoretical results in a simpler model.

In summary: while the basic Cellular Automata model is similar, the questions and results are quite
different. To throw light on these relations, throughout the thesis I note where they arise.

Formal Languages: The computational “goals” of the systems I work with are one-dimensional patterns.
My notion of a one-dimensional pattern is identical with that of a formal language, and the locally checkable
patterns are related to regular languages. The graph characterization of locally checkable patterns I use
in various places is equivalent to the characterization of regular languages in terms of Non-Deterministic
Finite Automata (NDFAs).

The differences between my work and the results from formal languages are significant, however. First,
I address a problem of construction rather than recognition. The patterns that my model makes are physically
embodied in the states of the multi-agent system and the goal is to robustly have the system generate the
pattern from many initial configurations – not have it “recognize” if an already generated word fits a given
pattern. Second, the main dynamical constructions in my theory are the local rule algorithms that construct
the patterns. The behavior of these local rules is not easily characterized by languages. So, while my
systems’ computational goals are essentially the construction of formal languages, the basic tools by which
this is accomplished don’t easily fall within the theory of those languages. Again, I note throughout where
relationships with language theory arise.

Thesis Outline

Chapters 1-3 form the “basic module” of this work. Chapter 1 introduces the one-dimensional multi-agent
systems model used throughout. Chapter 2 introduces the concept of local checkability, the proof of its
necessity, and characterizes the locally checkable properties as graphs. Chapter 3 contains the local rule
algorithm construction showing locally checkability is sufficient, and an analysis of the constructions’ run-
time performance.

Chapters 4-7 can be thought of as “further topics.” Chapter 4 discusses techniques for constructing fast algo-
rithms. Chapter 5 introduces the Fourier analysis of patterns, and uses it to provide proof of the optimality
of the constructions in chapter 4. Chapter 6 describes the radius/state resource tradeoff. The first portion of
Chapter 6, which may be relevant to many readers, can be independently from 4 and 5. Chapter 7 contains
an analysis of the space of all locally checkable patterns and shows how this sheds light on pattern robustness.

Chapter 8 contains the two brief applications of the theory. It depends on material from all of the preceding
chapters except 5, although if certain results are accepted on faith, chapters 4 and 7 can also be skipped.
Chapter 9 describes future work. Throughout, purely technical issues that arise are treated in appendices
at the end.

Chapter 1

A Simple Model

This chapter introduces a simple mathematical framework for describing one-dimensional distributed
multi-agent systems and the patterns they can form.

First, I describe (§1.1) the static configurations that can appear in the system – single time-step “snap-
shots” of all the agents, with their simple one-dimensional spatial relationships and various internal states.
Then I introduce a notion of dynamics (§1.2), local rules by which agents act to modify their states as a
function of the information they receive from neighboring agents. Next, I introduce one-dimensional pat-
terns (§1.3), and the notion of local rule solutions to these patterns (1.4). In §1.5, I sketch illustrative results
from the simplest cases and formulate the general questions (§1.5) that motivate the next several chapters.
Finally, I describe the relationship of this model with related work in cellular automata in §1.6.

1.1 Static Configurations

The main objects in our model are configurations. A configuration is a structure that looks like this:

2 0 1 11 0 1 2 13
Figure 1.1: A ten-agent configuration with four internal states: purple (0), orange (1), pink (2), and green (3).

Intuitively, configurations are meant to provide a simple model of a one-dimensional multi-agent system.
Mathematically, they are node-labeled graphs. Nodes of the graph correspond to agents (or cells), and the
colored label of the nodes correspond to agents’ internal states. The nodes are arranged geometrically into
a 1-D lattice, with the spatial relations expressed by the directed edges between the nodes.

To formalize this picture, we first define the graph of the underlying one-dimensional geometry.

Definition 1 [Underlying 1-D Geometry] The directed line of length n, denoted Ln, is the graph

Ln = (Vn,En)

where Vn = {1, . . . ,n} are the n nodes and En = {(1, 2), (2, 3), . . . , (n − 1,n)} are the edges.

Example 1 The n = 5 and n = 10 versions of Ln look like:

n = 5

n = 10

7

CHAPTER 1. A SIMPLE MODEL 8

L5 models a system with 5 agents, and L10 a system with ten agents. Generally, the size-n graph Ln is the
underlying geometry of a system with n agents.

Now we can “put in” the agents’ internal states by labeling each position in the Ln graph with a “color.”

Definition 2 [System Configurations] Let S be a finite set of size m. An S-configuration of size n is a graph

X = (V,En)

in which the edges are the same as in Ln, but the nodes are now pairs (i, si), with si ∈ S. Let Cn,S be the set of all
S-configurations of size n, and let CS =

⋃
n∈N Cn,S.

The set S is intuitively meant to designate the possible internal states of the agents, and the labeling of the
nodes is the idea that each agent is in at least one of these states at any given time. Two different nodes (i, si)
and (j, s j) can have the same label, meaning that agent i and agent j have the same internal state.

We can think of S-configurations as finite m-ary sequences by assigning to each of the m states a unique
integer in {0, . . . ,m − 1} and reading the states off from left to right. For any m-ary sequence x let x(i : j)
denote the restriction of the sequence between its i-th and j-th places (inclusive) and let x1 ◦ x2 denote the
concatenation of the two sequences x1 and x2. If x is a consecutive subsequence of y, write x b y. Restriction
and concatenation, and b, correspond to obvious graph operations and relations on configurations.1

Given a configuration X and an agent a in X, we wish to define the local neighborhood around a in X.
The neighborhood will of course be a function of a choice of a radius parameter r.

Definition 3 [Local Balls] The ball in X of radius r at agent i, denoted Br(i,X), is the subgraph of X whose nodes
are

{b j ∈ V(X)||i − j| ≤ r} ∪ {(i, star)}

and whose edges are induced from X. Let Br,S denote the set of all r-balls with states in S.

We have added a special symbol ? to the label of the agent i around which the ball is taken (formally, was
done by adding the pair (i, ?) to the set of nodes). The point of adding the special ? symbol is to be able to
distinguish the “center” of the ball from the other elements in the cases when the configuration X itself is of
on the order of r, the radius of the ball.

For example, in the configuration in figure 1.1, the local ball of radius 2 around agent 5 looks like:

2 1 1 23*
There are essentially three basic isomorphism types of balls:

• Central balls, of size 2r + 1, which come up in the center of configurations of size larger the the scale
of the radius r. Denoted Bcentral(r)

• Left-end and right-end balls, which come up at the left and right ends of configurations, denoted
Ble f t(r) and Bright(r), respectively. And,

• Small balls, which arise in configurations that are small compared to r – denoted Bsmall

Intuitively, these arise as in the picture:

1The reason that we use the graph representation at all, and don’t just use the sequence representation, is that the graph description
will enable generalization later on.

CHAPTER 1. A SIMPLE MODEL 9

*

*

Left-end Ball Right-end BallCentral Ball

Small Ball

* *

The total number of distinct balls is shown in appendix §A.1 to be exactly m
(

mr+1
−1

m−1

)2
, where m = |S|.

Given any local ball B let ?(B) denote the position of the starred agent. Any r-ball can be thought of
as a pair B = (B, ?(B)), where B is the underlying string of the ball. We can also define local coordinates
B(i) = B(?(B) + i), so that B(0) = B(?(B)), B(1) is the agent adjacent to the right, B(−1) to the left etc... If
?(B) = |B|, then B is the right-end ball and the agent the right-most agent. If ?(B) = 1 then the agent is the
left-most agent. If B is a ball of radius r + k, let Bi = B(i − r : i + r), in local coordinates. Two balls B1 and B2
are isomorphic, denoted B1 ∼ B2, if there are identical as graphs, or, alternatively, if they are identical when
described in local coordinates.

1.2 Local Rule Dynamics

So far, we’ve just set up a static model of configurations; a configuration represents the overall state of the
system at a given snapshot in time. Now we need to add dynamics.

Intuitively, dynamics should be generated by agent-based programs running identically on each of the
agents in the 1-D multi-agent system, and drawing information only from other nearby agents. Such “local
rules” should enable an agent to act, changing its state as a function of the state configuration within a
fixed-radius local ball:

2 0 1 11 0 1 2 13

2 0 1 31 0 1 2 13
action of local rule, on radius-2 ball, changing 1 --> 3

A local rule can naturally be thought of as a look-up table F, by which an agent a takes local information
from the radius-r ball Br(a,X) around a, and chooses a new state to adopt as a function of what it sees. The
inputs to the look up are local r-balls, so therefore the domain of F should be the set of all r-balls Br. The
outputs of the function F are the new states that the agents will adopt, so therefore the range of F should be
the set of all possible agent internal states S. We put one restriction on the kind of function that f can be,
namely that whenever B1 and B2 are locally identical balls, then f (B1) = f (B2). This encodes mathematically
the idea that all central agents enact the same local rule, regardless of absolute position. The end-agents can
see that they’re on the end because the local ball structure is different for those agents then for the agents in
the center. A single local rule can therefore instruct the end agents to act differently than the center agents.

Formally,

Definition 4 [Local Rules] A local rule of information radius r is any function from local balls of radius r to the
set of states S:

F : Br,S → S

such that when B1 ∼ B2, F(B1) = F(B2). We denote the information radius of f by r(f). Let Dr denote the set of all
local rules of radius r, and letD =

⋃
r∈NDr.

CHAPTER 1. A SIMPLE MODEL 10

A local rule can act on a configuration X one agent at a time, by changing the label of a single agent
i ∈ {1, . . . , |X|} from whatever it is in X, to f (Br(f)(i,X)). The situation depicted in the figure just above is the
action of a rule defined by

f ((pink, purple, purple?, green, pink)) = green

on agent 5 of the configuration depicted in figure 1.1. We can also allow f to act on more than one
agent simultaneously by having some given subset of agents all update their states according to f . Given
c ⊂ {1, . . . , |X|}, define f (c,X) to be the configuration obtained by replacing the labels of each i ∈ c with
f (Br(f)(i,X)).

By stringing together such actions, we will obtain dynamics. Of course, the dynamics depend on the
order in which the agents are “called”:

Definition 5 [Call Sequences] A call sequence for a size-n configuration is an infinite sequence of sets of agents,
i.e. c = (c1, c2, c3, . . .) where each ci ⊂ {1, . . . ,n}.

Given a local rule f , an initial configuration X0, and a call sequence s, we can make a trajectory:

Definition 6 The trajectory of X0 generated by (f , c) is the set

{ f n
c (X0)|n ∈N},

where
f n
c (X0) = f (cn, f n−1

c (X0))

and f 0
c (X0) = X0. The omega-limit of a trajectory is the set of all configurations that appear infinitely many times; it

is denoted Ω(f , c,X0).

Intuitively, a trajectory is the result of each agent iteratively applying the local rule f , in the order given
by the call sequence c, starting at initial condition X0. The omega-limit is the state (or states) to which the
system eventually converges. Note that sinceCn,S is a finite set of size |S|n, and since f (a,X) ∈ Cn,S if X ∈ Cn,S,
that the omega-limit of all trajectories is non-empty. If Ω(f , s,X) contains a single configuration, then we
say that the trajectory has a well-defined limit denoted lim(f , c,X). A singleton omega-limit corresponds to a
steady state, while larger ones corresponds to a limit cycle.

1.2.1 Timing Models

A timing model is simply a set of call sequences.

Definition 7 [Timing Models] A timing model is a set

S =
⋃
n∈N

Sn,

where Sn is a non-empty set of call sequences for configurations of size n. A timing model S is asynchronous if all
call sequences c ∈ S, are sequences of individual agent names. A timing model S is live if for all c ∈ Sn, each agent
i ∈ [n] appears in c infinitely many times. A timing model is uniform if the probability pt(i) that agent i appears in
ct is identical for all i and t.

Three archetypal timing models include:

• The synchronous timing model, denoted Ss, the set of call sequences

{cn = ([n], [n], [n], . . .)|},

where [n] = {1, . . . ,n}. In words, all agents are called simultaneously at all timesteps.

CHAPTER 1. A SIMPLE MODEL 11

• The k-bounded asynchronous model, denoted S(k), the timing model in which Sn(k) consists of all
sequences

{c = (i1, i2, . . . ,)}

of inidividual agents c j ∈ [n], such that if a given agent i appears k + 1 times in c between timesteps t1
and t2 then all j ∈ [n] appear in c between t1 and t2. In words, all agents are called one at a time, and
no agent can appear more than k times in any period of time unless all agents have been called at least
once during that same period.

• The totally asynchronous timing model, denoted Sa, the set of all call sequences in which each node
is called one at a time in some unknown order, with the one restriction that each agent is always
eventually called infinitely many times.

All three of these timing models are live (Sa is by definition the largest asynchronous live model), and
all three are uniform.

A natural quantity associated with any live timing model is the average length of a “round”, i.e. a
minimal period in which all agents are called once. Formally, for each s ∈ Sn and t ∈N, let

r(s, t) = min{t′ > t | s(t : t′) contains a call to every agent in [n]}.

If S is uniform, then the average round time

RS(n) = 〈r(s, t)〉s∈Sn

is independent of t. For the synchronous timing model, evidently RSs (n) = 1. For the k-bounded asyn-
chronous model, it is easy to see that there is a constant C < k such that RS(k)(n) ∼ Cn.

For the totally asynchronous model, the round-time is equivalent to the following computation: consider
a binary x of length n containing K 1s. Then, consider the process in which at each timestep one j ∈ {1, 2, . . . ,n}
is drawn randomly from the uniform distribution, and x(j) ← max(0, x(j) − 1). Let EK denote the expected
number of timesteps requires for EK to become 0 identically. It is not hard to see that EK = nHK − K, where
HK ,

∑K
l=1(1/l) is the K-th harmonic number. The round time RSa (n) = En, so because the harmonic numbers

grow asymptotically like log(n), RSa (n) ∼ C′nlog(n) for a constant C′.

1.3 Patterns

Intuitively, a pattern is an arrangement of states that is ordered in some fashion. This order can be described
in a number of ways, the simplest being to define patterns as sets configurations.

Definition 8 [Patterns] A pattern over state set S is a subset

T ⊂ CS.

The elements X ∈ T are instances of the pattern.

In this very naive definition, the pattern itself is the totality of its instances. More abstracted notions of
pattern will be explored in later chapters. Here we explore some specific examples.

Example 2 [Repeat Patterns] For example, a pattern might have one agent in state 1, followed by three

agents in state 0, like this: 0 0 01 . By repeatedly concatening this segment with itself we obtain a
version of the 1000 pattern at every size that is a multiple of 4:

0 0 0 11 0 0 1 00 0 0
0 0 0 11 0 00
0 0 01 size 4 instance

size 8 instance

size 12 instance

CHAPTER 1. A SIMPLE MODEL 12

This pattern is an example of a more general class of repeat patterns, characterized by repeating a single
finite pattern generator an integral number of times. In terms of the m-ary sequence description, if q is a
fixed m-ary sequence, then the q-generated pattern Tq is the set of configurations {qm

|m ∈ N}. For example,
if q = 1 then Tq = {1, 11, 111, 1111, . . .}. If q = 12 then Tq = {12, 1212, 121212, . . .}. Evidently Tq ∩ Cn , ∅ only
when n = m|q| for some m, i.e. the pattern Tq only has versions at sizes that are multiples of the size of the
generating unit. Hence the number of instances of Tq up to size n grows linearly with n.

Example 3 [Proportionate Patterns] In contrast, consider the “half pattern” T1/2 consisting of configurations
of the form 1n0n, for each n:

1 1 1 0 0 0 011 01
size 4 instance size 8 instance

0

T1/2 is an example of the general class of proportionate patterns, characterized by having a subpattern
(or a change in background pattern) appear at a specific fractional value along an otherwise (piecewise)
uniform structure. The general specification of a proportionate pattern is a list of pairs F = {(qi, pi)|1 ≤ i ≤ K}
where qi are finite units representing the uniform background regions and the pi are finite configurations
representing the “interrupting” structures. For each integer n, let

Xn = q◦n1 ◦ p1 ◦ q◦n2 ◦ p2 ◦ . . . ◦ q◦nK ◦ pK.

The pattern TF is the set of all such Xn for n ∈N. In the case of T1/2, K = 2 and F = {(s1, s2), (s1, ∅)}. In general,
the structure pi appears in Xn at the fractional position∑

j<i n|q j| + |s j| + n|qi|∑K
j=1 n|q j| + |p j|

−→

∑
j≤i |q j|∑K
j1 |q j|

where the limit is taken as n→∞. A proportionate pattern is trivial when all the pi are empty and the qi are
degenerate – in which case it is simply a repeat pattern.

1.3.1 Pattern Properties

The repeat patterns are especially nice in that any subsection of any instance of a repeat pattern can be
expanded to a pattern of an arbitrary larger size. This idea, however, makes sense for any pattern.

Definition 9 [Expandability] A configuration X is T-consistent if there are configurations Y and Z such that
Y ◦ X ◦ Z ∈ T. A T-consistent configuration X is T-expandable if for all n, there is Y ∈ T with |Y| > n such that
X b Y. The failure of X to be expandable means intuitively that any structure containing X can not be scaled larger
than some fixed size. A pattern T is completely expandable if all its instances are expandable and r-expandable if
all T-consistent configurations of size r or less are expandable.

Example 4 Consider any nontrivial proportionate pattern TF where |F| > 1. Then TF is not completely
expandable, but is l-expandable, where l = mini|qi| − 1.

The repeat patterns satisfy the strengthening of expandability to repeatability.

Definition 10 [Repeatability] We define X to be T-repeatable if for all n there is Y ∈ T such that X appears as a
subsequence of Y in at least n distinct places, i.e. there are X j b Y for j = 1, . . . ,n such that X j ≡ X for all j and
Xi , X j when i , j. A pattern T is completely repeatable if all T-consistent configurations are T-repeatable and
r-repeatable if all T-consistent configurations of size r or less are repeatable.

Any T that is completely (or r-) repeatable is evidently completely (or r-) expandable. The following
examples delineate the relationships between repeatability and expandability:

CHAPTER 1. A SIMPLE MODEL 13

1 1 0 11 11 0 1 11 0 1 11
1 1 0 1 1 0 1 1
1 0 1

Figure 1.2: The first three elements of the pattern whose n-th instance is described by the binary sequence 0n(10n)n.

Example 5 Consider proportionate patterns TF with F = {(q1, p1), (q2, ∅)} where p1 , ∅. The half pattern T1/2
in figure 3 in §1.3 above is such a pattern. Any such TF is completely expandable but not r-repeatable for
any r.

Now define xn = 0n(10n)n, as illustrated in Fig. 1.2.

Example 6 Let T1
k = {xn|n ≥ k}. T1

l is k-repeatable but not completely expandable.

Example 7 Let
T2

k = {xkxk+1 . . . xn|n ≥ k}.

T2
k is k-repeatable and completely expandable but not completely repeatable.

Example 8 Finally, let yn = yn−1yn−1xn with y1 = x1, and define T3 = {yn|n ≥ 1}. T3 is completely repeatable
but not a union of repeat patterns.

What are the minimal “modules” of repeatability?

Definition 11 [Minimal Segments] Suppose u is a configuration such that i) un is T-consistent for all n ≥ 1 and ii)
there is no v such that u = v|u|/|v|, such that vn is T-consistent for all n > 1, unless v = u. Such a u we call a minimal
T-segment.

Example 9 For any repeat pattern Tq, the subconfiguration q is the unique segment in the Tq pattern iff there
is no q′ such that q , (q′)l for any l > 1. Similarly, qi are segments of the proportionate patterns.

The concepts of expandability, repeatability, and segments regard the “scability” of a pattern, its config-
urations, and subconfigurations. “Connectability” properties of patterns are also informative.

Definition 12 [Connectability, Alternability, Compatibility] Define X to be T-connectable to Y there are i < j
such that Z(i : i+ |X| − 1) = X and Z(i : i+ |Y| − 1) = Y. X is directly connected to Y if j can be chosen ≤ i+ |X| − 1.
X and Y are T-alternatable if X is T-connectable to Y and vice-versa. We say X and Y are T-compatible if a
configuration connecting X and Y is repeatable.

Example 10 In the repeat pattern Tq, the consistent configuration q is obviously connectable to itself. In the
proportionate patterns, each qi is connectable to q j for j ≤ i, and direct connectability corresponds to having
the intervening pi’s empty.

Example 11 Let q1 and q2 be distinct finite configurations such that neither qi is a power of the other, and
consider the union pattern T = Tq1 ∪ Tq2 . The configurations consistent with the Tq1 part of the pattern are
not connectable to the configurations consistent with Tq2 , and vice-versa. Now define the pattern T′ by

T′ = {qi
1q j

2|i, j ∈N}.

In T′, q1 is connecteable to q2, but q1 and q2 are not alternatable. In the pattern T′′ defined by the free group
of words over q1 and q2, q1 and q2 are repeatedly alternatable, i.e. they are compatible.

CHAPTER 1. A SIMPLE MODEL 14

Sometimes the presence of one subconfiguration requires that another show up somewhere else in any
T-admissible structure. Formally,

Definition 13 [Requirement] The T-consistent configuration X T-requires Y if every T-admissible Z such X b Z
also has Y b Z. The T-required set of X, denoted RT(X), is the set of T-required configurations.

For each X, RT(X) is a co-filter, meaning that if Y ∈ RT(X), for all Z b Y, we also have Z ∈ RT(X). The question
is to determine the maximal elements of the filter and conditions for when, given Y1,Y2 ∈ RT(X), there is
Z ∈ RT(X) with Y1,Y2 b Z.

The notions of connectability, alternability, and requirement are all notions of “correlation”, in that they
regard the relationships between a configurations subconfigurations. These concepts are all “boolean”, in
that in given situation they either hold or not. More quantitative measures of correlation can also be useful,
are introduced and used later on in chapter 5.

1.3.2 Admissible Sizes and Pattern Growth

The repeat pattern Tq only has instances of size n · |q|, for each n ∈N. In general, we can define:

Definition 14 [Admissible Sizes] For any pattern T the set of admissible sizes is

Sizes(T) , {n ∈N|T ∩ Cn , ∅}.

One of the simplest questions about how a pattern scales is its size. The repeat and proportionate
patterns are perhaps the simplest patterns that have an infinite number of instances, both growing linearly
with n. When T∩Cn has more than one element, it means that the pattern is flexible, consistent with multiple
different arrangements. For example the union pattern T = T1000 ∪ T0111 allows two possible arrangements
at each size that is a multiple of four, so that there are there are approximately 2 · (n/4) = n/2 instances of T
of size n or less.

These ideas suggest that we define:

Definition 15 [Growth Function] For any pattern T the growth function is

GrowthT(n) ,
∑
i≤n

|T ∩ Ci|.

The relevant question about the growth function is its asymptotics as n→∞. If the growth function grows
very fast, then we’ll want to know its exponential growth rate kT given by

kT = lim
n→∞

1
n

Log(GT(n))

if it exists. If GT(n) grows slower, we might try to measure a polynomial order αT and leading coefficient CT
given by

αT = lim
n→∞

Log(GT(n)
Log(n)

; and CT = lim
n→∞

GT(n)
nαT

,

respectively, if they exist.

1.4 Solutions

The central goal of this work is to study how multi-agent systems can use local rules to create order from
disorder. The concept of “disorder” is defined for the present purposes by taking the whole configuration
spaceC as a large set of completely unconstrained initial conditions, while “order” is defined by a relatively
smaller set of final states constrained to some pattern T. A local rule that creates T will guide the system
from arbitrary initial states along trajectories to limits that lie in the prescribed set of final states defined by
T. This is only possible on initial conditions X0 for which T contains a configuration of size |X0|, since the

CHAPTER 1. A SIMPLE MODEL 15

local rules do not create or remove agents. Moreover, it will be depend on a choice of timing model since
call sequences are a necessary input to make a trajectory.

We capture the above intuition by defining:

Definition 16 [Solutions] A local rule f is a solution to pattern T in timing model S if

• for all sizes n, and

• all configurations X of size n, and

• for all call sequences s applying to configurations of size n,

the limit of the trajectory generated by f starting at X under s is a well-defined element and an element of T whenever
T contains at least one configuration of size n. Symbolically,

lim
n→∞

f n
s (X) ∈ T whenever T ∩ Cn , ∅.

We impose the condition that T ∩ Cn , ∅ because it would be unfair to expect a rule that cannot add or
remove agents to push into T a configuration whose size is wrong. Intuitively, a solution “drives” all initial
conditions in C to the prescribed pattern T:

Configuration Space

T

Figure 1.3: A local rule f solving T drives arbitrary configurations in C to T.

Run-Time Complexity

Given a local rule f that is a solution to pattern T, it is natural to ask how long it takes to produce its
solution. For initial condition X and call sequence s, define the runtime of f on X, s, denoted T(f ,X, s), to be
the minimum N such that f M

s (X) = f N
s (X) for all M ≥ N. If there is no such N, evidently T(f ,X, s) = ∞.

Different timing models may have different numbers of agents called at each time step, so to account
equally for this, we define the per-agent normalized runtime by

T′(f ,X, s) =
1
n

T(f ,X,s)∑
i=1

|si|

where n = |X| is the size of X and |si| is the number of agents called at time i. To remove dependence on call
sequence s, we average:

TS(f ,X) =
〈
T′(f ,X, s)

〉
s∈Sn

taking the uniform distribution over call sequences.
Because T(f ,X) will typically scale with |X|, what we really want to measure is the scaling dependence.

We can capture this in two basic ways: average-case or worst-case.

CHAPTER 1. A SIMPLE MODEL 16

Definition 17 [Measures of Run-Time Complexity] The average-case runtime scaling function is

Tavg
S

(f)(n) =
1

|T ∩ Cn|

∑
X∈T∩Cn

TS(f ,X).

The worst-case runtime scaling function is:

Tworst
S

(f)(n) = max
X∈T∩C≤n

TS(f ,X).

1.5 Illustrative Examples

To make all these definitions concrete, we look at a couple of simple examples. Consider the repeat pattern
T10, whose typical element looks like:

0 1 0 11 0 1 0

We seek a solution to T10, assuming that each agent has two possible internal states (0 and 1). To do this,
first fix the radius r = 1. Recalling the definition from before, a local rule with radius 1 is a function

f : B1 −→ {0, 1}

in which the domain B1 is the set of radius-1 local configurations an agent could see, and the target {0, 1} is
the set of states that the agent could change to as a function of what it sees.

With radius 1 there are just three kinds of local balls: the one around the left-end agent, the one around
the right-end agent, and balls around all other “central” agents:

** *
Left-end balls Right-end BallsCenter Balls

b b bac ac0 0

A central ball with two states, therefore, is a 3-tuple (a, b?, c), where a, b, c ∈ {0, 1}. Given such a ball B,
define B(−1) = a (“the state of the agent to my left”), B(0) = b, (“my state”) and B(1) = c (“the state of the
agent to my right”). A right-end ball is a pair (a, b?), while a left-end ball is (b?, c). Define B(1) and B(−1)
respectively as defaulting to 0 in these cases.

Now, define the local rule F10 according to the formula:

F10(B) = 1 − B(−1).

In words, what F10 does is to set a given agent’s state to the opposite of the state of the agent to the left,
except if the agent is the left-end, in which case it always sets to 1 (recall that B(−1) = 0 by default for the
left-end agent).

Proposition 1 F10 is a solution to T10 in all live timing models.

Proof: Suppose X0 is any initial configuration that already satisfies the T10 pattern up to agent j,

0 1 01 1 0 0 1 0 1 0

j

correct

1
that is,

X0(1 : j) = (10)◦b j/2c ◦ 1odd(j),

CHAPTER 1. A SIMPLE MODEL 17

where odd(j) is 1 if j is odd and 0 otherwise. Now, notice first that F10 fixes the state of all the agents in
X0(1 : j). Hence for any call sequence s, and all m > 0,

Fm
s (X0)(1 : j) = (10)◦b j/2c ◦ 1odd(j).

Next, suppose that the call sequence s calls agent j + 1 at least once, say at timestep k. The action of F10 on
agent j + 1 will be to set it to the opposite of the state of the jth agent. Hence Fk+1

s (X0) now satisfies the
pattern from agent 1 to j+ 1. Thus we can apply the same argument just made, but now starting from j+ 1.
Repeating this inductively, F must eventually drive the all agents X to the correct state, as along as each
agent is eventually called repeatedly. �

Notice that the way that F10 works relies heavily on distinguishing left from right. Our 1-D model carries
a global orientation, since the underlying spatial graph Ln is directed. The algorithm would break down if
this were not present.

Given that F10 is a solution to T10, it is natural to ask how efficient it is.

Proposition 2 In the totally synchronous and totally asynchronous timing models, F10 has a worst-case runtime that
scales linearly with the number of agents. The same holds for average-case runtime in the synchronous model.

Proof: The proof of proposition 1 shows that

T(F10,X, s) ≤
n∑

j=1

k j(s) − k j−1(s),

where k j(s) is inductively defined as the first call to agent j in s after k j−1(s), and k0(s) is defined to be 0.
For the totally synchronous timing model Ssync, k j(s) = j, so T∗(f ,X, s) ≤ |X| for all X. There are |X| agents

called at each step, so
TSsync (F10,X) ≤ n

for all X with |X| = n. On the other hand, for the initial condition X0 = (01)bn/2c0odd(n), it is evident that
TSsync (F10,X) = n. X0 must therefore be a worst case, so

Tworst
Ssync (F10)(n) = n.

In fact, we can compute a general formula for the synchronous timing model, namely that

T(f ,X) = |X| − p + 1

where p is the location of the left-most error, i.e. the first position where the T10 is not satisfied. Now,
Prob[p = P] = 1

2
P
, so

Tavg
Ssync (f)(n) =

n∑
P=1

(n − P + 1) · (1/2)P = n − 1 + 2−n.

For the totally asynchronous timing model,

Prob[k j(s) − k j−1 = δ] =
1
n

(
1 −

1
n

)δ−1

and k j(s) − k j−1, ki(s) − ki−1(s) are statistically independent events for j , i. Hence,

TSasync (f ,X) ≤ n ·
1
n
·

∞∑
δ=1

δ
n

(
1 −

1
n

)δ−1

= n.

On the other hand, for the same initial condition X0 = (01)bn/2c0odd(n), similar arguments show that, again,
TSasync (f ,X) = n. �

The average-case runtime of F10 in the asynchronous model also scales linearly with system size, although
with a different constant, and requires somewhat more involved arguments to demonstrate.

Proposition 1 demonstrates that T10 is solvable with a rule of radius 1. However, this is not true of all
patterns. For example:

CHAPTER 1. A SIMPLE MODEL 18

Proposition 3 The repeat pattern T1000 is not solvable with any rule f having r(f) = 1.

Proof: Suppose f were putation solution to T1000 with radius 1. The size-8 version of T1000 is 10001000. For
this to be a fixed point of f , all of the radius 1 balls in it must be fixed points of f . In particular, this means
that f ((1?, 0) = 1 and f ((1, 0?, 0) = f ((0, 0?, 0) = f ((0, 0?) = 0. But then 10000000 must also be a fixed point
of f ; since this is not in T1000, f cannot be a solution. �

In spite of proposition 3, it turns out to be possible to generalize proposition 1 and 2 to find linear-time
solutions for all repeat patterns by increasing the radius, as we’ll see in Chapter 3.

This is in sharp contrast to:

Proposition 4 The 1/2-proportion pattern T1/2 described in the previous chapter is not solvable with local rules. The
same holds for all non-trivial proportionate patterns.

Proof: T1/2 is the set of configurations whose binary sequences are {1n01n
|n ∈ N}. Suppose f is a putative

solution for T1/2. Then let X ∈ T1/2 be a configuration with |X| > 2r(f). (Since T1/2 admits configurations of
all odd sizes, this is evidently possible.) Let mX = (|X|+ 1)/2, the middle position in X. As binary sequences,
for positions i within distance r of the middle, i.e. mX − r ≤ i ≤ mX + r, then Br(f)(i,X) = 1r−i+mX 0?1mX−r−i.
Since X is the unique element in T1/2 of size |X|, this means that 1r−i+mX 0?1mX−r−i must be fixed points of f .
For positions r + 1 ≤ i < mX − r or mX + r < i < |X| − r, Br(f)(i,X) = 1r(f)1?1r(f). For the left-end and right-end
positions, the balls are sequences of 1s as well (with ? not in the center). All of these must also be fixed
points of f . Now let ni1 ,ni2 , . . . ,niK , be a sequence of positions with r < i j < n− r and i j − i j′ > 2r(f) for j′ < j.
Let Y be the configuration given by all 1s, except 0’s at the positions ni j , i.e.

Y = 1ni1 01ni−2−ni1 01ni3−ni2 . . . 01n−niK =
(
©

K
i=11ni−ni−1 0

)
◦ 1n−nK

where ©n
i=1ai = a1 ◦ a2 ◦ . . . ◦ an. Then Y is also a fixed point of f , because all its local balls b are exactly

those from X. But Y < T1/2. Thus any supposed solution for T1/2 must have stable configurations that are
not in T1/2, and therefore can’t actually be a solution. A similar argument holds for any other non-trivial
proportionate pattern. �

General Problems

These simple results indicate several general analysis and design problems, including:

• [Existence and Characterization]: As we saw in §1.5, some patterns are solvable (like the repeat
patterns) while others are not (like the proportionate patterns). This suggests that we find a “existence”
criterion for solvability.

• [The Inverse Problem]: The inverse of the existence problem would to systematically construct an
explicit solution to each pattern that is not ruled out by the existence criterion, like we did in the
specific case of the pattern T10 in §1.5.

• [Efficient Algorithms]: As evidenced by proposition 2, local rules can be subjected to asymptotic
runtime analysis, just like any other algorithms. How can we construct the most efficient algorithms
for solving a given one-dimensional pattern?

• [Measures of Global Order]: The central idea behind self-organization is that order can be achieved
from disorder by purely local interactions, and as per 1.4, patterns are supposed to be simple exemplars
“global order”. To what extent can the amount of order in a pattern be measured and quantified?

• [Resource Trade-Offs]: Our one-dimensional model has two basic resource parameters: the radius
r of the local rule, and the number of m = |S| of possible internal states that an agent can have. An
important question is to characterize the inherent tradeoffs between these two resources.

• [Robustness Analysis]: Patterns are subject to perturbations – small changes in the set of configurations
considered as belonging to the pattern. We thus would want to explore the robustness of a pattern’s
features under such perturbations.

These questions motive the remaining chapters of this thesis.

CHAPTER 1. A SIMPLE MODEL 19

1.6 Related Work

The model presented in sections 1.1 and 1.2 is evidently similar to that of 1-dimensional cellular automata
[37]. The most important difference is that our project is task driven, not mechanism driven. Specifically, the
goal is to determine criteria for when given self-organization problems – e.g. patterns – are engineerable, and
having determined such criteria, carry out the engineering. We start with the task, and perform engineering
activities – both reverse engineering to determine existence of , and forward engineering to actually build
the relevant local rules when possible. This is direct contrast the project of most cellular automata studies,
which start with local rules and then ask: ”what behaviors does this rule generate?” This difference is the
motivation behind the definition of “robust solution” in §1.4: we want to engineer and analyze robust
solutions, and a concept that is largely absent (as far as we can tell) from the standard theory of cellular
automata. The effect that this difference of motivation has on the results of the theory become apparent in
the following chapters.

The “task driven” motivation also influences several specific differences between the models. The
configurations in my model are finite, whereas 1-D cellular automata typically are considered on the bi-
infinite integer lattice. Finiteness matters for two reasons. First, the concept of scalable pattern, which
is our present interpretation of the idea of global task, only makes complete sense when a pattern has
”versions” (or instances) at different sizes. A proportionate pattern with three proportionate substructures,
for example, would not have obvious meaning if all configuration had the same (infinite) size. The second
reason for using finite structures is that they have boundaries. These boundaries are important sources of
structure “seeding”, as order arises (as we will see in future chapters) in part by having the edge-agents act
differently from other agents. This would be impossible in the infinite lattice case, since the local geometry
of all agents is identical. In the usual CA context, such symmetries are broken by constraining the system
to specific initial condition. As a result the algorithms tend to depend heavily on structures in the initial
conditions (such as Wolfram’s “Turing universal” CA constructions), and thus are not robust in the sense
we care about.

In addition, the timing models, presented in 1.2.1, are not all synchronous, whereas cellular automata
rules typically are studied in a synchronous update environment. Distributed systems, including those our
theory is meant to apply to, are typically asynchronous [23]. Our notion of robustness specifically invokes
timing-model invariance, and the algorithms we construct in future chapters are specifically designed to
handle unpredictable update orders. The behaviors generated by the rules we develop appear qualitatively
different that the kind of ”brittle complexity” exhibited by CAs whose behaviors are strongly timing
dependent.

Chapter 2

Local Checkability: A Necessary
Condition

In definition 16 of §1.4, I defined a local rule f to be a solution to pattern T in synchrony model S if

• for all sizes n, and

• for all configurations X of size n, and

• for all call sequences s ∈ S applying to configurations of size n,

the limit of the trajectory generated by f starting at X under s is a well-defined element of T whenever T
contains at least one configuration of size n. Symbolically,

lim
n→∞

f n
s (X) ∈ T whenever T ∩ Cn , ∅.

One of the main problems posed in §1.5 was the question of when a given pattern T is solvable. This can be
thought of as an existence question, for it asks when the solution space

F
S(T) = { f ∈ D| f is a solution to T in S}

is nonempty.
In this chapter, I introduce a very simple necessary criteria for solvability. The condition is called local

checkability, which roughly expresses the idea that a solvable pattern T must possess a subpattern T′ that is
locally recognizable as a stop state. Any locally checkable property is recognized by an object called a local
check scheme, which specifies local views that are recognized and accepted.

In §2.1, I define local checkability precisely, and prove its necessity. In §2.2, I characterize locally check
schemes as “part lists” and show how many properties of local check schemes reduce to computations about
these part lists. In §2.3, I show how to characterize local check schemes as graphs, and compute many of the
basic properties of patterns as a function of the corresponding graph’s structure. The graph characterization
turns out to be crucial for many of the applications in future chapters.

2.1 Local Checkability: A Necessary Condition

Let T be a pattern. Assuming that T contains at least one configuration X at size n, the definition of a local
rule f being a solution to pattern T requires that

lim
n→∞

f n
s (X) = Y

for some fixed configuration Y ∈ T. Schematically, it looks like this:

20

CHAPTER 2. LOCAL CHECKABILITY: A NECESSARY CONDITION 21

T

X

Y

What do we know about this limiting configuration Y? If Y is to be a stable limiting point, then for all
agents A ∈ Y, the action of f must be to not change anything. When f is applied to the local balls Br(A,Y), the
result must be to keep whatever state A already has:

f (Br(A, y)) = state(A,Y)

where state(A,Y) denotes the state that agent A already has in configuration Y. The local balls around the
agents in Y are therefore all fixed points of the local rule f . Moreover, the agents’ local balls overlap, forming
a mutually interlocking configuration-wide stop state.

For example, if a local rule f with radius 2 is a solution to the T1000 pattern (introduced in the previous
chapter), then in the figure below:

0 0 0 11 0 00
all of the bracketed things are radius-2 balls that must be fixed states of f . That is,

f ((1, 0, 0?, 0, 1) = f ((0, 0, 0?, 0, 1) = f ((0, 1, 0?, 0, 0) = 0; and f ((0, 0, 1?, 0, 0) = 1.

In general, there are two conditions that f has to satisfy for this to work. First, for each n for which T∩Cn , ∅,
the local fixed states of f must be able to assemble into a stop state of size n – otherwise, the local rule would
never come to a fixed limit. Second, the fixed states cannot assemble into any configuration that is not in T –
otherwise the system would end up in a bad deadlock away from T, when started from such a configuration.

But now think of the above not as conditions for when some given f can solve T but rather as conditions
on when T is solvable in the first place. What these considerations suggest is that the for T to admit any
solution f , it must be possible to find a coherent set locally-specifiable stop states as a subset of T – and this
may not be possible for all patterns T. To see this formally, we define the notion of local checkability.

Recall the definition of Br,S, the set of balls of radius r with states in the set S (normally we’ll drop the
subscript S). Consider a binary-valued function Θ on Br, i.e.

Θ : Br → {0, 1}.

Θ should be thought of as a “recognition function” – Θ(z) = 1 means that the local ball z is “recognized” by
the central (that is, ?’ed) agent to be a correct local stop state, andΘ(z) = 0 otherwise. For any such function
define

Θ(X) ,
∏

a∈V(X)

Θ(Br(a,X)).

This definition means that, when appplied to a whole configuration X, Θ(X) = 1 only when Θ(Br(i,X)) = 1
for all agents i in X – that is, when all agents recognize a stop state.

CHAPTER 2. LOCAL CHECKABILITY: A NECESSARY CONDITION 22

Definition 18 [Local Check Schemes] Let T be a pattern. Θ is a local check scheme for T of radius r if

• For all X ∈ CS, Θ(X) = 1 ⇒ X ∈ T.

• For all n such that T ∩ Cn,S , ∅, there is X ∈ Cn,S such that Θ(X) = 1.

The smallest r for which there exists a check scheme of radius r for T is the local check radius of T, denoted LCR(T).
If there is no local cheme for T of any finite radius with m states, then LCR(T) is defined to be∞.

Intuitively, the first condition in the above definition is the one that prevents bad deadlocks, while the
second condition requires there to be at least one good fixed point. This is formalized by the following:

Proposition 5 If f is a solution to T (in any valid synchronicity model), then r(f) ≥ LCR(T).

In words, local checkabilty is necessary for solvability.
Proof: Suppose f is a solution to T. Then if f (c,X) = X for all call sequences c only if X ∈ T. Moreover, for
each n, choosing any X ∈ Cn,S, let Y = lim(f , s,X); then Y ∈ Cn,S and f (c,Y) = Y for all c, so Y ∈ T. Now
define Θ : Br(f) → {0, 1} by Θ(Br(f)(a,X)) = 1 if and only if f (Br(f)(a,X)) = l(a), where l(a) is the state of agent
a. Notice that X = f (c,X) for all c if and only if for all a ∈ V(X), f (Br(f)(a,X)) = l(a), which holds if and only
if

∏
a∈V(X)Θ(Br(f)(a,X)) = 1. Hence, Θ(X) = 1 implies X ∈ T, and for each n there is a Y ∈ Cn,S such that

Θ(Y) = 1. Thus Θ is a local check scheme for T, and LCR(T) ≤ r(f). �
Proposition 5 implies that for any pattern T that is solvable on all initial conditions, there is a local

check scheme Θ of some finite radius for T. This establishes a necessary condition for the existence of local
solutions to a pattern T: that LCR(T) < ∞. This simply describes the fact that for a problem to be solvable
by local rules, the stopping condition of being inside the pattern must be locally recognizable.

Example 12 The pattern T1000 is 2-locally checkable, with local check Θ(b) given by

• Θ(b) = 1 if b = 010?00, 001?00, 100?01, or 000?10, arising as a central ball in a large configuration. (See
the discussion in §1.1 for clarification of “small” vs. “large” configurations.)

• Θ(b) = 1 if b = 1?000, 10?00, 100?0, or 1000?, arising as a left- or right-end balls in a medium or large
configuration, or a small configuration.

• Θ(b) = 0 in all other cases.

A slight generalization of the above construction shows that all Repeat Patterns Are Locally Checkable:

Proposition 6 The repeat pattern Tq has local check radius r(Tq) ≤ |q|/2.

On the other hand, a radius of 1 with two states is insufficient to provide an LCS for the T1000 pattern. The
argument for this is very similar to the proof of proposition 3 in §1.5. Suppose Θ were a putative radius-1
LCS. The radius-1 neighborhoods include 10star0, 00?0, 00?1, and 01?0. Any LCS for T1000 would have to
accept 000, but then it would also have to accept 0 strings of any length, contradicting the first condition on
an LCS. Hence, LCR(T1000) = 2. There are repeat patterns for which LCR(Tq) is strictly less than |q|/2.

The proof of proposition 4 of §1.5, that proportionate patterns are not locally solvable, is also easily
adapted to show that proportionate patterns are not locally checkable either. That argument shows that
proportionate patterns are not locally checkable:

Proposition 7 For any nontrivial proportionate pattern TF, LCR(TF) = ∞.

The local checkability criteria therefore subsumes all the results of section 1.5.

CHAPTER 2. LOCAL CHECKABILITY: A NECESSARY CONDITION 23

2.2 Local Checks Are Part Lists

Since a local check scheme Θ is a function from the set of r-balls Br,S to {0, 1}, the inverse of 1, that is Θ−1(1),
is a subset of Br,S. Θ−1(1) is the set of local r-ball configurations that Θ “accepts.” Let

Θ(C) , {X ∈ C|Θ(X) = 1}

be the set of full configurations accepted by Θ, which we’ll call the Θ-admissible configurations. As a set of
configurations, Θ(C) is by definition a pattern. If T is any pattern and Θ is a local check scheme for it, then
by definition Θ(C) ⊂ T and Br(X) ⊂ Θ−1(1). Hence:

Θ−1(1) should be thought of as a list of valid local parts, and the pattern Θ(C) generated by Θ is
the set of one-dimensional structures that can be built from putting those local parts together.

Example 13 For example, supposeΘ is a local check of radius 3 such thatΘ−1(1) contains precisely the balls:
1?000, 10?00, 100?0, 1000?, 10?001, 100?010, 1000?100, 0001?000, 0010?001, 0100?010, 1000?100, 0010?00,
0100?0, 1?00, 10?0, 100?, 1001?001, 0010?010, 0100?100, 1001?00, 0010?0, 0100? and 1001?000. One can
(laboriously) check that Θ(C) = {(100)n(1000)m

|n,m ∈N}.

2.2.1 Generating Configurations

Given a configuration X, define
Br(X) = {Br(i,X)|i = 1, . . . |X|)},

the set of r-balls in X, or put another way, the parts used in X. For two configurations X and Y, the common
parts are the elements of Br(X) ∩ Br(Y). The basic fact about local checkability is:

Proposition 8 Θ-admissible configurations can be “spliced” at common parts.

Proof: Suppose X,Y are two Θ-admissible configurations with a common part z ∈ Br(X) ∩ Br(Y) arising at
position i in X and position j in Y:

00110100100011
11010100100100

By definition, for all positions i ∈ {1, 2, . . . , |X|},Θmaps the local view around agent i to 1, i.e. Θ(Br(i,X)) = 1.
The same holds for Y. Hence, for all r-balls (“parts”) z ∈ Br(X) ∪ Br(Y), Θ(z) = 1.

Now consider the splicing X′ = X(1 : i+r)◦Y(j+r+1 : |Y|).The first i r-balls in X′ and X are the same, while
the remaining parts are identical to the corresponding parts in Y. Hence, Br(X′) = Br(X(1 : i))∪Br(Y(j+1 : |Y|)).
Similarly, for Y′ = Y(1 : j + r) ◦ X(i + r + 1 : |X|), we have Br(Y′) = Br(Y(1 : j)) ∪ Br(X(i + 1 : |Y|)).

Hence
Br(X′) ∪ Br(Y′) = Br(X) ∪ Br(Y).

That is, X′ and Y′ have the same local parts as X and Y. Thus by definition X′ and Y′ are Θ-admissible. �
At any fixed radius r there are finitely many possible valid parts. in fact, Br(X) ⊂ Θ[m], and so∣∣∣∣∣∣∣ ⋃

X∈Θ(C)

Br(X)

∣∣∣∣∣∣∣ ≤ |Θ[m]| = |S|2r(Θ)+1.

CHAPTER 2. LOCAL CHECKABILITY: A NECESSARY CONDITION 24

Now suppose that there is a configuration X ∈ Θ(C) with |X| > |S|2r+1 + 2r + 1. Because X has at least |S|2r+1

central positions (the other 2r + 1 account for the left and right ends), there are in X at least |S|2r+1 positions
with index between r and |X|−r, more than the number of distinct possible r-balls. Hence, there is a repeated
part, that is, r + 1 ≤ i, j ≤ |X| − r such that X(i − r : i + r) = Br(i,X) = Br(j,X) = X(j − r : j + r). But then by
repeated application of proposition 8,

X(1 : i − 1) ◦ X(i : j)n
◦ X(j + 1 : |X|)

is Θ-admissible for all n (where zn means z concatenated with itself n times). Of course, given any integers
k and m, n can be chosen such that |X| + n(j − i) = k′m for some k′ ≥ k.

Recall the definitions of minimal segments, and admissible sizes from §1.3. The discussion in the
previous paragraph proves:

Proposition 9 A locally checkable pattern T = Θ(C) is infinite if and only if:

• It contains a configuration of size greater than |S|2r(Θ)+1 + 2r(Θ) + 1,

• It contains at least one minimal segment (and all minimal segments have size at most |S|2r(Θ)+1).

• Sizes(T) contains infinitely many multiples of every integer.

In §1.3 I also introduced various scale properties, like repeatability and expandability. It is shown in
appendix §A.2) that in locally checkable patterns, these properties reduce to their application to sets of local
parts. Because a local check scheme is a 1-D tile set or a set of local parts, the generic pattern properties that
a priori require considering all the elements of a pattern is a whole, actually are equivalent to considerations
about the local part set.

Now, recall from §1.1 that, with respect to a choice of radius r, there are two basic kinds of configurations:
large configurations, of size |X| > 2r, and small configurations of size ≤ 2r. For any given local check scheme
Θ, describing the Θ-admissible configurations can be split into the problems of describing the small- and
large-sizeΘ-admissible configurations separately. The situation for small-size configurations is simple. Any
subset of configurations of size≤ 2r is realizable by some local check of radius r. This is a simple consequence
of the fact that the local ball around any agent is necessarily distinct from the local balls around all the other
agents. Generating configurations of this size consists of independently picking a set of accepted parts
for each distinct agent position. Thus, finding the small Θ-admissible configurations is a trivial matter of
making a (finite) list.

However, for large configurations with size 2r(Θ)+1 or larger, there are some dependencies between the
possible configurations. Determining the largeΘ-admissible configurations is a question of figuring out the
generic ways in which the accepted parts fit together. If some B ∈ Θ−1(1) actually appears in aΘ-admissible
configuration, that would mean that there are sufficient other Θ-accepted balls that fit together to complete
a full configuration. There would have to be a string of Θ-accepted balls off to the left of B that terminated
in Θ-accepted left balls, and a string of Θ-accepted balls off to the right that terminated in Θ-accepted right
balls. (For discussion on left-, right- and central balls, see §1.1 or the appendix of chapter 1.)

Now, this may not be possible. In other words, there might be some Θ-accepted balls B that cannot
appear in any full configuration because they cannot be completed in both directions by other Θ-accepted
balls. I call these balls spurious. Given a local check scheme, we can ignore the spurious local views without
affecting the set of configurations that can be generated from it. Henceforth, we will assume that spurious
views have been removed.

Non-spurious Θ-accepted balls will be connectable to one or more other local balls on either side.
Consider the local check scheme from example 13 above.

Example 14 • The left-end ball b = 1?000 can be connected to no other balls to the left, and to one other
Θ-accepted ball to the right, namely 10?001.

• The right-end ball b = 0100? can be connected to no other balls to the right, and to one other ball to
the left, namely 0010?0.

CHAPTER 2. LOCAL CHECKABILITY: A NECESSARY CONDITION 25

• The central ball b = 0010?010 can be connected to exactly one other ball on the left and right (1001?001
and 0100?100, respectively). The same applies to the ball b = 0100?010, for instance.

• The central ball b = 0100?100 can be connected to one Θ-accepted ball to the left (namely, 0010?010),
and to three distinct Θ-accepted balls to the right – namely, the central balls 1001?000 and 1001?001
and the right-end ball 1001star00.

Given a Θ-accepted ball B, let’s informally define the number of Θ-accepted parts connectable to the
left (resp. right) of B as the left (resp. right) compatibility index of B. The importance of these quantities
for each accepted ball Θ is that they control the number of possible Θ-admissible configurations consistent
with a given local ball. Any ball with left (resp. right) compatibility index of 1 has a unique predecessor
(resp. successor). In the case of the ball b = 0100?100 in the above example, the significance of having right
compatibility index of 3 is that it has three possible successors:

0 1 0 0. . . . 0 1 0 0

1 0

. . . .
. . . .1

end
In the middle option, the configuration switches from the 100 repeat motif, to the 1000 repeat motif. In

the upper option, the 100 motif is continued. In the lower option, the configuration ends.

Formal Definition of Left- and Right- Compatibility

Defining the left- and right- compatibility indices properly is important, but slightly tricky. Let b be any
m-ary string of length at most 2r + 1. We first define a boolean Θ[b] that is 1 whenever considered as an
r-ball, b is accepted by Θ, or can be extended to the left so as to be. Formally: (I) For any m-ary string b
whose length |b| satisfies r(Θ) + 1 ≤ |b| ≤ 2r(Θ) + 1, define Θ[b] = 1 if the r-ball (b, |b| − r + 1) is in Θ−1(1). (II)
For any m-ary string of length ≤ r(Θ), defineΘ[b] to hold when there is some m-ary string b′ of length r− |b|
such that the r-ball (b ◦ b′, 1) ∈ Θ−1(1). In all other cases, let Θ[b] = 0. This boolean Θ[b] is useful here, and
in the following section as well.

Now, define R[b] as follows: (I) Given an m−ary string b of length 2r(Θ) + 1, let R(b) be the set of states i
such that the Θ[b[2 : 2r+ 1] ◦ i] holds. (II) Given an m-ary string b of length < 2r(Θ)+ 1, let R(b) be the set of
i such that Θ[b ◦ i] holds. The size of the set |R(b)|, by definition, the right compatibility index of b.

Analagously, define L[b] as follows: (I) Given an m−ary string b of length 2r(Θ) + 1, let L(b) be the set
of states i such that Θ[i ◦ B[1 : 2r]] holds; (II) Given an m-ary string b of length ≥ r + 1 and < 2r(Θ) + 1,
let L(b) be the set of i such that = (i ◦ b, |b| − r + 1) is in Θ−1(1); and (III) Given an m-ary string b of length
r(Θ) or less, define L(b) to be the set of i such that for some m-ary string b′ of length r − |b| − 1, the r-ball
(b′ ◦ i ◦ b, 1) ∈ Θ−1(1). The size of the set, |L(b)|, is, by definition, the left compatibility index of b.

2.3 LCSs are Graphs

It turns out that a much more comprehensive and powerful set of computations can be made, with a bit
of extra work. In fact, all local check schemes of a fixed radius are equivalent to graphs – and the graph
theoretic properties of a LCS’s associated graph determine much about properties of the pattern generated
by the LCS.

LetBr,S be, as defined in §1.1, the set of local balls of radius r with states in the set S. Now, defineD(r,m)
as the directed graph

D(r,m) = (V,E)

where V = Br,S, and where there is an edge (b1, b2) ∈ E if and only if there is a configuration X ∈ CS
containing b1 directly adjacent to the left of b2.

Two balls can only be adjacent in a configuration if they differ by at most one in size and have coincident
states at all common positions, i.e. if b1 is adjacent to the left of b2, then then |b2| ≥ |b1| − 1, and the states at

CHAPTER 2. LOCAL CHECKABILITY: A NECESSARY CONDITION 26

the right-most |b1| − 1 positions of the ball to the left must equal the left-most |b1| − 1 states of the ball on the
right. Hence,

D(r,m) =
(
Br, {(b1, b2) ∈ B2

r | b1(1 +max(0, ?(b) − r) : |b1|) = b2(1 : |b2| −max(0, ?(b2) − r))}
)
.

A local check schemeΘ of radius r (and m states) defines two classes of balls: Θ−1(1), the accepted parts,
and Θ−1(0), the invalid parts. Of course, Θ−1(0) = Br \ Θ

−1(1), since any local ball in Br is either valid or
not. Hence, Θ−1(1) determines Θ. On the other hand, Θ−1(1) ⊂ Br, so now simply assign to Θ the induced
subgraph ofD(r,m) whose nodes are Θ−1(1). We thus have:

Proposition 10 Local check schemes of radius r are in 1-1 correspondence with subgraphs of D(r,m), via the
assignment

Θ 7−→ G(Θ) =
(
Θ−1(1), induced edges fromD(r,m)

)
.

Example 15 Take the repeat pattern T1000 and the local check for it described in example 12: Θ(b) = 1 for b
equal to:

• 010?00, 001?00, 100?01, and 000?10 (from the central balls)

• 1?000, 10?00, 100?0, and 1000? (from right- and left-end balls)

The associated graph G(Θ) is:

100* 1000 10001 00010 00100 01000 1000 000* * * * * * *
1 2 3 4 5 6 7 8

Figure 2.1: Graph associated with the pattern {(1000)n
| n ∈N}.

This graph has eight nodes and one cycle, of length 4. The paths in this graph can take either two routes:
one is to bypass the 4-cycle, along the path (1, 2, 7, 8). This path corresponds to the configuration 1000, the
size-4 version of the pattern. The other route is to go through the 4-cycle, repeating it some integral number
of times n, along the path (1, 2, (3, 4, 5, 6)n, 7, 8). This path corresponds to the configuration 10(0010)n00, the
size 4(n + 1) version of the pattern.

Example 15 suggests that the graph structure of G(Θ) determines properties of the patternΘ(C) generated
byΘ. We will now go through the basic properties of directed graphs and show how each can be interpreted
as a property of the corresponding pattern.

2.3.1 Meaning of the Graph Structure

Nodes and Degrees

The most basic property of a graph is its number of nodes. Notice that the local check scheme defined in
example 15 has 8 nodes, each one corresponding to one of the 8 valid views (i.e. 010?00, 001?00, &c) listed
just above as defining the local check. Generally:

The number of nodes of G(Θ) is equal to |Θ−1(1)|, the number of valid parts in Θ.

Another basic notion in a directed graph are indegrees and outdgrees. Recall in §2.2.1 we defined the
left and right compatibility index of a Θ-accepted ball b to the number of distinct balls that could placed
validly directly adjacent to b on the left or the right, respectively. In example 13, I described a radius-3 local
check schemeΘ for the pattern {(100)n(1000)m

|n+m ≥ 2}. I then illustrated local balls inΘ that have various
left- and right- compatibility indices. For instance, the balls b = 0010?010 and b = 0100?010 both have left

CHAPTER 2. LOCAL CHECKABILITY: A NECESSARY CONDITION 27

1001*
10010*

100100*
1001001*

0010010*
0100100*

100100*
00100*0100*

1001000* 0010001*

0100010*
1000100*

0001000*

100010* 10001*
1000*

001000*
01000* 1000*

1
2

3

5

6

4

7

89

10 11

12

13

15

16
17

18

2120

19

Figure 2.2: Graph associated with {(100)n(1000)m
|n +m ≥ 2} pattern.

and right compatibility indices of 1; while b = 0100?100 has left compatibility index of 1 and right index of
3.

The graph associated with this local check scheme is depicted in figure 2.2. Notice that indegrees and
outdegrees of the nodes associated with 0010?010 and b = 0100?010 are all 1, while the node associated
with 0100?100 has indegree 1 and outdegree 3. Generally,

The left and right compatibility indices of a ball b ∈ Θ−1(1) are equal, respectively,
to the indegree and outdegree of b considered as a node in G(Θ).

A node in a directed graph is initial if its indegree is 0, and terminal if its outdegree is 0. Recall that an
r-ball has, as shown in the examples above, a ? located somewhere, marking the location of the agent with
whom the ball is associated. Evidently, the general rule is that:

An initial node in G(Θ) corresponds to a ball such for which ?(b) = 1, while a terminal node has
?(b) = |b|.

Paths are (Sub)configurations

Another basic notion in a directed graph is a path. In example 15, we saw how paths in the graph correspond
configurations consistent with the 10(0010)n00 pattern. More generally, suppose we’re given a path inD(r,m)
of length N:

P = (p1, p2, . . . , pN)

where each pi is a node inD(r,m). By definition ofD(r,m) each node pi corresponds to r-ball, and any r-ball
corresponds to an m-ary sequence of some length at most 2r+ 1. We can stitch the m-ary sequences together
to make an m-ary sequence SP. To do this, take the first ?(p1) states in p1, i.e.

XP(1 : l?(1)) = p1(1 : l?(1)).

Since p2 is linked to from p1, it must be the case that positions 2 through?(p1)+1 in p1 coincide with positions
1 through ?(p2) in p2. Thus, just add on p2(?(p2)),

XP(1 : l?(1) + 1) = p1(1 : l?(1)) ◦ p2(l?(2)),

CHAPTER 2. LOCAL CHECKABILITY: A NECESSARY CONDITION 28

to make a sequence of length ?(p1) + 1. The same point holds for p3, p4, &c. This can be repeated, until we
reach pN−1:

XP(1 : ?(p1) +N − 2) = p1(1 : ?(p1)) ◦ p2(?(p2)) ◦ . . . pN1 (?(pN−1)).

Finally, we finish by adding the whole segment of pN from ?(pN) to its right end:

XP(1 : ?(p1) +N − 2) = p1(1 : ?(p1)) ◦ p2(?(p2)) ◦ . . . pN1 (?(pN−1)) ◦ pN(?(pN) : |pN |),

creating a subconfiguration of size n + |pn| + ?(p1) − ?(pN) − 1. XP is a full configuration when P is a path
from an initial node to a terminal node, i.e. a so-called maximal path.

This construction can evidently proceed in the opposite direction, associating to every (subconfiguration)
X a path XP. Thus

Subconfigurations are in 1-1 correspondence with paths inD(r,m) and configurations in 1-1 cor-
respondence with maximal paths. Paths in G(Θ) correspond toΘ-consistent (sub)configurations.

Connectedness is Connectability

For locally checkable patterns, connectability of pattern subconfigurations translates directed into connect-
edness properties of the G(Θ) graph.

Definition 19 [Connectedness] Given a directed graph G, a node x is connected to y in G if there is a path p in
G whose first node is x and whose last node is y. A path p1 is connected to a path p2 if the terminal node of p1 is
connected to the initial node of p2.

Note that x being connected to y in a directed graph G does not imply that y is connected to x. This fact
is the same as noticing that even when configuration X is connectable to Y, the reverse may not obtain. We
say x and y are mutually connected if x is connected to y and vice versa.

Consider for example the pattern T100 ∪ T1000, consisting of the length 3n repeats of the unit 100, and the
length 4n repeats of the unit 1000. The graph associated with the (radius 3) check scheme for this pattern is:

1000100

0100010

1000 10001 100010* * * *

* *0010001

0001000* 001000 01000 1000* * *

1001* 10010* 100100* 1001001 0010010

0100100

* *

*

100100* 0100*00100*

1 2 3

7 6

4 5 8 9 10

11 12 13 14 16 17 18 19

15

Figure 2.3: T100 ∪ T1000.

The fact that the two groups of nodes (1-10 and 11-19) have no connection corresponds to the fact that
the pattern admits no combinations of the two repeated segments 100 and 1000.

Now consider the paths p1 = (1, 2, 3, 4) and p2 = (18, 19, 20, 21) in the graph in figure 2.2. They are
connected in G(Θ); which correspond to the fact that there is at least one Θ-admissible configuration in
which p1 arises before p2 (for example, 1001000). However, they are not mutually connected. Generally we
have:

CHAPTER 2. LOCAL CHECKABILITY: A NECESSARY CONDITION 29

A path p1 in G(Θ) being connected to p2 as paths translates to corresponding configurations
Xp1 being connectable to Xp2 , in the language of definition 12. X and Y are alternatable if the
corresponding paths PX and PY in G(Θ) are mutually connected.

Cycles and Repeatability

For locally checkable patterns, expandable and repeatable subconfigurations and minimal segments trans-
late into properties about the cycles of the graph G(Θ).

Definition 20 [Cycles] A cycle in a directed graph is a path C whose initial node is the same as its terminal node,
and such that no two nodes in C (besides the first and last) are the same. A cycle C in G is irreducible if the graph
induced by G on the nodes of C is in fact the cycle C itself. In other words, C admits no other internal edges besides
the ones in the cycle itself. A graph is acylic if it contains no cycles.

Example 16 Consider, for instance:

• In example 15, the 4-cycle is irreducible, and corresponds to the minimal segment (1000).

• In the local check scheme depicted in figure 2.2, there are two irreducible cycles: (4,5,6) and (11,12,13,18).
The correspond to the minimal segments 100 and 1000, respectively.

• In the local check scheme depicted in figure 2.5, there are three irreducible cycles: (9,10), (7,8,4,17,21,15,16,10),
and (17,23,24,25). They correspond to the segments 10, 10100010 and 1000, respectively. These are
the only three segments consistent with the check scheme. All other repeated elements (i.e. 1010,
10001000, &c) consist of combinations of these three.

Generally:

An irreducible cycle in G(Θ) corresponds to a minimal segment in the pattern Θ(C). A reducible
cycle in G(Θ) is a repeatable configuration composed of several segments. A subconfiguration
X in Θ(C) is repeatable if PX is contained entirely in a cycle in G(Θ). X is expandable if PX is
connectable to a cycle. G(Θ) being acyclic is equivalent to Θ(C) being finite.

This is summarized by the figure:

Figure 2.4: Red is expandable, green is a segment, blue is repeatable, purple is unexpandable.

It is shown in chapter 7 that every cycle inD(r,m) can be decomposed uniquely into a union of disjoint
irreducible cycles. Hence, every repeatable configuration can be decomposed into its disjoint irreducible
subconfigurations.

Connected Components

Definition 21 [Stongly Connected Components] A strongly connected component (SCC) of a directed graph
is a maximal subgraph S ⊂ G such that for every pair nodes x, y ∈ S is mutually connected, i.e. there is a path in G
from x to y AND vice versa.

CHAPTER 2. LOCAL CHECKABILITY: A NECESSARY CONDITION 30

Every node of a directed graph is in some strongly connected component, although the component
might contain only that one node. Moreover, if nodes x, y and and y, z are in common SCCs, than so must x
and z be. Thus, the SCCs partition a graph.

Example 17 Consider the pattern T generated by freely alternating the segments 1000 and 10, i.e.

T = 101000, 100010, 101010, 10001000, 10100010,&c.

This pattern has local check radius 3, graph of the local check scheme of radius 3 corresponding to T is
depicted thusly:

0001000* 001000*
01000*

1000*
0010001*

0100010*
1000100*

100010* 00010*
0010*

1000101* 10001*
100010* 1000*

1010001*

0001010*
0010101*

0101010*

1010100*

0101000*

001010*
01010*

1010*101010*
1010101*

101010*10101*

1010*
10100*

101000*
1

2
3

4

8

7
65

9
10

11
13

12

14
15

16

17

18 19
20

21

23

25

24 28
29

30

22

26
27

Figure 2.5: Pattern generated by free alternation of the words 10 and 1000.

By inspection, it’s possible to see that the only non-trivial strongly connected component in that graph
consists of the nodes 4, 7, 8, 9, 10, 15, 16, 17, 21, 23, 24, and 25 (shaded light blue). These nodes correspond
to the subconfigurations in which the segment 10 is alternated with the segment 1000.

Generally, we have:

A Strongly Connected Component of G(Θ) corresponds to a maximal set of alternatable subcon-
figurations in Θ(C).

A weakly connected component (WCC) is a maximal subgraph of S ⊂ G such that every pair of nodes
x, y ∈ S has either x connected to y OR vice versa. For example, in the local check scheme depicted in figure
2.3, there are two weakly connected components (nodes 1-10 and 11-19).

Example 18 In addition, consider the pattern

T1000 ∪ (T1000 ◦ 1) ∪ (T1000 ◦ 10) ∪ (T1000 ◦ 100)

in which for any pattern T and m-ary string z, T◦z refers to the pattern {x◦z|x ∈ T}. The graph associated with
the radius 3 check scheme for this pattern is shown in figure 2.6. This pattern has four weakly connected com-
ponents, consisting of the nodes sets {1, 2, 3, 4, 5, 6, 78, 9, 10}, {1, 2, 3, 4, 8, 9, 10, 11, 12, 13}, {1, 2, 3, 4, 8, 9, 10, 14, 15, 16}
and {1, 2, 3, 4, 8, 9, 10, 17, 18, 19}.

Overall Decomposition

Let G = {Si} the set of SCCs in G. Define a binary relation <G on G in which Si <G S j iff Si , S j and there is
a path from Si to S j in G. Because of the definition of strongly connected, G , (G, <G) is a partial ordering.
A WCC can be thought of as linear subordering of G.

CHAPTER 2. LOCAL CHECKABILITY: A NECESSARY CONDITION 31

0010001 0100010

1000*
10001*
100010*
1000100*0001000*

* *

000100*
00100*

0100*

100010*
00010*

0010*

001000*
01000*

1000*

010001*
10001*

0001*

8

4

5

6
7

1

2

3

109

11

12

13

14
15

16

17
18

19

Figure 2.6: T1000 ∪ (T1000 ◦ 1) ∪ (T1000 ◦ 10) ∪ (T1000 ◦ 100).

Given a directed graph G, a maximal acyclic path (MAP) in G a path P containing no cycles and such that
any path in G containing P properly has a cycle. For example, in the graph depicted in figure 2.6, the MAPs
are (1, 2, 3, 4, 5, 6, 7), (1, 2, 3, 4, 8, 17, 18, 19), (1, 2, 3, 4, 8, 9, 14, 15, 16), and (1, 2, 3, 4, 8, 9, 10, 11, 12, 13).

In terms of G(Θ), the overall picture is of a set of SCCs correspond to islands of configurations composed
of alternatable irreducible cycles bridged by unrepeatable configurations corresponding to sections of a
maximal acyclic path; and every SCC is in one or more WCC, each of which corresponds to a linear ordering
of non-alternable blocks:

Figure 2.7: Maximal acyclic paths Pred and Pblue with SCC(Pred) and SCC(Pblue) outlined.

2.3.2 Admissible Sizes

As defined in §1.3.2, we discussed the admissible sizes of a pattern – the set of sizes of possible structures in
that pattern. We can use the graph structure G(Θ) to compute the set of admissible sizes of the patternΘ(C).

Given a directed graph G, define A(G) to be the set of maximal acyclic paths in G. For any maximal
acyclic path in G, define SCC(P) =

⋃
x∈P SCC(x,G), the set of all strongly connected components that P passes

through. Let IrrCyc(P) be the set of irreducible cycles in all these SCCs. Let E(P) = {|c|, c ∈ IrrCyc(SCC(P))},
the set of sizes of irreducible cycles of SCC(P). For the red path in figure 2.7, E(Pred) = {5, 7}, while for the
blue path E(Pblue) = {4, 8}. Given a set of integers like E(P), we can compute its least common multiple,
L(P) = lcm(E(P)) and its greatest common divisor T(P) = gcd(E(P)). For example in figure 2.7, L(Pred) = 35
and T(Pred) = 1, while L(Pblue) = 8, and T(Pblue) = 4.

The arithmetic progression denoted A(a0, d) is the set of integers {a0 +md|m ∈ N}. a0 is called the initial
value and d the common difference. For example {3, 8, 13, 18, 23, 28, . . .} is A(3, 5).

CHAPTER 2. LOCAL CHECKABILITY: A NECESSARY CONDITION 32

Proposition 11 Let K(P) = maxP∈A(G)L(P). Then

Sizes(Θ) ∩ {K,K + 1, . . . ,∞} =
⋃

P∈A(G(Θ))

A(|P|,T(P)).

That is:

Ignoring a finite set of size controlled the least common multiple of the cycle sizes, the set of Θ-
admissible sizes is a union of finitely many arithmetic progressions whose initial values are the
lengths unrepeatable patterns in Θ(C) and whose common differences are the greatest common
divisor of the sizes of the repeatable segments connected to those unrepeatable patterns.

Proof: For each maximal acyclic path P, consider

PP = {X ∈ Θ(C)|∀x ∈ X, Br(Θ)(x) ⊂ SCC(P)}.

This is the set of configurations that can be built using parts in SSC(P). Let {C1, . . . ,Cn(P)} enumerate the
elements of IrrCyc(P), the irreducible cycles in SCC(P), where n(P) = |IrrCyc(P)|, the number of SCCs through
which P travels. Since SCC(P) is a linear subordering ofG, number the components of IrrCyc(P) with respect
to this order. All configurations in PP consist of some finite concatenation:

X = p1 ◦ l1 ◦ p2 ◦ l2 ◦ . . . ◦ ln(P) ◦ pn(P)+1

where

• The pi are finite non-repeatable subconfigurations whose concatenation makes up the maximal acyclic
path P, P = p1 ◦ p2 . . . pn(P)+1, and

• the li are loops contains entirely in the SCC Ci.

Of course,

|X| =
∑

i

|pi| +

n(P)∑
i=1

|li| = |P| +
n(P)∑
i=1

|li|.

Now, a loop in a strongly connected graph is a concatenation of cycles interspersed in various orders.
Because all cycles inD(r,m) can be written as unions of irreducible cycles, we have

|li| =
∑

j

m j,i|ci, j|

where j ranges over the irreducible cycles ci, j contained in Ci and the m j,i are non-negative integers expressing
the mulitplicity of the repeats of ci, j in the configuration. Now, it may not be possible to chose the m j,i entirely
arbitrarily. This is because when the maximal acycle path P “enters” the SCC ci, the path may have to “go
through” one cycle to get to another desired cycle before repeating that descried cycle some arbitrary number
of times. However, to achieve the various possible sizes, the transit need only happen once. Hence, tuples
of mi, j can be chosen arbitrarily as along as ni, j > 0 for all j. Hence, by the chinese remainder theorem, if we
define

Si = lcm({|ci,1|, . . . , |ci,Ni |})

and
Ti = gcd({|ci,1|, . . . , |ci,Ni |})

where the ci, j ranges over all irreducible cycles in Ci, then the set of sizes of loops li is

Sizes(Ci) = A(Ci) ∪ Ti · {Si,Si+1, . . . ,∞}

where A(Ci) is a finite set whose maximum element is of size at most 2Si.
Thus, the admissible sizes of X in PP are

|P| + A(P) + gcd({T1, . . . ,Tn(P)) · {S(P),S(P) + 1, . . .}

CHAPTER 2. LOCAL CHECKABILITY: A NECESSARY CONDITION 33

1001* 1
10011 100110 1001100

1100110

0110011

1100112

1001120
0011200

0112001

1120011

1200110

2001100

0011001 011001 11001 1001* * * *
*
*
*

* *
*
*
*

*
* * *2 3 4 5

6

7

8

9
10

11

12

13
14

15 16 17

Figure 2.8: Freely generated pattern on the words 1000 and 100112001.

where A(P) is a finite set whose maximum element is at most 2S(P) where S(P) = lcm(S1, . . . ,Sn(P)). Now, the
lcm of a set of lcms of a sets of numbers is the same as the lcm of the union of those sets, and similarly with
the gcd. Hence the possible sizes are

|P| + A(P) + gcd(|c1|, . . . ,) · {S(P),S(P) + 1, . . .}

where the gcd and lcm are taken over the set of all sizes of irreducible cycles contained in SCC(P).
Now,

Sizes(Θ) =
⋃

P∈M(G)

Sizes(PP),

yielding the result. �

Example 19 • In the example in figure 2.1, there is one maximal acyclic path of length 8 and a cycle of
length. Hence, all sizes are of the form 4n for n ≥ 1.

• In the example in figure 2.2, there are two cycles, one of length 3 and the other of length 4. The two
cycles are connected by a maximal acyclic path of length 14, and since their lengths have a greatest
denominator of 1 and lcm of 6, the set of admissible sizes contains all integers larger than 19. (From
the few other acyclic paths, etc... it actually contains all integers larger than 14.)

• In the example in figure 2.5, there are several maximal acyclic paths, all of even length. There are three
irreducible cycles, all attached by a maximal acyclic path, and whose lengths have a greatest common
divisor of 2. Hence, all even sizes past a certain size (namely, 10), are admissible.

• Consider the pattern generated by freely alternating combinations of the sequences 1001 and 100112001.
The graph G(Θ) associated withΘ is shown in figure 2.8. G(Θ) has one maximal acyclic path of length
8, and one strongly connected component with two cycles of lengths 4 and 9 respectively. Because
the 4 and 9 are relatively prime and have LCM of 36, the admissible sizes for this pattern include all
integers larger than 42 (and some smaller sizes as well).

2.3.3 Pattern Growth

In §1.3.2, we also discussed the growth function of pattern, the function describing the number of different
elements in the pattern of a given size. Here, we show how to compute the growth function of a locally
checkable pattern in terms of the structure of its associated graph.

CHAPTER 2. LOCAL CHECKABILITY: A NECESSARY CONDITION 34

Let Θ be a local check scheme, and again consider a maximal acyclic path P in G(Θ), as it winds its
way though several strongly connected components. Denote by N(P) the number of strongly connected
components that p intersects. Let

N(Θ) = maxP∈M(G(Θ))N(P).

Intuitively N(Θ) measures the largest number of non-interchangeable modules that can be connected in Θ.
For the pattern in figure 2.7, N(Pblue) = 1, N(Pred) = 2, and thus N(Θ) = 2.

Now let’s focus on the individual strongly connected components c ∈ G(Θ). (As we saw above, these
are like maximal clusters of alternatable modules.) Consider each one as its own graph. In graph theory
there is a useful technique, that connects matrices and graphs. Given a directed graph G, a matrix A(G) is
associated to G by letting Ai j equal 1 if node i is connected to node j, and 0 zero otherwise. A(G) is called
the adjacency matrix of G. Like any other matrix, A(G) has eigenvalues, that are a priori complex numbers.
It turns out that when G is strongly connected, the largest eigenvalue of A(G), denoted λmax(G), is a real
number no less than 1, with equality iff G contains a single cycle only.

The two components touching the red path in the above figure have λmax of 1, while the component in
the blue path has λmax = 1.1148. Let

λΘ = max{λmax(c)|c is a SCC of G(Θ)}

so that for the example in figure 2.7, λΘ = 1.1148.
With these definitions at hand, we can state:

Proposition 12 If Θ contains no alternatable segments, then

GrowthΘ(n) ∼ CnN(Θ).

If Θ contains two or more alternatable segments, then

GrowthΘ(n) ∼ Cλn
Θ.

Proof: Given a configuration X, consider X as a path PX = (p1, p2, . . . , p|X|) in D(r,m). Now, let p∗1 be the last
instance of the node PX(1) = p1 in PX, and excise the portion of PX up to p∗1, calling the resulting path P−X.
Then let p∗2 be the last instance of P−X(2), the second node of P−X, and let P−2

X be the result of excising the
portion of P−X between node 2 and p∗2. Repeat this process until P−g

X is achieved, where g is the number of
total distinct nodes ofD(r,m) contained in the path PX. P−g

X is a maximal acyclic path. Every configuration
X is thus associated with a unique maximal acyclic path P, that we’ll call the map(X).

The number of configurations in Θ(C) of size n is∑
P∈M(G(Θ))

|{X|map(X) = P and |X| = n}|

that is, we sum up over maximal acyclic paths the number of configurations of size n associated whose map
is X, which set we denote ΘP(n).

Given a map P let as above {c1, . . . , cn(P)} enumerate in order the non-trivial SCCs that P goes through.
Let qi be the first node in P in P ∩ ci, i.e. the place where P enters the component ci. Then, the number of
configurations X of size n such that map(X) = P is∑

0≤ ji,
∑n(P)

i=1 ji=n−|P|

N(c1, p1, j1)N(c2, p2, j2) . . .N(cn(P), pn(P), jn(P))

in which N(ci, pi, ji) is the number of loops of size ji in the SCC ci starting at point pi.
Now, in general, let G by any strongly connected directed graph all of whose cycles can be written as

disjoint unions of irreducible cycles. Let T(G) denote the gcd of the set of sizes of irreducible cycles in G.
Now enumerate the nodes {1, . . . , |G|}. Let B be the adjacency matrix of G ordering with this numbering.

CHAPTER 2. LOCAL CHECKABILITY: A NECESSARY CONDITION 35

The number of loops through a point i of length k, denoted N(i, k), is Bk
i,i, that is, the i-th diagonal entry of

the k-th power of the adjacency matrix. Asymptotically therefore,

N(x, k) ∼

Kxλ1(G)k, if k is divisible by T
0, otherwise

where λ1(G) is the largest eigenvalue of B and Kx is a constant depending only on the choice of basepoint x.
Hence,

|ΘP(n)| ∼ C1

∑
0≤ ji,

∑n(P)
i=1 ji=n−|P|

λ j1
1 λ

j2
2 . . . λ

jn(P)

n(P)δ(j1,T1)δ(j2,T2) . . . δ(jn(P),Tn(P))

where λi is the top eigenvalue of the adjacency matrix of the SCC ci, δ(a, b) is the indicator function which
is 1 when a is divisible by b, and C1 is the product

∏
i Kqi of the constants taken at each entry point qi.

Let L(P) = lcm(T1, . . . ,Tn(P)) and T(P) = gcd(T1, . . . ,Tn(P)). Write n − |P| in the form

n − |P| = mL(P) + jT(P) + l

for j < L(P)/T(P) and l < T(P). It is not hard to see that the above sum is 0 when l is non-zero, and otherwise
is

C1C2(j)
∑

0≤ ji,
∑n(P)

i=1 ji=m

λ j1L
1 λ j2L

2 . . . λ
jn(P)L
n(P)

where C2(j) is a constant that depends only on j. Hence,∑
n∈[Lm+1,L(m+1)]

|ΘP(n)| ∼ C1C2

∑
0≤ ji,

∑n(P)
i=1 ji=m

λ j1L
1 λ j2L

2 . . . λ
jn(P)L
n(P)

where C2 =
∑L(P)/T(P)

j=0 C2(j). (It’s not too hard to evaluate this constant explicitly in terms of lcms and gcds,
but this is not useful for our purposes.)

Now there are two cases: (i) when all of the top eigenvalues lambdai are 1, and (ii) otherwise. The top
eigenvalue of a strongly connected graph is always real; in fact, it is always at least 1, with equality iff the
graph is ring. In the case that all SCCs attached to P have only a single cycle, then∑

n∈[Lm+1,L(m+1)]

|ΘP(n)| ∼ C1C2

∑
0≤ ji,

∑n(P)
i=1 ji=m

1 =
(
m + n(P)
n(P) − 1

)

so that ∑
j≤n

|ΘP(j)| ∼ Cnn(P)

where C is a constant depending simple number-theoretic properties of the cycle lengths. Hence, the growth
is polynomial with growth order n(P) and constant C.

Now consider the case when the strongly connected components in P contains more than 1 cycle.
Assuming for simplicity that none of the λi equal 1 and all are distinct and ordered according to decreasing
size so that λ1 = max{λi}, then∑

n∈[Lm+1,L(m+1)]

|ΘP(n)| ∼ C

λLm+1
1 − 1∏
(λi − 1)

+ λLm
1

∑
i≥2

λn(P)−1
i

(λi − 1)
∏

j,i(λi − λ j)
1 − (λi/λ1)Lm+1

1 − (λi/λ1)

 .
Thus ∑

j≤n

|ΘP(j)| ∼ C′(λ1)n

where C′ is a constant. Hence, the growth is exponential with growth rate λmax(P). �

Example 20 Consider, for instance:

CHAPTER 2. LOCAL CHECKABILITY: A NECESSARY CONDITION 36

• In the check scheme depicted in figure 2.1, there is one cycle of length 4;

Growth(n) = b
n
4
c.

• In the check scheme depicted in figure 2.2, because of the two cycles connected together,

Growth(n) ∼ Cn2

for some constant C.

• In example in figure 2.7, GrowthΘ(n) ∼ C · 1.1148n.

In summary,

A lack of alternatable segments to polynomial growth, while the existence of alternatable mod-
ules generates exponential growth. The growth rates are dependent on the number and relation-
ships between the modules.

In the polynomial (non-alternatable) case, the interpretation is easy: the polynomial growth order is equal
to the maximum number of modules that can be connected. In the exponential case, the internal structure
of the module inter-relationships becomes more important than the number of indepedent modules. If the
component is regular with degree d, then λmax = d − 1. On the other hand, if it is a union of C cycles of
length L joined at one point, then λmax = C1/L. In the future, I would like to bring to bear a more general
descriptive theory of the top eigenvalue to give better structural interpretation to the growth rate.

2.3.4 Summary

Theorem 1 [Pattern properties as graph properties] The results of the previous section may be summarized as
the correspondence:

Pattern Object Graph Object
radius r local check scheme Θ subgraph G(Θ) ⊂ D(r,m)
elements of Θ−1(1) nodes in G(Θ)
left/right compatibility indices in Θ in/out degrees in G(Θ)
configuration in Θ(C) Path in G(Θ)
x is Θ-connectable to y G(x) is connected to G(y) in G(Θ)
x is Θ-alternatable with y G(x) and G(y) in same SCC
Θ-segment Irreducible cycle of G(Θ)
x is Θ-expandable G(x) is connected to a cycle in G(Θ)
x is Θ-repeatable G(x) subset of a cycle of G(Θ)
unrepeatable configurations maximal acyclic path (MAPs)
Admissible Sizes cycle lengths along MAPs
Growth Rate cycle numbers in SCCs along MAPs

2.4 Local Checkability and Formal Languages

The results of this chapter suggest strongly that there is a relationship between local checkability and the
theory of formal languages. Patterns, as defined in §1.3, are precisely languages. To explore the relationship
more closely, it is useful to investigate the closure properties of local checkability. We investigate two parallel
concepts: (a) locally checkable patterns, defined as in def. 18, and (b) locally generated patterns, those T for
there is a local check schemeΘ such that T = Θ(C). Every locally generated pattern is locally checkable, but
not vice versa.

Suppose we’re given two local check schemes Θ1,Θ2, which generate the pattern T1 = Θ1(C) and
T2 = Θ2(C). Then

Θ = Θ1 ·Θ2

CHAPTER 2. LOCAL CHECKABILITY: A NECESSARY CONDITION 37

is a check scheme for T1 ∧ T2, the logical “AND,” while

Θ′ = (Θ1 ·Θ2 + Θ1 + Θ1) mod 2

checks T1 ∨ T2, the logical ‘OR’ of the patterns. Hence the locally generated patterns are closed under logic
operations, and

LCR(T1∧,∨T2) ≤ max{LCR(T1),LCR(T2)}.

Similarly, local generated languages are closed under concatenations: define

T1 · T2 = {X ◦ Y | X ∈ T1,Y ∈ T2}.

Then if Θ1 and Θ2 are check schemes for T1 and T2, defining Θ̃(b) = 1 for all r(Θ1)+ r(Θ2)-neighborhoods in
TΘ1 · TΘ2 gives local check scheme for T1 · T2. Hence,

LCR(T1 · T2) ≤ LCR(T1) + LCR(T2).

A similar construction holds for unordered concatenation, i.e. for the pattern T1 × T2 defined as containing
configurations

x1 ◦ y1 ◦ . . . ◦ xn ◦ yn

with xi ∈ T1 ∪ {∅} and yi ∈ T2 ∪ {∅}. Thus the locally generated languages are closed under the Kleene
star operation. By using the operators {∧,∨, ·,×} in arbitrarily complicated combinations, a wide variety of
locally checkable complex patterns can be created. For instance, given the two simple repeat patterns T100
and T1000, we can easily form the combination patterns

T100 ∨ T1000 = {(100)n, (1000)n, |n ∈N}

and
T100 · T1000 = {(100)n(1000)m, |n,m ∈N}.

The locally generated patterns are not, evidently, closed under complement, as a simple example shows.
However, it is easy to show that the complement of a locally generated pattern is always locally checkable,
with a construction showing that LCR(¬Θ(C)) ≤ 2r(Θ) + 1.1 In light of these constructions, it is easy to see
(by comparison to the basic closure operations of regular languages) that:

• The locally generated patterns are a proper subclass of regular languages, while the locally checkable
languages are a proper superclass of regular languages. More specifically: every regular language L
contains a locally generated sublanguage L′ such that L∩Cn , ∅ implies L′ ∩Cn , ∅. Thus, the locally
generated and locally checkable concepts have slightly less nice closure properties than the regular
language concept, but they “sandwich” it.

• A local check scheme Θ is a form of finite generator of the language Θ(C).

• The graph G(Θ) associated with Θ is the graph of a non-deterministic finite automata (NDFA) recog-
nizing Θ(C).

• The proofs that a pattern are not locally checkable (e.g. prop. 7) are similar to applications of the
pumping lemma ([18]).

In light of these correspondences, several of the results of this chapter become connected to known results
from the literature on regular languages (see e.g. [8] and [26]).

There are several major differences. The most important is that we work with a construction problem,
which concerns “producing at least one instance in each size class”, rather than a recognition problem, which
concerns “accepting all instances of the pattern and rejecting all non-instances.” This basic difference in
motivation informs the rest of this thesis, and is evident from the kinds of results that I present.

1Specifically, define local check scheme Θ′ with radius 2r(Θ) + 1 by setting Θ′(B) = 1 if B contains a radius-r sub-ball b such that
Θ(b) = 0.

CHAPTER 2. LOCAL CHECKABILITY: A NECESSARY CONDITION 38

Second, some of the results summarized in Theorem 1 invoke distinctions which are a bit “more detailed”
that the standard work on regular languages and the structure of NDFA graphs. These “more detailed”
properties are neither preserved by the standard wreath product decomposition of monoids, nor are they
captured as invariants of the rational or algebraic expressions typically used to characterize formal language
classes (as discussed in, for example, [8]). This includes, for example, the relationships between cycle sizes
within strongly connected components, and the presence of given numbers and sizes of irreducible cycles.
Such detailed calculations – and other, even finer invariants introduced in the next chapters (e.g. the power
spectrum discussed in chapter 5, the DeBruijn geometry discussed in chapter 7) – turn out to be important
for yielding qualitative results that would be opaque to the standard perspective.

Chapter 3

Local Checkability is Sufficient: Generic
Constructions

Proposition 5 says that in our 1-D model with finite state, local checkability is a necessary condition for
robust static solvability, i.e. only for patterns T that have local check schemes Θ can there be finite-radius
rules f that can solve T on all initial conditions. In this chapter, I will prove the converse to proposition 5,
establishing that:

Local Checkability is both a necessary and a sufficient condition for solvability. Moreover,
the existence of a local check scheme provides enough structure for us to construct a generic
algorithm producing local rules that solve any given locally checkable pattern.

In §3.1, I introduce a simple form check scheme that is especially easy to solve. These single-choice check
schemes can be solved by “structure creation waves” generated by a discrete gradient operator. In §3.2, I
describe the solution to general check schemes, introducing a self-organize Turing machine that implements
a ”Naive Backtracking” algorithm via a distributed signalling system. In §3.3, I compute both the average
and worst-case runtime of the Naive Backtracking algorithm as a function of the structure of the graph
associated with the local check scheme.

3.1 Single-Choice Patterns: A Gradient Algorithm

We will first show how to solve a subclass of local check schemes that have an especially simple structure.
Define a local check schemeΘ to be single-choice if for anyΘ-accepted ball b, the right- and left- compatibility
index (as defined in §2.2.1) is at most 1. All the repeat patterns are single-choice.

For a single-choice check schemeΘ, given aΘ-accepted ball b, let that unique i be such that b◦ i isΘ-accepted
be denoted ∇Θ(x)+, when it exists. Intuitively, this is the “gradient” of Θ from the left direction. Note that
∇Θ(x)+ is only a function of the right-most 2r states in b.

We will use the gradient to produce robust solutions to single-choice check schemes. Let R = 2r and let B be
any R-neighborhood. Let B− denote the r-neighborhood consisting of the portion of B to the left of the center
agent, and let B(0) denote the state of the center agent. Now, let fΘ be the local rule of radius R defined by

fΘ(B) =

∇+Θ(B−), if Θ[B−]
B(0), otherwise

. (3.1)

In words, the first clause causes an agent that is just to the right of a patch ofΘ-correctness to switch its state
to extend the patch ofΘ-correctness rightward. The second clause instructs an agent that is not the rightmost
agent of patch on the “border of Θ-correctness” to do nothing; and left-end agents are automatically on the

39

CHAPTER 3. LOCAL CHECKABILITY IS SUFFICIENT: GENERIC CONSTRUCTIONS 40

¬Θ

Θ

¬Θ
Θ

Θ

Θ

¬Θ

¬Θ

¬Θ
Θ

Figure 3.1: Single-choice algorithm on typical initial condition. Θ = correct locally; ¬Θ = not locally correct.

border of correctness if they have incorrect states. Intuitively, what this rule does is generate a right-moving
“wave of Θ-correctness” by applying the local Θ-gradient operator (fig. 3.1).

Proposition 13 For any single-choice local check scheme Θ, fΘ as defined in eq. 3.1 is a solution to TΘ.

Proof: If Θ is single-choice, then for any n such that TΘ,n , TΘ ∩ Cn , ∅, there is a unique configuration
Xn ∈ Tn. We have now to show that if X0 is any configuration of size n and c is any live call sequence, then
(fΘ)n

c (X0) converges to Xn. We prove inductively that for each j ≤ n and some t, Xt , (fΘ)t
c(X0) = Xn[1 : j] ◦Z

for some configuration Z. To this end, suppose inductively that X0 = Xn[1 : j] ◦ Y for some j < n, and that
Y(1) , ∇+

Θ
(Xn[j − 2r − 1 : j]). In words, j + 1 is the first position in X0 where the local check scheme Θ fails

to hold. Then because of the second clause of the definition of fΘ in eq. 3.1, all k ≤ j, FΘ(BR(k,X0)) = X(k).
Let t the be first timestep in c such that agent j + 1 is called (such a t must exist since c is assumed to be
live). Then Xt−1 = Xn[1 : j] ◦ Y(1) ◦ Z where Z is some configuration. Let B = BR(j + 1,Xt−1). Since Θ[B−]
holds by inductive assumption, the first clause of eq. 3.1 yields fΘ(B) = ∇+

Θ
(B−). Thus Xt = Xn[1 : j+ 1] ◦Z′,

completing the induction. �

3.2 The Naive Backtracking Algorithm

As discussed in §2.2.1, local check schemes can allow multiple choices to follow a consistent subconfigura-
tion. For example, the radius-2 check scheme for the pattern T100 · T1000 is multi-choice because both 0 and
1 are acceptable states following the 2-neighborhood 00̂100:

0 1 0 0. . . .
0 1 0 0

1 0

. . . .

. . . .

Suppose we tried to solve the pattern T100 · T1000 along the lines of what we did for single-choice patterns.
We’d have to choose a value for ∇+

Θ
(00̂100), say 0. In this case, the solution will write a string of repeats of

1000 until it reaches the right end. If the number of agents in the configuration is such that the end does not
precisely line up with a complete unit of 1000, the only way the configuration can be solved is if the number
of repeats of 100 back toward the left end of the configuration is changed. This means that the right-end
agent has to communicate to left-end agents, sending a signal with the message: ‘substitute another copy
of 100 in place of 1000’.

The signal will travel toward the left until reaching the left-most instance of 1000, whereupon it should cause
the agent whose local radius-6 neighborhood is 100100̂01000100 to substitute the choice of ‘0’ state made
originally with ‘1’ instead. Having done this, the signal must dissipate and cause a new gradient wave to

CHAPTER 3. LOCAL CHECKABILITY IS SUFFICIENT: GENERIC CONSTRUCTIONS 41

travel to the right, realigning all the repeats of 1000 relative to the new choice. When this wave reaches the
right end, if a complete unit of 1000 fits, the configuration is solved. If not, another signal will have to be
sent right-ward with the same message. Repeating these events, the configuration will eventually be solved
(see fig. 3.2).

A similar idea works in general. We make the following technical definitions:

• Identify the state set S with the integers {1, . . . ,m}.

• Given a Θ-accepted r-ball b, let ∇Θ(b)+ denote the minimal i ∈ S such that b ◦ i is Θ-consistent, when
such an i exists. This is a generalization of the Θ-gradient operator used in the previous section on
single-choice patterns.

• Given a Θ-accepted r-ball b, let Θ+(b) denotes the minimal state j ∈ S such that j > b(|b|) and that
Θ(b(1 : |b| − 1) ◦ j) = 1, when such a j exists (where |b| is the number of nodes in b). Intuitively, Θ+(b) is
the next Θ-consistent choice, after b(|b|).

• Given a r-ball b, let M(b) be the maximal l such that Θ[b(1 : |b| − 1) ◦ l]. Intuitively, M(b) is the last
possible choice for b(|b|).

• A subconfiguration y is right-end Θ-consistent if there is a configuration X with Θ(X) = 1 such that
X = z ◦ y for some z. Given a Θ-consistent subconfiguration x, let ηΘ(x) denote the minimal i ∈ S
such that x ◦ i is right-end Θ-consistent, when such an i exists. Intuitively, η[B] makes an appropriate
Θ-consistent choice of state for an agent at the right-end of the configuration, taking into account
edge-effects.

We now construct a local rule FΘ, with radius 2r(Θ) + 2. For ease, we also assume that we have m + 2 extra
states to work with, denoted B, C, and 41, . . . , 4m. Ten detailed rules defining FΘ appear in the left-hand
column of figure 3.2. Summarizing them, FΘ is defined by:

Algorithm 1: The Naive Backtracking Algorithm

if Rules 1, 3, 9, 10 apply, then
FΘ(B) = B

else if Rules 5, 6 apply then
FΘ(B) = C

else if Rule 2 applies then
FΘ(B) = ∇Θ(B)+

else if Rule 4 applies then
FΘ(B) = η(B)

else if Rule 8 applies then
F(B) = Θ(B(−2r : 0))+

else if Rule 7 applies then
F(B) = 4B(−1)

else
F(B) = B(0).

end

As shown in the right-hand column of figure 3.2, the 10 rules defining FΘ work by “implementing a
Naive Backtracking search run by a self-organizing virtual distributed Turing machine”.

To see why this is, first note that Rules 1-4 essentially re-implement the single-choice algorithm in §3.1.
A right-moving Turing head – represented by an extra state denoted B – is “born” (as per Rule 1) when an
agent determines that it is on the “border of correctness”. Then, the head propagates across the system (as
per Rules 2-3), writing a trail of local Θ-correctness in its wake according to the operator ∇+

Θ
. When it hits

the right boundary, the head halts (i.e. disappears) as per Rule 4, by applying operator η(B), when possible.
Sometimes, the right-movingB-head is unable to halt and disappear, because it will encounter a situation

it which no possible local completion exists – i.e. either Rule 2 applies and ∇+
Θ

(B) doesn’t exist, or Rule 4
applies and η(B) does not exist. In this case, Rules 5-10 implement the signalling process described in the

CHAPTER 3. LOCAL CHECKABILITY IS SUFFICIENT: GENERIC CONSTRUCTIONS 42

Figure 3.2: Left: 10 rules defining FΘ. Right: Action of FΘ for the pattern T100 · T1000.

Define FΘ, with radius 2r(Θ) + 2, by:

Rule 1: If

• B(−2r − 1 : −1) satisfies Θ, and

• B(−2r : 0) does NOT satisfy Θ,

then FΘ(B) = B.

Rule 2: If

• B(0) = B(1) = B, and

• B(2r − 1 : −1) satisfies Θ,

then FΘ(b) = ∇Θ(b)+ when the latter exists.

Rule 3: If

• B(−1) = B and

• B(−2r − 2 : −2) satisfies Θ,

then FΘ(B) = B.

Rule 4: For the right-end agent, if

• B(0) = B, and,

• B(−2r − 1 : −1) satisfies Θ,

then FΘ = η(B) when the latter exists.

Rule 5: If

• The agent is as in Rule 2, BUT ∇Θ(B−)+ does not exist,
or

• the agent is as in Rule 4, BUT η[B] does not exist,

then FΘ(B) = C.

Rule 6: If

• B(1) = C, and

• B(−2r − 1 : −1) and B(−2r : 0) both satisfy Θ, and

• B(0) =M(B),

then FΘ(B) = C.

Rule 7: If

• B(0) = C, and

• B(−2r − 2 : −2) and B(−2r − 1 : −1) both satisfy Θ, and

• B(−1) ,M(B(−2r − 1 : −1)),

then FΘ(B) = 4B(−1).

Rule 8: If

• B(1) = 4B(0) and

• B(−2r : 0) satisfies Θ, and

• B(0) ,M(B(−2r : 0)),

then FΘ(B) = Θ(B(−2r : 0))+.

Rule 9: If

• B(0) = 4 j for some j , B(−1), or

• B(0) = 4B(−1) and B(−1) =M(B(−2r − 1 : −1)),

then F(B) = B.

Rule 10: For the agent is the left-end, if B(0) = C then F(B) = B.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Action of FΘ for the pattern T100 ·T1000 on a typical initial con-
dition with 22 agents: Straight arrows indicate agent whose
action is being shown. Curved side arrows indicate time steps,
solid = one step, dotted =many. Step 1→ 2: Rule 1 generates
B head. Steps 2 → 4: Rules 2-3 apply to propagate B head
rightward, leaving trail ofΘ-correct states. Steps 4→ 5: Head
continues to propagate until reaching right end. Step 5 → 6:
there is no completion, since 1000 unit doesn’t fit evenly; so
Rule 5 reverses B into C. Step 6→ 7: Rule 6 propagates C to
first point where new decision is possible. Steps 7→ 10: Rules
7-9 replace state 0 in agent 3 with state 1, and reverse C back to
B. 40 state arises in step 8 to prevent inappropriate updating
in agent 3. Step 10 → 11: Rules 2-3 apply again, propagat-
ing B back to right end. Steps 11→ 14: Process repeats until
configuration solved.

CHAPTER 3. LOCAL CHECKABILITY IS SUFFICIENT: GENERIC CONSTRUCTIONS 43

discussion above, using m + 1 extra states denoted C, and 41, 42, . . . , 4m. Specifically, Rule 5 reverses the
head B, overwriting it with the state C, which represents the turing head moving in the opposite direction.
The left-moving turing head is propagated by Rule 6 until the first point where

B(0) ,M(B−).

Intuitively, this is first place where a next choice consistent with the multi-choice local check scheme can be
made – any point where the right-compatibility index is greater than 1 and the existing choice is not the
“last choice”. When such a spot is reached, Rules 7-8 have the agent just to the left of the C head “click
up” to the next choice, using the operator Θ(B)+. Finally Rule 9 reverses the turing head back to the right
direction, in the B state.

Thereupon, Rule 2-3 apply again, and the process repeats. Each such repetition represents a one
backtracking event. This backtracking protocol is “naive” in that every possible choice tried out, until one
is found that works. For this reason, I call FΘ the Naive Backtracking algorithm. (We’ll see less naive
backtrack protocols chapter 4.) In other terms, FΘ a brute-force search through the set of possible locally
correct structures. FΘ comes to equilibrium only when the local ball around every agent is consistent with
the check scheme Θ – if no Θ-consistent state of size n exists, FΘ will never achieve equilibrium.

Proposition 14 The Naive Backtracking Algorithm FΘ is a solution to Θ.

Combining prop. 14 (which is proved in an appendix to this chapter) with propositions 5, we have:

Theorem 2 [Local Checkability⇔ Solvability] Local checkability is a necessary and sufficient condition for local
solvability. Moreover, a locally checkable pattern Θ(C) has a robust solution FΘ with radius 2 · r(Θ) + 2, using m + 2
extra states. A single-choice pattern has a solution fΘ with radius 2r(Θ), using no extra states.

In chapter 6, I show how to remove the requirement for extra states in the general case, at the cost of
additional radius.

3.2.1 Distributed, Virtual, Robust Heads

The Turing machine implemented by FΘ is virtual, in that the turing heads do not exist apart from states
of the agents in the system. At any given time, it is an emergent structure hosted by several neighboring
agents. For the head to “leave a trail of local Θ-correctness its is wake”, the agent hosting it – say, agent i –
must act. Agent i determines the new state take on so that with respect to the states of the 2r+ 1 agents to its
left, the pattern Θ will be locally satisfied. By choosing a new state appropriately, and releasing the turing
head state, agent i can increase the extent of Θ-correctness by one agent, as long agents [i − 2r − 1, . . . , i − 1]
are already Θ-correct. When there are several possible choices of state that i could take on and still satisfy
Θ, the agent chooses the minimum state.

Before an agent hosting the Turing B – for the sake of argument, say, agent i – will “release” it (as per
Rule 2), it waits for agent agent i+1 to take on the B state (as per Rule 3). This way, once agent i updates, the
head is not lost, but instead has moved one step further to the right. The region of Θ-correctness smoothly
increases as B moves along. Two-part propagation ensures that the head will remain coherent, regardless
of the update synchrony (or lack thereof) in the system. An algorithm that was not expected to work on
all live update call sequences, but say was restricted to the synchronous case only, would not need these
protections.

For similar reasons, Rules 7-9 require an extra states 41, . . . ,4m to ensure the robustness of the “next-
choice update and head reversal” process. The whole point of backtracking to the first agent where a “next
Θ-consistent choice” can be made is that the agent just to the left of the head, say agent i, will “click up”
to that next choice. Agent i must do this before the head reverses. But if agent i’s rule for state change
depended only on the presence of the head to its right, it might go past the next choice and instead to the
“next-next” choice if it was called multiple times before the head reversed. To protect against this, if agent i
is in state s it must wait for the state 4s to appear to its right; once it sees 4s, it then can click up to the next
Θ-consistent state It will not click up again since now its state is no longer equal to s. Similarly, the agent
at the turing head must wait for agent i to change before enacting the reversal of its state from 4s to C. In

CHAPTER 3. LOCAL CHECKABILITY IS SUFFICIENT: GENERIC CONSTRUCTIONS 44

other terms, the turing head stores some scratch memory to ensure that its update-and-reversal procedure
is robust to asynchrony. Each different state s ∈ S will require a different scratch state 4s.

Note, moreover, that this is a distributed Turing machine because at any given time, there may be multiple
heads present in the system; the rules encode their interactions so that eventually a consistent choice is made.

3.2.2 A Turing Operator Basis

The self-organized Turing machine can be specified independently the Naive Backtracking algorithm.
Specifically, a basis set of “robust Turing operators” can be extracted from the rules defining FΘ that will
allow the programming of many other algorithms. These operators are:

• A head birth operator BG in analogy to Rule 1, which generates a turing head whenever some local
birth condition G holds,

• a right-propagation operator PR
G,∆

in analogy to Rules 2-3, which moves a head along to the right
in two parts as per the discussion above when local condition G holds, and leaves a trail of states
determined by local computation ∆

• the mirroring left-propagation operator PL
G,∆

,

• a left-right turn operator T LR
G,∆

, in analogy to Rules 7-9, which reverses a left-moving head into a
right-moving head when condition G holds, after having induced a local state change determined
by computation ∆; and which uses an extra 4 state to delay the application of the reversal until ∆
completes,

• the mirroring right-left turn operator T RL
G,∆

.

• and a halting operator HG,∆ in analogy to Rule 4, which removes a turing head whenever a local
halting condition G holds, and replaces it with the result of local computation ∆

Combinations of these operators can be used to compactly describe many local algorithms, including the
single-choice and Naive Backtracking algorithms.

For instance, the single-choice rule in eq. 3.1 is simulated by the expression

BG + P
R
G,∆

where
G(B) = Θ[B−] ∧ (¬Θ[B(−2r : 0)])

is the “border of Θ-correctness” condition and ∆(B) = ∇+
Θ

(B−) is the local Θ-gradient. (The A + B notation
indicates that operator B applies if A fails to apply.)

The Naive Backtracking algorithm is equivalent to

FΘ(B) = BG1 + P
R
G2,∆
+ T RL

G5,∅
+ PL

G6,∅
+ T LR

G7,Θ+(B) +HG4,η (3.2)

where ∅ is the null condition andGi(B) expresses the conditions defining when Rule i applies. This equation
contains the single-choice algorithm as a subset of the terms, with backtracking implemented with the other
terms.

3.2.3 Other Orderings

The backtracking search self-organized by FΘ is “lexicographic” because it tries out each new option by
picking states in the order of their numerical value. The order in which new states are picked can be chosen
arbitrarily, not simply by numerical order of the states.

Recall §2.2.1 the definition of the left- (resp. right) compatibility set L(b), of a Θ-accepted ball b – that is, the
set of states that could be joined to the left of b and still have Θ be satisfied. Then define:

CHAPTER 3. LOCAL CHECKABILITY IS SUFFICIENT: GENERIC CONSTRUCTIONS 45

Definition 22 [Left-Choice Ordering Function] A Left-choice ordering function for Θ is a mapping

O : Br × [m]→ [m]

such that O(b, ·) is a bijection from {0, . . . , |R(b)| − 1} to R(b).

In words, O specifies, for each valid local ball b, an ordering on the various options for Θ-consistently
completing b. O(b, 1) is the first choice, O(b, 2) the second choice, etc... and O(b, |R(b)|), the last choice.
Because it is a bijection, O−1

b : R(b) → {0, . . . , |R(b)| − 1} is well-defined, by setting O−1
b (j) = k if O(b, k) = j.

Define the ordering ≥O,b by s1 ≥O,b s2 if O−1
b (s1) ≥ O−1(s2). O(b, j) is a state s; the node in G(Θ) chosen thereby

is b[2 : 2r + 1] ◦ s. Denote the latter by O(b, j).
Given a radius-r ball B, a state s is a “non-maximal” choice of O for B if B(0) = O(B, j) for j < |R(b)| − 1.

The “next choice” after s is given by O(B,O−1
B (s) + 1). If B is a radius 2r + 2 ball, and B(0) is a non-maximal

choice of O for B[−2r − 1 : −1], then the next choice is given by the somewhat unwieldy expression
O(B[−2r − 1 : −1],O−1

B[−2r−1:−1](B(0)) + 1) – for notational ease, denote this B+1
O .

For each choice function O, we can define a corresponding Generalized Naive Backtracking algorithm
FO
Θ

by replacing all references to the numerical order with appropriate references to O. Formally, let FO
Θ

be
defined by modifying FΘ with the replacements:

• In Rule 2: the state ∇+
Θ

(B) replaced with O(B−r, 1),

• In Rule 6: the check for B(0) =M(B) replaced with the boolean LO[B], defined by

LO[B] , (B(0) = O(B−r, |R(B−r)|),

• In Rule 7: the check for B(0) ,M(B−1) replaced with L¬O[B−1]

• In Rule 8: the check for B(0) , M(B) replaced with L¬O[B], and the state Θ(B(−2r : −0))+ replaced with
B+1

O .

• In Rule 9: the check for B(−1) =M(B−1) replaced with LO[B−1].

The same proof that applied to FΘ applies to FO
Θ

for any O. Of course, the original rule FΘ can be thought of
as FO

Θ
for O defined by O(B, i) to be the i-th smallest state in R(B).

3.2.4 Viewing FO
Θ

on G(Θ).

The operation of the Generalized Naive Backtracking Algorithm FO
Θ

can be “viewed” on the graph G(Θ).
Suppose Θ is a local check scheme whose graph G(Θ) looks, schematically, like shown in figure 3.3.1. Now,

1. Suppose we’re given a configuration X. In this configuration, suppose that at some position, say agent
j, there is a “mistake” relative to Θ, and j is the “left-most” such mistake. At this position j, Θ is not
satisfied, but for all positions j′ < j, Θ is satisfied. For Θ to be satisfied for all positions to the left of j,
the configuration X[1 : j−1] describes a path P in G(Θ), as we saw in §2.3.1. If j is very large compared
to|G(Θ)|, there will have had to be at least one cycle in G(Θ) that P wraps around several times. This
can be shown in the graph G(Θ): see figure 3.3.2.

2. Now, because of Rule 1, the algorithm FO
Θ

will create a self-organized turing head around position j.
We can notate this on the graph G(Θ) with an arrow at the position where the head is located.

3. Rule 2 and Rule 3 will cause the turing head to move to the right. As it moves, it writes state consistent
with the local check scheme Θ. That is, it moves along the graph G(Θ) (fig. 3.3.3).

4. If the turing head is at a node b in G(Θ) where the out-degree is 1 (as in the previous figures), the
head has only one choice to stay in G(Θ) as it moves forward. However, if the node b has out-degree
larger than 1, a choice must be made. The ordering function O now comes in to play. O assigns each
possible next state an order (fig. 3.3.4). The rule FO

Θ
picks the first choice assigned by O to b, i.e. the

state O(b, 1). As the head moves forward, each “choice point” where the out-degree is larger than 1,
the ordering function determines the way (fig. 3.3.5).

CHAPTER 3. LOCAL CHECKABILITY IS SUFFICIENT: GENERIC CONSTRUCTIONS 46

1
2

3
32

10

9

84

5
6 7

11
12

13

14
15

16
17

18
19 20

24 22

21

23
27 28

25 26

29

30

31

33

position j

choice point
3
2 1

choice points

. . .
. . .

correct with respect to Θ

. . .

. . .

. . .

. . .

.

I) II)G(Θ) ends before X X ends before G(Θ)

. . .

. . .
. . .

. . .

. . .

. . .

. . .
1

2

. .
.

. . .

. . .

. .
.

1

2

3

4

5

6

7

8

9

10

Figure 3.3: A visual description of the rule FO
Θ

on the graph of G(Θ).

CHAPTER 3. LOCAL CHECKABILITY IS SUFFICIENT: GENERIC CONSTRUCTIONS 47

5. The best case scenario is that the turing head moves through onto a terminal branch of G(Θ), and ends
at precisely the right point in relation to the size of the configuration X (fig. 3.3.6). This scenario can fail
to come to pass if either (I) the terminal branch end in G(Θ) comes before the end of the configuration
X, or (II) the configuration X comes to end first before a hitting terminal branch (or at least, the end
of the terminal branch) in G(Θ) (fig. 3.3.7). In either case (I) or (II), Rule 5 is activated; a left-moving
turing head is created, and the head propagates leftward until it encounters a choice-point (fig. 3.3.8).

6. When the head arrives at a choice-point, the following evaluation takes place: was the choice made the
last time the head went through this choice point the “last choice”, according to the ordering function
O? If it isn’t, that means O has at least one “next choice” possible. In this case, Rule 8 flips the state of
the agent at the choice point up to the next choice, and Rule 7 and Rule 9 reverses the head reverses;
and the local rule returns to evaluating as in steps 1-5 (fig. 3.3.9). On other hand, if it already had
made the “last choice”, then Rule 6 keeps the head going until it encounters the next choice point to
the left, and makes the same evaluation.

7. The above steps repeat until Θ-consistent configurations are searched through until a solution that is
locally correct everywhere is attained (if there is one).

Throughout, I’ve spoken as if there’s one head, but actually there may be several at any given time,
operating in parallel (fig. 3.3.10). The local rules specify interaction of heads so that eventually one wins
out.

3.2.5 The Effect of the Ordering Function O

Different ordering functions O lead to different kinds of behavior. To see why, recall from §2.3.1 the
discussion about strongly connected components in G(Θ). A SCC is a maximal set of nodes that are
mutually connected; SCCs in G(Θ) correspond to maximal sets of alternatable subpatterns. In the graph
schematic in fig. 3.3, nodes 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 29, 30, 31, and 32, form one non-trivial
strongly connected component containing three irreducible cycles, while nodes 19, 20, 21, 22, 23, 24 and 33,
form another SCC containing one cycle.

Now suppose at some point during the operation of the algorithm FO
Θ

, a turing head is located at a
position on a nontrivial SCC. At some choice-points along the cycle, some of the options may lead out of the
SCC. In figure 3.4.A), option 1 leads out of the strongly connected component, while option 2 remains in it.

The trajectories under FO
Θ

look superficially quite different if O generally chooses to “leave” SCCs, versus
“staying within” them. In the former case, suppose we’re on a configuration that is large compared to
the number of nodes in G(Θ). A head starting toward the left-end of the configuration will move forward
through the SCCs to a terminal branch, hitting the edge prematurely – that is, case (I) from Step 5 above.
The head will now bounce back and forth repeatedly as it edges along, poking into each terminal branch
once, before adding a new cycle (see figure 3.4 column I). In the latter case, the head first makes a long run,
writing many copies of the first cycle; and hits the end of the configuration before getting to a terminal
branch (this is case (II) from Step 5). Then the head bounces back and forth, moving a short distance away
from the right end each time, giving up one copy of the first cycle each time (see figure 3.4 column II).

Though under the various ordering functions O, FO
Θ

generates these different behaviors, it will always
be the case that a Turing head will only return to a spot it is previously covered after trying out all possible
completions from that spot consistent with Θ (that is the content of lemma 2). Moreover, over all initial
conditions, all orderings have approximately the same asymptotic run-time scaling.

3.3 Run-Time Analysis of Naive Backtracking Algorithm

In §1.4, I defined the average runtime scaling function, TTSavg(F)(n), and the worst-case runtime scaling
function TTSworst(F)(n), for any local rule F. The problem we wish to solve now is: as a function of local
check scheme Θ and ordering O, compute these two run-time complexity scaling functions for the Naive
Backtracking algorithm, FO

Θ
. In these discussions, we assume for simplicity that we’re working in the

completely synchronous timing model, but the results remain the same in any live uniform timing model.

CHAPTER 3. LOCAL CHECKABILITY IS SUFFICIENT: GENERIC CONSTRUCTIONS 48

.

I) II)1
2

. . .
1

2

A)

Figure 3.4: A) Option 1 leads out of the SCC comprised by the light-blue nodes, while option 2 stays within
it. Column I) A typical trajectory evolution for FO

Θ
, when the first choices of the ordering function O are to

“leave” SCCs in G(Θ). II) A typical trajectory FO
Θ

for an ordering choice function O whose first choices are
to “stay within” SCCs in G(Θ).

CHAPTER 3. LOCAL CHECKABILITY IS SUFFICIENT: GENERIC CONSTRUCTIONS 49

Suppose X is a size-n configuration of the form

X = Y ◦ B ◦ Z,

where Y is a Θ-consistent subconfiguration and Z is an arbitrary subconfiguration. In words, X is a
configuration in which the left-most turing head is at position |Y| + 1, and everything to the left of the head
is correct with respect to Θ. Let

extΘ(Y) = {W ∈ Θ(C) |W[1 : |Y|] = Y}.

That is, extΘ(Y) are the extensions of Y that are consistent with Θ. Let extΘj (Y) = extΘ(Y) ∩ C≤ j, that is, the
extensions of Y of size n or less. The key observation that helps us solve the run-time computation is this:

Proposition 15 [Simple Worst-Case Upperbound] Let X be a configuration of the form Y ◦ B ◦ Z. Then

• If extΘ(Y) contains a configuration of size |X|, TTS(FO
Θ
,X) ≤ 4 · |extΘn (Y)|.

• If extΘ(Y) does not contain a configuration of size |X|, for some time T such that |extΘn (Y)| ≤ T ≤ 4 · |extΘn (Y)|,
(FO
Θ

)T(X) = Y ◦ S ◦ Z′ where S = 4Y(|Y|) or C.

This proposition is proved in an appendix to this chapter, but the basic reason it holds is that, on the
initial condition X, the algorithm FO

Θ
searches through all the extensions to Y before moving on to any

other configurations. If one of these configurations can work, then the algorithm finishes before all of the
extensions to Y have been tried (option 1 in the proposition above). If none of the extensions can work, then
the algorithm has to try, and reject, all of them before moving on (option 2). The relevant point is that, over
all, the algorithm takes at least one, and no more than 4, timesteps per extensions (though some take more
than others).

As a corollary of prop. 15, we obtain an upper bound on the worst-case. Recall the definition of the
growth function GrowthΘ(n), from section 2.3.3, as the numer of configurations in Θ of size n or less.

Corollary 1 For all Θ and O,
TTSworst(FO

Θ)(n) ≤ 4 · |GrowthΘ(n)| + n + 3.

Proof: Suppose X is a configuration of size n. If X is not Θ-admissible, then within 3 timesteps, turing head
begins to emerge – that is, there is at least one position whose state is 4i, C, or B. Hence, TTS(FO

Θ
,X) ≤

3 + TTS(FO
Θ
,X1), where X1 = Y1 ◦ s ◦ Z, where Y1 is Θ-consistent and s ∈ {4i,B,C}. Let j be the position of

the of left-most agent in X1 such that X(j) ∈ {4i,C,B}. If X(j) = 4i, then the turing head is in the process of
turning. Within 2 timesteps, the configuration becomes X[1 : j− 2] ◦ s1 ◦B ◦Z, for some subconfiguration Z,
where s1 ∈ {1, . . . ,m}. If X(j) = C, then the turing head is moving left; within j timesteps, the turing head has
found a choice-point, and will, within another 2 timesteps, turn. Hence, TTS(FO

Θ
,X) ≤ TTS(FO

Θ
,X′) + n + 3,

where X′ = Y ◦ B ◦ Z, with Y being Θ-consistent.
For notational convenience, for j ≤ |Y|, let Y j = Y[1 : j] and b j = Y[j − 2r − 1 : j]. Also, abbreviate

s1 ≥O,b j s2 by s1 ≥ j s2. Now, let k be the maximal l ≤ |Y| such that there is a state s such that extΘ(Yl ◦ s)
has a configuration of size n, and such that s ≥l Y(l + 1), and let s∗ be the O-minimal state that satisfies this.
Then by definition, for all j ∈ [k + 1, |Y| − 1], extΘ(Y j ◦ s) does not contain a size n configuration for any s
such that s > j Y(j + 1). Similarly, extΘ(Yk ◦ s) does not contain a size n configuration for any s such that
Y(k + 1) <k s <k s∗.

Now applying proposition 15, part 2, to Y|Y|−1, there is a time T1 such that X′T1
, (FO

Θ
)T1 (X′) = Y|Y|−1 ◦

4Y(|Y|−1) ◦ Z′, with
T1 ≤

∑
s≥|Y|−1Y(|Y|−1)

4 · |extΘn (Y|Y|−1 ◦ s)|.

Now applying prop. 15 part 2, to XT1 , there is a time T2 such that X′2 , (FO
Θ

)T1+T2 (X′) = Y|Y|−2 ◦ 4Y(|Y|−2) ◦ Z′,
with

T2 ≤

∑
s>|Y|−2Y(|Y|−2)

4 · |extΘn (Y|Y|−2 ◦ s)|.

CHAPTER 3. LOCAL CHECKABILITY IS SUFFICIENT: GENERIC CONSTRUCTIONS 50

Repeating this |Y| − k + 1 times, we have T such that X′T , (FO
Θ

)T(X′) = Yk ◦ s∗ ◦ B ◦ Z′ where

T ≤ 4|extΘn (Y)| + 4
|Y|−1∑
j=k+1

∑
s> jY(j)

|extΘn (Y j ◦ s)| + 4
∑

Y(k+1)<ks<ks∗
|extΘn (Yk ◦ s)|.

Applying prop. 15 part 1 to XT, TTS(FO
Θ
,X′T) ≤ 4|extΘn (Yk ◦ s∗)|, so that

TTS(FO
Θ,X

′) ≤ 4|extΘn (Y)| + 4
∑

s≥ jY(j)

|extΘn (Y j ◦ s)| + 4
∑

Y(k+1)<ks≤ks∗
|extΘn (Yk ◦ s)|.

Now, the sets

• extΘn (Y j ◦ s) for j and s > j Y(j + 1), and

• extΘn (Y), and

• extΘn (Yk ◦ s) for all Y(k + 1) <k s ≤k s∗

are all pairwise disjoint subsets of extΘn (Yk). Hence, TTS(FO
Θ
,X′) ≤ 4|extΘn (Yk)|. Since extΘn (Yk) is itself a subset

of the set of configurations of size n or less, consistent with Θ, the result is complete. �
The bound from corollary 1 does not completely answer the questions posed at the beginning of this

section because it leaves open the question of in which circumstances the bound is tight, and (relatedly) does
not say anything about the average runtime. Though answering these questions turns out to be somewhat
more involved, the basic result turns about to be a kind of generalization of the result in corollary 1: there is
a locally checkable subpattern ofΘ(C) whose growth function bounds the average and worst-case run times.
The challenge is properly constructing the subgraph of G(Θ) that generates this subpattern. It turns out that
the construction is somewhat subtle, and can look quite different from G(Θ) as a whole. We’ll compute the
answer in several illustrative cases, and then state the general result.

3.3.1 Several Examples

Example 21 Suppose that Θ is the radius-2 local check scheme associated with the pattern {(1000)n
| n ≥ 2}.

(This is the same as T1000 within the n = 4 size.) The graph G(Θ) is:

100* 1000 10001

00010 00100

01000 1000 000* *
* *

* * *
1 2 3

4 5

6 7 8

1 2

Choose the choice function O whose first choices “stay within” the cycle, as indicated by the light blue
arrows in the figure above (formally, this means that O(010?00, 1) = 1 and O(010?00, 2) = 0)

This pattern only has solutions that are multiples of size 4. Consider an initial condition X of size 4n of
the form X = C ◦ Y where Y is any configuration of size 4n − 1. Within one timestep, FO

Θ
brings X to the

state X1 = B ◦ Y′ where Y′ is again some configuration of size 4n − 1. The B head will move right-ward one
position every two time steps, leaving a trail of 1000 to its left as it moves. After 8n timesteps, the B head
disappear of the right boundary. Thus, TTS(f ,X) = 2 · |X| + 1. It is not hard to see that this is the worst case
scenario, so that

TTSworst(FO
Θ)(n) = 2n + 1.

To compute the average case scaling, we use a very simple principle: suppose A ⊂ C is a set of initial
conditions of positive measure in C. That is, the ratio

µ≤n(A) = |A≤n|/|C≤n|

CHAPTER 3. LOCAL CHECKABILITY IS SUFFICIENT: GENERIC CONSTRUCTIONS 51

is bounded below by some positive number µ, for all n, where A≤n = A ∩ C≤n. Then for any local rule F,

TTSavg(F)(n) ≥ µ · 〈TTS(F,X)〉X∈A≤n .

In other words, the average run time overall initial conditions is at least µ times the average over A. In the
present case, let A consist of all initial conditions of the form X = C ◦ Y, as discussed above. The key point
is now to notice that µ(A) , lim infµn(A) = 1/6; that is because there are six states that FO

Θ
might use (0,1,40,

41, B, and C), and the chance of the first agent’s state being in any one of these states is 1 out of six. But we
know that TTS(f ,X) = 2|X| + 1 for all X ∈ A. Hence,

TTSavg(FO
Θ)(n) ≥

1
3

n.

Summarizing, we see that the run-time of FO
Θ

scales linearly in |X|, both in the worst and average case.

Example 22 Now suppose Θ is the local check scheme of radius 10 for the pattern

T = {(100000)m(1000000000)n(100000000000000)o
| m,n, o ≥ 3}.

The graph G(Θ) is:

C1 C2
C3

The graph has a single maximal acyclic path P of length 43 and three cycles, of length 6, 10, and
15 respectively. The cycles C1,C2, and C3 correspond to repeatable sequences 100000, 1000000000, and
100000000000000, respectively. Take a choice function O whose first choices remain in cycles.

Since the greatest common divisor of the lengths of the three connected cycles is 1, and their LCM is
30, this pattern has solutions at all sizes, larger than 63 (and of course, some smaller ones well). Consider
an initial condition X of size n � 63, of the form X = P ◦ B◦,Y where P is the acyclic path starting at the
(unique) initial node of G(Θ), and ending just after the branch off from C1 (this path is highlighted in red
in the figure). Now, suppose that the residue of n modulo 5 is not 3, i.e. mod(n, 5) ∈ {0, 1, 2, 4}. In this case,
no completion of the path P that is consistent with Θ can be of size n. In other terms, extΘ(P) contains no
elements of size n. This is because all extensions of P are of size 33+ gcd(|C2|, |C3|) ·m = 33+5m (the 33 comes
about because of the acyclic path); and any number of this form must be congruent to 3 modulo 5. To put
all this another way, the only way to get the rest of the sizes is to use at least one copy of the length-6 cycle
C1, but the initial path P bypasses C1 so it is not accessible to any extension of P. Now, the trajectory of X
under FO

Θ
necessarily explores all of these extensions of P of size |X| − |P| or less, before having the turing

head return to C1. The number of extensions of P of size N or less scales like C · (N − |P|)2, for some constant
that satisfies 1

m2r+1 ≤ C ≤ 1. By prop. 15, the trajectory of X under FO
Θ

must contain at least C(n − |P|)2 steps,
but take no more than 4C(n−|P|)2 timesteps for the turing head to come back to the left of P, i.e. if we denote
by T the number of timesteps for that event to occur, there are constants α ≥ 1/m2r+1 and β ≤ 5 such that
α(n − |P|)2

≤ T ≤ β(n − |P|)2.
Now, once the turing head comes back to the left P, it enters the cycle C1. Because O keeps the head

within the C1 cycle, and the head writes copies of C1 all the way to the right-end of the configuration. Hence,
after an additional 2(n− |P|) steps, the configuration has the form P[1 : |P| − 1] ◦Cm

1 ◦C1[1 : k], where k is the
residue of m − |P| − 1 modulo 6:

0 1 011 0 0 1 01 0 1 0 0 1 0 1 0 0 1 0 1 0 0

P C1 C1 C1

CHAPTER 3. LOCAL CHECKABILITY IS SUFFICIENT: GENERIC CONSTRUCTIONS 52

What will happen now is that the Turing head will reverse, and being to write out copies of C2 and C3,
removing one copy of C1 at a time. Eventually, since the gcd of the cycle lengths is 1, a solution will be
found. The key fact is that regardless of n, a solution will in fact be found within a constant number of time
steps. The reason is:

Useful Fact 1 Suppose that d1, . . . , dk are positive integers whose greatest common divisor is D and whose
least common multiple is M. Then any integer multiple of D larger than M can be as a sum of multiples of
the di,

∑l
i=1 nidi, in which ni ≥ 0 for all i, and in which ni ≤M/di for i ≥ 2.

Most of this fact we’ve seen already in the previous chapter, in the proof of prop. 11. The only new part
is that we can restrict ni ≤M/di for i ≥ 2. In other words, as long as N is large enough we can find a solution
to the diophantine equation

∑
i nidi = N · D in which all of the variables but 1 (the first one, say) are small

– bounded by a constant, M, that is independent of N. The import of this for the present situation is that,
since the gcd of 6,10, and 15, is is 1, then a solution to 6m+ 10n+ 15o = N an be found with n ≤ 3 and m ≤ 2,
as long as N is sufficiently large. As a result, at most 5 copies of C1 need to be written over before a solution
is found, regardless of the size of the configuration, and a solution is arrived at with γ timesteps for some
constant γ < 2 · (30)2.

Hence,
α(|X| − |P|)2

≤ TTS(FO
Θ,X) ≤ β(|X| − |P|)2 + 2(|X| − |P|) + γ

In other words, for all X of the form P ◦ B ◦ Y, the runtime scales as the square of |X|. It is not hard to see
that this X is the worst case scenario for configurations of size |X| or less.

As for the average runtime, define An to be set of configurations that: (I) are of the form P ◦ B ◦ Y, (II)
are of size less than n, and (III) whose size is not congruent to 5 modulo 3, and let A = ∪nAn. It is easy to
compute that µ(A) > (m − 1)/m|P|+2. Since |P| ≤ m2r+1, we have overall that

Γ1n2
≤ TTSavg(FO

Θ)(n) ≤ TTSworst(FO
Θ)(n) ≤ Γ2n2

for some constants Γ1 and Γ2.

The key takeaway from example 22 is that most of the runtime of FO
Θ

come from the time that it takes to
try out, and reject, the configurations in the set A. Like any other set of configurations, these configurations
can be thought of as comprising a pattern. This pattern is locally checkable pattern, and its local check
scheme corresponds to the subgraph of G(Θ) made up of the nodes in the path P, and all those nodes in
G(Θ) to which the final node of P is connected. (These are the nodes that are outlined in dark blue in the
figure above. This includes all nodes except for two nodes in the C1 cycle.) In other terms, the runtime of
FO
Θ

in example 22 is controlled by the size of a specific subpattern of Θ(C) corresponding to a subgraph of
G(Θ). This idea can be generalized.

3.3.2 The Maximally Futile Subgraph

Definition 23 A marked graph is a ordered pair (G,H) where G is a directed graph and H is a path in G.

In this section we will define, for every local check schemeΘ and ordering function O, a special marked
graph (HO,Θ, αO,Θ) in which HO,Θ is a subgraph of G(Θ). The graph HO,Θ, which I call the maximally futile
subgraph of G(Θ) with respect to O, will control the asymptotic runtime of FO

Θ
in both the average and

worst case. The shape of αO,Θ will determine the basic properties of HO,Θ. We will construct HO,Θ by first
constructing a graph HO,Θ(P) for a set of paths P in G(Θ); then we will define HO,Θ to be the “maximal” one,
i.e. HO,Θ(P∗) where P∗ maximizes the size of Growth(HO,Θ(P)) over all such paths.

P is an initial acyclic path (i.a.p.) in a directed graph G, if the first node of P, P0, is an initial node of G,
and P contains no cycles. Given a local check schemeΘ, ordering function O, and i.a.p. P in G(Θ), construct
the marked graph (HO,Θ(P), αP

O,Θ) through the following iterative process.

1. Base case: Let H0(P) = αP
0 = P.

CHAPTER 3. LOCAL CHECKABILITY IS SUFFICIENT: GENERIC CONSTRUCTIONS 53

2. Several Definitions: Suppose Hi−1(P), a subgraph of G(Θ), and αP
i−1, a path in Hi−1(P), are given. Since

the length of αP
0 is |P|, the length of αP

i−1 is |P| + i − 1. Hence, αP
i−1(|P| + i − 1) is the final node of αP

i−1;
denote it βi−1. Then, make the following definitions: First, consider the set of nodes

out(βi−1,G(Θ)) ∩ (G(Θ) −Hi−1(P)).

These are the nodes that come out from the final node of αP
i−1, that are NOT in Hi−1(P). Among these

nodes, let oi be the one that is the minimal choice according to the ordering O. Let Hi
1 be the graph

defined by adding the node oi to Hi−1(P), together with the edge (βi−1, oi). That is:

H1
i = Hi−1(P) ∪ (oi, (βi−1, oi)).

Now, for any directed graph G and node v ∈ G, let G≥v be the maximal subgraph K ⊂ G such that for
all y ∈ K, there is a path in G from v to y. Let

H2
i = Hi−1(P) ∪ G(Θ)≥oi ∪ (βi−1, oi).

As subgraphs of G(Θ), H1
i and H2

i define patterns Ĥ1
i and Ĥ2

i – the sets of configurations corresponding
to maximal paths in H1

i and H2
i , respectively. Hence, we can consider the sets Sizes(H1

i) and Sizes(H2
i)

of the sizes of H1
i - and H2

i -admissible configurations.

3. Inductive Step: If S2
i , Sizes(Θ) − Sizes(H2

i) is infinite, then let

Hi(P) = H2
i , and αP

i = α
P
i−1.

Otherwise (when S2
i is finite), then if S1

i , Sizes(Θ) − Sizes(H1
i) is infinite, let

Hi(P) = H1
i , and αi = αi−1 ◦ oi.

4. Repeat 1-3 until such i when the edge (βi, oi+1) is already present in Hi(P), or until S1
i+1 and S2

i+1 are
both finite.

For each P, the graph HO,Θ(P) defines a corresponding pattern ĤO,Θ(P) – the set of configurations
corresponding to paths in HO,Θ(P) starting at P0. Now, suppose we’re given a configuration X of the form
Y ◦ B ◦ Z, where the minimal acyclic path of Y is P. Notice that HO,Θ(P) is defined precisely so that the
trajectory of FO

Θ
on X searches through the ĤO,Θ(P)-consistent extensions of X first. That is, the trajectory

contains all configurations W ◦ B ◦ Z, for W ∈ ĤO,Θ(P) of size |X| or less and such that W[1 : |Y|] = Y, before
it will contain any configurations W ◦ Z′, with W ∈ Θ(C) − ĤO,Θ(P).

Like any other pattern, we can measure the growth function Growth(ĤO,Θ(P))(n) – denote it gO,Θ(P)(n).
Now, in light of proposition 12, there are constants CP ∈ (1/m2r, 1), such that either gO,Θ(P)(n) ∼ CPnmP or
gO,Θ(P)(n) ∼ CPλn

P where mP is a non-negative integer and λP > 1. Hence the set of functions {gO,Θ(P)}, with
P ranging over all IAPs, has (at least one) a strong pointwise maximal element. That is, there is a P∗, a
constant V, and N ∈N such that for all n ≥ N and all other IAPs P, gO,Θ(P∗)(n) ≥ V · gO,Θ(P)(n). It is not hard
to see that V can be chosen ≤ m2r+1, and N can be chosen ≤ m2(2r+1)m2r+1

(probably much better bounds can
be found). Take P∗O to be any one of these maxima, and denote

HΘ(O) = HO,Θ(P∗O); and gO,Θ(n) = gO,Θ(P∗O)(n).

I call HO,Θ the maximally futile subgraph of G(Θ), relative to choice function O. Usually I will drop the O subscript
from P∗O, when the context is unambiguous.

HΘ,O generalizes the concepts discussed in the examples in §3.3.1. The whole point of constructing HO,Θ
is that:

Proposition 16 [Strong Worst- and Average-Case Bounds] There are constants A, B, C, D, E, and F, functions
only of m and r, such that

A · gO,Θ(n) + B · n ≤ TTSavg(FO
Θ)(n) ≤ CgO,Θ(n) +D · n

CHAPTER 3. LOCAL CHECKABILITY IS SUFFICIENT: GENERIC CONSTRUCTIONS 54

and
TTSworst(FO

Θ(n) ≤ E ·
∑
j≤n

gO,Θ(j) + F · n.

Since gO,Θ ∼ Cnm or ∼ Cλn, TTSworst(FO
Θ

)(n) ≤ E · n · gO,Θ(n) + F · n. In words, the growth of the pattern
associated with HO,Θ gives, up to an additive linear factor, strong upper and lower bounds on the average
run-time, and an upper bound on the worst-case runtime. Since the bound on the worst-case runtime is
within at a multiplicative linear factor of the average case lower bound, the worst-case bound is close to
being tight.

Example 23 Consider a pattern whose graph G(Θ) has multiple cycles, connected by a single maximal
acyclic path P:

.C1
C2

Ck

Denote the portion of the maximal path up to γi by pi. Let ci denote the length of the i-th cycle. Let
gi = gcd(ci, . . . , ck), the greatest common denominator of the lengths of the k − i + 1 cycles after (and
including) Ci. For instance, in the graph in example 22, g1 = 1, g2 = 5, and g3 = 15. Let l be the minimal
j such that g j−1 < g j; in example 22, l would be equal to 2. It is not hard to see that in this example,
HO,Θ = pl ∪G(Θ)≥γl for all ordering functions O; in words, this consists of the cycles after (and including) Cl,
and the maximal path up to γl. Hence, by prop. 12, the growth function gO,Θ(n) scales as O(nk−l+1). Thus,
the average-case runtime of FO

Θ
scales as nk−l+1, and the worst case no worse than nk−l+2 (in fact, it scales like

nk−l+1).

In general, the structure of HO,Θ can be somewhat subtle. See figure 3.5 below for a table ofΘ, O, choices
and their corresponding graphs HΘ(O). One important fact is that the growth function gO,Θ(n) doesn’t
depend too much on the choice of ordering function O:

Proposition 17 [Ordering Invariance] There is a constant A < m2r+1 such that for any two ordering functions O
and O′, gO,Θ(n) ≤ A ·

∑
k≤n gO′,Θ(k).

This proposition is proved in the appendix. Again, since for all O, gO,Θ ∼ Cnm or ∼ Cλn,
∑

k≤n gO,Θ(k) ≤
n · gO,Θ(n). The growth of HO,Θ can therefore differ by at most a factor of n between various O. Thus, choice
of ordering function O doesn’t have too much impact on the run-time of FO

Θ
.

Related Work

The Naive Backtracking construction is an example of a somewhat vaguely-defined class of backtracking
algorithms that are foundational in computer science [2]. The single-choice gradient algorithm is reminiscent
of gradient constructions used in amorphous computing [1]. It is interesting to note that the latter is a special
case of the former.

The results of this chapter further clarify the relationship of this theory to that of formal languages. In
terms of the theory of formal languages, the computation in §3.3 shows that very subtle structure in the
graph of the NDFA underlying the locally checkable language deeply influences the performance of the
naive backtracking algorithm for the construction problem associated with that language. In addition, the
maximally futile subgraph construction described in §3.3.2 and shown in Fig. 3.5, which characterizes the
runtime, is a good example of the “more detailed” invariants that I first mentioned at the end of chapter
2. Like the other “more detailed” properties mentioned there, the maximally futile subgraph invariant is
not one that is captured by the power series representation of regular languages, and is not preserved by
wreath product.

The main subject of our work is the construction of robust solutions to locally checkable patterns. One
of the central ideas of §3.2 is that the construction of the Naive Backtracking rule contains all the ingredients

CHAPTER 3. LOCAL CHECKABILITY IS SUFFICIENT: GENERIC CONSTRUCTIONS 55

∼ C · n

∼ C · n2

∼ C · n2

∼ C · n

G(Θ), O H, α gO,Θ(n)

∼ C · n

∼ C · (1.0529)n

Figure 3.5: In the left column, a set of graphs G(Θ), and choices for ordering function O (indicated by green
arrows showing O’s “first choice” at choice points). In second column, the maximally futile subgraph HO,Θ,
with the path αO,Θ highlighted in red arrows. In column 3, the growth rate of HO,Θ.

CHAPTER 3. LOCAL CHECKABILITY IS SUFFICIENT: GENERIC CONSTRUCTIONS 56

of a full-powered Turing machine, and as such is are not easily characterized via simple languages. (Only in
the case of the single-choice patterns, the local gradient rule may be thought of as a one-directional Turing
machine, and so may be associated with a regular language.) The construction problem on comparatively
simple patterns (i.e. regular locally generated languages) uses strictly more computational power than is
contained in those languages classes themselves.

The ideas of this chapter connect to the literature on cellular automata through the idea of “particles.”
Introduced in [27], a “particle” is a coherent virtual structure that emerges from the collective dynamics
of the cellular automata. The “self-organized Turing heads” described in §3.2.1 are conceptually similar
to particles. Both are coherent structure that are virtually constructed by the underlying dynamics. Just
as particles can interact to produce new particles, so do the Turing heads interact. In one sense, the self-
organized Turing machine can be thought of as performing “particle engineering” in which the coherent
structures are stabilized to various perturbations in initial conditions and timing, and used to create fixed
structures of some desired form as they move through the space. Future work will pursuing this connection
further.

Chapter 4

Faster Algorithms and Pattern
Classification

The Naive Backtracking algorithm constructed in chapter 3 can be extremely slow. In this chapter I show
how to create much faster algorithms.

The basic reason why the Naive Backtracking algorithm is slow is that the self-organized Turing machine
engages in many futile backtrackings. To create local rules which will cause faster pattern formation, we
have to take advantage of more of the structure of locally checkable patterns. Specifically, in §4.1, I show
how to use the graph structure of G(Θ) to design Less Naive Backtracking algorithms with linear runtime
scaling. These algorithms fundamentally work by having the distributed signals sent by the Turing machine
heads gather smart information that allows them to selectively prune the backtracking decision tree. In
§4.2, I show that the runtime can be improved even further – to being constant, independent of system size
– for a special subclass of patterns that are locally patchable. In §4.3 I step back and consider the various
complexity classes of patterns in relation to the algorithms constructed in this and the previous chapter.

The key take-home result of this chapter is that there is a principled understanding of self-organizable
patterns on which optimizations in local-rule design can be based. These optimizations occur at the level
of “global-to-local compilation”, before any agents run the local rules – and can be integrated into the
generic design process. Once local rules are produced by these constructions, they can then be run on the
multi-agent systems.

4.1 A Linear Time Algorithm

As we saw in §3.3, the reason that the Naive Backtracking algorithm can be slow is that it engages in
many futile backtrackings: the self-organized turing head reverses, constructs, and ultimately rejects,
configurations that can’t possibly have solved the problem. Here I show how to speed up the algorithm by
endowing the turing head with the ability to compute and propagate sufficient local information to avoid
these futile backtrackings.

Consider the pattern

T3 = {(100000)n(1000000000)m(1000000000000000)o
|m,n, o ≥ 3}.

This pattern has a local check scheme Θwith radius 10, and its graph G(Θ) is depicted in example 22 of the
previous chapter. There are three cycles; C1, of size 6; C2 of size 10; and C3, of size 15. C1 corresponds to the
minimal segment 105, C2 to 109, and C3 to 1014.

We saw that among the worst-case run-time configurations for the backtracking algorithm on this pattern
were those of the form

X = (100000)310000000 ◦ 1 ◦ Z

where N , |X| is . 3(5), and Z is any configuration. The reason that FO
Θ

takes a while to solve this
configuration is that, after the birth of an B head in place of the 1 at position 27, the algorithm will then try

57

CHAPTER 4. FASTER ALGORITHMS AND PATTERN CLASSIFICATION 58

out all completions of (100000)3 made up purely of C2 and C3 cycles, before changing the number of copies
of the C1 cycle that appear the beginning. But all configurations Y made of C2s and C3s alone are a multiple
of 5 in size, so any X of the form (100000)3

◦ Y must be of ≡ 3(5). Thus, if N . 3(5), all the completions like
Y must fail; and as N scales, there will be ∼ O(N2) such failures, each of which contributes to the runtime.

Now, suppose we could somehow: A) find a way for the B-head to determine the value of N modulo
5 and carry an indicator of this information along with it as it backtracks around the space; and B) have
the head decide NOT to backtrack when the value of the indicator shows it would be impossible for a
completion made up purely of C2s and C3s to work. The resulting algorithm’s runtime when be reduced
from quadratic to linear scaling in N. In what follows, I show how to achieve A) and B) with local rules,
and for all local check schemes.

4.1.1 The Strategy

As defined in the previous chapter, the naive backtracking rule FO
Θ

has an “asymmetry”. When the right-
moving head B proceeds, as per Rule 3, it leaves behind a trail of meaningful, pattern-satisfying states in its
leftward wake. It does this by propagating according to the choice O(B(−2r− 1 : −1), 1), where B is the local
radius-2r+ 2 ball. In contrast, when the left-moving head C proceeds as per Rule 6, it simply leaves behind
a string of C’s. 1 To modify the naive backtracking procedure to meet goal A), we remove this asymmetry
so that both left- and right-moving heads can create meaningful patterns.

Given a local check scheme Θ and a Θ-accepted ball b, recall the left-compatibility set L(b) defined in §2.2.1.
In analogy with definition 22, define:

Definition 24 [Right- Choice Ordering Function] A right-choice ordering function for Θ is a mapping

P : B2r+1 × [m]→ [m]

such that P(b, ·) is a bijection from {0, . . . , |L(b)| − 1} to L(b). Define the notations P−1
b , P, ≥P,b and B+1

P in analogy with
those defined for left-choice functions O.

Now, let’s see by example what happens if we have the left-moving head propagate by choosing P(B(1 :
2r + 1), 1) instead of the trivial propagation.

Example 24 Suppose Θ is a local check scheme of radius r whose graph is, as in example 23,

.C1
C2

Ck
α1 α2 αk

αk+1

δ1 δ2
δk

β1 β2 βk

γ1 γ2
γk

We’ve denoted the cycles Ci; the portions of the maximal acyclic path P in Ci by βi, and the portions between
Ci−1 and Ci by αi. The maximal acyclic path itself is

P = α1 ◦ β1 ◦ α2 ◦ β2 . . . ◦ βk ◦ αk+1.

The left-choice points are γis and the right-choice points are δis. Denote the portion of the maximal path up
to, and just beyond, δi, by Pi. Let ci denote the length of the i-th cycle. Let gi = gcd(ci, . . . , ck), the greatest
common denominator of the lengths of the k − i + 1 cycles after (and including) Ci. Assume that O and P
are again chosen to “remain” in cycles.

1The asymmetry can easily be seen in eq. 3.2. The right-moving Turing operator is PR
G2 ,∆

where

G2(B) = Θ[B−] ∧ (¬Θ[B(−2r : 0)])

is the “border of Θ-correctness” condition and ∆(B) = ∇+
Θ

(B−) is the local Θ-gradient. The left-moving operator is PL
G6 ,∅

, which has the
trivial propagator ∅.

CHAPTER 4. FASTER ALGORITHMS AND PATTERN CLASSIFICATION 59

As we saw in the previous chapter, the “slow configurations” for FO
Θ

will in this case be those of the
form Pi ◦ B ◦ Z of size N for which that mod(N, gi+1) , mod(|P| − r, gi+1). Because, when projected onto the
graph G(Θ), the left-most turing head is created just after cycle Ci and before cycle Ci+1, the trajectory of
FO
Θ

on X will write out multiple copies of Ci, until it hits the right end. So far, FO
Θ

has used Rule 1 (to start
the head, and Rule 2 and textbfRule 3 to propagate the head. Rule 4 is not applied, since when the B hits
the end, there is no possible completion. Next, Rule 5 will apply and create a left-moving C head, so that
configuration is

X′ = Pi+1 ◦ Cm
i+1 ◦ Ci+1(1 : j) ◦ C

for some m and j.
At this point, under the operation of the Naive Backtracking algorithm FO

Θ
, the head would reverse

and start writing a string of C’s until it encounters the first choice point. But suppose now that we define
a new algorithm F̃O

Θ
that shares Rules 1-5 with FO

Θ
, but replaces Rule 6 with propagation according to

P(B(1 : 2r+ 1), 1). By definition of a right-choice function P, the Cwill move to the left, first writing αk+1 and
then copies of Ck, so that after 2t timesteps (in the synchronous model), the configuration is

X′t = Pi+1 ◦ Cmt
i+1Ci+1(1 : jt) ◦ C ◦ Ck(lt : |Ck|) ◦ Cnt

k ◦ αk+1

for some nt, mt, jt, and kt.
The key realization is that as the Cmoves along, the states of the 2r + 1 agents to the right of C provide

an indicator of length modulo gi+1. That is, if we denote by j the position of the C in X′t , the value
of mod(|X| − j, gi+1) can be determined from X[t + 1 : t + 2r + 2]. This is because, as an r-ball in G(Θ),
B = X[t + 1 : t + 2r + 2] determines a unique position p in the cycle Ck+1. Since Θ has radius r this position
p can be determined by looking at just the 2r + 1 states X[t + 1 : t + 2r + 2] alone. If the agent at C assumes
that the states of the agents to its right have been according to T L

P,Θ, then

t = |αk−1| − r + p +m|Ck|

for some m. But

mod(t, gi+1) = mod(|αk+1| − r + p +m|Ck|, gi+1) = mod(|αk+1| − r + p, gi+1).

The last expression is locally computable since p is, and |αk+1| and r are known in advance.

Having seen how to achieve A), at least in a single example, how should we instruct the agent to act
with this knowledge to achieve B)?

Example 25 Contuining with the setup of example 24, suppose X is a configuration like X′ above, but
assume nothing about the value of mod(|X|, gi+1). Under F̃O

Θ
as defined so far, when C head arrives at the

first non-maxed-out choicepoint, the local configuration looks like:

. . .C1
Ci Ck. . .

.

The agent hosting the C can determine its relative position p in the cycle Ck, and knows that the number of
agents to its right is of the form p + m · |Ck| + A where A = |αk+1| − r is a predetermined constant. Now, if
on the one hand, mod(p + A, gi+1) , 0, then a head reversal at this point would necessarily be futile, since no
number of the form p + m · |Ck| + A will ever be able to be written as p + A + m · gi+1. On the other hand,
IF mod(p + A, gi+1) = 0, then two things can be said: (i) there’s a chance the head reversal will not be futile,
since sometimes a number of the form p + m · |Ck| + A will be able to written in the form p + A + m · gi+1;
and (ii) if m > lcm(ci+1, . . . , ck), then a head reversal here will necessarily be successful, in light of Useful Fact
1 discussed in the previous chapter. We will therefore want to define F̃O

Θ
so that it reverses only when

mod(p+A, gi+1) = 0, since this criterion lets in all successful reversals, and only has at most constantly many
futile ones, regardless of the size of the system.

CHAPTER 4. FASTER ALGORITHMS AND PATTERN CLASSIFICATION 60

1
2

2
34

5

6

7 8

C∗
Θ

1
0

pΘ

γ0

Figure 4.1: A generic single-terminus graph. γ0 is the unique “gateway” node. The red arrows indicated the cycle C∗
Θ

; the purple
arrows the path pΘ; the blue numbers indicate the choices of the function choice function P; and the black numbers indicate the
position numbers n(x) for x ∈ A − A0.

Our strategy is now clear: achieve A) by having the left-moving turing head write copies of the “most
terminal” cycle, from the right. This provides enough information about the system’s size modulo the
greatest common denominator of the possible allowable segment sizes that B) can be achieved by comparing
the local value of the position of the head to a “gcd criterion” for reversal. The goal now is to write rules
analogous to Rules 1-10 from the previous chapter, that will implement this strategy. I will first show how
to do it for a special class of graphs (subsuming the two examples above) that I call single terminus graphs
on which this process is relatively simple. Then, I extend the construction to all graphs by viewing them as
combinations of single-terminus graphs.

4.1.2 Single Terminus Graphs

In the previous section, we used the “most terminal” cycle in the graph G(Θ) to build an indicator of system
size. The fact that all configurations had a common “most terminal” cycle made it possible to use the same
indicator at all times. The most general class of graphs that have a unique common “most terminal” cycle
are the single terminus graphs:

Definition 25 A directed graph G is said to be single terminus if:

1. There is a unique “gateway” node γ0 ∈ G such that all maximal paths in G contain γ0, and which is contained
in a non-trivial strongly connected component of G.

2. There is a unique path A0 from γ0 to the (therefore unique) terminal node of G. (And hence, all maximal paths
in G end with p.)

A generic single terminus graph is shown in figure 4.1. The local check scheme in example 24 is evidently
single terminus.

Suppose G(Θ) is be single terminus, let O and P be choice functions for G(Θ) which remain within
strongly connected components. The first task we have is to locate in G(Θ) the appropriate “most terminal
cycle”. To this end, make the inductive definitions

γi , P(γi−1, 1) and Ai , (γi, γi−1) ◦ Ai−1;

continuing until such i as γi = γ j for some j < i. Let A denote the resulting path, which is in the form a
“cycle+line” graph. Let the cyclic portion be denoted C∗

Θ
and the linear portion be denoted pΘ. In figure 4.1,

the red arrows indicated the cycle C∗
Θ

; the purple arrows the path pΘ; the blue numbers indicate the choices
of the function choice function P; and the black numbers indicate the positions of the nodes γ0, γ1, . . . in
A − A0. In example 24, C∗

Θ
= Ck.

The path A plays the role of “most terminal segment”, with the cycle C∗
Θ

being its repeated unit. In
configurations of the form Y ◦ C ◦ pΘ(k : |pΘ|) or

Y ◦ C ◦ C∗Θ(l : |C∗Θ|) ◦ (C∗Θ)m
◦ pΘ,

CHAPTER 4. FASTER ALGORITHMS AND PATTERN CLASSIFICATION 61

the head will be able to determine the position k within pΘ or l within C∗
Θ

. This will enable the agent to
compute a “gcd criterion” and thereby determine whether to reverse or not.

Having found the most terminal unit, we now need to construct the “gcd criterion”. For any acyclic
path in G(Θ), recall from chapter 2 the use of gcd(p) to denote the gcd of the lengths of the cycles in strongly
connected components of G(Θ) that intersect p. Let B be a ball of radius 2r + 2. Let b1 = B(−2r − 1 : −1) and
b2 = B(2 : 2r + 2), considered as r-balls.2 Now, let the boolean function, Γ(B), be defined as TRUE when:

1. b1 ∈ G(Θ) and b2 ∈ A;

2. if b2 ∈ A0, there is a path from b1 to b2 of length ?(b1) + ?(b2);

3. if b2 = γi ∈ A − A0 − C∗
Θ

, there is a path from b1 to γΘ of length i + ?(b1) + ?(b2)

4. if b2 = γi ∈ C∗
Θ

, there is an acyclic path p in G(Θ) from b1 to γΘ such that

|p| − i − ?(b1) − ?(b2) is divisible by gcd(p).

Since the cycle C∗
Θ

and line graph pΘ depend on the choice function P, so does Γ.
Intuitively, Γ(B) is the local query that an agent makes asking if: 1) “is the local indicator of C∗

Θ
-position,

to be used to compute the gcd criterion, present?” and, 2) ”If the gcd indicator is present, does it indicate
that a reversal would be futile, or not?” Γ(B) is a generalization of the “gcd criterion” developed by example
in the previous section. In particular, suppose that X is a configuration of the form

X = Y ◦ d ◦ C∗Θ(l : |C∗Θ|) ◦ (C∗Θ)m
◦ pΘ

where d ∈ {B,4i,C}, and Y is Θ-consistent. Then if Γ(B2r+2(|Y|,X)) does not hold, extΘ(Y) cannot contain a
configuration of size |X|. On the other hand, if Γ(B2r+2(|Y|,X)) does hold, and |X| − |Y| is sufficiently large
(larger than the LCMs of the cycle lengths in G(Θ), say), extΘ(Y) will necessarily contain a configuration of
size |X|.

Define the function O∗(B) by:

1. setting it to be O-minimal state s for which Γ(B[−2r − 2 : −1] ◦ s ◦ B[1 : 2r + 2]]), if such s exists

2. setting it to be O(B[−2r − 1 : −1], 1) otherwise.

Intuitively, O∗(B) is the value that the right-moving head should take on as it moves across the space. If the
gcd criterion indicates that a certain choice is better than the first O-minimal choice, it takes that; otherwise
(when the gcd indicator is not present or no state will satisfy it), it simple takes the O-minimal choice.

Let L̃P
O[B] be the boolean defined by

L̃P
O[B] = Γ(B)⇒ (@s >O,b1 B(0) | Γ(B[−2r − 2 : −1] ◦ s ◦ B[1 : 2r + 2]])).

Moreover, when Γ(B) holds but L̃P
O(B) fails, let s∗(B) be the O-minimal s >O,b1 B(0 for which Γ(B[−2r − 2 :

−1] ◦ s ◦ B[1 : 2r + 2]]).
Intuitively, LP

O is the analog of the condition L used in defining FO
Θ

in the previous chapter. Essentially,
it says “either 1) the gcd indicator is not present or is indicating a turn here is futile, or 2) a turn might
not be futile, but previous choices here have maxed out the possible set of next choices that would lead to
non-futile reversals.” Hence, if LP

O holds, the head should continue on and NOT reverse. On the other hand,
if a head turn would not be futile, and the choices have not been maxed out, s∗(B) is the O-minimal such
non-futile choice.

Now, define the local rule F̃(B) with radius 2r + 3 by the following rules:

• Rule 1 sets up the creation of a right-moving turing head when necessitated by a local mistake.
Formally,

α̃1[B] , Θ−r−1[B] ∧ (Θ¬−r[B]) ∨ η[B]) ∧ (B(0) ∈ S) ⇒ F̃(B) = B.

2Technically, this means that b1 is the r-ball whose underlying string is B(−2r−1 : −1) and for which?(b1) = max(0, |B(−2r−1 : −1)|−r).
If |B(−2r − 1 : −1)| = 0, b1 is the empty left-ball. Similarly b2 is the r-ball whose underlying string is B(2 : 2r + 2) and for which
?(b2) = min(r + 1, |B(2 : 2r + 2)| − r). If |B(2 : 2r + 2)| = 0, then b2 is the empty right-ball.

CHAPTER 4. FASTER ALGORITHMS AND PATTERN CLASSIFICATION 62

• Otherwise, Rule 2 propagates the B head to the right. Formally,

α̃2[B] , (B(−1) == B) ∧Θ−r−2[B]
γ̃1[B] , Θ−r−1[B] ∧ (B(1) = B(0) = B) ∧ (∃ j|Θ[B[−2r : −1] ◦ j])

}
⇒ F̃(B) =

{
B
O∗(B)

• Otherwise, Rule 3 halts the right-moving turing head by disappearing it off the right end, when a
completion if possible. Formally,

γ̃2[B] , (B(0) = B) ∧Θ−r−1[B] ∧ (∃ j|b j[B]) ⇒ F̃[B] = min
O
{ j ∈ [0,m − 1]|b j[B]}.

• Otherwise, Rule 4 reverses a right-moving turing head into a left-moving head, when the right-moving
head is unable to move forward because a completion is impossible. Formally,

β̃1 , Θ−r−1[B] ∧ (B(0) = B) ∧ (
∧
Θ¬[B[−2r : −1] ◦ j])

β̃2[B] , (B(0) = B) ∧Θ−r−1[B] ∧ (
∧m−1

j=0 b¬j [B])

⇒ F̃(B) = C.

• Otherwise, Rule 5 propagates the C head leftward, when a) the gcd indicator is not present, or b)
when it is and indicates a reversal is futile or c) when the set of non-futile choices has already been
maxed-out relative to O. Formally,

β̃4[B] , Θr+1[B] ∧ (B(−1) = B(0) = C) ∧ (∃ j|Θ[j ◦ B[1 : 2r + 1]])
β̃3[B] , (B(1) = C) ∧ L̃P

O(B) ∧ ((B(0) = C) ∨ (β̃4[B+2])¬)

}
⇒ F̃(B) =

{
P(B[1 : 2r + 1], 1)
C

In case a), represented by β̃4[B] not holding, the left-moving head writes a string of C’s. In b), or
c), represented by β̃4[B] holding, the gcd indicator is propagated by the left-moving head writing
Θ-consistent states from the right.

• Otherwise, Rule 6 reverses the turing head at a choicepoint where a reversal is indicated to not be
futile. Formally,

ε̃[B] , ((B(0) = 4B(−1)) ∨ (B(0) = C)) ∧ Γ(B−1) ∧ (̃LP
O)¬[B−1]

δ̃[B] , (B(1) = 4B(0)) ∧ Γ(B) ∧ (̃LP
O)¬(B)

α̃4[B] , (B(0) = C) ∨ ((∃ jB(0) = 4 j)

⇒ F̃(B) =

4B(−1)
s∗(B)
B

ε̃ halts the left-moving turing head when reversal won’t be futile; δ̃ clicks up the choice to the next
non-futile choice; and α̃4 completes the turn of the head, but only after δ̃ has been acted upon. α̃4 also
resets all partially formed heads that do not conform to the structure required in ther other rules.

This local rule is summarized in the inset 2. In contrast to the Naive Backtracking algorithm, for this “Less
Naive” Backtracking algorithm, 1) every reversal that would have been made by FO

Θ
but that F̃Θ ignores

would have been futile in the first place, and 2) F̃Θ makes only a constant number of reversals that end up
being futile, independently of the size of the system. As a result,

Proposition 18 Suppose Θ is a local check scheme of radius r over m states, and G(Θ) is a single terminus graph.
F̃Θ is a solution to Θ(C) in an all live timing models, and in the synchronous timing model,

TTSworst(F̃Θ)(n) ≤ 8 · n + C

where C is a constant depending only on m and r. That is, the asymptotic runtime of F̃ scales linearly in system size.

The proof of this result is found in an appendix to this chapter.

CHAPTER 4. FASTER ALGORITHMS AND PATTERN CLASSIFICATION 63

Algorithm 2: Less Naive Backtracking Algorithm for Single Terminus Graphs

if α̃1[B] ∨ α̃2[B] then
F̃(B) = B

else if β̃1[B] ∨ β̃2[B] ∨ β̃3[B] then
F̃(B) = C

else if β̃4[B] then
F̃(B) = P(B[1 : 2r + 1], 1)

else if γ̃1[B] then
F̃(B) = O∗(B)

else if γ̃2[B] then
F̃(B) = minO{ j ∈ [0,m − 1]|b j[B]}

else if δ̃[B] then
F̃(B) = s∗(B)

else if ε̃[B] then
F̃(B) = 4B(−1)

else if α̃4[B] then
F̃(B) = B

else
F̃(B) = B(0).

end

4.1.3 The General Case

In the previous section, I showed how to construct a linear-time algorithm for single terminus graphs. Here,
I describe how to generalize this construction to all local check scheme graphs.

All finite directed graphs G(Θ) can be written as a finite union of (possibly overlapping) single terminus
graphs. To see this, define the boolean

TR(b) = 1 if b ∈ G(Θ) and scc(p) = 0 for all paths p with p0 = b.

In words, there is no path from b to a cycle in G(Θ), so b is a “right-terminal” node. Let A0 = {b|TR(b)} denote
the set of all right-terminal nodes in G(Θ). For instance, in figure 4.2a, A0 is comprised of the nodes shaded
red. The set

A1 , ∪{in(b,G(Θ)) | b ∈ A0} − A0

contains all the nodes that are “just prior” to the right-terminal nodes. These are the nodes shaded orange
fig. 4.2a. Now for each γ0 ∈ A1, let P(γ0) denote the set of maximal paths p in A0 for which p0 ∈ out(γ0,G(Θ)),
and let p′ = γ0 ◦ p. Define

Gγ0,p , G(Θ)≤γ0 ∪ p′.3

For every γ0 ∈ A1 and p ∈ P(γ0), Gγ0,p is a distinct single terminus graph with γ0 as the distinguished
“gateway” node. The set of such Gγ0,p covers G, i.e.

G(Θ) =
⋃
γ∈A1

p∈P(γ)

Gγ,p.

The results of this decomposition process for the graph in fig. 4.2a are shown in fig. 4.2b.
Each Gγ0,p has a unique “most terminal cycle+line” associated with it. In particular: for each γ0 ∈ A1,

make the inductive definition

γi , P(γi−1, 1), and Ai
γ0
= (γi, γi−1) ◦ Ai−1

γ0
.

3Recall the definition used in chapter 3, that for any directed graph G and node x ∈ G, G≤x is graph induced by G on the nodes
y ∈ G for which there is a path from y to x, including x itself.

CHAPTER 4. FASTER ALGORITHMS AND PATTERN CLASSIFICATION 64

1
2

3

1
2

3

=

+

+

a) b)

Figure 4.2: a) A graph with right-terminal nodes shaded red and “almost-terminal” nodes shaded orange. b) The decomposition of
the graph from a) into three single-terminus components.

Top

Middle

Bottom

γTop

γmiddle

γbottom

Figure 4.3:

Repeat this until such i as γi = γ j for some j < i. Let Aγ0 denote the resulting path. Each Aγ0 is of the form
of a “cycle+path” graph; let Cγ0 denote the cyclic portion and Lγ0 denote the linear portion. For p ∈ P(γ0),
Aγ0,p = Aγ0 ∪ p′ is the “most-terminal cycle + line” for Gγ0,p, consisting of the cycle Cγ0 attached to the path
Lγ0 ◦ p′. In the algorithm F̃Gγ0 ,p

as constructed in the previous section, the left-moving turing head will write
states consistent with Aγ0,p for use as the “gcd indicator.”

The goal now is to combine the local rules F̃Gi for each single-terminus component Gi into a local rule for
the overall pattern. To see how to do this, let’s pick a simple example. Consider a local check scheme whose
graph is depicted in fig. 4.3. This graph has three single-terminus components: GTop, Gmiddle, and Gbottom.
The “most-terminal” portions of each are colored purple, orange, and yellow, respectively. A1 consists of
three nodes, γTop, γmiddle, and γbottom, one in each of the three “most-terminal” portions.

I’m now going to (informally) define a local rule F̃ that will solve this pattern. Let’s concentrate first on

the single-terminus graph Gtop (i.e. this one:). Consider an initial configuration X = Y ◦B ◦Z,
where where Y is a path in GTop containing repeats of the “first” cycle, and Z is an arbitrary configuration.

Viewed as a path in G(Θ), this looks like:

. . .

. Suppose we start applying F̃Gtop to this initial
configuration. F̃GTop will propagate theBhead until it reaches the right end, in the configuration Y◦Cm

◦B. The

CHAPTER 4. FASTER ALGORITHMS AND PATTERN CLASSIFICATION 65

head will reverse then reverse and propagate leftward: . As it propagates,
the head leaves behind a trail of “purple states” to serve as the gcd indicator. If it reaches a choicepoint that
satisfies the gcd criterion before hitting the left end, the head will take on the 4B(−1) state, and the agent to its

left will “click up” up to the next option: . Define F̃, the algorithm that
is supposed to solve the whole pattern, identically with F̃GTop up until this point. Now, however, let’s define
F̃ slightly differently from F̃GTop . The latter will create B in place of the 4 state, and this would propagate all
the way to the right end of the configuration. Define F̃ instead so that it replaces B wlth a new state, call it

B1: 1 . This new state B1 will operate like B, but instead of propagating all the
way to the right end, B1 will instead stop at the first right-terminal node in GTop that it encounters. That is,
the B1 will stop propagating when the 2r+ 1 agents to its right, considered as an r-ball b, satisfy the boolean

Tr(b) defined above. The trajectory will look like: 1

Right terminal node. .
.

. Upon encountering

a right-terminal node, define F̃ to have B1 reverse into a C head:
1

. This
Cwill then propagate as it did previously, i.e. until it encounters the first choicepoint where the gcd criterion
holds. The above steps repeat: each time the C reverses, it becomes a B1; which then propagates up until
the first right-terminal node in encounters and no farther; and reverses if need be. This continues until a
solution is found.

If a solution is not found, however, the C will eventually propagate all the way to the left end of the

configuration: . In this case, instead of reversing into B1, define F̃ to

reverse back to the original B head: . Under the original algorithm
F̃GTop , the B will propagate all the way to the left end; however, define F̃ so that it propagates B to the first

left-choicepoint that is a terminal node, relative to the right choice function P:

. . .
. . .

There, the B will reverse, after the state of the agent to its right “clicks up” to the next choice, relative to
P. That is, B propagates past the first right-terminal point, but stops at the first point thereafter which is a
left-choicepoint and makes the “next choice”. For this graph G(Θ), that will mean that the path from the
right terminal node will shift from the “top” branch to one of the other branches (say, the middle branch):
. . .

. . .
. Now the algorithm operates as if it were on Gmiddle, and the configuration looks

CHAPTER 4. FASTER ALGORITHMS AND PATTERN CLASSIFICATION 66

like: . The same rules as have just been described will now implement
F̃Gmiddle . The C head propagates leftward, propagating the “orange states” as the gcd indicator for this
component; until it encounters the first choicepoint where the gcd criterion holds. It then reveres to B1,
propagates right until the first right-terminal node (which is now on the terminus associated with Gmiddle);
and repeats. If the configuration is still unsolved by the time the C encounters the left end, the head reverses
to the original B head, which travels rightward until it encounters the next right-terminal choicepoint.
There, it moves the to the next choice relative to the P choice function, which will in this case be to shift the
path from the right from the Gmiddle terminus to the Gbottom terminus; and the steps repeat.

So now we have a strategy that will work for all graphs:

• Decompose G(Θ) = ∪Gi, where each Gi is single terminus.

• Define F̃G(Θ) by combining the algorithms F̃Gi on their domains of definition, with the modifications
that:

– When a C head reverses as a result of a satisfied gcd criterion, the reversed head is in the new
state B1.

– When a B1 head encounters a right-terminal node, it reverses to C.
– When a C head reverses as a result of hitting the left end, it reverses to B.
– When a B head encounters a left-choicepoint that is a (right) terminal node, it sets the next choice

and reverses to C.

The algorithm F̃G(Θ) so defined will search “reverse lexicographically” through the single-terminus compo-
nents, trying out all the gcd-criterion-approved completions of the i-th terminus become moving on to those
of the (i + 1)-st terminus. The runtime of F̃G(Θ) on initial condition |X| will simply be (at worst) the sum of
the runtimes for each single-terminus component, so that

TTSworst(F̃G(Θ))(n) ≤ 8 · |G| · n + A,

where |G| is the number of single-terminus component in G(Θ) and A is a constant depending only on m
and r.

There is one small snag in implementing this strategy in general. The example in fig. 4.3 that we’ve just
worked through is special in that there is only one “gateway node” γ0 in any given terminal cycle Cγ. In
contrast, the graph in fig. 4.2 has three γ0 nodes attached to the same terminal cycle. This situation requires
attention: if there is a cycle C = Cγ0 = Cγ′0 , then an agent trying to evaluate the “gcd criterion” in C will not
be able to locally determine whether it “came from” γ0 or γ′0. Of course, to accurately use the gcd criterion
the agent will need to know this information. Hence, the head C will have to carry with it an indicator of
the identity of the node γ0. The simplest way to do this is to introduce states Cγ0 for each γ0 ∈ A1.

Since A1 is a subset of G(Θ), |A1| ≤ m2r+1. Hence we need to add at most m2r+1 extra states. The details of
implementing this algorithm are straightforward, and are given in an appendix §C. As a result, we have:

Theorem 3 All locally checkable patterns T over m states are solvable by a local rule with radius 2r(Θ) + 3 using
m2r+1 + 2m + 2 states, whose worst-case runtime in the synchronous timing model scales linearly with system size.

4.2 Locally Patchable Patterns

A pattern is locally patchable (LP) if isolated local errors can always be fixed by local corrections. Formally,

Definition 26 [Locally Patchable Check Schemes] A local check scheme Θ of radius r is k-locally patchable if
for all configurations X such that |X| ∈ Sizes(Θ), and all 1 ≤ i1 ≤ j1 < i2 ≤ j2 ≤ j ≤ |X|, such that i2 > j1 + 2k, then
whenever

Θ[Br(l,X)] = 1 for all l < [i1, j1] ∪ [i2, j2],

CHAPTER 4. FASTER ALGORITHMS AND PATTERN CLASSIFICATION 67

there are subconfigurations Y1 and Y2 of size min(k, i1)+k+ j1− i1+1 and k+min(k, |X|− j2)+ j2− i2+1, respectively,
such that

X′ = X[1 : max(1, i1 − k)] ◦ Y1 ◦ X[j1 + k + 1 : i2 − k − 1] ◦ Y2 ◦ X[min(|X|, j2 + k) : |X|]

is a Θ-admissible configuration of size |X|. Θ is said to be locally patchable if it is k-locally patchable for some finite
k.

In the above definition, the statement that Θ[Br(l,X)] = 1 for k < [i1, j1] ∪ [i2, j2] intuitively encodes the idea
that all the errors in X are isolated to the regions [i1, j1] and [i2, j2]. A k-locally patchable pattern will allow
whatever errors there are to be fixed by replacing the regions [i1, j1] and [i2, j2] – together with buffer zones
of size k on either side – with independent “local patches” Y1 and Y2. Of course, the region [i2, j2] can be
taken to be empty, implying that single isolated errors in locally patchable patterns must be locally fixable.
Moreover, the definition implies that patchability will hold for any number of regions [i1, j1], . . . , [in, jn], as
long as il > jl−1 + 2k.

Example 26 Consider the pattern T1 generated by freely alternating instances of the word 10 with the word
100, i.e.

T1 =
⋃
k∈N

{(100)n1 (10)n2 . . . (100)nk |ni ∈N}.

Notice that if X and Y are T1-admissible configurations, and k is such that X(k) = 1, then X[1 : k−1]◦Y◦X[k :
|X|] is a T1-admissible configuration of size |X| + |Y|. Similarly, if k1 is such that X(k1) = X(k2) = 1 then
X[1 : k1 − 1] ◦ X[k2 − 1 : |X|] is T1-admissible.

Now suppose X is a configuration and i, j are such thatΘ[Br(k,X)] = 1 for k < [i, j]. Let i1 be the maximal
l < i such that X(l) = 0. Evidently, i − i1 < 2. Similarly, let j1 be the minimal l > j such that X(l) = 1; and
j1 − j < 2. Since X(i1 + 1) = X(j1 + 1) = 1, X[1 : i1] ◦ X[j1 : |X|] is T1-admissible. On the other hand, since
T1 contains configurations of all sizes larger than 1, pick be a T1-admissible configuration Y of size j1 − i1.
Then X[1 : i1] ◦ Y ◦ X[j1 : |X|] must be T1-admissible. Hence T1 is 2-locally patchable.

Example 27 Consider the pattern T2 generated by freely alternating combinations of the sequences 1001 and
100112001, discussed in example 19 in chapter 2. This pattern has a local check scheme Θ radius 3, whose
graph G(Θ) has two irreducible cycles, one of length 4, denote C1, and other of length 9, denoted C2. Notice
first that if X is a T2-admissible configuration, and k is such that X[k−3 : k] = 1001 or X[k−8 : k] = 100112001,
and Y is T2-admissible, then X[1 : k] ◦ Y ◦ X[k + 1 : |X| is T2-admissible. Similarly, if k1 < k2 are such that
X[k1 : k1 + 3] = 1000 or k[k : k1 + 8] = 100112001 and X[k2 − 3 : k2] = 1000 or X[k2 − 8 : k2] = 100112001, then
X[1 : k1 − 1] ◦ X[k2 + 1 : |X|] is T2-admissible. Now, as discussed in example 19, any size n greater than 36 is
in Sizes(T2). Following the argument as in the previous example shows that T must be (36/2 = 18)-locally
patchable.

For instance, consider the subconfiguration

Z = . . . (1001)410(1001)2

Visually:

.

in which blue represents state 1 and red represents 0. This subconfiguration is a repetition of the 4-cycle
C1 several times – except for one “bad spot” at the location indicated by the dotted oval, where Θ is not
satisfied. This mistake can be patched by replacing the states of the 18 agents to the left of the bad spot with
100112001100112001, that is, two copies of the cycle C2. Pictorially:

CHAPTER 4. FASTER ALGORITHMS AND PATTERN CLASSIFICATION 68

.

.

in which green color represents state 2.

Example 28 On the other hand, no non-trivial repeat pattern is locally patchable. For instance in the pattern
T10 = {(10)n

|n ∈N}, the configuration
(10)n1(10)n1

is of admissible size for every n. However no separate patches Y1 and Y2 of fixed size will allow for the
correction of the error at positions 2n+ 1 and 4n+ 2 – all of the intervening states between 2n+ 1 and 4n+ 2
have to be modified to generate a T10-admissible configuration.

What property do the patterns T1 and T2 share than T10 lacks? Evidently T10 only admits configurations
of even sizes, whereas the other two patterns admit configurations of all sizes (past a certain fixed size).
However, this is not enough to discriminate, since:

Example 29 The pattern
T3 = {(10)n

| n ∈N} ∪ {(10)n1 | n ∈N}

is not locally patchable, since there no fixed-size local patches that can correct the errors in the configurations
(10)n1(10)n in T3, even though T3 admits configurations of all sizes.

Patterns T1 and T2 also have alternatable minimal segments, leading to exponential pattern growth,
while T10 only has single minimal segment. This property is also not enough, since:

Example 30 The pattern T generated by freely alternating the segments 1000 and 10, considered in example
17 in chapter 2 is not locally patchable. It too is “foiled” by the configurations (10)n1(10)n1.

The key difference between examples 26 and 27 and the others is that the former have both these two
properties, possessing alternatable minimal segments whose sizes can be combined to form any (sufficiently
large) integer. This fact is reflected in the graphs of associated local check schemes for these patterns. In
both cases, the graphs contain a single non-trivial strongly connected component, each of which in turn
contains two cycles whose lengths are relatively prime. A simple generalization of the above arguments
shows that:

Proposition 19 A local check scheme Θ of radius r is k-locally patchable for some finite k if and only if (I) G(Θ) is
acyclic, in which case k < |G(Θ)|; or (II) for all strongly connected components C in G(Θ), gcd(C) = 1, in which case,
k ≤ lcm(C) ≤ (1/2)m(2r+1)m2r .

As a result, if a locally checkable pattern T locally patchable, then:

• Either Sizes(T) is finite (when G(Θ) is acyclic) or its complement inN is (when G(Θ) contains at least
one cycle).

• GrowthΘ(n) is either eventually 0 (when G(Θ) is acyclic), linear (when G(Θ) contains only self-loops)
or exponential (when G(Θ) contains nontrivial cycles).

The reason that I’ve introduced the notion of locally patchable patterns, is that we can improve signifi-
cantly from linear runtime for solutions to these patterns. Call a pattern T weakly locally patchable if there is
a local check scheme Θ for T such that Θ(C) is locally patchable.4

4It is easy to see by the same reasoning as is behind prop. 19 that a locally checkable pattern is weakly locally patchable if the graph
associated with the pattern has at least one strongly connected component Cwith gcd(C) = 1.

CHAPTER 4. FASTER ALGORITHMS AND PATTERN CLASSIFICATION 69

Proposition 20 Every weakly locally patchable pattern admits a local rule solution FT whose average-case runtime
scales at worst O(log(n)) in system size n, for all live uniform timing models; and the runtime improves to O(1) in
bounded asynchronous timing models.

I will demonstrate this result by construction of a local rule that achieves the advertised bounds. The
construction naturally splits into two steps, in which (I) arbitrary initial configurations are rendered “almost
right” except for isolated errors; and then (II) in which those errors are patched. I will describe step (II) first.

4.2.1 Dynamic Local Patching

Let’s return to the pattern in example 27, the free alternation of the minimal segments 1001 and 100112001.

Example 31 Consider all subconfigurations of the form

Zi = . . . (1001)n
◦ 10i

These subconfigurations Zi describe a set of “archetypal local errors” associated with the 1001 minimal
repeat unit. As long as n ≥ 9, so that there is a buffer zone of size 36, such configurations will be locally
patchable. Moreover, there are only really 3 classes of patchings: i = 0, 1, 2 – all the other situations have
patches equal to one of these three forms. Denote the patch for Zi by Pi.

Form all complete configurations composed by concatenating copies of these Zi’s, i.e.

X = Zi1 ◦ Zi2 ◦ . . . ◦ Zik

where i j ∈ {0, 1, 2}, n ≥ 9, and the first and last Zi1 , and Zik are considered as left- and right- end configurations
respectively. Denote the set of all configurations of this form by Z, and call these the “almost good”
configurations. Now, we want to define dynamic local patching process will drive every almost good
configuration X ∈ Z into a completely solved state. (Notice thatZ itself defines an LP pattern, so what we
want to do is find a rule that transforms one LP pattern to another.) This is very simple to do: we simply
“apply” the patches Pi one step at a time:

.

.

.

.

.

.

.

Because each of the bad spots Zi j can be patched independently, the dynamic patching process happens
independently for each bad spot in the concatenation:

.

.

.

. . .

separate ``bad spots''

separate ``local patchings''

CHAPTER 4. FASTER ALGORITHMS AND PATTERN CLASSIFICATION 70

Let’s formalize and generalize this construction. Suppose T is a given pattern and T′ ⊂ T is a locally
patchable subpattern. Suppose T′ is locally checkable by check scheme Θ with radius r, and without loss
of generality, let’s assume G(Θ) contains one strongly connected component C. Let L = lcm(C), the least
common multiple of the lengths of cycles in C. Now, pick a cycle C in C – it doesn’t matter which one. Let
C also denote the repeatable sequence of states corresponding to the cycle (for instance the state sequence
1001 corresponds to cycle C1 in the example above). Now, consider the subconfigurations

Zi = . . .CL/|C|+1
◦ C(1 : i) ◦ CL/|C|+1 . . .

where 1 ≤ i ≤ |C|. Each Zi has a corresponding “patch” Wi, a subconfiguration of size 2(L + |C|) + i of the
form C ◦W′

i ◦C which is Θ-admissible. Notice that the concatenation of any two such patchings Wi and W j
is a Θ-admissible configuration of the form C ◦W′

◦ C.
Let zi = |Zi|. For v = 0, . . . , zi, let

Wv
i = Zi[1 : zi − v] ◦Wi[zi − v + 1 : zi].

In words, the sequence
W0

i →W1
i . . .→Wzi

i

is the local trajectory from Zi =W0
i to Wi =Wzi

i in which the “patch is applied one step at a time.” Of course,
there might be some v such that Wv

i = Wv+1
i as defined; in this case, the local trajectory appears to “skips”

at least one step. Remove the repeated elements from the sequence, denote the numbering of remaining
elements ni, and renumber these so that Zi =W0

i , . . . ,W
ni
i =Wi. For each v ∈ [0,ni], there is a unique position

av
i in [1, zi] and state sv

i ∈ S such that changing the state of agent av
i in Wv

i from whatever it is to sv
i produces

Wv+1
i .

Let P be a maximal acyclic path in G(Θ) intersecting the cycle C such that the only nodes in the strongly
connected component of the graph P ∪ C are contained C. Evidently P ∪ C is single terminus; let γ be the
unique gateway node. Let α denote the portion of P up to γ, and β denote the portion after γ. Pictorially,
the situation is:

C

C
α β

in which the blue path is α, the green path is β, and the nodes shaded red comprise the cycle C. Use the
notation α and β for the state subconfigurations corresponding to these paths.

Now, consider the configurations X of the forms

X = α ◦ Cl1 ◦ Zi1 ◦ Cl2 ◦ Zi2 ◦ . . . ◦ Clk ◦ . . .Zik ◦ Clk+1β (4.1)

and
X = α ◦ Cl1 ◦Wv1

i1
◦ Cl2 ◦Wv2

i2
◦ . . . ◦ Clk ◦Wvk

ik
◦ Clk+1 ◦ β (4.2)

where k is any integer, li are integers, and in the second form, vl ≤ nil for all l ≤ k. Denote the set of
configurations of the form in 4.1 by Z and those of the form in eq. 4.2 by W. In words, Z consists of
the “almost correct” configurations composed of reptitions of the cycle C, with “bad spots” interspersed at
intervals of at least 2L is size. W then consists of the configurations that lie along trajectories between the
“almost correct configurations” inZ and the completely correct configurations in which the patch Wil has
been applied to bad spot Zil .

It is very simple to encode these trajectories with a local rule. Consider the set of radius R = 2L+ |C| balls
in the configurations inW, and call this setBW. Given B ∈ BW, the central agent?(B) will be able to locally
determine whether it is in one of the Wv

i ’s – and more particularly, whether it is the unique (within the

CHAPTER 4. FASTER ALGORITHMS AND PATTERN CLASSIFICATION 71

4L + 2|C| region around it) agent of the form av
i defined above. Because this local determination is possible,

we are able to define the local rule:

F̂1(B) =

sv
i , if B = BR(av

i ,W
v
i)

B(0), otherwise
.

In words, this rule simply enacts the local patching step if it is the unique agent within the patching area
that is supposed to act; otherwise, it does nothing. This rule is evidently the embodiment of “each patch
being applied independently.” Under any live timing model S, F̂ will drive configurations in Z along a
path throughW into T′, the locally patchable subpattern of T chosen above. Having originally started out
with repeats of the cycle C with interspersed errors, F1 patches these errors by using other copies of other
cycles in the strongly connected component C.

F̂1 is thus a solution to T that works on “almost correct” configurations. (Of course, since above definition
of F̂1 is only made on a subset of all balls of radius R (those in BW), F̂1 is only partially specified.) It’s very
simple to compute how long it takes from F̂1 to converge to a solution in its region of definition. Suppose
X ∈ W. Then it is of the form

X = α ◦
(
©

K
h=1Clh ◦Wvh

ih

)
◦ Clk+1 ◦ β.

for some K. Hence, for any call sequence s,

(F̂1)k
s(X) = α ◦

(
©

K
h=1Clh ◦Wvh+sk(vh)

ih

)
◦ Clk+1 ◦ β,

where sk(vh) is the number of calls to agent vh by the k-th step of s. In words: in any timing model, during
every round (i.e. period in which each agent is called at least once), at least one step of each independent

patching is made. Now, within each ”unit” Clh ◦W
vIh+k
ih

, one agent is active when vh + sk(vh) ≤ nih , but once
sk(vh) = nih −vih , this unit is solved and becomes inactive. Thus, in any uniform timing modelS, and X ∈ W,

|Sn|

|X|
τS(|X|,K,min

h
nih) ≤ TTS(F̃1,X) ≤

|Sn|

|X|
τS(|X|,K,min

h
nih)

where |Sn| is the average number of agents in a size n configuration called per timestep inS, and τS(n, k, l) is
the average time it takes for k agents each to be called l times, in a configuration of size n. Now, minh nih = 1
and maxh nih is at most the least common multiple of the cycle lengths in C, which is bounded by a constant
A(m, r) independent of system size.

At this point, the answer actually begins to depend somewhat on the timing model (unlike the previous
algorithms), so we’ll compute it for three specific cases: 1) the totally synchronous modelSs, 2) the k-bounded
asynchronous model Sk, and 3) the totally asynchronous model Sa. In the synchronous model, |Ss

| = n, and
τSs (n,K, l) = l, so TTSSs (F̂1,X) ≤ A(m, r), i.e. it scales as O(1) with system size. In the k-bounded asynchronous
model, |Sk| = 1, and τSk (n,K, l) = C · k · n where C ∈ (0, 1). Hence C · k ≤ TTSSk (F̂1,X) ≤ C · k · A(m, r), so
here too the runtime scales as O(1) with system size. In the totally asynchronous model, |Sa

| = 1, and
nHK − K ≤ τSa (n,K, l) ≤ l(nHK − K), where HK is the k-th harmonic number. Hence for some constants c1, c2,
c1 · log(K) ≤ TTSSa (F̂1,X) ≤ c2 · A(m, r) · log(K). Since K can scale linearly with system system, the worst
runtime of F̂1 in the asynchronous model scales logarithmically with system size.

4.2.2 Getting Almost Correct

Now, we have to extend the definition of F̂1 to BR − BW, the set of all R-balls besides those on which F̂1 is
already defined. The goal is of this part is to force arbitrary initial conditions intoZ, making them “almost
correct”. To see how to do this, let’s return to the setup in example 31.

Example 32 Suppose our goal is to drive arbitrary initial conditions into configurations composed of con-
catenations of 1001s, with local errors of the form 1, 10, 100 interspersed at most once every 2*36 = 72 agents.
The basic answer to how to do this is very simple: 1) have agents that are part of a region that consists of

CHAPTER 4. FASTER ALGORITHMS AND PATTERN CLASSIFICATION 72

repeats of the segment 1001 extend the region by appropriate choice of state, and 2) have agents that aren’t
already part of any such subconfiguration “seed” their own region starting at the beginning of the segment.

A seeding will be necessary when an agent at position j sees no other agents within a region of size 4
on either side that are in the “first state” of the segment 1001. For example, suppose we start out with a
configuration made up entirely 0s and 2s, like

.

in which red represents 0 and green represents 2. Now, to seed 1001 segments, let’s have all agents which
do not see a 1 within radius 4 on either side, and whose own state is a minimum state within that radius-4
ball, turn their state to 1:

.

.

Now, agents that did not act as seeds will join regions of correctness “seeded” by other agents, so that those
regions should grow larger and larger. To ensure growth, the rule will allow a region of size k to overwrite
(from the left) a region of size l only when k ≤ l:

. . .

3 repeats doesn't overwrite 45 repeats overwrites 3

. . .

.

In other words, larger regions “win out” over smaller regions. If k = l, we can default to having the left
region win the competition and overwrite. Once any such region is larger than 2 · lcm(|C1|, |C2|)/|C1| = 72, it
needn’t grow any longer. Eventually, the only remaining “bad spots” will be localized and isolated within
a region at this large:

.

.

.

.

. . .

localized bad spot

This process eventually drives any initial configuration to one which is consistent with C1 at every point
except at localized “bad parts”, i.e. a configuration inZ.

Let’s generalize and formalize this idea, by making the following definitions:

• Given a ball B of radius R = 2L + |C|, let

L(B) = max{K | B[?(B) − K : ?(B) − 1] = Cm
◦ C[1 : b]}

CHAPTER 4. FASTER ALGORITHMS AND PATTERN CLASSIFICATION 73

where |C| + b +m|C| = K and

R′(B) = max{J | B[?(B) : ?(B) + J] = Cm
◦ C[1 : b]}

where again |C| + b +m|C| = J. Let

R(B) = max{R′(B−i)|0 ≤ i ≤ |C| − 1}.

L(B) represents the size the growing C-repeat region just bordering on ?(B) from the left. R(B)
represents the size of the C-repeat region to which ?(B) belongs.

• If L(B) > 0 let s(B) be the unique state such that

B[?(B) − L(B) : ?(B)] = Cm
◦ C[1 : b]

where |C| + b +m|C| = L(B) + 1. In words, if ?(B) is to the left of a growing C-repeat region, s(B) is the
state to which ?(B) should switch, to extend that region.

• The initial and terminal paths α and β are both less than L in length. Hence, an agent can determine
from its L-ball if its position pos(B) is ≤ |α| or ≥ |X| − |β|; and obviously can determine. Moreover,
if pos(B) < |α|, the agent can determine the value of pos(B) – and therefore determine its unique α-
consistent state, namely α(pos(B)). Similarly if pos(B) ≥ |X|−|β|, the agent can determine pos(B)−|X|+ |β|,
and therefore determine its unique β-consistent state, namely β(pos(B) − |X| + |β|).

• Choose a numbering function h : {1, . . . ,m} → S so that h(1) = C(1) (where C(1) is the first state in
the repeatable segment C). Let D[B] be the boolean function which is TRUE if B[−|C| : |C|] does not
contain the state h(1), and if

h−1(B(0)) = min
−|C|≤i≤|C|

h−1(B(i)),

that is, if the state of the ?(B) agent in B is a minimum relative to the ordering h, of all states present
within a radius of |C| on either side.

Now, define the local rule F̂2 with radius R = 2L + |C| by:

if ω1[B] , (pos(B) < |α|) then
F̂2(B) = α(pos(B))

else if ω2[B] , (pos(B) > |X| − |β|) then
F̂2(B) = β(pos(B) − |X| + |β|)

else if ω3[B] , ((L(B) > 0) ∧ (L(B) ≥ R(B)) ∧ (R(B) < 2L + |C|)) then
F̂2(B) = s(B)

else if i fω4[B] , (L(B) = J(B) = 0) ∧D[B] then
F̂2(B) = C(1)

else
F̂2(B) = B(0)

end

In words, what this local rule does is: 1) if ?(B) sees that it is just to the right of a left-terminal segment,
it takes on the appropriate state to extend that segment; and similarly for the right. Otherwise, 2) if ?(B) is
on the border a growing C-repeat region to its left whose size is as large as the C-repeat region to which it
already belongs, but hasn’t already reached 2L + 2|C| in length, then ?(B) extends the region from the left.
Otherwise, 3) if?(B) is not on the border of, or already part of, a C-repeat, it seeds a new C-repeat region; but
it only does this if it is a minimal state-agent relative to the ordering h, within a radius-|C| ball. Otherwise,
4) it does nothing.

Proposition 21 The local rule F̂2 drives arbitrary initial conditions into the setZ.

CHAPTER 4. FASTER ALGORITHMS AND PATTERN CLASSIFICATION 74

Proof: Suppose that we start with an initial condition W0 is a configuration of the form α[1 : j] ◦ Y ◦ β[k : |β|]
where j < |α| and k > 1. For any live call sequence, after the first timesteps in which the agents at positions
j and |X| − |β|+ k are called, then due to the applications of predicates ω1 and ω2, the configuration becomes
α[1 : j + 1] ◦ Y′ ◦ β[k − 1 : |β|], where Y′ is some configuration of size |Y| − 2. Thus we can suppose the initial
condition W is of the form

W = α ◦ X ◦ β.

Let j(W) be the maximal l for which X[1 : l] is a subconfiguration of a configuration in Z. Then for some
h ≥ j(W) − 2L − |C|, X[h : j(W)] = C2LC[1 : k]. Now let B = BR(j(W) + 1,W). Evidently, L(B) ≥ 2L + k; on the
other hand, R(B) < 2L + k, since otherwise the maximality assumption about j(W) would be contradicted.
But thenω3 applies, and after the first call to the agent j(W) in call sequence s, say at time t, the configuration
is for the form

Wt , (F̂′)t
s = α ◦ X[1 : j] ◦ C(k + 1) ◦ Y′ ◦ β,

for some configuration Y′ of size |Y| −1. But then j(W1) = j(W)+1. Hence, by induction eventually for some
t∗, j(Wt∗) = |X| − |β| and the configuration must therefore be inZ. �

Since F̂2 drives configurations to BW, and F̂1 as defined in the previous section drives configurations
from BW to T′, we immediately have that the local rule applying F̂1 on its domain of definition, and F̂2
elsewhere, is a solution to T′. That is,

Corollary 2 Define F̃ by

F̂(B) =

F̂1(B), if B ∈ BW
F̂2(B), otherwise

.

Then F̂ is a solution to T′. I will call F̂ the Local Patching Algorithm.

Moreover, for all call sequences s,

TTS(F̂,X, s) ≤ TTS(F̂2,X, s) + TTS(F̂1,Z, s)

where Z = limn(F̂1)n
s (X) ∈ Z. Since we’ve already computed TTS(F̂1,Z, s) for the three timing models we care

about, and found it to be fast, we need only compute TTS(F̂2,X, s). Now, notice that the proof of proposition
21 does not make use of the ω4 predicate – that is, whether or not that predicate at its subsequent action
were included, the rule would still drive configurations toZ. On the other hand, the proof implies a linear
upper bound for the scaling of TTS(F̂2,X, s), which is not good enough to show that F̂ is fast. F̂2 turns out,
however, on average to be faster than indicated by the proof of prop. 21, as we will now see (and which
involves the ω4 predicate).

In appendix §C.3, it is shown that:

Proposition 22 The runtime of F̂ scales as

• O(1), in the worst-case, for the k-bounded asynchronous timing model or the synchronous timing model if
|C| = 1 for some cycle C ∈ G(Θ).

• O(log(n)) in the worst and average-case, for the totally asynchronous timing model

• O(log(n)) in the average and O(n) in the worst case for the synchronous timing model if |Ci| > 1 for all cycles
Ci in G(Θ).

which establishes prop. 19.

CHAPTER 4. FASTER ALGORITHMS AND PATTERN CLASSIFICATION 75

The Trivial Case

There is one corner case in which an even faster algorithm is possible. Define a pattern T to be trivial if there
is an N such that T contains all configurations of size N or larger, i.e. ∪i≥NCi ⊂ T. T is locally checkable:
choose r = dN/2e and letΘ be the check of radius r that accepts all radius r-balls b of size 2r+ 1, and accepts
balls of size less than 2r + 1 iff they correct to configurations in T of size N or less. For each size n ≤ 2r for
which T contains a solution, choose a unique Xn of size n such that X ∈ T. Now, define a local rule F∗ of
radius R = 2r + 1 by

F∗(B) =

B(0), |B| ≥ R
X|B|(?(B)), otherwise

.

For all n ≥ N, F∗ “solves” any configuration of size n in zero timesteps, since any such configuration is
already solved and on these configurations F∗ simply is the identity. Hence TTS(F∗)(n) approaches 0 as
n→∞.

4.3 Pattern Complexity Classes

At this point is worth stepping back and consolidating what we’ve learned about classes of locally checkable
patterns. Let L denote the set of all locally generated patterns over state set S. To understand pattern
classes is to understand how to partition L naturally into subset that share certain generic properties. At
a very detailed level, we can partition L by directly classifying the topology or geometry invariants of
the associated graphs. This detailed level of analysis is important, and will be discussed in Chapter 7.
However, here I want to focus briefly on much coarser-grained pattern classes, distinguishing patterns by
the complexity properties of the local rules that can form them.

The results of §3.3 show that we can separate locally checkable patterns into a natural Exponen-
tial/Polynomial hierarchy, based on the runtime of the Naive Backtracking algorithm on the various patterns.
That is, we can write

L =
⋃
j∈N

L
j
P ∪

⋃
λ∈R
λ>1

LλE

where L j
P and LλE is the set of locally checkable patterns on which the naive backtracking algorithm has

average case runtime scaling as ∼ O(n j) and ∼ O(λn), respectively, for configurations of size n. In light
of proposition 17, this classification essentially well-defined, being mostly independent of exactly how the
backtracking is done, and thus basically a function of the graph structure. Note that the polynomial part of
this hierarchy is evidently discrete, as j can only take on positive integral values, while λ can a priori be any
real number larger than 1 so the exponential portion potentially has a continuous structure.5

The results of this chapter show that the Exponential/Polynomial hierarchy identified in §3.3 collapses
into a Linear-or-Below class structure. At this level the structure becomes a little subtle.

The Naive Backtracking rule FΘ and Less Naive Backtracking rule F̃Θ work for all locally checkable
patterns, while the Local Patching algorithm F̂ works only for locally patchable patterns. Moreover, the
first two local rules share a common strategy: distributed virtual turing machine heads emerge at various
places in the multiagent system, and create increasingly large substructures that satisfy the pattern; each
time distinct heads collide, only one wins, and its pattern substructure engulfs the other’s; eventually a
unique head wins out. The Local Patching algorithm can also be seen as a form of distributed virtual turing
machine, but the heads created by F̂ seem to work in a different way. Instead of competing to win control
and therefore needing to travel throughout the system, each F̃-created head is able to remain in roughly
localized position, and through a bounded number of negotiations with nearby heads is able to concurrently
resolve the pattern. The result of these negotiations can be thought of as a form of averaging, in which local
pattern choices that don’t quite mesh are blurred at their boundaries until they do mesh.

The ability to sustain this averaging is an inherent property of the pattern – locally patchable patterns
“admit compromise” between concurrently operating local decision makers in a way that other patterns do

5The specific possible values of λ that can arise as a function of radius r and state m is an important question in the the theory of
graph eigenvalues.

CHAPTER 4. FASTER ALGORITHMS AND PATTERN CLASSIFICATION 76

not. The distinction between these two classes of patterns – and the corresponding strategies for solving
them – may exemplify a more general classification of types of self-organization. On the one hand, we have
those problems which require information to travel through the system, becoming amplified and elaborated
as it propagates. These problems imply long range correlations and do not tolerate error very easily. On
the other hand, we have those problems in which a “cleverly chosen” local interaction rule causes many
simultaneous local processes to generate a statistically-defined pattern. These problems do not have long
range correlations, and are naturally error-tolerant.

Distinguishing the two types of patterns also raises two specific questions within our model: a) Can we
show that the two classes are real complexity classes, with a lower bound on possible solution times separat-
ing them? and b) Having found one fast algorithm (F̃), and then improved it in subclass of problems (to F̂),
we want to know whether there any other natural classes of patterns “between” the two, or whether we’ve
done the best we can. Both of these questions call for demonstrations that the two algorithms developed in
this chapter are optimal within their respective classes. The next chapter provides this demonstration.

One final pattern class distinction that is worth remembering is the Single-Choice/Multi-Choice difference
that arose at the beginning of chapter 3. While this can’t be a complexity class distinction (since both are
linear), it is a resource usage distinction: single choice check schemesΘ can be solved with radius 2r(Θ) and
no extra states, while multi-choice patterns may require radius 2r(Θ) + 2 with extra states, or up to 4r(Θ)
to be solved with no extra state (as is shown in §6.2). This difference can be interpreted “self-organized-
Turing-theoretically” as the difference between those patterns which require Backtracking (multi-choice)
and those which do not (single-choice).

Chapter 5

Lower Bounds and Measure of Global
Order

In the previous chapter, we were able to find clever algorithms that completely collapsed the polynomial-
and-exponential hierarchy associated with the Naive Backtracking algorithm for locally checkable patterns
in one dimension. In all cases, we could achieve linear scaling, and in some cases, logarithmic or constant.
We therefore naturally would like to know: have we done the best we can? Or, could we by some further
cleverness find faster algorithms for at least some classes of patterns? In other words, are the fast algorithms
we described in the previous two sections optimal?

Let’s define what we mean by optimality.

Definition 27 [Optimality] Suppose f is a solution to a pattern T in timing model S. Then f is worst-case (resp.
average case) optimal if for all solutions g to T in timing model S, there is a constant K(g) such that for all n,
TTSworst

S
(f)(n) ≤ K(g)TTSworst

S
(g)(n) (resp. TTSavg

S
(f)(n) ≤ K(g)TTSavg

S
(g)(n)).

In words, a local rule is optimal if its runtime is less that that of any other rule, up to a multiplicative
constant. It turns out that the two fast algorithms defined in chapter 4 – the Less Naive backtracking rule,
and the Local Patching rule – are in fact optimal.

Proposition 23 Suppose T is a nontrivial locally checkable pattern (where triviality is meant as in §4.2.2). Then, in
the synchronous, k-bounded asynchronous, and totally asynchronous timing models,

1. If T does not have a locally patchable check scheme, the local rule F̃Θ defined in §4.1 is A) worst- and B)
average-case optimal for any check scheme Θ; while,

2. If T does have a locally patchable check schemeΘ, the local rule F̂Θ defined in §4.2 is A) worst- and B) average-case
optimal.

The import of this proposition is not simply to show that the two algorithms described in the previous
chapter are, in their respective domains of definition, optimal. It also implies that the two classes of patterns
(locally patchable and not locally patchable) are natural complexity classes – and in fact the only two natural
complexity classes – of locally solvable one-dimensional patterns.

This chapter is devoted to proving proposition 23. Most of this result – everything but the claim of
average-case optimality for non-locally patchable patterns – is very simple. In §5.1, I lay out the elementary
arguments that cover all the cases except 1 B). Understanding average-case optimality, however, requires
the development of a more sophisticated set of techniques. My basic strategy is:

• First, I define a “measure of order” that will distinguish “random” initial conditions as having a small
amount of order, from “highly ordered” final states. This measure is based on fourier analysis of
patterns.

77

CHAPTER 5. LOWER BOUNDS AND MEASURE OF GLOBAL ORDER 78

• Then, I prove that any local rule can only increase this measure of order slowly. At each time step, the
amount of order present in a system can only, an average, increase a small amount. As a result, final
patterns that have large amounts of order should take, on average, a long time to solve because the
local rules take time to build up that order.

• Finally, I compute the measure of order as a function of the graph structure of the locally checkable
pattern, and show this measure precisely distinguishes locally patchable from non-locally patchable
patterns.

The technique developed here is a “bigger hammer” than then “nail” it drives in may warrant (the nail
being claim 1B) in proposition 23). My ulterior motive in this chapter is to introduce a nontrivial measure of
order for its own sake, and also to conceptually indicate how more sophisticated lower bound arguments
might in the future be constructed by generalizing the ideas developed here.

5.1 Elementary Arguments

In this section I present proofs of the claims 1A), and 2, in proposition 23.
Claim 1A: SupposeΘ is a local check scheme which for every strongly connected component C in G(Θ),

the greatest common divisor of the lengths of the induced cycles is greater than 1. The goal is to show that
linear-time scaling is worst-case optimal for possible solution f to Θ(CC). Suppose such an f is given, and
let C1 be a cycle in G(Θ(f ix(f))). Choose y such that

. . .Cm(r)
1 yCm(r)

1 . . .

is not Θ-consistent and there is no z and m < m(r) such that |z| = (m(r) −m)|C1| + |y| and . . .Cm′(r)
1 zCm(r)

1 . . . is
Θ-consistent. Such a y can be chosen because Θ does not admit patching. Now, let Y and Z be such that
Y ◦ Cm(r) . . . is Θ consistent and . . .Cm(r)

◦ Cm(r) is Θ-consistent, and let

Xn = Y ◦ (Cm(r)+n
1 ◦ y ◦ Cm(r)+n

1)an Z

where m(r) = dr(f)/|C1|e, and an is chosen such that |Xn| = |Y| + |Z| + an(2m(r)|C1| + 2n + |y|) is a Θ-admissible
size. By the Chinese remainder theorem, an can always be chosen to be less than the least common multiple
of the lengths of induced cycles in the strongly connected component of C1. Thus in all live timing models
TTS(f ,Xn) > n|C1|/(2r(f) + 1). Hence

TTSworst(f)(n) > ((n − |Y| − |Z|)/an − |y| − 2m(r)|C1|)/2 ≥ k(r)n

for some constant k(r).
Claim 2: I’ll consider each of the three synchrony models, one at a time. Let’s start with the k-bounded

asynchronous timing model. Because in this case, the average-case and worst-case scaling of F̂, is identical,
we can simply treat the average case. For any nontrivial local check schemeΘ that admits local patching, we
want to show that constant time scaling is average-case optimal. To establish this we simply need to show
that when T is nontrivial, for any solution g to any local check scheme Θ for T, there is a constant K(g, k)
such that TTSavg

S(k)(g)(n) > K(g, k) for all n. Now, let B be any ball in Br(Θ), and let XB = {X ∈ C|B ∈ Br(X)}. It is
clear that XB in C is a full-measure subset of C. On the other hand, since by assumption in proposition 23,
T is nontrivial. This means there is B∗ such that Θ(B∗) = 0, and either |B∗| − ?(B∗) > r or ?(B∗) > r. Suppose
X ∈ XB∗ , and that Br(j,X) = B∗. Then any solution g to X must cause some agent i such that |i − j| ≤ 2r
to change state; hence TTS(g,X) ≥ τ(k, |X|, 2r + 1), where τ(k,n,m) is the expected number of timesteps
in the S(k) timing model before at least one agent out of a given group of m agents is called, in a size-n
configuration. It is easy to see that τ(k,n,m) ≥ kn/4m so since XB is full measure, TTS(g)(n) ≥ k/(8r(g) + 4).

Next let’s look into the totally asynchronous model. Again, because the average- and worst-case scaling
of F̂ is the same in this case, proving the result for the average case is sufficient. SinceΘ(C) is assumed to be
nontrivial, the probability that in any given 2r(Θ) + 1 window at least one agent will need to change states
so that any configuration containing it will be correct is at least 1/m2r+1. Hence, in any initial condition X

CHAPTER 5. LOWER BOUNDS AND MEASURE OF GLOBAL ORDER 79

of size n, the expected number of agents that must change state to achieve a T-consistent configuration is at
least

n/(2r+1)∑
i=0

i
(
n/2r + 1

i

)
(1/m2r+1)i(1 − (1/m2r+1))n/(2r+1)−i =

n
(2r + 1)m2r+1 .

In the totally asynchronous model, the expected number of timesteps for k distinct agents to be called once
is about Ck log(n) where C is a constant > 1/2, so any local will have TTSavg(f)(n) ≥ 1

2(2r+1)m2r+1 log(n).
Finally, let’s look at the synchronous model. There are two cases: a) when there is a cycle C ∈ G(Θ)

with |C| = 1 and b) when there is not. In the case of a), then as long as T is nontrivial, let B∗ be as in the
previous argument. For any X ∈ XB∗ , X is not already solved; so for any solution g, at least one time-step
is required before g(X) can be solved. Hence by definition of the synchronous model, TTS(g,X) ≥ 1 for all
X ∈ XB∗ . In the case of b), the tandem repeat argument encapsulated in eq. C.5 of appendix §4.2 holds for
any algorithm, not just F̂. Any algorithm g will have TTS(g,X) ≥ (1/(2r(g) + 1)) · L(X), where L(X) is the
length of the maximum tandem repeat of a sequence shorter than the shortest cycle in G(Θ). In the worst
case L(X) ∼ |X|while on average over all X, L(X) ∼ O(log(|X|)), yielding the result.

5.2 Discrete Fourier Analysis of Configurations

Now let’s turn our attention to Claim 1 B), that when T has no locally patchable check scheme, the Less
Naive Backtracking algorithm F̃Θ is average-case optimal.1 My demonstration of this uses techniques from
Fourier analysis. In this section, I will introduce introduce the basis of Fourier analysis as applied to the
1-D configurations in our model.

Suppose that S is a set of states of size m. Let V be the complex vector space of dimension m with
orthonormal basis ε1, . . . , εm. For v =

∑
viεi ∈ V, let

||v|| =
(∑
|vi|

2
)1/2

,

where | · | denotes absolute value of a complex number. Consider a configuration X of size N with states in S.
We have often been thinking of X as a by treating X(n) as an integer {1, . . . ,m}. For the present application,
we now think of X as a function X : {1, . . . ,N} → V to the complex vector space defined by X(n) = εX(n).

Definition 28 [Invariant Discrete Fourier Transform] Given a function X : {1, . . . ,N} → V, let the invariant
discrete Fourier Transform of X, denoted by F [X], be the complex-vector-valued function defined by

F [X](ω = k/N) =
1
|X|

|X|∑
n=1

εX(n)e2πink/|X|

where k ∈ {0, . . . ,N − 1}.2 The power spectrum of X is the norm-square of F ; that is,

P[X](ω = k/N) = ||F [X](ω)||2.

Example 33 For the simple locally checkable repeat pattern T1234,

F [(1234)n](ω) =

1
4 (ε1 + ε2 + ε3 + ε4) for ω = 0
1
4 (ε1 + iε2 − ε3 − iε4) for ω = 1/4
1
4 (ε1 − ε2 + ε3 − ε4) for ω = 1/2
1
4 (ε1 − iε2 − ε3 + iε4) for ω = 3/4
0 otherwise

1In the rest of this chapter I will assume that we’re working with the synchronous update model for notational simplicity, but the
arguments go through in the more general case.

2This definition of the Discrete Fourier Transform is slightly different from that used in standard signal processing. The normal
transform associates each s ∈ S with a complex number; then considers each X as a complex-valued function; and so the DFT would
be a complex valued function. Here, we associate each s with an element of an orthonormal basis of Cm; X is then a complex-vector
valued function; and so therefore is F . The reason this is done is to make it “invariant” under permutations in the values assigned to
the states in S.

CHAPTER 5. LOWER BOUNDS AND MEASURE OF GLOBAL ORDER 80

so that

P[(1234)n](ω) =
1
4

3∑
i=0

δi/4(ω)

in which δ f (ω) is the impulse function that is 1 at ω = f and 0 elsewhere (see fig. 5.1a). In words, (1234)n

has uniformly-high peaks in its power spectrum at frequencies that are multiples of 1/4.

Example 34 For the non-locally checkable 1/2-way pattern T1/2,

F [0n1n](ω = k/2n) =
ε0

2n
·

n−1∑
t=0

eπikt/n

 + ε1

2n
·

2n−1∑
t=n

eπikt/n

 = sin2(k/2)
2n

(
1 + i · cot

(
kπ
2n

))
· (ε0 − ε1)

so that

P[0n1n](ω = k/2n) =

 1
n2 csc2

(
kπ
2n

)
, k odd

0, k even

for ω > 0. At ω = 0, P(0) = 1/2. Fig. 5.1 b) displays the square-root of this, to make the oscillations more
evident.

0 0.2 0.4 0.6 0.8 1
Frequency

0

0.05

0.1

0.15

0.2

0.25

Po
we
r

(a) T1234 Repeat Pattern

0 0.2 0.4 0.6 0.8 1
Frequency

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

Po
we
r1
/2

(b) T1/2 Proportionate Pattern

Figure 5.1: A) The power spectrum of configuration (1234)n. B) The square-root of the power spectrum of
0n1n.

To aid in the computation of the power spectrum, it is useful to introduce another function of X.

Definition 29 [Autocorrelation Function]] The autocorrelation function of X, denoted σ[X], is the real-valued
function of τ ∈ {0, . . . ,N − 1} defined by

σ[X](τ) =
1
|X|

 |X|∑
t=1

(εX(t) − X) ⊗ (εX(t + τ) − X)

†

where the † superscript indicates contraction of the rank-two tensor with respect to the {εi ⊗ ε j} basis, the indexing is
circular, and X = (1/|X|)

∑
n εX(n).

CHAPTER 5. LOWER BOUNDS AND MEASURE OF GLOBAL ORDER 81

Because of the circular indexing and the definition of tensor contraction, a simple calculation shows that

σ[X](τ) =

 1
|X|

∑
t

εX(t) ⊗ εX(t + τ) − X
⊗2

† = 1
|X|

Nτ[X] −
1
|X|2

m∑
j=1

N2
j [X]

where
Nτ(X) = |{t|X(t) = X(t + τ)}|

is the number of agents whose state is equal to the state of the agent τ places to its right, and

N j[X] = {t|X(t) = j}

is the number of agents in state j.

Example 35 For the T1234 patterns, σ[(1234)n](τ) =

 3
4 , for τ ≡ 0(4)
−

1
4 , otherwise

. For the T10100 repeat pattern,

σ[(10100)n](τ) =

12
25 , for τ ≡ 0(5)
−

8
25 , for τ ≡ 1, 4(5)

2
25 , for τ ≡ 2, 3(5)

. These calculations show that the autocorrelation function is peri-

odic when the configuration contains a periodic long-range correlation. On the other hand, σ[0n/21n/2](τ) =
1
2

(
1 − 4τσ(τ)

n

)
, where σ(τ) is 1 when τ ≤ n/2 and −1 when τ > τ/2. This shows a long-range correlation that

falls offwith the length of the configuration.

The importance of the autocorrelation for our purposes is its relation to the power spectrum.3

Proposition 24 When ω = 0,

P[X](ω) =
1
|X|2

∑
j

N j[X]2.

For 0 < ω < 1,

P[X](ω) =
1
|X|

|X|∑
τ=1

cos(2πωτ)σ[X](τ). (5.1)

Proof: The ω = 0 case follows immediately from the definition of the Fourier transform. For ω > 0, given
configuration X, let Nτ(j) denote the number of indices i such that X(i) = X(i + τ) = j. By definition of the
power spectrum,

||F [X](ω)||2 =
1
|X|2

m∑
j=1

∣∣∣∣∣∣∣∣
∑
t∈S j

e2πiωt

∣∣∣∣∣∣∣∣
2

=
1
|X|2

∑
j

N j(X) +
∑

t,t′∈S j(X)
t,t′

e2πiω(t−t′)

 .
Symmetrizing gives

||F [X](ω)||2 =
1
|X|
+

1
2|X|2

∑
j

∑
t,t′∈S j(X)

t,t′

e2πiω(t−t′) + e2πiω(t′−t).

By definition of the cosine function the RHS becomes

1
|X|
+

1
|X|2

∑
j

∑
0<τ≤N−1

cos(2πωτ)Nτ(j).

3Though it may really be the other way around: the autocorrelation is perhaps more fundamental the power spectrum.

CHAPTER 5. LOWER BOUNDS AND MEASURE OF GLOBAL ORDER 82

Reversing the order of summation and using the fact that
∑N−1

t=0 cos(2πk/Nt) = 0 when 0 < k < N, we have

||F [X](ω)||2 =
1
|X|

∑
0≤τ≤N−1

cos(2πωτ)
1
|X|

∑
j

Nτ(j)

=
1
|X|

∑
τ

cos(2πωτ)
1
|X|

∑
j

Nτ(j) −
1
|X|2

∑
t

N2
j (t)

=

1
|X|

∑
τ

cos(2πωτ)
1
|X|

∑
t

X(t) ⊗ X(t + τ) − X

†
and the RHS of the above is f 1|X|

∑
τ cos(2πωτ)σX(τ) by definition of σX. �

Sometimes it is convenient to work with the function

σ′[X](τ) =

 1
|X|

∑
t

εX(t) ⊗ εX(t + τ)

† ,
which I call the modified autocorrelation function. For example, the proof of proposition 24 shows that
P[X](ω) = 1

|X|
∑
τ cos(2πωτ)σ′X(τ) for all ω, including the ω = 0 case.

Eq. 5.1 is essentially a discrete version of what is known in continuous Fourier analysis as the Wiener-
Khinchin theorem, and is useful for conceptual and computational purposes. What is says is that: the power
spectrum measures something about the spatial predictive information. It makes it easy to see that

n−1∑
k=0

P[X](k) = 1

since σ′[X](0) = 1 for all X.

5.3 P as a Slowly-Growing Order Measure

The reason that Fourier analysis is useful for proving lower bounds can be seen intuitively by following the
progress of the power spectrum at various points along the trajectory of a local rule while it is constructing
a pattern.

Consider, for instance, the repeat pattern T1234, and let Θ be its associated radius 1 check scheme.
Suppose we pick a random initial condition X0 over 4 states, with 800 agents, and iterate FΘ on X0 until it
converges to a solved state. Looking at P(Ft(X0)) for various t, we see that, to begin with, there are no peaks
at non-zero frequencies (fig. 5.2a). As we apply the rule FΘ to X0, the configuration will evolve toward
a solved state. As it moves along its trajectory, the power spectrum reflects the growing amount of order
present by developing peaks (fig. 5.2b-j). At first, these peaks are low and spread out. As time goes by,
the peaks increase in height and decrease in spread. Eventually the power spectrum is identical to that
computed in figure 5.1a).

Suppose we now select one specific frequency for which the power spectrum of the final configuration
has a non-zero peak – say, ω = 1/2 – and plot the value of P(1/2) throughout the trajectory:

CHAPTER 5. LOWER BOUNDS AND MEASURE OF GLOBAL ORDER 83

0 0.2 0.4 0.6 0.8 1
Frequency

0

0.05

0.1

0.15

0.2

0.25

Po
we
r

(a) t = 0

0 0.2 0.4 0.6 0.8 1
Frequency

0

0.05

0.1

0.15

0.2

0.25

Po
we
r

(b) t = 80

0 0.2 0.4 0.6 0.8 1
Frequency

0

0.05

0.1

0.15

0.2

0.25

Po
we
r

(c) t = 160

0 0.2 0.4 0.6 0.8 1
Frequency

0

0.05

0.1

0.15

0.2

0.25

Po
we
r

(d) t = 240

0 0.2 0.4 0.6 0.8 1
Frequency

0

0.05

0.1

0.15

0.2

0.25

Po
we
r

(e) t = 320

0 0.2 0.4 0.6 0.8 1
Frequency

0

0.05

0.1

0.15

0.2

0.25

Po
we
r

(f) t = 400

0 0.2 0.4 0.6 0.8 1
Frequency

0

0.05

0.1

0.15

0.2

0.25

Po
we
r

(g) t = 500

0 0.2 0.4 0.6 0.8 1
Frequency

0

0.05

0.1

0.15

0.2

0.25

Po
we
r

(h) t = 620

0 0.2 0.4 0.6 0.8 1

Frequency

0

0.05

0.1

0.15

0.2

0.25

P
o
w
e
r

(i) t = 784

Figure 5.2: The power spectrum along a trajectory from an 800-agent randomly chosen initial condition at
t = 0 in a), to a solved state of the form (1234)200, under the operation of a local rule solution to T1234.

CHAPTER 5. LOWER BOUNDS AND MEASURE OF GLOBAL ORDER 84

0 0.2 0.4 0.6 0.8 1
Fraction of Runtime

0

0.05

0.1

0.15

0.2

0.25

Po
we

r

(a)

0 0.2 0.4 0.6 0.8 1
Fraction of Runtime

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

0.4
0.45

0.5

Po
we

r1/
2

(b)

For some period of time it remains low; then, it increases monotonically toward its final value, getting larger
relatively slowly and continuously. The square-root of the power spectrum, show to the right in the above
figure, in fact appears to (eventually) increase linearly with time.

The key point is that slow, continuous increase of the the power spectrum from 0 to a comparatively
large peak in specific frequencies is not specific to our choice of local rule. In fact, as we will show:

1. Random initial conditions typically have no power in non-zero frequencies.

2. But for any local rule f , the increase of P(ω) during one iteration of f must, on average, always be
small. In fact, there is a constant C(r) depending only on r = r(f), such that the difference

∆P , P[f (X)] − P[X]

is, when averaged over all X with size n, no bigger than C(r)/n.

3. Hence, if for a selected frequencyω the power spectrum in the final state must be high, a comparatively
large number of iterations must have occurred for local rule f to build up the power in that frequency.
In fact,

TTSavg(f)(n) ∝ Kn,

where K is the (average) power P(ω) of the final pattern in frequency ω.

4. Finally, non-locally patchable patterns always have K > 0, so the previous item yields the relevant
lower bound.

In the remainder of this section, I wlll demonstrate items 1 and 2 above. In §5.4, I formulate a proper
method for computing the power spectrum over an entire pattern (not just a single configuration), so that
the average mentioned in item 3 above makes sense. Finally, in §5.5, I compute the power spectrum of a
pattern it terms of the pattern’s graph G(Θ), allowing us to prove item 4 and thus, proposition 23.

5.3.1

As a warm up, we prove that the average configuration typically has very little power in non-zero frequen-
cies. In particular:

Proposition 25 For ω > 0,

〈P[X](ω)〉X∈Cn,m =
1
n

(
1 −

1
m

)
= O

(1
n

)
.

CHAPTER 5. LOWER BOUNDS AND MEASURE OF GLOBAL ORDER 85

Proof: We will compute 〈σ′[X](τ)〉X∈Cn and then use prop. 24. Recall that σ′[X] = 1
n Nτ[X] where Nτ[X] is the

number of t for which X(t) = X(t + τ), with circular indexing. Evidently σ′[X](0) = 1. For τ ≥ 1, notice that

Prob(X(1) = X(1 + τ)) =
1
m
.

Extending this,

Prob(X(2) = X(2 + τ)|X(1),X(1 + τ)) =
1
m

and
Prob(X(3) = X(3 + τ)|X(1 : 2),X(1 + τ : 2 + τ)) =

1
m
,

and &c. Hence 〈Nτ[X]〉X∈Cn =
n
m , so that for τ > 0, 〈σ′[X]〉X∈Cn =

1
m . Plugging this computation into

proposition 24, we have

〈P[X](ω)〉X∈Cn =
1
n

n−1∑
τ=0

cos(2πωτ)〈σ′[X](τ)〉X∈Cn,m

=
1

mn

n−1∑
τ=1

cos(2πωτ)

 + 1
n

=
1

mn
· (−1) +

1
n
=

1
n
·

m − 1
m

as claimed. �
We can think of 25 as computing a bound on 〈P[F(X)](ω)〉X∈Cn where F is the identity local rule. Our

goal now is to extend prop. 25 to all local rules F. The proof of prop. 25 has two steps: first, we compute
〈σ′[X]〉, and then we plug the result of that computation into prop. 24. It turns out to be possible to compute
〈σ′[F(X)]〉 explicitly (and doing this is handy later on in §5.6). For the present purposes, however, only need:

Proposition 26 Let F be a radius-r local rule over m states. Then for n > 2r + 1 and τ, τ′ ∈ [2r + 2,n − 2r − 1],

〈σ′[X](τ)〉X∈Cn = 〈σ
′[X](τ)〉X∈Cn .

Proof: Let Bn denote the set of r-balls arising in configurations in Cn, and

Nτ
b1,b2

(X) = |{t|Br(t,X) = b1 and Br(t + τ,X) = b2}|.

Suppose that n > 2r + 1 and τ ∈ [2r + 2,n − 2r − 1]. Then if both b1 and b2 are right- or left-end balls,
Nτ

b1,b2
(X) = 0, so 〈Nτ

b1,b2
(X)〉X∈Cn = 0. If b1 is a end-ball l < r steps from the right- or left-end and b2 is a central

ball – or vice versa – then
〈Nτ

b1,b2
(X)〉X∈Cn =

1
mr+l+1

1
m2r+1 =

1
m3r+l

.

Finally, if b1 and b2 are both central balls, then for all t < [n − r − τ,n + r − τ] (using circular indexing), the
probability Prτ(b1, b2) given by

Prob((Br(t,X) = b1) and (Br(t + τ,X) = b2)) =
1

m2(2r+1)
,

is independent of τ as long as τ ∈ [2r+2,n−2r−1]. Similarly for A,B of length k, the probability Prτ(b1, b2|A,B)
given by

Prob((Br(t,X) = b1), (Br(t + τ,X) = b2) | (X(t − k : t − 1) = b3), (X(t − k + τ : t + τ) = b4)),

is also independent of τ as long as τ ∈ [2r + 2,n − 2r − 1] and t < [n − r − τ,n + r − τ] again. Putting all this
together, we have for all b1, b2 and τ ∈ [2r+ 2,n− 2r− 1], that 〈Nτ

b1,b2
〉X∈Cn = 〈Nτ′

b1,b2
〉X∈Cn . Thus letting δ(a = b)

CHAPTER 5. LOWER BOUNDS AND MEASURE OF GLOBAL ORDER 86

denote the Kronecker delta, we have

〈σ′[X](τ)〉X∈Cn =
∑

b1,b2∈Bn

〈Nτ
b1,b2

(X)〉X∈Cn · δ(F(b1) = F(b2))

=
∑

b1,b2∈Bn

〈Nτ′

b1,b2
(X)〉X∈Cn · δ(F(b1) = F(b2)) = 〈σ′[X](τ′)〉X∈Cn .

�
To obtain the proper generalization of prop. 25 we combine prop. 26 with prop. 24:

Proposition 27 Suppose F is a radius r local rule. Then for ω > 0, For any ω > 0,

〈P[F(X)](ω)〉X∈Cn ≤
4(2r + 1)

n
.

Proof: The case n ≤ 2r + 1 is trivial, so suppose n > 2r + 1. Applying prop. 24 gives

〈||F [φ(X)](ω)||2〉X∈Cn =
1
n

n−1∑
τ=0

cos(2πωτ)〈σ[φ(X)](τ)〉X∈Cn .

Now, split this sum into two parts, one for

τ ∈ A , [0, 2r] ∪ [n − 2r − 1,n − 1]

and for
τ ∈ B , [2r + 1,n − 2r − 2].

Applying the Cauchy-Schwarz inequality to the first sum and prop. 26 to the second sum gives

〈||F [F(X)](ω)||2〉X∈Cn ≤
1
n

√√∑
τ∈A

cos2(2πωτ)

√√∑

τ∈A

〈σ′[F(X)](τ)〉2X∈Cn

+

1
n
· 〈σ′[X](2r + 2)〉X∈Cn ·

∑
τ∈B

cos(2πωτ).

(5.2)

Now, ∑
τ∈A

cos2(2πωτ) = α(n, r, ω) , (2r + 1)
(
1 +

sin(2πω(4r + 1)) + sin(2πω(4r + 3))
(8r + 4) sin(2πω)

)
,

and ∑
τ∈B

cos(2πωτ) = β(n, r, ω) , −
(
1 +

sin(π(1 + 4r)ω)
sin(πw)

)
.

It is easy to see that |α(n, r, ω)|, |β(n, r, ω)| ≤ 2(2r + 1). Plugging all this into eq. 5.2 and using σ′[X](τ) ∈ [0, 1]
gives

〈||F [φ(X)](ω)||2〉X∈Cn ≤
1
n

√
α(n, r, ω) ·

√
2(2r + 1) +

1
n
|β(n, r, ω)|

≤
1
n

√
4(2r + 1)2 +

2(2r + 1)
n

≤
4(2r + 1)

n
.

�
For any X and rule f of radius r, it follows immediately from the definition that

〈||F [f k(X)](ω)||2〉X∈Cn ≤ 4
2(2r + 1)k + 1

n
(5.3)

CHAPTER 5. LOWER BOUNDS AND MEASURE OF GLOBAL ORDER 87

since f k can be treated as a radius (2r + 1)k rule. Denoting the LHS of eq. 5.3 by Pk
n(ω) we have

∆P(ω) = Pk+1
n (ω) − Pk

n(ω) ≤
8(2r + 1)

n

establishing the ”slowing growing” property as described previously.

Denote Tn = 〈TTS(f ,X)〉X∈Cn . Fix δ a positive integer and let A = {X|TTS(f ,X) ≤ δ · T|X|}. In words, A is the
set of configurations on which the time-to-solution of f is at worst δ time the average for configurations of
equal size. Let An = Cn ∩ A. Let µn(A) = |An|/|Cn| = |An|/mn, the measure of A relative to the number of
configurations of that size. Evidently

Tn = µn(A) · 〈TTS(f ,X)〉X∈An + (1 − µn(A)) · 〈TTS(f ,X)〉X∈Cn−An .

By definition TTS(f ,X) > δ · Tn for all X ∈ C − An, and obviously 〈TTS(f ,X)〉X∈An > 0. Hence, Tn ≥

(1 − µn(A)) · δ · Tn, whence µ(An) ≥ 1 − 1
δ for all n.

Next, let’s denote Gn = 〈||F [f TTS(f ,X)(X)](ω)||2〉X∈Cn . Let ε ∈ (0, 1) and let

B = {X|||F [f TTS(f ,X)(X)](ω)||2 ≥ ε · Gn}.

Analagously to above, let Bn = Cn ∩ B and µn(B) = |Bn|/|Cn| = |Bn|/mn. Evidently

Gn = µn(B) · 〈||F [f TTS(f ,X)[X](ω)||2〉X∈Bn + (1 − µn(B)) · 〈||F [f TTS(f ,X)[X](ω)||2〉X∈Cn−Bn .

By definition ||F [f TTS(f ,X)(X)](ω)||2 < ε · Gn for all X ∈ C − Bn, and since ||F [f TTS(f ,X)(X)](ω)||2 ≤ 1 for X ∈ Bn.
This yields

µ(Bn) ≥
(1 − ε)Gn

1 − εGn

for all n.
Let C = A ∩ B. For any non-negative real-valued function H of configurations X, assuming µ(Cn) > 0,

we obviously have

〈H(X)〉X∈Cn ≤
1

µ(Cn)
〈H(X)〉X∈Cn . (5.4)

Moreover, µn(C) ≥ max(0, µ(An ∪ Bn) − 1), so choosing f ≥ (2(1 − εGn))/((1 − ε)Gn) yields

µn(C) ≥
1
2
µn(B) =

(1 − ε)Gn

2(1 − εGn)
(5.5)

which is positive when Gn is. We thus have

Gn ≤
1
ε
〈||F [f TTS(f ,X)(X)](ω)||2〉X∈Cn

≤
1
ε
〈||F [f δ·Tn (X)](ω)||2〉X∈Cn

≤
1

εµ(Cn)
Pδ·Tn

n (ω)

≤
1

εµ(Cn)
4
n

(2((2r + 1)δ · Tn) + 1)

≤
32(2r + 1)(1 − εGn)2

ε(1 − ε)2G2
n

Tn

n
+

K
n

(5.6)

where K is a constant smaller than 32(2r+ 1). The first inequality is due to the definition of Bn, the second to
the definition of An, the third to eq. 5.4 and the fact that Pk

n is a positive real-valued function, the fourth to eq.
5.3, and the fifth to eq. 5.5. Rearranging and maximizing with respect to ε,4 we have that for n > 32(2r + 1),

4This maximization can be done by choosing ε = 3−Gn−
√

9−10Gn+G2
n

2Gn
.

CHAPTER 5. LOWER BOUNDS AND MEASURE OF GLOBAL ORDER 88

〈TTS(f ,X)〉X∈Cn ≥
G

3
n(ω)

864(2r + 1)
· n (5.7)

Now, notice that
Gn(ω) = 〈||F [f TTS(f ,X)(X)](ω)||2〉X∈Cn =

∑
Y∈Cn

||F [Y](ω)||2ρ f (Y)

where ρ f (Y) is the proportion of initial conditions in Cn which converge to Y (that is, ρ f is the distribution
on Cn induced by f). Hence, Gn(ω) is the expected value of P[Y](ω), over Cn, taken with respect to the
distribution ρ f . In words, eq. 5.7 shows that the runtime of any local rule f is bounded below by the system
size, times a constant that is:

• directly proportional to the cube of the power spectrum at any fixed frequency ω, averaged against
the distribution that f induces over final states, and

• inversely proportional to the radius of information of f .

This holds for each frequency ω, separately. Now, some local rules f might have Gn(ω) = 0 for some (or
all) non-zero frequencies, so this bound may not always be non-trivial. The goal of sections 5.4 and 5.5 is
to show that for all non-locally patchable patterns, there are some frequencies ω for which the average of
Gn(ω) over all the admissible sizes of the pattern must be nonzero.

5.4 A More Robust Fourier Transform

The computation culminating in eq. 5.7 applies to configurations of a fixed size, yielding a connection
between the average runtime of a local rule on configurations of given size and the value of the power
spectrum (at any given frequency) averaged over the same set. However, to complete our demonstration of
prop. 23, we have to be able to extend this connection to averages over the whole of a pattern, which will
include configurations of various sizes. We will need to combine the spectral densities of all the elements of
a pattern, producing the an “average spectral density” function P[T]. P[T] should have a peak at frequency
ω if some non-negligible fraction of the elements of the pattern T have a peak at that frequency, and the
height of the peak should be related to the average heights of the constituent elements, weighted relative to
their frequency in the pattern as a whole.

Example 36 Consider the pattern

T = T10 ∪ T100 = {(10)n, (100)n
| n ∈N},

the union of two repeat patterns. Fixing N and taking configurations of size N or less, T contains approxi-
mately N/3 configurations of the form (100)n for n < N/3, and approximately N/2 configurations of the form
(10)n for n < N/2. Thus, elements of the size-3n configurations comprise about 40% of the total pattern, and
elements of the size-2n configurations about 60%, so according to the informal definition of P[T] given in
the previous paragraph, we should have

P[T] =
2
5

(5
9
δ0 +

2
9
δ1/3 +

2
9
δ2/3

)
+

3
5

(1
2

(δ0 + δ1/2)
)

=
47
90
δ0 +

4
45
δ1/3 +

3
10
δ1/2 +

4
45
δ2/3.

(5.8)

In words, P[T](ω) has peaks at ω = 0, 1/3, 1/2, and 2/3 – and the non-zero frequencies of T10 and T100; and
the weighting reflects the fact that the 10 repeats occur somewhat more frequently.

But wait. There’s an issue being swept under the carpet here, viz.: What is the domain of definition of
P[T]? As given in def. 28, the discrete Fourier transform for size-n configurations only takes on values for
frequencies ω = k/n. Thus the domain of definition of F (and therefore P) is different for each size. The two

CHAPTER 5. LOWER BOUNDS AND MEASURE OF GLOBAL ORDER 89

terms in the first equality in expression 5.8 are actually defined for different sets of frequencies ω, the first
term for k/3n frequencies and the second for k/2n frequencies. By combining them, we are tacitly assigning
zero power to frequencies for which each is not defined. This means that P[T] as written will defined by
frequencies that are either of the form k/2n or the form k/3n. Thinking about this issue more generally,
we realize that as we average spectra of configurations of divers sizes, we will be implicitly increasing the
fine-ness of resolution of the definition of the combined spectrum. Continuing this process to configurations
of unbounded size, every rational number will eventually belong to the domain of P.

This suggests P[T] should therefore be defined in the first place to have domain of definition containing
all frequencies ω ∈ [0, 1), i.e. P[T] will be function on a continuous space, or at any rate all of Q ∩ [0, 1]. To
formalize this, one might be tempted to define P[T](ω) for any ω by taking the limit of the (average of)
P[X](ωn) as ωn approaches ω; or to take the limit of linear interpolatations. For example, for each ω define
η(n, ω) to be that i which minimizes |(i/n) − ω|, and then let

P[T](ω) = lim
n→∞

1
|Ti≤n|

∑
x∈Ti≤n

P[X](η(|X|, ω).

If T contains infinitely many elements, then η(n, ω) will converge to ω, so one might expect this to provide
a good limiting definition.

However, this definition has a subtle problem. Taking T = {(123)n
|n ∈ N} under this definition gives

P[T] = 1
3δ0 +

1
3δ1/3 +

1
3δ2/3); that is, the aggregate simply is the original, reflecting the fact that all instances of

the pattern have the same underlying repeated segment of length 3, and a natural harmonic at each integral
multiple of the fundamental frequency. Each of these frequencies has the same strength. Now consider the
closely related pattern T′ made by adding a ’1’ to the end of each instance of T, i.e. T′ = {(123)n1|n ∈N}. In
this case, simple computation shows that for all instances X of this pattern, while P[T′](0)→ 1/3 as n→∞,
P[X](η(n, 1/3)) and P[X](η(n, 2/3)) are strictly less than 1/3. In fact, they are bounded below .23 for all n,
so that in the limit definition, while P[T′](0) = 1/3, P[T′](1/3) = P̃[T′](2/3) < .23 Somehow, the addition
of something that intuitively shouldn’t make a difference (because its relative size gets smaller as n → ∞)
nonetheless does – some of the power that “should” have been assigned to the 1/3 and 2/3 frequencies is
missing. Compare figures 5.3a) and 5.3b).

The main underlying problem here is that the “real” fundamental frequency of T′ (which is 1/3) is not
an integral multiple of 1/|X| for any instance X, and if we take different sequences of points converging
to 1/3 besides η(n, 1/3), we get different results in the limit. Another way to phrase this is: the DFT is
not “robust” under finite perturbations of infinite patterns. But it really needs to be if we’re going to take
aggregates of the spectral density over such patterns. We somehow have to modify the definition of the
DFT, making a more robust transform P̃[X]. This transform will still just apply to individual configurations
X, but will be invariant enough under small changes in configuration size so that it can support averaging
over configurations of many sizes.

I can see two paths toward this end. One rests on the following observation: even though the modified
pattern T′ above has less power at frequency 1/3 than it ought, the power spectrum does look essentially
correct: there are peaks at 1/3 and 2/3, but a bit blurred in comparison to the “crisp” peaks in the spectrum
of T. It is easy to see that the spread of the peak scales as a constant number of terms independent of the size
of the configuration. Moreover, the area under the peak, given by the sum of P[X](η(|X|, ω) ± k) for some
small number of terms at distances k or less, DOES approach 1/3, as one increases k, as long as it’s small
enough not to start getting contributions from the 2/3 peak. This suggests we could get at the “true” value
of the power spectrum at frequencies ω that are not integral multiples of 1/|X| by convolving P[X] with
a delta function at ω. The choice of delta-function would need to be made carefully, since if the support
converges too quickly it might “miss” some of the mass under the peak, while if it converges too slowly, it
capture too much from surrounding peaks.

Another approach is simply to correct for the issue of needing to get non-integral frequenciesω by taking
a subsequence for whichω is an integral frequency, i.e. the first or last 3n places in each (123)n1. To compute
the the value of P[X] at ω = p/q, written in lowest terms, one would compute P[X′](ω) for substrings X′

whose sizes are divisible by q. But which subsequence X′ should be taken? One obvious choice is simply to

CHAPTER 5. LOWER BOUNDS AND MEASURE OF GLOBAL ORDER 90

0.00 0.25 0.50 0.75 1.00
Frequency

0

0.05

0.1

0.15

0.2

0.25

0.3

Po
we

r

(123) n 1

(123) n

Figure 5.3: Superposition of the power spectra of the patterns (123)n (in blue) and (123)n1 (in red). The latter
has blurred peaks around frequencies 1/3 and 2/3, with maximum height less than .23, in comparison to the
sharp peaks in the former with height 1/3. However, the area under the red curve local to each peak sums
up to 1/3.

average all possible such X′. In equations, this is:

P̃[X](p/q) ,
2

qbN/qc(1 + bN/qc)

bN/qc∑
m=1

N−mq−1∑
s=0

P[X(s : s +mq − 1)](pm) (5.9)

where N = |X|.
In appendix §D, I show that:

Proposition 28 Let T be any infinite pattern and y, z be any finite configurations, and define T′ = z ◦ T ◦ y =
{z ◦ X ◦ y|X ∈ T}. Then P̃[T′] = P̃[T]. In words, the new definition of P̃ is in fact more “robust” than the original,
in that its value is not affected by appending finite portions at the ends of patterns.

and that the “integral subsequence” approach reflected in eq. 5.9 is actually equivalent to the delta-function
approach described previously. That is, I prove that P̃[X] is, essentially, a smoothing of P[X] obtained by
convolving it with a delta function that is independent of X:

Proposition 29 There is a discrete delta-like function fN,ω(a, b), independent of X, such that for all ω on which
P̃[X](ω) is defined,

P̃[X](ω) =
∑

l,k

(Fk[X]F [X]l + FlF [X]k) fN,ω(l/N, k/N).

This delta-like function has very specific asymptotics that allow it to avoid capturing nearby peaks but
still be wide enough to restore the power blurred out of the peaks due to non-integrality, and is useful for
computational purposes.

Having defined P̃, we now need to find an analogous version of eq. 5.7 that applies to P̃. Denote

G̃n = 〈P̃[f TTS(f ,X)(X)]〉X∈Cn .

Now, with the sets A, B, and C defined analogously to the computation in §5.3.1, let

Kn = 8(2r + 1)δ · Tn + 4.

CHAPTER 5. LOWER BOUNDS AND MEASURE OF GLOBAL ORDER 91

Then we have for ω = p/q in lowest terms,

G̃n(p/q) ≤
1
ε

∑ bn/qc∑
m=1

n−mq−1∑
s=0

2
qbn/qc(1 + bn/qc)

〈P[f δ·Tn [X](s : s +mq − 1)](pm)〉X∈Cn

≤
1

εµ(Cn)

∑ bn/qc∑
m=1

n−mq−1∑
s=0

2q
n(1 + n)

min
(

4
qs

(2((2r + 1)δTn + 1)), 1
)

≤
q

εµ(Cn)

 Kn∑
s=0

2(n − qs + 1)
n(1 + n)

+

n/q∑
s=Kn+1

2(n − qs + 1)
n(1 + n)

Kn

qs

≤

1
εµ(Cn)

((Kn

n

)2

+ 2
Kn

n
log

(n
Kn

))
≤

2
εµ(Cn)

√
Kn

n

(5.10)

where in the fourth inequality we use simple facts about the asymptotics of the harmonic numbers. Rear-
ranging, and optimizing for choice of ε5, we find for every frequency ω > 0,

〈TTS(f ,X)〉X∈Cn ≥ C ·
G̃5

n(ω)
2r + 1

· n (5.11)

where C is a constant larger than .0002. Surely a better constant could be found by more careful accounting
throughout, but for our purposes this result is strong enough.

5.5 Graph-Based Computation of P

P̃ extends immediately from individual configurations on whole patterns by simple averaging. For a
configuration X of size n, P̃[X] is defined for ω = p/q, where p/q is a rational number is lowest terms with
q ≤ n. For any ω ∈ (0, 1) let η′(n, ω) be the closest such p/q to ω, and define

Definition 30 Define

Pn[T](ω) =
1
|Tn|

∑
x∈Tn

P̃[X](η(n, ω)

and

P[T](ω) = lim
n→∞

n∑
k=1

|Tk|

|Tk≤n|
Pk[X](ω).

P[T] is called the spectrum of pattern T.

Propositions 28 and 29 make it easy to compute P[T] – or at least the locations of the non-zero peaks –
when T is a locally checkable pattern. 6 Moreover, this computation is naturally structured in terms of the
graph structure of the local check scheme G(Θ).

• First, consider the patterns Tm
1 = {(1234 . . .m)n

| n ∈ N}, a repeat pattern with m distinct states.
Computing according to props. 28 and 29 we find that:

P[Tm
1] =

1
m

(δ0 + δ1/m + . . . + δ(m−1)/m),

5Which is done by taking ε =
5−G̃n−

√
25−26G̃n+G̃2

n

4G̃n
.

6It is also possible to compute P[T] for a large range of non-locally checkable patterns. It is shown in an appendix to this chapter
that in the half proportion case T1/2 = {0n1n

| n ∈N}, P[T1/2] =
(

3
2 − log(2)

)
δ0.

CHAPTER 5. LOWER BOUNDS AND MEASURE OF GLOBAL ORDER 92

with equal peaks at each frequency that is a multiple of 1/m. In the case, the graph associated with
the radius-1 check scheme Θ for Tm contains a single m-cycle c. Hence, P[Tm] is measuring the
“fundamental” frequency 1/m, and all the higher harmonics, resonant with the cycle c.

• Now consider T2 = {(1001)n
| n ∈N}, the length-4 repeat pattern with two distinct states. In this case

P[T2] =
1
2
δ0 +

1
4
δ1/4 +

1
4
δ3/4.

The graph G(Θ) is a 4-cycle, and P[T2] picks out the “fundamental frequency” of the cycle at ω = 1/2,
but due the specifics of the labeling the frequency 1/2 peak is cancelled out.

• For the generic repeat pattern Tq with minimal segment q, we have

P[Tq] =
|q|−1∑
i=0

αiδi/|q|,

where the αi ∈ [0, 1). The coefficient α0 =
1
|q|2

∑m
j=1 N2

j (q), where N j(x) is the number of states in x with

state j. Hence α0 ≥
1

m2 . The coefficient

α1 =
1
|q|2

m∑
j=1

∣∣∣∣∣∣∣∣
∑

t∈S j(q)

e2πit/q|

∣∣∣∣∣∣∣∣
2

,

where S j(x) is the set of agents t with state j. α1 must therefore be positive, since α1 = 0 would imply
that for all j,

∑
t∈S j(q) e2πit/q| = 0, which would contradict the minimality of q. In fact, it is easy to see

that α1 > 1
(|q|/2)2|q| .7

• Generally, suppose Θ is a local check scheme of radius r over m states whose graph G(Θ) contains a
single cycle C. Then P[Θ(C)] has peaks of height αi at frequencies of the form i/|C| for i = 0, . . . , |C| − 1.
Since |C| ≤ m2r+1, α1 ≥ Γm,r , (1

m2r+1/2)2m2r+1
. Thus, the “fundamental frequency” 1/|C| always has a

non-zero peak, even if the higher harmonics are cancelled out (as with T2 above).

• Now consider T3 = T100∪T10, the two-segment pattern discussed above in ex. 5.8, and T4 = A∪B, where
A consists of (consecutive) substrings of elements of {(100)n

|n ∈ N} and B consists of (consecutive)
substrings of elements of {(10)n

|n ∈N}. In these cases, we see that

P[T3] =
47
90
δ0 +

4
45
δ1/3 +

3
10
δ1/2 +

4
45
δ2/3

as desired above, and

P̃[T4] =
8
15
δ0 +

2
15
δ1/3 +

1
5
δ1/2 +

2
15
δ2/3.

The graphs of T3 and T4 both contain two connected components. The spectrum of the whole pattern
is in both cases a weighted average of the spectra of the two components, and the more balanced
weighting of the T4 pattern reflects the existence of more maximal acyclic paths in its graph relative
to that of the T3 pattern.

7That is, the smallest in absolute value of a sum of |q|-th roots of unity is at least (2/|q|)|q|. To see this, following [28] let f (k,N) denote
the smallest non-zero sum of k N-th roots of unity. Then f (k,N) = f (N − k,N), so we can assume k ≤ N/2. Letting g(k,N) as sum of k
N-th roots such that |g(k,N)| = f (k,N), note that g(k,N) is an algebraic number. Hence |

∏l
i=1 gi(k,N)| > 1, where the gi range over the

conjugates of g(k,N). Now, l < N and gi(k,N) ≤ k, so the smallest such gi(k,N) is at lest k−N . Computational evidence suggests a much
better lower bound exists, but proving it seems hard. See [28].

CHAPTER 5. LOWER BOUNDS AND MEASURE OF GLOBAL ORDER 93

• Now consider the pattern T5 = {(123)n(1234)m | n,m ≥ 1}. In this case, we can compute

P[T5] = (α1,0 · δ0 + α1,1 · δ1/4 + α1,2 · δ1/2 + α1,3 · δ3/4) + (α2,0 · δ0 + α2,1 · δ1/3 + α2,2 · δ2/3)

where αi > 0 for all i. The graph associated with T5 contains two cycles that are connected but not
part of the same strongly connected component. The first cycle, of size 3, generates the three peaks in
the second term in the expression above, while the second cycle generates the four peaks in the first
term. Both cycles contribute to the δ0 0 frequency. Similarly, consider

T6 = {(105)m(109)n(1014)o, m,n, o ∈N}.

Here

P[T6] = (α1,0 · δ0 + α1,1 · δ1/6 + . . . + α1,5 · δ5/6)
+ (α2,0 · δ0 + α2,1 · δ1/10 + . . . + α2,9 · δ9/10)
+ (α3,0 · δ0 + α3,1 · δ1/15 + . . . + α3,14 · δ14/15).

The graph associated with T6 contains three cycles, all connected but none in the same strongly
connected component. The three cycles contribute independently to the existence of the peaks in
each of the three terms above. The examples T5 and T6 indicate that, just like in the cases of the
disconnected cycles in examples T1 through T4, the spectrum of the whole pattern is a weighted
average of the spectrum of the patterns associated with the cycles considered separately. Now let
T7 = T5 ∪ T6. Because T6 has asymptotically n3 configurations versus n2 in T5, the components in T5
are completely drowned out by those of T6. Hence,

P[T7] = P[T6].

• Summarizing what we’ve seen so far, if G(Θ) = A∪B, where the cycles of A are disjoint from the cycles
of B and each cycle is in its own strongly connected component, then

Pn[G(Θ)] =
|An|

|An ∪ Bn|
P[A] +

|Bn|

|An ∪ Bn|
P[B].

If An and Bn are asymptotically comparable then both the peaks in An and Bn survive in the limit; if
not, only the peaks of the larger one survive. Hence, for patterns whose graph only contain cycles
in separate strongly connected components, the power spectrum only has peaks at multiples of the
fundamental frequencies of each cycle separately, but only the cycles in weakly connected component
with the largest number of cycles – and thus the largest number of configurations – survive.

• Now let T8 be the pattern generated by freely alternating the words 1234 and 123456. Then

P[T8] = α0δ0 + α1δ1/2,

where α0 and α1 > 0. The graph of associated with T8 contains one strongly connected component,
with two component irreducible cycles, the greatest common divisor of whose lengths is 2. Similarly,
let T9 the pattern generated by freely alternating the words 105, 109, and 1014. In this case,

P[T9] = α′0δ0,

that is, T9 has no non-zero peaks. The graph associated with T9 also contains only one strongly con-
nected component, with three component irreducible cycles, the gcd of whose lengths is 1. Examples
T8 and T9 indicate that a general strongly connected component in G(Θ) contributes to P[T] only at
frequencies that are multiples of the greatest common divisor of the lengths of its cycles, so that a
componentCwith gcd(C) > 1 contributes nonzero peaks but one with gcd(C) = 1 does not. Again, only
the peaks corresponding to the strongly connected components with the largest λmax, contributing the
asymptotically largest number of configurations, survive. As a result, P[T8 ∪ T9] = P[T8].

CHAPTER 5. LOWER BOUNDS AND MEASURE OF GLOBAL ORDER 94

These computations can be summarized as:

Proposition 30 Suppose Θ is a local check scheme with radius r over m states. Then:

If G(Θ) contains no two alternatable segments, then using the notation of sections 2.3.2 and 2.3.3,

P[Θ(C)] =
∑

P

∑
c∈SCC(P)

|c|−1∑
i=0

αi,cδi/|c|

where the outer sum is taken over all maximal acyclic paths in G(Θ) for which n(P) = n(Θ), where αi,c ∈ [0, 1] with
α0,c > 0 always, and α1,c > (2/m)m2r+1 if |c| > 1.

If G(Θ) contains alternatable segments, then

P[Θ(C)] =
∑

C∈SCC(G(Θ))

gcd(C)−1∑
i=0

αi,Cδ i
gcd(C)

where the sum is taken over all strongly connected components C with λmax(C) = λΘ. Again, α0,C > 0 always, and
α1,C > (2/m)m2r+1 if gcd(C) > 1.

This computation emphasizes the importance of the “fundamental frequencies” of a pattern.

Definition 31 [Fundamental Frequencies] Suppose T is a locally checkable pattern, and T = Θ(C) for a locl check
scheme Θ. Then the fundamental frequencies of T are numbers η ∈ [0, 1) of the form

η =
1

gcd(C)

for all strongly connected components C in G(Θ), when gcd(C) > 1. If gcd(C) = 1, then we assign to C the
fundamental frequency 0. Let ω(T) denote the set of fundamental frequencies.

Combining prop. 11 and prop. 30 yields that for an infinite pattern Θ(C), ω(T) contains at least one
element, and that any ω ∈ ω(T) is either 0 or 1/i for an integer i ≤ m2r+1. Now, recall in §4.2 I introduced
the idea of a weakly locally patchable pattern T as one in which that admits a local checks scheme Θ for
which Θ(C) is locally patchable. In terms of the graph structure, proposition 19 implies that if T is not
weakly locally patchable, all the strongly connected components C ∈ SCC(G(Θ)) have gcd(C) > 1. Hence, a
(strongly) locally patchable pattern has all all elements of ω(T) being 0; a weakly locally patchable pattern
has at least one 0 fundamental frequency; and a pattern T that is not weakly locally patchable has ω > 0 for
all ω ∈ ω(T).

We can now complete the proof of prop. 23.

Corollary 3 Suppose T is a non-weakly locally patchable pattern. There is a constant C(r) such that for any local
rule of radius r that is a solution to T and any T-admissible size n,

TTSavg(f)(n) ≥ C(r) · n.

Proof: Suppose T = Θ(C) for some local check scheme of radius r. Suppose f is a solution to T with radius
R. Suppose n is a T-admissible size. For all X ∈ Cn, P̃[X] contains a peak of height at least Γm,r/m2r+1 at
one of the fundamental frequencies of a cycle in G(Θ). Since there are most m2r+1 possible frequencies, this
implies that for some ωn > 0, a fraction of at least 1/m2r+1 of X ∈ Cn, have P̃[X](ωn) ≥ Γm,r/m2r+1. Hence
G̃n(ωn) ≥ Γm,r

m2(2r+1) . Since T is assumed to not be locally patchable, ωn , 0, so we can apply eq. 5.11 which
yields

Tn ≥
CΓ5

m,r

(2R + 1)m2(2r+1)
n

for some C > .0002. �

CHAPTER 5. LOWER BOUNDS AND MEASURE OF GLOBAL ORDER 95

5.6 A Frequency Independent Approach

Equation 5.7 applies for each frequency ω separately. It would also be desirable to have a measure that
is frequency-independent. A simple way to do this is to compute the sum the frequency-dependent order
measure P(ω) over all frequencies ω. Of course, we’d only want to sum S(X) ,

∑
ω>0 P[X](ω) for ω ranging

only over non-zero frequencies, because otherwise we’d be unable to distinguish random configurations
from highly ordered ones – after all,

∑
ω≥0 P[X](w) = 1 for all configurations X.

In fact, even this restriction to ω > 0 isn’t quite good enough. It is easy to see that 〈S(X)〉X∈Cn ∼ (1 − 1
m).

Hence, even for random configurations X the value of S(X) is typically so large that it looks no different
from its value on highly ordered configurations. Thus, S(X) cannot be used as a slowly-growing measure
of order. Conceptually, what’s happening is that, since for each ω separately, 〈P[X](ω)〉X∈Cn ∼ O(1/n), by
the time we’ve summed up ∼ O(n) different frequencies, 〈S(X)〉 is ∼ O(1). To put it another way: the peaks
of the power spectrum are distinguishable from noise to order O(1/n) for each frequency ω; but we need a
measure that distinsguishes peaks from noise to order at least O(1/n1+ε) for ε > 0 if we want the distinction
to survive a sum over a large number of frequencies.

There is an obvious way to achieve this. Since P[X](ω) ∼ O(1/n) for random configurations, (P[X](ω))2

will typically be O(1/n2). Hence, the sum of the squares of the power spectrum on non-zero frequencies
might be a good measure of order:

Definition 32 [Fourth-Power Sum] Let J tbe the function defined on configuration X of size N by

J[X] =
N−1∑
k=1

||F [X](ω = k/|X|)||4.

That is, J[X] is the sum of the fourth-powers ||F [X](ω)|| for non-zero frequencies.

It turns out that J is indeed a slowly-growing order measure. To see this, first note that, like P, J can also be
computed in terms of the of the autocorrelation function:

Proposition 31 For all X of size N,
J[X] = Var(σ[X])

where Var(σ[X]) is the variance of σ[X] considered as a vector in RN.

Proof: Obviously

J[X] =
N−1∑
k=0

||F [X](k/|X|)||4 − ||F [X](0)||4.

Now,

N−1∑
k=0

||F [X](k/N)||4 =

 1
N

N−1∑
τ=0

cos(2πkτ/N)σ′[X](τ)

2

=
1

N2

N−1∑
k=0

∑
τ

∑
τ′

cos(2πkτ/N) cos(2πkτ′/N)σ′[X](τ)σ′[X](τ′)

=
1

N2

∑
τ

∑
τ′
σ′[X](τ)σ′[X](τ′)

N−1∑
k=0

cos(2πkτ/N) cos(2πkτ′/N)

=

1
N2

∑
τ

∑
τ′
σ′[X](τ)σ′[X](τ′) ·

N
2

(δτ,τ′ + δτ,N−τ′)

=
1
N

∑
τ

(σ′[X](τ))2

(5.12)

CHAPTER 5. LOWER BOUNDS AND MEASURE OF GLOBAL ORDER 96

where δa,b is the Krocker delta. In the fourth equality I used the orthogonality of cosines of different
frequencies. On the other hand,

||F [X](0)||4 =
1

N2

(∑
σ′[X](τ)

)2

so
J[X] =

1
N

∑
τ

(σ′[X](τ))2
−

1
N2

(∑
σ′[X](τ)

)2
=

1
N2

∑
τ

∑
τ′

(σ′[X](τ) − σ′[X](τ′))2.

Since σ[X](τ) = σ′[X](τ) − (X ⊗ X)†, we have σ[X](τ) − σ[X](τ′) = σ′[X](τ) − σ′[X](τ′), yielding the result. �
The key point is that:

Proposition 32 Suppose F is a local rule of radius r. Then for n > 4r + 2,

〈J(F(X))〉X∈Cn ≤
8(r + 1)

n
.

To prove this, it will be useful to have the following

Lemma 1 Suppose F is a local rule of radius r. If n > 4r + 2 and τ ∈ [2r + 2,n − 2r − 1],∣∣∣〈σ(F(X))〉X∈Cn

∣∣∣ ≤ 4r + 2
n − 4r + 2

.

Proof: Recall that by definition σ[X](τ) = σ′[X](τ) −
(
X ⊗ X

)†
. On the other hand, it’s easy to see that∑

τ

σ′[X](τ) = (X ⊗ X)† · |X| (5.13)

which implies ∑
τ

σ[X](τ) = 0. (5.14)

Now, adopt the notation A , [0, 2r]∪ [n−2r−1,n−1] as in a previous section and σn , 〈σ[F(X)](2r+1)〉X∈Cn .
Then combining eq. 5.14 and prop. 26, we have

0 =
∑
τ

〈σ[F(X)](τ)〉X∈Cn =
∑
τ∈A

〈σ[F(X)](τ)〉Cn + (n − 4r − 2) · σn

so that

|σ| =
1

n − 4r − 2

∣∣∣∣∣∣∣∑τ∈A〈σ[F(X)](τ)〉Cn

∣∣∣∣∣∣∣ ≤ 4r + 2
n − 4r − 2

as claimed. �
Proof: (Of prop. 32) Let

An ,
1
n2 〈

(∑
σ′[F(X)](τ)

)2
〉X∈Cn

and
Bn ,

1
n

∑
τ

〈(σ′[F(X)](τ))2
〉X∈Cn .

We will compute An and Bn and then take their difference. First, to compute Bn: note that

〈σ′[F(X)]2(τ)〉X∈Cn =
1
n2

∑
a,b,a′,b′

F(a)=F(b)
F(a′)=F(b′)

〈Nτ
a,b(X)Nτ

a′,b′ (X)〉X∈Cn (5.15)

CHAPTER 5. LOWER BOUNDS AND MEASURE OF GLOBAL ORDER 97

where Nτ
a,b(X) is the number of t such that Br(t,X) = a and Br(t+ τ,X) = b. Now, if τ ∈ A = [2r+ 1,n− 2r− 1],

then for all a, a′, b, b′ ∈ Br,m, ∣∣∣〈Nτ
a,b(X)Nτ

a′,b′ (X)〉 − 〈Nτ
a,b(X)〉〈Nτ

a′,b′ (X)〉
∣∣∣ ≤ n

m4(2r+1)
. (5.16)

Plugging eq. 5.16 into eq. 5.15, we get∣∣∣〈σ′[F(X)]2(τ)〉 − (〈σ′[X](τ)〉)2
∣∣∣ ≤ 1

n
.

Thus applying the lemma, we have for τ ∈ A that∣∣∣∣〈σ′[X]2(τ)〉 − Γ2 n
n − 4r − 2

∣∣∣∣ ≤ 4r + 2
n − 4r − 2

where

Γ =

〈∑
j

 ∑
a|F(a)= j

Na[X]
n

2〉
.

Summing this over τ ∈ A gives ∣∣∣∣∣∣∣1n ∑
τ∈A

〈σ′[X]2(τ)〉 − Γ2

∣∣∣∣∣∣∣ ≤ 4r + 3
n

so that
|Bn − Γ

2
| ≤

8r + 5
n

. (5.17)

To compute An: note that due to eq. 5.13,

An =
1
n4

∑
j, j′

∑
a,b,a′,b′

F(a)=F(b)= j
F(a′)=F(b′)= j′

〈Na[X]Nb[X]Na′ [X]Nb′ [X] (5.18)

where Na[X] is the number of t such that Br(t,X) = a. But for all a, b, c, d ∈ Br,m,

|〈Na[X]Nb[X]Na′ [X]Nb′ [X]〉 − 〈Na[X]Nb[X]〉〈Na′ [X]Nb′ [X]〉| ≤
3n3

m4(2r+1)
(5.19)

and plugging eq. 5.19 into eq. 5.18 gives ∣∣∣An − Γ
2
∣∣∣ ≤ 3

n
. (5.20)

Finally, combining eqs. 5.17 and 5.20 gives

〈J(F(X))〉 = Bn − An ≤
8(r + 1)

n

as desired. �
As a result of proposition 32, we can go through each of the steps of the steps leading to the lower bound

eq. 5.7, with J(X) in place of P(ω). This is useful because J(X) will typically by larger than P(ω), since
the former takes into account many frequencies at once, and therefore provides sharper lower bounds. In
future work, I intend to develop the theory of J(X) – and other more sophisticated measures of order, more
thoroughly.

CHAPTER 5. LOWER BOUNDS AND MEASURE OF GLOBAL ORDER 98

Related Work

The use of Fourier analysis in theoretical computer science has gained some popularity in the past fifteen
years (see e.g. [21]), though I am not aware of a usage quite like the one here. I have found a paper in which
Fourier analysis is used to explore features of regular languages, in the context of cellular automata theory,
although the motivation, techniques, and results of the paper seem fairly different from those developed
here [19]. The power spectrum, considered as an invariant of regular languages, is like several of the
properties described in previous chatpers, in that it is “more detailed” in scope that traditional measures
of structure in regular languages. It is, for instance, impossible to compute the Fourier coefficients of a
language from the algebraic generating function representations as described in [8] or [9].

Chapter 6

The Radius-State Tradeoff

The multi-agent systems model being used in this work has two parameters, the radius r that an agent can
see and the amount of state m that it can store. In practical implementations of an actual multi-agent system,
these parameters will often be resource-limited, since agents have limits on either their internal memory
and communications bandwidth. Up to this point, we have assumed that the amount of state is implicitly
given by the pattern and then determined the best (smallest) radius at which the problem was solvable.1 In
this chapter, I show that there is a radius-state resource tradeoff : systems that have a large amount of available
state can achieve with a reduced radius the same goals achieved by a system with a small amount of state
and a larger radius. More precisely, I discuss two forms of radius-state tradeoff, presenting:

• A “static tradeoff” that applies to local check schemes, establishing that any local check scheme lies
along a continuum between low-radius/high-state and low-state/high-radius implementations, and
exhibiting algorithms for “tuning” along this continuum.

• A “dynamic tradeoff” that applies directly to local rules, showing that for certain forms of local rule,
extra states used to aid the dynamics (like the B, C, and 4i states used in chapters 3 and 4) can be
removed by encoding them with larger-radius dynamical ensembles.

6.1 The Static Tradeoff

I introduce the static tradeoff via its most important example: the coordinate problem.

6.1.1 Example: The Coordinate Pattern

Suppose our task is to self-organize a coordinate system within the one-dimensional model system. Let’s
make the assumption that the number of possible agent internal states, |S| = m, is large compared to the size
of a configuration X. A “coordinatization” of a configuration X with of size 8, with agents that had at least
8 states available, would look something like:

1 2 3 40 6 75
One simple way to achieve this state is via the nearest-neighbor local rule F defined on the local ball b by

F(b) =

0, if b is the left-most agent
1 +min(b), otherwise

(6.1)

in which min(b) denotes the minimum state value seen in the local ball b. In this formation, the left-most
agent is the anchor or source of the gradient. As long as |X| < m, this rule will generate a state in which

1Though occassionally we added some hidden state for ease of explication, and as we discuss, this state can be removed.

99

CHAPTER 6. THE RADIUS-STATE TRADEOFF 100

Timesteps

0 1 2

3

5

4

67 0 6

0

0

0

0

0

0

0

1

1

1

1

1

1

1

2

2

2

2

2

2

2

3

3

3

3

3

2 2 2 2 2

3 3 3 3

4 4 4

4

4

4

5 5 5

5

5 6 6

6

1 1 1 7

7

Figure 6.1: The gradient propagation process according to eq. 6.1. Each horizontal line corresponds to a new timestep.

each agent’s position is reflected in its internal state value. The “way that it works” is that – regardless of
initial state – the left-most agent serves as an anchor for the origin position, and the correct coordinate value
propagates through the system, as seen in figure 6.1.

Hence the “coordinate pattern” – in which each agent’s state reflects relative position in configuration –
is solvable with a radius 1 algorithm, as long as the amount of amount of state available to each agent can
grow with the number of agents present. This algorithm, with slight modifications, works in much more
general contexts, and is known as a discrete gradient [1]. Because coordinate systems are basic to very many
tasks, the gradient is a tool of great importance in local-to-global programming.

Though the coordinate problem may look different from the locally checkable problems we’ve seen so
far, the discrete gradient algorithm is almost implementing a local check scheme. Specifically, let

Θ(b) =

1 , if b(−1) = b(0) − 1
0 , otherwise

.

This check scheme has radius of 1/2, meaning that the local check scheme only makes use of information from
the agent to the left. This formulation is somewhat problematic because it relies on each agent having more
and more state as the system size increases. One way to resolve this apparent problem is to allow infinite
state sets, like the whole setN of natural numbers, assuming that memory is cheap. Another resolution is
to consider for each k the k-coordinatization problem – that is, the ability to produce a coordinate modulo
k. In this case, the local rule:

F(b) = 1 + b(−1) mod k

produces the correct result. For each k, the k-coordinatization problem is locally checkable with k states,
with radius 1/2.

But what if we want to achieve k-coordinatization with fewer than k states? On the one hand, it is
impossible to find a local check scheme for k-coordinatization with radius 1/2 and fewer than k states:
to see this, simply note that the local check scheme Θ for a k-coordinatization corresponds to G(Θ) being
containing a single irreducible cycle of length k inD(2, k); and such cycles are size at most k.

However, if we allow a somewhat larger radius, can we lower the required amount of state? Yes. A
well-known idea in computer science is the idea of the DeBruijn sequence: for m states and window-length
n, a DeBruijn sequence B(n,m) is an m-ary sequence of length-mn in which each length-n m-ary sequence
arises exactly once as a contiguous subsequence in B(n,m), wrapping around at the end. For example, a
DeBruijn sequence with n = 3 and m = 2 is 10111000. It is a classic and simple result that such sequences

CHAPTER 6. THE RADIUS-STATE TRADEOFF 101

exist for all m and n ([7]) 2 The key realization is to think of the view within each length-n window in B(n,m)
as encoding a unique position along a line up to mn positions in length.

Example 37 A coordinate gradient of length 8 can be encoded by a DeBruijn sequence with n = 3 and m = 2
(figure 6.2). In particular, we have: 101 → 0, 010 → 1, 100 → 2, 000 → 3, 001 → 4, 011 → 5, 111 → 6, and
110→ 7.

1 2 3 40 6 75

1 0 0 00 1 111 0

Figure 6.2: DeBruijn sequence (low state, high radius) encoding of gradient (low radius, high state).

It turns out that there is a radius d(n+1)/2e check scheme for the DeBruijn sequence B(n,m), corresponding to
an induced cycle of length mn inD(n+1,m). In fact, it can be achieved simply by reading off the length-n+1
windows in B(n,m).

Example 38 A local check scheme of radius 3/2 for B(3, 2) is given by:

Θ(b) =

1 , for b = 1010, 0100, 1000, 0001, 0011, 0111, 1110, and 1101
0 , otherwise

.

The relationship between discrete gradients (with fixed amounts of state) and DeBruijn sequences is an
example of a more general idea: the radius-state tradeoff, in which patterns that are locally checkable with
a given amount of state and radius can be written as encodings of patterns that are checkable with more
states and less radius or vice versa. To indicate how this tradeoff might be implemented in general, I now
discuss the translation of local check schemes of a given radius and amount of state to one with low radius
but higher state, and the reverse.

6.1.2 Trading Radius for State

A simple procedure for trading radius for state can be described if we first add a little more structure to
our model of agents. Instead of modeling the states of the agents as an unstructured set S, suppose internal
state is now specified as a length-k m-sequence. For instance, if k = 6, then the model will look something
like this:

0

1

0

0

0

1

0

1

1

1

1

1

1

0

1

1

0

1

0

0

0

0

0

1

0

1

1

0

0

1

2They correspond to hamiltonian cycles in the strongly connected component of the graph D((n − 1)/2,m), an idea I’ll explore in
greater detail in chapter 7.1.

CHAPTER 6. THE RADIUS-STATE TRADEOFF 102

in which the large ovals correspond to agents and each of the slots is assigned a unique color. Each ball
b ∈ Br in this model is like a k-tuple of balls in a single-slot model, so we write b = (b1, b2, . . . , bk). Formally,
each configuration in this new model is a function

X : {1, . . . |X|} → [m]k

where [m] = {1, . . . ,m}. Let b j,r(i,X) denote the r-ball in X at agent i, for slot j – formally, b j = (X(i−r) j, . . . ,X(i+
r) j) where a j denotes the j-th coordinate in a. In the above figure, the radius 2 ball around the third
agent B2(3,X), consists of (b1, b2, b3, b4, b5, b6), in which b1 = (0, 0, 0, 0, 1), b2 = (1, 0, 1, 1, 0), b3 = (1, 0, 0, 1, 1),
b4 = (0, 0, 0, 1, 1), b5 = (0, 0, 0, 1, 0), and b6 = (1, 1, 1, 1, 1).

Since each of the k “m-ary register” slots can take on m possible states, the k-slot model is effectively like
choosing S to have mk states. Hence, any check scheme or local rule in multi-slot model can be translated
into a corresponding check scheme or local rule in the original model, and vice-versa.

Now, suppose we’re given a radius r local check scheme Θwith m states, and our goal is to get a radius
l local check scheme for the pattern Θ(C) generated by Θ, for any l < r. We will associated to Θ into a new
local check scheme Θl with radius l:

Θ = Radius r check scheme −→ Θl = radius l check scheme, using more state. (6.2)

Specifically, letΘl be the radius-l local check scheme on M = 2d(r− l)/(2l+1)e+1 slots defined by the criterion
that:

Θl(b = (b1, . . . , bl)) = 1

if and only if there is an X ∈ Θ(C) and i ≤ |X| such that

b j = Bl(i + j(2l + 1),X) for j = −(M − 1)/2, . . . , (M − 1)/2.

Evidently
Θl(b) = 1 ⇔ Θ(b1 ◦ b2 ◦ . . . bl) = 1.

Hence in configuration X satisfyingΘl, the original pattern can be read off as the states in the “first register”
b1, or in a shifted version in any other register. This construction can be thought of as a ”cut and shift”
construction, in which the original local check scheme is segmented into a number of separate parts, which
are then shifted through the slots. Evidently this procedure can be translated to the original “one-slot” agent
model through simple “decoding” function.

Example 39 Consider the T100000000 pattern in the 1-slot model.

0 0000 0 001

This pattern has local check radius of 4. Now suppose we wish to get a radius-1 local check. The “cut and
shift” scheme applied to this problem yields a 3-slot local check that looks like:

0 0000 0 001

0 0000 000

1 0000 0 000

1

Let’s now make the formal definition:

Definition 33 [Local Encodings] A pattern T′ over state set S′ is a k-encoding of a pattern T over state set S if
there is a function

φ : Bk,S′ → S

CHAPTER 6. THE RADIUS-STATE TRADEOFF 103

such that
T = {φ(X)|X ∈ T′}

where φ(X) denotes the simultaneous action of φ on every k-ball in X. In case this holds, φ is called a decoding
function.3

In terms of the definition of this definition, the cut-and-shift procedure defined by the construction ofΘl

above shows that: any local check scheme over m states with radius r is the 1-encoding of a radius-1 check scheme
with m2r+1 states.

6.1.3 Trading State for Radius

Now, we’d like to make the reverse of the construction described in the previous section. This turns out to
somewhat more complicated.

The most obvious thing to look for would be a procedure that, given local check schemeΘwith radius r
and m states, finds a local check schemeΘ′ with 2 states and a radius R ≥ r such thatΘ(C) is the R-encoding
of Θ′(C). However, this is impossible, for a very simple reason. Suppose we’re given the trivial local check
scheme Θ on r states – that is, Θ that accepts all r-balls. Then GrowthΘ(C)(n) ∼ mn; that is, the number of
possible Θ-admissible structures of size at most n grows exponential in n, with growth rate m. On the
other hand, if Θ′ is a supposed local check scheme in m′ < m states, then GrowthΘ′ (n) grows no faster than
O((m′)n). But then no decoding function φ of any radius k can possibly produceΘ(C) as the image φ(Θ′(C)).

Another way to view this problem is to think about the graphs associated with the local check schemes.
The graph of the trivial pattern over m states is the complete graph with degree m; but all graphs of a
local check schemes with fewer than m states have degree less than m, and there is no way that any could
represent a degree-m graph. Generically, if we define a “degree-k” pattern as one whose graph G(Θ) has
maximum in- or out-degree of k, then evidently no degree-k pattern can be encoded by a degree k′ pattern
if k′ < k, regardless of additional radius.

Example 40 Conversely, let’s take the pattern over 4 states given by

T = {10, 1010, 101010, . . . , } ∪ {23, 2323, 2323, . . . , } = T10 ∪ T23.

This pattern possesses a radius-1 check scheme Θwhose graph G(Θ) is

10 101 010 10* * * 23 232 323 23* * * **

This pattern is “degree 2”, since its graph has 2 as its maximal in or out degree. On the one hand, there is
no local check scheme over 2 states, of any radius, whose graph is isomorphic to the above graph. That is
because it has two 2-cycles, while there is a unique length-2 periodic minimal segment in two states (namely
10), corresponding to the single length-2 cycle in D(2r + 1, 2). Nonetheless, the pattern T can be viewed as
the encoding of a radius-2 local check scheme in 2 states. In particular, consider the pattern

T′ = {10, 1000, 100010, 10001000, 1000100010, . . . , } ∪ {11, 1110, 111011, 11101110, 1110111011 . . .}.

This pattern has a radius-2 local check Θ′ whose graph is:

3The notion of encoding makes another connection to the “language recognition” point of view. By induction on the basic closure
operations of regular languages, it is easy to prove that all regular languages are local encodings of (one-dimensional) locally generated
languages, and all local encodings of locally generated languages are regular. In other words, the regular languages are, in language-
theoretic terms, the “homomorphic images” of locally generated languages (see [26]). In a sense, local checkability therefore captures
the “the most natural physical model” of regular languages, at least for the purposes of the construction problem.

CHAPTER 6. THE RADIUS-STATE TRADEOFF 104

100

1000

10001

00010

00100

01000

1000

000

0010

010

111

1110

11101

11011

10111

01110

1110

110

1011

011

10 10

11 11

* *
* **

*

*

*

Now consider the radius 1 decoding function φ defined on the 1-ball (x, ystar, z) by the formula

φ((x, y, z)) = δx,0δz,0 · 1 + (1 − δx,z)(δy,0 · 0 + δy,1 · 2) + δx,1δz,1 · 3

= xz + 3(x − 1)2(z − 1)2 + 2(1 − (x − z)2)(y − 1)2 (6.3)

where δa,b is the Kronecker delta. The key point is that φ generates T from T′, i.e. φ(T′) = T. Hence,
this degree-2 pattern radius 1 pattern over 4 states can in fact be encoded as a 2-state pattern with radius
2. Intuitively, what is happening is that the small cycles and their single terminal paths in the original
pattern are expanded into larger cycles with multiple terminal paths in the encoded pattern, which are
then collapsed by the decoding function. In other mathematical terms, the pair (G(Θ′), φ) is a covering of
G(Θ) with multiplicity 2. Since all the local neighborhoods in the original graph are degree 2, these can be
reproduced in the encoded graph.

Whether a generalization of this graph covering procedure can be constructed to obtain from all degree-k
patterns an exact encoding with k states is an open question. However, it is possible to construct an approx-
imate encoding – an encoding of a subpattern of Θ(C) that has a valid configuration in all but finitely many
Θ-admissible sizes. To see how this works, I will sketch the construction process in several steps:

Step 1: Suppose we’re given a repeat pattern Tq, in m states which has a local check scheme Θ of radius
r. The graph G(Θ) contains a single cycle C corresponding to the repeated unit q, and length-r initial and
terminal paths:

C

Since C is an irreducible cycle in D(r,m), |C| ≤ m2r. Hence, to solve our problem, we need to show that for
any l ≤ m2r, there is some R and a 2-state local check scheme with radius R whose graph G(Θ) consists of a
single cycle of length l. In fact, take R = 2M + 1, where

M =
⌈
r log2(m)

⌉
.

Now, let k = mod(l,R). Since l ≤ m2r, L , d|l|/(2M+1)e ≤ 2M/M. Thus, there are at least L+1 unique length-M
binary sequences, so at least L that are not the all-ones sequence 1M. Enumerate a size-L selection of non-1M

binary length-M binary sequences as b1, . . . , bL. Now, consider the binary sequence

S , 1M0 ◦ b1 ◦ 1M0 ◦ b2 ◦ . . . 1M0 ◦ bL ◦ 1k−10.

The repeat pattern with unit S, i.e. TS, is locally checkable with radius R – and the graph of its local check
scheme is a cycle of length |S| = l. Hence,

φ(BR(i,S)) = C(i) for i = 1, . . . , l

CHAPTER 6. THE RADIUS-STATE TRADEOFF 105

is the desired encoding.

Step 2: Now suppose T is the concatenation of two repeat patterns, i.e. T = {x ◦ y}, where x ∈ Tq and y ∈ Tq′ .
Suppose that the overall local check scheme has radius r. It’s graph looks like:

C1 C2

where the cycles C1 and C2 correspond to the minimal repeatable segments q and q′. As long as |C1|+ |C2| ≤⌈
r log2(m)

⌉
, then we can repeat the above process to construct sequences

S1 = 1M0 ◦ b1
1 ◦ 1M0 ◦ b1

2 ◦ . . . 1
M0 ◦ b1

L ◦ 1k1−10

and
S2 = 1M0 ◦ b2

1 ◦ 1M0 ◦ b2
2 ◦ . . . 1

M0 ◦ b2
L ◦ 1k2−10

of lengths |C1| and |C2| respectively, where k1 = mod(|C1|,R) and k2 = mod(|C2|,R), such that

bi
k = b j

l if and only if i = j and k = l.

Now consider all the configurations

T′ = {(S1)n
◦ (S2)m

|m,n ∈N}.

In the case that either (i) |S1| ≥M or |S2| ≥M, or (ii) |S1| , |S2|, any R = 2M+ 1 window B in X can determine
whether it is part of S1 or S1, and what position pB it has within S1 or S2. The decoding function φ defined
by

φ(B) =

C1(pB), if B ∈ S1

C2(pB), if B ∈ S2

is therefore well-defined and T = φ(T′). Hence T′ is an exact 2-state M-encoding of T. If on the other hand
|S1| = |S2| < M, then φ will not be well-defined, and the process we’ve defined won’t yield an encoding of
T. However, an agent that is the ?-agent of a ball B of radius M that is within M states of the right end of
a configuration can its |X| − pos(B,X), and an agent not within M states of the right end can determine that
|X| − pos(B,X) > M. Hence, the decoding function φ defined by

φ(B) =

C1(pB), if |X| − pos(B) > M
C2(pB), if |X| − pos(B) ≤M

is well-defined, and φ(T′) ⊂ T. This subset inclusion is proper, because the configurations qm(q′)n with
n > M/|q′| will never arise. On the other hand, since |q| = |q′|, Sizes(T′) = Sizes(T), so φ is an approximate
M−encoding. Intuitively, the problem encountered here is the same as in example 40 above, in which there
are “too many small cycles” to be encoded by a 2-state check scheme of any radius. However, as opposed
to the strategy taken in the encoding in eq. 6.3, in which we produce an exact encoding by quotienting
a high-multiplicity covering, here we simply ignore one of the small cycles in G(Θ) – at the expense of
producing an approximate encoding.

Step 3: Repeating the above reasoning, we are able to generate approximate 2-state radius 2
⌈
r log2(m)

⌉
+ 1

encodings of all local check schemes Θ of radius r in m states for which G(Θ) has maximum in- and out-
degree of 2.

Step 4: The final step is to show that any degree-k pattern T in m states with local check scheme of radius
r has an approximate encoding (also in m-states) by a degree-2 subpattern T′ with check scheme of radius

CHAPTER 6. THE RADIUS-STATE TRADEOFF 106

2r + 1. To do this, one first picks disjoint linear suborderings of the graph G(Θ), each component of which
contains a cycle of each size to which it is connected, and then applies the same procedure as in step 3 above
to that ordering. For instance, suppose we take the pattern

S = {Am
◦ 11 ◦ Bm

◦ 1000111000011 ◦ Co
|m, o ≥ 1, n ∈N}

where

A = 11100011100011, B = 210011100001110001111, C = 11100001110001111001011100111110100.

The pattern T generated by the radius-5 windows in S has local check scheme Θ whose graph contains a
degree-3 node:

in which the offending degree-3 node and out-edges is highlighted in red. The single large strongly
connected component in this graph has irreducible cycles of sizes 15, 21, and 35 and thus defines a linear
ordering with three cycles which is locally checkable with radius 11. The rough shape of this graph is:

.15 21 35

in which the number in the cycles represent their size – I’ve not included the actual graph because it is very
large and unwieldy. Applying the procedure in step 3 to this construction yields the pattern

T′ = {Ãn
◦ 11 ◦ B̃m

◦ 1111000100111 ◦ C̃o
| n, o ≥ 1,m ∈N}

where
Ã = 111100001111100, B̃ = 111100010111100011111,

and
C̃ = 11110010111110011111110100011101001.

The formula for the decoding function φ is determined by mapping the positions in Ã, B̃, and C̃ to the
corresponding positions in A, B, and C, respectively.

The Radius-State Continuum

The two tradeoff procedures described in the previous sections combine to show that:

CHAPTER 6. THE RADIUS-STATE TRADEOFF 107

Proposition 33 [The Static Radius-State Trade-Off] Any pattern T over m states with LCR(T) ≤ r has a local
check Θ such that Θ(C) is the r log2(m)-encoding of a pattern in 2 states that is locally checkable with radius
2dr log2(m)e + 1, and the 2-encoding of a pattern in m2r+1 states that is locally checkable with radius 1.

The conceptual import of proposition 33 is to establish that for every pattern there is a continuum
along the radius-state tradeoff between high-state/low-radius implementations and high-radius/low-state
implementations:

Θ

High State, Low Radius

Discrete Gradient

High Radius, Low State

DeBruijn Encoding
The two ends of the continuum are represented by the solutions of coordinatization, with the Discrete
Gradient algorithm as the high-state/low-radius implementation and the DeBruijn Sequence algorithm as
the high-radius/low-state implementation.

6.2 The Dynamic Trade-Off

In the previous section, we discussed a “static” radius/state trade-off, one that applied to patterns and their
local check schemes, not to the local rules that created those patterns. However, we need to understand the
latter as well.

Suppose we’re given a state set S1, with size m. Let T ⊂ CS1 be a pattern over those m states. Now
suppose we add states to the state set, so that S = S1 ∪ S2, where |S2| = m′ > 0. Evidently T is also a pattern
in CS, since CS1 ⊂ CS2 ; T is simply a pattern that “doesn’t mention” the states in S2. Now, suppose we’re
given a rule F that solves T in CS. This rule is robust to the presence of the extra m′ states, in that initial
conditions that have arbitrary arrangements of the extra states will eventually be driven to configuration in
T that make no mention of such states. On the other hand, F might make use of those states, so that even on
initial conditions that are in T and make no mention of the extra states, F might temporarily cause one or
more such extra states to appear before removing them again in the end. This is precisely what happens in
the constructions of Naive Backtracking algorithm FΘ in §3.2; C and B and 4i are just this sort of extra state.
The algorithm F̃Θ uses even more such states.

Hence we are led to ask if we can always make a form of dynamic radius/state tradeoff to replace F with
a (possibly larger radius) rule F′ that is a solution to T over CS1 without any use of extra states.

6.2.1 Isolated Turing Head Algorithms

There is a simple case in which the extra states can be removed from the Naive Backtracking rule without
the need to increase the radius at all: when no backtracking actually occurs, as described in §3.1. In that
case, the gradient eq. 3.1 defines a rule using no extra in the first place. However, a construction of that
form cannot easily be generalized to solve more general check schemes. This is because check schemes that
have multiple nontrivial decision points will require heads to travel in both directions across the system
to implement backtrackings. This difficulty is the reason why, in the original construction of the Naive
Backtracking rule in chapter 3, I introduced the extra state to begin with. To remove them, we will have to
more explicitly find an encoding of the extra states and their activity as dynamically coherent substructures
of larger radius created from just the original states.

Example 41 Take for example the pattern T = {(1000)n
}, which has a radius 2 local check scheme Θ. In

the Naive backtracking algorithm FΘ, B ◦ B acts as a “turing head”, a marker for the moving border of Θ-
correctness. As the B-head progresses, there is an alternation of a state with one B and a state with two B’s.

CHAPTER 6. THE RADIUS-STATE TRADEOFF 108

These two states are bound together, so that a coherent substructure B → B ◦ B → B propagates through
the system. In fact, we can encode the B head and its dynamic propagation pattern with the sequence
111→ 11→ 111 as shown schematically here:

Because neither of the subconfigurations 111 or 11 is present in the final correct pattern, we can extend the
definition of the local rule to force the 111 and 11 states to act as “movable coherent border markers”, just
like the B-states originally did.

To see how to make this encoding in general, let Θ be a local check scheme of radius r over the states
1, . . . ,m. We can assume that for each of the i = 1, . . . ,m, the r-balls i ◦ i ◦ . . . i = i2r+1 are notΘ-accepted. That
is because if Θ[i2r+1] = 1 for any i, then Θ has a sub-check scheme containing a cycle of size 1, in which case
the construction in §3.1 would apply. (In fact,Θwould also be locally patchable, so that the construction F̂Θ
from §4.2, which also already uses no extra state, could be used as well.) Let O be any left-choice function
for Θ, such that if O(b, j) = 0 then j = |R(b)| and if O(b, j) = 1 then j = 1l; that is, 0 is always the “last choice”
of O, and 1 a “first choice”, when they are choices at all.

Recall how FO
Θ

is defined in §3.2 by Rules 1-10. Now, let’s define a new rule F′ that produces modified
versions of several of the trajectories generated by those rules. Specifically:

1. Replace the trajectory
y ◦ B ◦ s→ y ◦ B ◦ B→ y ◦O(y, 1) ◦ B

as generated by Rules 1-4 by defining F′ to generate the trajectory

y ◦ 102r+21 ◦ s→ y ◦ 102r+211→ y ◦ 1102r+111→ y ◦O(y, 1) ◦ 102r+111→ y ◦O(y, 1) ◦ 102r+21.

In words, the subconfiguration pattern 102r+21→ 102r+11→ 102r+21 acting as an encoding of the right-
moving turing head. Rules 1-4 will only be triggered when y is Θ-consistent, so since 102r+11 is not
Θ-consistent by assumption, the locations of these encodings are non-overlapping and well-defined.

2. Replace the trajectory
y ◦ C→ y(1 : |y| − 1) ◦ C ◦ C

generated by Rule 6 by defining F′ to generate the trajectory

y ◦ 102r+5
◦ 1→ y(1 : |y| − 1) ◦ 1102r+51→ y(1 : |y| − 1) ◦ 1102r+411→ y(1 : |y| − 1) ◦ 102r+511.

In words, the subconfiguration 102r+51 is encoding the left-moving turing head. Again, since by
assumption 102r+51 is not consistent, but y must be for Rule 6 to be triggered, these encodings are
non-overlapping and well-defined.

3. Replace the trajectory

y ◦ t ◦ s ◦ C→ y ◦ t ◦ 4t ◦ C→ y ◦ y+1
O ◦ 4t ◦ C→ y ◦ y+1

O ◦ B ◦ C

generated by Rules 7-9 by defining F′ to produce the trajectory

y◦ t◦102r+51→ y◦ t◦102r+4
◦0◦11→ y◦ t◦102r+3

◦ t◦11→ y◦ y+1
O ◦102r+3

◦ t◦11→ y◦ y+1
O ◦102r+3111.

In words, the state 4t is encoded by 102r+3
◦ t ◦ 11. Because O is assumed to only have 0 as a “last

choice” the value of t is never equal to 1 in the above trajectory since Rule 7 is, by definition, only
triggered by vales of t that are not “last choices.” Similarly, since O only has 1 as a “first choice,” the
value of y+1

O is never equal to 1. Hence overall, this encoding is well-defined.

4. Define F′ to with the direct analogs of Rules 1,4,5, and 10 that generate the right-moving 102r+31-head,
halt and disappear it when a completion exists, and turn it to the left-moving 102+51-head when a
completion does not exist.

CHAPTER 6. THE RADIUS-STATE TRADEOFF 109

The trajectories above require F′ to have radius 4r + 8 to accommodate the size of the encoded versions of
the turing heads. Hence, we have:

Proposition 34 All locally checkable patterns T can be solved with a local rule whose radius is at most 4 ·LCR(T)+8,
using no extra states.

This improves Theorem 2 in chapter 3 by removing the requirement for extra state, albeit at the expense of
adding 2r + 6 to the radius of the solving rule.

With a small amount more radius, we can remove the condition on the choice function, and so provide
encodings for FO

Θ
for all O. A similar procedure will lead to an encoding of the Less Naive Backtracking

algorithm for single terminus graphs, because the extra states B, C, and 4i are the same as in the Naive
algorithm. In all of these cases, the number of extra states is m + 2. To encode more states – as for instance
required by the Less Naive backtracking algorithm in multi-terminus graphs – we need a slightly more
sophisticated procedure.

Suppose that Θ is a local check scheme of radius r over the states S = {1, . . . ,m, }, such that 02r+1 is not
Θ-accepted. Suppose that F is a local rule of radius R > 2r+ 1 over S and the extra states B1, . . .Bk. Suppose
the only dynamics generated by F are those in the trajectories of the form:

y ◦ Bi ◦ l→ y ◦ Bi ◦ B j → y ◦ f (j, y) ◦ B j (6.4)

where l is any state, y is a Θ-consistent subconfiguration, j is some function of i and y, and f (i, y) is such
that y ◦ f (i, y) is Θ-consistent whenever y is. In words, this is the dynamics of a right-moving turing head
with k internal states. Now, suppose we wish to encode these dynamics using only the m states in S. We
can do this with a rule F′ of radius

R′ = R + 4r + 4 + dlogm(k + 2r + 1)e + 10

in the following way. For each j ∈ {1, . . . k} we can assign j to a unique length-dlogm(k + 2r + 1)e m-ary
sequence, s j, containing no instance of 02r+1 as a subsequence. For each Θ-consistent y, and all states l,
consider the following trajectory:

y ◦ 1102r+21 ◦ sisi ◦ 102r+211 ◦ l −→ y ◦ 1102r+21 ◦ sisi ◦ 102r+2111 −→

y ◦ 1102r+21 ◦ sisi ◦ 1102r+1111 −→ y ◦ 1102r+21 ◦ sisi(1)s j(1)si(3 : |s|) ◦ 1102r+1111 −→

y ◦ 1102r+21 ◦ sisi(1)s j(1 : 2)si(4 : |s|) ◦ 1102r+1111 −→ . . . −→ y ◦ 1102r+21 ◦ sisi(1)s j ◦ 102r+1111 −→

y ◦ 1102r+21 ◦ sisi(1)s j ◦ 102r+211 −→ y ◦ 11102r+11 ◦ sisi(1)s j ◦ 102r+211 −→

y ◦ 11102r+11 ◦ sis j(|s|)s j ◦ 102r+211 −→ y ◦ 11102r+11 ◦ si(1 : |s| − 1)s j(|s| − 1 : |s|)s j ◦ 102r+211 −→ . . .

−→ y ◦ 11102r+11 ◦ si(1)s js j ◦ 102r+211 −→ y ◦ 11102r+111 ◦ s js j ◦ 102r+211 −→

y ◦ f (j, y) ◦ 1102r+111 ◦ s js j ◦ 102r+211 −→ y ◦ f (j, y) ◦ 1102r+21 ◦ s js j ◦ 102r+211.

(6.5)

For the first six steps, the system is in “Stage 1” – translating the right-most of the two copies of si one
step to the right, and in the process transitioning it to s j. In the next six steps, the system is in “Stage 2”
– translating the left of the two copies of the si, making it too into a s j. In the last two steps, the system is
in “Stage 3” – writing the f (j, y) state at its left end. The reason that two copies of the si’s are included is
so that during the process of the head’s being translated one step to the right, the system knows where the
left-most boundary of each copy of si is, by comparing to the other copy. This is the analog of the two-step
Turing head propagation discussed in §3.2. Which stage the system is in is signaled by the number of 1s
at the borders of the 02r+1 strings. And, since 02r+1 is illegal both in y and the s js, no two trajectories of this
form can be overlapping. By inspection, one can see that at each stage, every ball of radius R′ has enough
information to uniquely determine the indicated transitions. Hence a rule of radius R′ can replace trajectory
6.4 with 6.5.

A similar procedure can be described for a left-moving turing head, and for turing head birth, death, and
reversal operations. Hence, any rule that can be described by such operations – including both the Naive

CHAPTER 6. THE RADIUS-STATE TRADEOFF 110

and Less Naive Backtracking rule in the non-locally-patchable case – can be translated into an equivalent
rule using no extra state at the expense of adding 4r + 4 + dlogm(k + 2r + 1)e + 10 to the rule’s radius (where
k is the total number internal states of the head). These “Isolated Turing head algorithms” have enough
structure to allow for a systematic dynamic radius state tradeoff.

The radius-state tradeoff defined above works only for a specific class of algorithms. It is desirable to
have a generic procedure for making such tradeoffs for any local rule, as we did for the static tradeoff.
This would involve finding a generally-applicable process for encoding the dynamics of one local rule in
the operation of another, with different states and radius. Even defining the notion of dynamic encoding
properly, much less finding such encodings algorithmically, turns out to be difficult. See appendix §E for a
discussion of the possible approaches.

Chapter 7

Pattern Space Analysis

By associating every locally checkable pattern with radius r and m states with an induced subgraph of the
larger graphD(r,m), proposition 10 in §2.3 establishes thatD(r,m) is the “ambient space” of locally checkable
(and therefore locally solvable) patterns. Subsequent chapters made much use of the graph structures
associated with patterns to aid analysis and constructions. Most of the graph properties mentioned in these
discussions were very general. Apart from the repeated use of the bound on graph degree by the number
m of states, and the (loose) bound of m2r+1 on the maximal size of irreducible cycles, we made use of no
properties that would distinguish local check scheme graphs from any other finite directed graphs.

However, because the ambient spaceD(r,m) itself is highly structured (as we shall see), the set of graphs
that can arise from local check schemes with a give choice of the parameters r and m is constrained. We
might therefore expect that important but non-obvious features of locally checkable patterns, and the local
rules that can form them, could be learned by studyingD(r,m) in more detail.

In this chapter, I develop an abstract mathematical theory to characterize D(r,m). In §7.1, I reduce
questions about the structure ofD(r,m) to questions about the DeBruijn graphs, a well-known construction
in computer science. In §7.2, I explicate some helpful but well-known simple properties of the DeBruijn
graphs. In §7.3, I construct a concrete realization of the DeBruijn graphs that is useful for developing some
of the DeBruijn graphs’ more sophisticated properties. In §7.7 I prove a useful fact regarding geodesics in
the DeBruijn graphs. In §7.5, I define two abstract operations on the cycles of D(r,m) – a cycle embedding
operation and a cycle sum operation – that preserve the geodesics, and that allow us to place a graded
algebraic structure on the DeBruijn graphs that respects geometry. In 7.6, I use this abstract structure to
elucidate aspects of the DeBruijn graphs’ subgraph topology and geometry.

Finally, in §7.7, I show how the mathematical results of the preceding sections can be interpreted as
having practical consequences for the design and analysis of local rules.

7.1 D(r,m) and the DeBruijn Graph

For any positive integer m, let [m] = {0, . . . ,m − 1}. Thus, [m]i = [m] × [m] × . . . [m], taken i times, is the set of
m-ary sequences of length i. Define the DeBruijn graph DB(n,m) to be the directed edge-labeled graph

(Vn,m,En,m),

whose nodes Vn,m are [m]n, the m-ary sequences of length n, and whose edges are

En,m = {(vi, v j, k) ∈ V(n,m) × V(n,m) × [m]|v j = (vi(2), vi(3), . . . , vi(n), k)}.

In words, the edges connect the vertex corresponding to m-ary sequence vi to that for v j, with an edge labeled
by k, whenever the sequence v j is obtained from vi by removing the first element vi(1) and appending k to
the end.

111

CHAPTER 7. PATTERN SPACE ANALYSIS 112

0000

0001

0010 0011

0100 0101 0110 0111

1111

1110

1100 1101

1010 10111000 1001

1

2

3 4

5 6 7 8

9

10

12 11

16 15 14 13

Figure 7.3: The DeBruijn Graph DB(4, 2).

112 1222

Figure 7.1: Two nodes and a valid edge between them in the DeBruijn graph DB(3, 2).

DB(n,m) has mn nodes, since there are that many m-sequences of length n. It has m self-loops, one for each
sequence in:

111 1111 = 111

Figure 7.2: A self-loop in DB(3, 2).

DB(n,m) is a strongly connected graph, meaning that any two nodes can be connected by a directed path.
Each node in has in-degree and out-degree both equal to m, counting self-loops:

1211

2112

2

2121

1

1121
1

2111

1

Figure 7.4: The typical in-and-out structure of DB(4, 2) (valid except for self loops).

A key feature about the DeBruijn graph is that paths in it correspond to sequences. Suppose we’re given a
path of length N:

P = (p1, p2, . . . , pN)

where each pi is a node in DB(n,m), and (pi, pi+1) is a valid edge for all i. By definition of the nodes of the
DeBruijn graph, each node pi corresponds to an m-ary sequence of length n. Just like for D(r,m), we can
stitch these sequences together to make an m-ary sequence SP. To do this, take the first n elements of SP to
be the length-n sequence corresponding to p1. Then, since p2 is linked to from p1, it must be the case that
the first n − 1 elements of p2 coincide with the last n − 1 elements of p1. Hence, just add on the last element

CHAPTER 7. PATTERN SPACE ANALYSIS 113

of p2 to make a sequence of length n + 1. Since p3 is linked to from p2, the first n − 1 elements of p3 coincide
with the last n − 1 elements of p2. Just add on the last element of p3, extending to length n + 2. This can be
repeated, until the last element of pN has been used, making a sequence of length N + n − 1:

SP = p1 ◦ p2(n) ◦ p3(n) ◦ . . . ◦ pN(n)

where pi(n) indicates the n-th (and therefore last) element of the m-ary sequence associated with pi.

Example 42 In figure 7.3, the path given by node sequence (3,6,13,8,10,12,15) corresponds to the binary
sequence 0010111001.

For m-ary sequences of length K, this construction can evidently be reversed as long as K > n − 1. Hence:

Proposition 35 m-ary sequences of length K are in 1-1 correspondence with paths of length K − n + 1 in DB(n,m).

The reason I’ve introduced the DeBruijn graph is that DB(2r+1,m) captures most of the relevant structure
in D(r,m). To see how, it is useful to separate the question in terms of the isomorphism classes of balls
described in appendix §A.1. The details of the computation are described in appendix §G.1, but the basic
answer is thatD(r,m):

• Has one strongly connected component isomorphic to DB(2r+1,m) corresponding to the m2r+1 central
balls.

• Has 1+
∑r

i=1 mi = (mr+1
−1)/(m−1) connected components, one for the main component and the others

for each of the small balls.

• All nodes in the strongly connected component have indegree and out-degree m.

• All nonterminal nodes corresponding to left-end balls have indegree 1 and out-degree m + 1.

• All nonterminal nodes corresponding to right-end balls have indegree m + 1 and outdegree 1.

• All nodes corresponding to small central or very small balls are belong to a single weakly connected
component, having indegree and outdegree 1.

• Initial nodes (with indegree 0) correspond to left-most balls with the ? at position 1, and terminal
nodes to right-most balls b with the ? at position |b|.

Pictorially,D(r,m) looks like:

DB

The effect of this is to break the classification and counting problems into two parts: (A) the subgraph
G(Θ) \ DB(2r(Θ) + 1,m) is the “small size” piece corresponding to configurations with size comparable to
the information radius of the local check. This part has simple structure since D(r,m) \ DB(2r + 1,m) is
(essentially) the trivial graph, and the configurations generated by it are just the elements themselves i.e.
Θ(Ci≤|2r(Θ)|,m) = G(Θ) \ DB(2r(Θ) + 1,m). (B) The other part part, G(Θ) ∩ DB(2r(Θ) + 1,m) generates larger
configurations corresponding to paths, and inherits its more complex structure from DB. In other words,
understandingD(r,m) boils down to classifying and counting the subgraphs of the DeBruijn graphs.

CHAPTER 7. PATTERN SPACE ANALYSIS 114

7.2 Simple Properties of DeBruijn Graphs

Before characterizing the DeBruijn graph’s more sophisticated abstract structure, it is useful first to organize
some of its simplest well-known properties (good sources on the DeBruijn graph are [7, 11]). The three
simplest properties of DB(n,m), which I’ve implicitly used through this thesis, are that:

• DB(n,m) has nm nodes – corresponding to the mn m-ary sequences of length n.

• DB has m self-loops – corresponding to the sequences in, for each i.

• The in-degree and out-degree is m at each node – Given an m-ary sequence x of length n, then for each
integer i ∈ [m], the sequences yi = x(2 : n) ◦ i are the m sequences of length n to which x is connected
via out-edges; similarly, zi = i ◦ x(1 : n − 1) represent the m nodes connected to x via incident edges.

The most well-known nontrivial property of the DeBruijn graph is that it has a maximal length-cycle:

Proposition 36 The DeBruijn graph admits a Hamiltonian circuit.

Proof: The nodes of DB(n,m) can be put into correspondence with the edges of DB(n−1,m) via the mapping:

vi 7→ (vi(1 : n − 1), vi(2 : n), vi(n)).

Under this mapping, consecutive nodes, connected via an edge in DB(n,m), go to consecutive edges,
connected by a node in DB(n−1,m). Hamiltonian cycles in DB(n,m) therefore correspond to Eulerian cycles
in DB(n − 1,m). A well-known theorem of Euler says that directed graphs whose indegree at each node
equals the out-degree at that node must possess an eulerian cycle. All nodes in DB(n− 1,m) have in-degree
and out-degree equal to n−1, so DB(n−1,m) has an eulerian cycle, and thus DB(n,m) a Hamiltonian circuit.
�

The state sequences SH corresponding to hamiltonian cycles H are the DeBruijn sequences which were
useful in chapter 6. The short paths in DB(n,m) also have some simple nice properties:

Proposition 37 Let x, y be any two nodes in DB(n,m).

• There is a unique acyclic path between x and y of length n or less.

• DB can be partitioned into a union of disjoint cycles of size n or less.

• For each k ≤ n, there is at least one cycle of length k.

• In fact, for k ≤ n, the number of distinct cycles of length k in DB(n,m) is

(−1)µ(k)

k

∑
d|k

(−1)µ(d)md

where the sum is taken over divisors d of k and µ(j) is 0 when j has an even number of factors and 1 if odd.

Proof: First, let’s establish a little notation: As we saw in §7.1, any path P in DB(n,m) also corresponds
naturally to an m-ary sequence, simply by reading off the labels of the edges along the path, with the
length-n sequence associated with the first node of the path prepended. Denote this sequence seq(P). For a
single node, let sx be shorthand for seq(x), the length-n m-ary sequence labeling the node.

(i) Let p(x, y) be the path p = (p(1), p(2), . . . , p(n)) defined by s(p(i)) = z[i : i+n] where z = s(x)◦ s(y). p(x, y)
is a path from x to y of length n. On the other hand, suppose there are two paths p1 and p2 from x to y both
of length n or less. If they have the same length i ≤ n, then y = x(i : n) ◦ seq(p1) = x(i : n) ◦ seq(p2). But then
then p1 = p2. On the other hand, suppose wlog that p1 is the shorter of the two paths. Then sy is periodic
with period dividing |p2| − |p1|, and p2 contains at least one copy of the minimal cycle underlying sy.

(ii) Notice that, in the notation from (i), p(x, x) is a loop of length n. Denote by p̃(x, x) the minimal cycle
underlying p(x, x). The setP = {p̃(x, x)|x ∈ DB(n,m)} is a set of disjoint cycles of length at most n that partition
DB(n,m). The length of p̃(x, x) is a divisor of n.

CHAPTER 7. PATTERN SPACE ANALYSIS 115

(iii) For each i ∈ {0, . . . ,n − 1}, consider the length i + 1 sequence si = 1i0, and for each k ≤ i define the
length-n sequence ti

k(j) = si(j + k) where the bar indicates residue modulo i+ 1. The set of nodes xi
k such that

sxi
k
= ti

k comprise a cycle Xi of length i. (Notice that Xi is the cycle p(x, x) for some x ∈ Xi if and only if i is a
divisor of n − 1).

(iv) Cycles of length k < n in DB(n,m) correspond to m-ary sequences with period precisely k, modding
out for circular shifts. Hence, the number of cycles of length k is equal to 1/k times the number of such
sequences, which we denote S(k). The number of sequences of period precisely k is the number of all
length-k m-ary sequences, less the number of sequences with period d, for each divisor d of k strictly less
than k. Hence S(k) = mk

−
∑

d|k,,k S(d), which yields the result. �
In words, this result says: short cycles (of length ≤ n) are ubiquitous, spaced out from each other evenly,

and easily counted. It also has the result that geodesics are unique, so for any two nodes x, y in DB(n,m) let
sp(x, y) denote the (unique) geodesic from x to y.

7.3 A General Realization of DB

To develop intuition for more complex properties, it is useful to have a concrete realization of DB. DB(n,m)
can be realized in a variety of ways. The way I have found that is most useful is to describe it as a set of
m m-ary trees, with connections between the leaves of each tree and the nodes of others. There are other
realizations, see e.g. [10] or the Wikipedia site on DeBruijn graphs.

The first step in constructing this realization is to partition the vertices into the sets Vi of all m-ary
sequences of length n whose first element is i, i.e. Vi = {ix|x ∈ [m]n−1

}. There are m such sets Vi, each of which
has size mn/m = mn−1. The graph that DB(n,m) induces on Vi, denoted Gi, is obtained from the complete
m-ary tree on n levels by removing one vertex at level 2, and the entire subtree below it, and replacing it with
a single self-loop on the root vertex. The root vertex in Gi corresponds to the sequence in, the level 2 vertices
to the sequences in−1 j with j , i, and so on. Each node x = iy in Gi has m children (with the exception of the
root, which has m − 1); these are the sequences x(2 : n)l for l ∈ [m]. (This notation means that we’ve taken
x, cut off the first element to leave x(2 : n), and then appended l to the end. A complete m-ary tree with k
levels has

1 +m + . . .mk−1 =
mk
− 1

m − 1
nodes, so

|Gi| =
mn
− 1

m − 1
−

mn−1
− 1

m − 1
=

mn
−mn−1

m − 1
= mn−1,

which checks out with computation above. Each Gi has (m − 1)mn−2 leaves, corresponding to sequences i jz
where j , i and z ∈ [m]n−2. All this is depicted in Fig. 7.5.

Now, assign the vertices in DB(n,m) numbers between 1 and mn, starting in G1, and numbering the nodes
of each tree Gi, before moving on to Gi+1. Within each Gi, enumerate the nodes in a breadth-first fashion,
counting all the nodes a given level before moving on to the next. Number the children of the node iy taking
yi first, then yi + 1, then yi + 2, ... getting to yi +m − 1 last, where the bar denotes residue mod m (shifted by
1). This scheme gives nodes in Gi numbers (i − 1)mn−1 + j, for j ∈ {1, . . . ,mn−1

}; the root of Gi gets assigned
number (i − 1)mn−1 + 1; and the leaves are (i − 1)mn−1 + mn−2 + k, for k ∈ {1, . . . , (m − 1)mn−2

}. Moreover, in
this scheme it is always the first node and corresponding sub-tree at level 2 that would be removed from a
complete m-ary tree to produce the Gis. This is depicted in Fig. 7.6.

If we denote the number assigned to the m-ary sequence a1a2 . . . an by N(a1, . . . , an), then this numbering
satisfies

N(i, a2, . . . , an) = (i − 1)mn−1 +N(1, σ−i+1(a2), σ−i+1(a3), . . . , σ−i+1(an)), (7.1)

where σ(·) is the shift permutation on [m] = {1, . . . ,m} taking i to i + 1, residue modulo m (shifted by 1). More
explicitly, the sequence (a1, . . . , an) ∈ [m]n is assigned the number

1 −
mn
− 1

m − 1
+

n−1∑
i=1

bimn−i

CHAPTER 7. PATTERN SPACE ANALYSIS 116

A) B)
1111

1112

1121 1122

1211 1212 1221 1222

2222

2221

2211 2212

2121 21222111 2112

Figure 7.5: Making DB(4, 2), Step 1: We start with A) two binary trees with four levels. Then, B) we excise the first level-2 node
of each, and its corresponding subtree, and replace it with a self-loop. The resulting trees have 8 nodes each, and with root nodes
corresponding to 1111 and 2222. Then ... see figure 7.6.

1111

1112

1121 1122

1211 1212 1221 1222

2222

2221

2211 2212

2121 21222111 2112

1111

1112

1121 1122

1211 1212 1221 1222

2222

2221

2211 2212

2121 21222111 2112

A) B)

1

2

3 4

5 6 7 8

9

10

12 11

16 15 14 13

1

2

3 4

5 6 7 8

9

10

12 11

16 15 14 13

Figure 7.6: Making DB(4, 2), Step 2: Next, A) number the nodes in a sequence fashion and B) connect nodes as according to (7.2).

CHAPTER 7. PATTERN SPACE ANALYSIS 117

where b1 = a1 and for i ≥ 2, bi = ai − a1 = σ−a1 (ai). In terms of this numbering scheme, the edges of DB(n,m)
are 1 −

mn
− 1

m − 1
+

n−1∑
i=1

aimn−i, 1 −
mn
− 1

m − 1
+

n−1∑
i=2

bimn−i+1 + l

 , (7.2)

where b2 = a1 − a2, bi = ai − a2 for i ≥ 3, and l ranges in [m] = {1, . . . ,m}. For non-leaf nodes – in the “main
tree body” Ti – these edges are simply those of the (mostly) m-ary tree within each Gi. For leaf nodes, the
l-th consecutive group Ll

i of mn−2 leaves in Gi is connected to consecutive nodes in Gi+l.
1

This realization relates to the graphD(r,m) described in the previous section very easily: any vertex in
D(r,m) corresponding to a left-end ball of size 2r connects to vertices jm + i for all i ∈ [m] and some fixed
j ∈ [mn−1]; and any right-end ball of size 2r is connected to from jmn−1 + i for some fixed i ∈ [mn−1] and all
j ∈ [m].

7.4 A Useful Fact

Given a directed graph G and x ∈ G, let P(x) = {y ∈ V(G)|(y, x) ∈ E(G)} denote the set of parents of x and
C(x) = {y ∈ V(G)|(x, y) ∈ E(G)} denote the set of children of x. Let Pi(x) =

⋃
y∈Pi−1(x) P(y) and define Ci(x)

analogously. The following fact about the behavior of DB(n,m) with respect to child/parent relations in
DB(n,m) is very useful:

Proposition 38 For all x, y, z,w ∈ DB,

• if Cl(x) ∩ Cl(y) , ∅ then Cl(x) = Cl(y), and

• if dist(x, z) = dist(x,w) = dist(y, z) = dist(y,w), then |sp(x, z) ∩ sp(x,w)| = |sp(y, z) ∩ sp(y,w)|.

Proof: This result is almost obvious from the tree realization. Let’s focus on a little piece of the tree, as shown
here: Now, (i) Suppose there are paths from x to z and y to z of length l. That is to say there are m-ary

z w

x

y

Figure 7.7: Illustration of proposition 38.

sequences l1 and l2 of length l such that sx◦l1(l+1 : n+l) = sy◦l2(l+1 : n+l) = sz. Hence x(l+1 : n) = y(l+1 : n).
Now, suppose w ∈ Cl(y). Then there is l3 of length l such that sy◦l3(l+1 : n+1) = sw; but then x(l+1 : n)◦l3 = sw

and w ∈ Cl(x). (ii) Suppose z,w have dist(x, z) = dist(x,w) = L. Then z,w ∈ CL(x) and z,w < C j(x) for j < L.
Let d = |sp(x, z) ∩ sp(x,w)|. Then by the uniqueness of geodesics sp(x, z)(j) = sp(x,w)(j) for all j ≤ d and
sp(x, z)(d + 1) , sp(x,w)(d + 1). Let a = sp(x, z)(d + 1). Then dist(a, z) = dist(a,w) = l − d. On the other hand,
if dist(y, z) = dist(y,w) = L, then let d′ = |sp(y, z) ∩ sp(y,w)| and sp(y, z)(j) = sp(y,w)(j) for all j ≤ d′ and

1Equations 7.1 and 7.2 may have significance for building a general geometrical theory of graphs. Specifically, I imagine writing
general graphs as disjoint unions of trees (or “almost”-trees), then connecting up those trees by edges between their leaves. In this
way, we would think of the trees as “trivial locally flat patches” which would be identified along their boundaries (i.e. the leaves) via
boundary maps like eqs. 7.1 and 7.2. The structure of these boundary maps, which describe the global violations of the flat structure
of the trees – introduces non-trivial geometric curvature into the graph.

CHAPTER 7. PATTERN SPACE ANALYSIS 118

sp(x, z)(d′ + 1) , sp(x,w)(d′ + 1). Let b = sp(y, z)(d′ + 1). Then dist(b, z) = dist(b,w) = l − d′. Applying part (i)
with x = a, y = b forces l − d = l − d′ and thus d = d′. �

For a cycle C and x a node of C, let c(x,C) denote the node that follows immediately after x in C
(x’s unique “child”), and p(x,C) denote the node immediately previous to x in C (x’s “parent”). Let
ci(x,C) = c(ci−1(x,C),C) and pi(x,C) = p(pi−1(x,C),C). For two nodes x, y in any simple cycle C (i.e. one in
which each node appears once), let C(x : y) denote the unique path from x to y in in C.

Corollary 4 Let C1 and C2 be two cycles in DB(n,m), and let a ∈ C1 and b ∈ C2. If there is a path α from a to b, then
there is a path β of length |α| from p|α|(b,C2) to c|α|(a,C1).

Proof: Apply the apply the first part of proposition 38 with x = p|α|(y,C2), w = c|α|(x,C1), y = a and z = b. �

Corollary 5 Let C1 and C2 be two cycles in DB(n,m). Then dist(C1,C2) = dist(C2,C1).

Proof: By definition, dist(C1,C2) = min{dist(a, b)|a ∈ C1, b ∈ C2}. Suppose this minimum is achieved by nodes
a∗, b∗. Let α = sp(a∗, b∗), and apply corollary 4.
�
In general, given two disjoint cycles C1 and C2, the pair of points a∗ ∈ C1, b∗ ∈ C2 are points of closest approach
if |sp(a∗, b∗)| = dist(C1,C2).

Corollary 6 Any cycle in DB can be written as a union of disjoint irreducible cycles.

Proof: Let C be a cycle in DB. If C is reducible, then there are by definition x, y ∈ C such that (x, y) is a valid
edge in DB. But then by proposition 38 i), (p(y,C), c(x,C)) is a valid edge. Thus C1 = C(y : x) ◦ y is a cycle,
as is C2 = C(c(x,C), p(y,C)) ◦ c(x,C). In fact, C1 ∩ C2 = ∅ and C1 ∪ C2 = C. This is obvious from the picture:

x

y

p(y)

c(x)

If both C1 and C2 are now irreducible, we’re done; else, the same procedure may be repeated. �
By similar reasoning, since any strongly connected component in a directed graph is either a single node

or a union of cycles,

Corollary 7 Any strongly connected subgraph of DB is either a single node or a union of connected irreducible cycles.

7.5 Two Operations

The properties seen so far are a bit ad hoc. I will now go a bit more abstract and define two operations that
make the loops of the DeBruijn graphs DB(n,m) into a graded semigroup, for fixed m and variable n.

Cycle Embeddings

The proof that DeBruijn graphs have Hamiltonian cycles given above makes use of a correspondence
between edges of DB(n − 1,m) and nodes of DB(n,m). An edge of DB(n − 1,m) is a pair (vi, v j) ∈ V(n −
1,m) × V(n − 1,m). Each node vi is corresponds to an m-ary sequence of length n − 1, and the edge being
valid implies v j(1 : n − 2) = vi(2 : n − 1). (We’ll abuse notation and refer to nodes and m-ary sequences

CHAPTER 7. PATTERN SPACE ANALYSIS 119

interchangeably.) Hence, the overlap sequence vi ◦ v j(n − 1) corresponds to a length-n m-ary sequence, and
thus a node in DB(n,m). Thus, we define a map γ : E(n − 1,m)→ V(n,m) by

γ((vi, v j)) = vi ◦ v j(n − 1).

This map is bijective, and takes sequential edges to sequential nodes.
The map γ induces a map on cycles: If C is a cycle (c1, c2, . . . , cN, c1) of length N in DB(n − 1,m), then

γ(C) = (γ(c1, c2), γ(c2, c3), . . . , γ(cn, c1), γ(c1, c2)) defines a length-n cycle in DB(n,m). Similarly, given a length-
n cycle C in DB(n,m), γ−1(C) is a length-n loop in DB(n − 1,m) in which each edges are not duplicated
(although nodes implicated by the egdes might appear twice).

γ could equally well have been defined by setting for all x ∈ C, γC(x) = γ((x, c(x,C))) = x ◦ c(x,C)(|x|).
(One can define thereby an embedding of DB(n − 1,m) in DB(n,m) by taking C to be a Hamiltonian cycle.)
We can iterate γ, so that applied to a cycle C in DB(n,m), γk(C) is a cycle in DB(n + k,m). By inspection it is
clear that

γk
C(x) = x ◦ c(x,C)(|x|) ◦ c2(x,C)(|x|) . . . ◦ ck(x,C)(|x|) = Seq(C(x : ck(x,C)))

and
γ−l

C (x) = x(1 : |x| − l).

Given a cycle C in DB, let s(C) be the m-ary sequence of length |C| generated by reading off the labels of
the edges in C – this is defined up to a circular shift; for a basepoint x ∈ C, let s(C, x) denote the sequence
starting at (x, c(x,C)) and ending at (p(x,C), x). The sequence s(C) defines a unique cycle in DB. Another
way to characterize γ is that

s(γ(C)) = s(C)

for all cycles C.
The key feature of γ is that it “flattens” the local geometry of DB(n,m).

Definition 34 [Flatness] A graph G ⊂ DB is k-flat at x ∈ G if Bk(x,G) = Bk(x,DB) ∩ G, where Bk(x,G) = {y ∈
G|dG(x, y) ≤ k} and Bk(x,DB) = {y ∈ DB|dDB(x, y) ≤ k}.

Example 43 It follows immediately from the definition that:A cycle in DB is irreducible iff it is 1-flat; and
a union of disconnected irreducible cycles is equivalent to a union of 1-flat cycles whose mutual distances
are at least 2.

It is not hard to see that:

Proposition 39 If cycle C (considered as a subgraph) is k-flat at x, then γ(C) is k + 1-flat at γC(x). Furthermore, all
k-flat cycles in DB(n,m) arise as γ(C) of a k − 1-flat cycle in DB(n − 1,m), for k ≥ 1.

Example 44 Consider the Hamiltonian cycle H in DB(4, 2) given by nodes 1, 2, 4, 8, 9, 10, 11, 13, 7, 12, 15, 3,
6, 14, 5, 16. In DB(5, 2), γ(H) is an irreducible cycle of length 16. See figure 7.8.

This proposition evidences a nice relationship. We already know that Eulerian Cycles in DB(n−1,m) are
equivalent to Hamiltonian Cycles in DB(n,m). Proposition 39 makes this equivalence part of a sequence:

Eulerian Cycles in DB(n − 1,m) ↔ Hamiltonian Cycles in DB(n,m)
↔ length-mn Irreducible Cycles in DB(n + 1,m)
↔ length-mn 2-flat cycles in DB(n + 2,m)...

CHAPTER 7. PATTERN SPACE ANALYSIS 120

0000

0001

0010 0011

0100 0101 0110 0111

1111

1110

1100 1101

1010 10111000 1001

1

2

3 4

5 6 7 8

9

10

12 11

16 15 14 13

A) B)

Figure 7.8: A) A hamiltonian path H in DB(4, 2), marked in red. B) Irreducible cycle γ(H) in DB(5, 2).

Cycle Addition

Given two loops C1,C2 and x ∈ C1 and y ∈ C2, define the geodesic sum operation }x
y so that C1 }x

y C2 is the
unique loop C of length |C1| + |C2|whose sequence is

s(C1, c(x,C1)) ◦ s(C2, c(y,C2))

defined up to circular shifts. I use “loops” instead of cycles because the objects need not touch each node
only once. Since for all cycles s(γ(C)) = s(C), γ commutes with the geodesic sum, i.e.

γ(C1 }
x
y C2) = γ(C1) }γ(x)

γ(y) γ(C2)

where γ(x) means γC1 (x) and γ(y) means γC2 (y).

The key point (and the reason I call it geodesic sum) is that:

Proposition 40 Suppose C1 and C2 are k-flat cycles such that d = dist(C1,C2) ≥ k+ 1. Let x ∈ C1, y ∈ C2 be points
of closest approach, and let y′ = pd(y,C2). Then

C1 }
x
y′ C2

is a k-flat cycle.

Example 45 Let C1 be the cycle associated with the repeat pattern T1110 and C2 the cycle associated with
T1000. These patterns are 3-flat 4-cycles in DB(5, 2). They are distance 3 away from each other. Their sum
(at one of their points of closest approach) produces a 2-flat 8-cycle, the repeat pattern T110100001. (See figure
7.9)

The proof of prop. 40 is given in appendix §G.2.

Corollary 8 Let C1,C2, . . . ,CN be a set of k-flat cycles in DB(n,m) whose mutual distances are greater than k. Then
there is a k-flat cycle in DB(n,m) of length

∑
i |Ci|.

CHAPTER 7. PATTERN SPACE ANALYSIS 121

A) B)

x

y

p (y)3

Figure 7.9: A) Two 3-flat paths of length 4, at distance 3 from each other. (x, y) points of closest approach. B) Their sum.

Proof: Let Ci1 and Ci2 be two distinct cycles such that dist(Ci1 ,Ci2) ≤ dist(Ci,C j) for all i , j. But then apply
the sum operation, i.e. form C∗ = Ci1 }

x
y′ Ci2 where (x, y) is a point of closest approach of Ci1 and Ci2 . Since

N1(Ci1 }
x
y′ Ci2) ∩ (Ci1 ∪ Ci2) ⊂ {x, y}, and N1(Ci1 }

x
y′ Ci2) ∩ C j = ∅ for j , i1, i2, we can replace Ci1 ,Ci2 with

Ci1 }
x
y′ Ci2 , obtaining a new set of k-flat cycles cycles whose mutual distances are at least k + 1 – but now

with one fewer components one of which is of size |Ci1 |+ |Ci2 |. Applying this procedure repeatedly until one
component is left finishes the argument. �

7.6 Subgraph Geometry

The structure described in DB by combining the flatness-increasing embeddingγ, and the flatness-preserving
} operation, leads to a partial characterization of the subgraph geometry of the DeBruijn graphs. The main
result is that:

Theorem 4 • A graph G can only be embedded k-flatly in DB(n,m) for k ≤ n.

• The maximal size of a k-flat subgraph in DB(n,m) is mn−k.

• There are precisely
(m!)mn−k−1

mn−k

maximal k-flat subgraphs in DB(n,m).

• There are k-flat subgraphs of all sizes between 1 and mn−k.

To prove this, I prove a number of subsidiary results.

Proposition 41 Suppose that G ⊂ DB(n,m) is a union of k-flat cycles whose mutual distances are at least k + 1.
Then |G| ≤ mn−k.

CHAPTER 7. PATTERN SPACE ANALYSIS 122

Proof: I will give two proofs:
#1: Suppose otherwise, and let G be an example. For each x ∈ G, consider the k-neighborhood Nk(x,DB)

of x in DB(n,m). Since |G| > mn−k, by the pigeonhole principle there will by an x′ such that Nk(x′,DB) ∩ G
contains at least k + 1 distinct elements. Hence, for some j ≤ k, C j(x′,DB) contains at least two elements.
Now, let E be the k-flat cycle in G that x′ is in. One of the things in C j(x′,DB)∩G must be c j(x,E), the j-child
of x in the cycle it lies on. Let’s consider what’s left, i.e. y ∈ C j(x,DB)∩G− c j(x,E). If on the one hand y ∈ E,
then E is not k-flat; if on the other hand y < E, but is instead in some other cycle E′ in G, then the mutual
distance between E and E′ is at most j < k + 1, also a contradiction.

#2: If G ⊂ DB(n,m) is a union of k-flat cycles whose mutual distances are at least k + 1, then γ−k(G) is a
set of disjoint cycles in DB(n − k,m). But DB(n − k,m) contains only mn−k elements. �

Proposition 42 For each k < n, DB(n,m) contains a k-flat cycle of size mn−k, i.e. proposition 41 is sharp.

Proof: I will give two proofs again.
#1: Suppose n > k. Proposition 37 guarantees the existence of a hamiltonian cycle H in DB(n − k,m). It

has size mn−k. Then γk(H) is, by proposition 39, a k-flat cycle of size mn−k is DB(n,m).
#2: Let H0 be any subset of DB(n,m) with the following property: for all x ∈ DB, and i ≤ k, |Pi(x) ∩H0| =

|Ci(x) ∩H0)| = 1. That is, for i ≤ k, H contains exactly one i-child and one i-parent of each node in DB(n,m).
To see that such a set exists, simply take H0 to include all nodes whose numbers in the realization described
in §7.3 have residue 1 modulo mk, that is, mk j + 1 for 0 ≤ j < mn−k. Note that any H with this property has
|H0| = (1/mk)|DB| = mn−k, and is the union of k-flat cycles that are distance k + 1 apart cycles. Now apply
proposition 8. �

The above is actually a special case of a more general result:

Proposition 43 DB(n,m) contains k-flat cycles of all sizes between 1 and mn−k.2

The proof of this result is given in appendix §G.3.
A disjoint cover of DB(n,m) is a set of cycles D such that i) for all ci, c j ∈ D, ci ∩ c j = ∅ whenever i , j

and ii)
⋃

D =
⋃

c∈D c = DB(n,m). A k-dispersed cover is a set D of k-flat cycles with distance k + 1 between
neighboring cycles such that

⋃
c∈D Br(c) = DB(n,m), so that |

⋃
c∈D c| = mn−k.

Proposition 44 There are precisely (m!)mn−k−1 k-dispersed covers of DB(n,m). Of these, a fraction (1− 1/m)m contain
no self-loops.

Taking k = 0 gives (m!)mn−1
disjoint cycle covers of DB(n,m).3

Proof: In light of the second part of proposition 39, we need only prove the result for k = 0 and then apply γ.
To make a disjoint cover of DB(n,m) we simply need to assign each node in DB(n,m) a unique child such

that no two nodes are assigned the same child. We saw in §7.3 that each tree Gi is divided into m parts –
the main body of the tree (non-leaf nodes), Ti – of which there are are mn−2 in each tree, and whose children
are in the tree; and the leaves Li, which come in m − 1 consecutive groups of leaf nodes Lk

i , each containing
mn−2 nodes, in which the k-th group of leaves in Gi distributes its edges equally among the mn−2 nodes of
Gi+k (where i + k is taken modulo m).

To make a covering D let’s start first with the main tree bodies Ti. For each x ∈ Ti choose a child cx
arbitrarily among the m elements of C(X), and put the edge (x, cx) in D. There are mn−2 elements in each Ti
and m such trees, so there are a total of mn−1 choices made. Since each choice has m possibilities, the total
number of ensemble choices in mmn−1

.
Now let’s more on the first consecutive groups of leaves, L1

i , for each i. Again, we’ll choose children for
L1

i (which are nodes in Gi+1) arbitrarily, except now avoiding the elements chosen in the first round, i.e. for
each x ∈ L1

i , we choose arbitrarily amount c(x) −D. 1 in each group of m siblings is the target of a link from
the first round, so that there are m − 1 possible choices for each node x. Since there are mn−2 nodes in each
L1

i , and m sets L1
i , there are again mn−1 choice-points, for a total of (m − 1)mn−1

ensemble choices. Moving on

2There is a partial proof of a less general result in [11]
3After proving this result, I found that it had already been. See, for example, the Wikipedia site on ”DeBruijn sequences. No prove

is provided there.

CHAPTER 7. PATTERN SPACE ANALYSIS 123

to the second groups of leaves, L2
i , now avoiding in the arbitrary choices the things chosen in the first two

rounds. Again, there will be mn−1 elements in
⋃

L2
i and m − 3 choices for each, for a total of (m − 3)mn−1

−mn−2

ensemble choices. Add these to D.
Continue to repeat this process, for each consecutive groups of leaves, choosing thereby children for all

nodes. At each tree, the number of choices goes down by one, so that in the end, there are:

m−1∏
i=0

(m − i)mn−1
= (m!)mn−1

total choices, as claimed.
To ensure no self-loops in D, we simply need to make sure that the m self-loop nodes, whose children

are all chosen in the first round of the process above, do not choose themselves. This means that in the first
round, the m self-loop nodes have m − 1 possible choices, while the remaining mn−1

−m have m choices; all
the other choices proceed as above. This leads to

(m − 1)mmmn−1
−m

m−1∏
i=1

(m − i)mn−1
=

(m − 1
m

)m

(m!)mn−1

total choices, which is (1 − 1/m)m fraction of the first number, as claimed. �
Hamiltonian cycles of DB(n,m) are equivalent to disjoint covers D of DB(n,m) that are singletons, i.e.

|D| = 1, and maximal k-flat cycles to singleton k-dispersed covers. A disjoint cover D is irreducible if every
element of D is an irreducible cycle in DB(n,m).

Proposition 45 A fraction 1/mn−k of all k-dispersed covers are singleton, for a total of

(m!)mn−k−1

mn−k

maximal-length k-flat cycles; and the number of irreducible disjoint covers is equal to the number of hamiltonian
cycles.

Taking k = 0 yields (m!)mn−1
/mn hamiltonian cycles, while taking k = 1 gives (m!)mn−2

/mn−2 irreducible
cycles. The proof of prop. 45 is given in §G.4.

7.7 The Interpretation ofD(r,m) Structure

Any subgraph G ⊂ D(r,m) corresponds to the pattern TG consisting of the set of configurations correspond-
ing to maximal paths in G. The concept of flatness in definition 34 can be viewed as establishing a hierarchy
of increasingly strong structural equivalences between such patterns:

Definition 35 [Hierarchy Structural Equivalence] Two patterns TG and TH, where G ⊂ D(r,m) and H ⊂

D(r′,m′), are k-equivalent if
Nk(G) ∩ G

is isomorphic with
Nk(H) ∩H

where Nk(·) denotes the k-neighborhoods of G and H inD(r,m) andD(r′,m′) respectively.

As k increases, k-structural equivalence becomes an increasingly strong criterion.
We will see in the few sections that three broad ranges of k-equivalence have useful concrete interpretation

for understanding locally checkable patterns and the local rules that solve them. The k = 0 level corresponds
to purely topological properties of patterns, and informs the issue of static encoding and radius-state tradeoff.
The k = 1 level corresponds to the induced subgraph topologies fromD(r,m), and informs the issue of local
checkability. k > 1 corresponds to more detailed geometric equivalence, and informs the issue of a patterns’
robustness under perturbation.

CHAPTER 7. PATTERN SPACE ANALYSIS 124

7.7.1 k = 0: Topological Structure and Static Encodings

Taking k = 0 in def. 35 above is equivalent to:

Definition 36 [Topological Equivalence] Two patterns TG and TH are topologically equivalent, denoted TG ∼

TH, if G and H are isomorphic graphs.

Many relevant features of a pattern are “topological invariants”. If G ∼ H as graphs then TG and TH can be
treated as the “same pattern” in many regards:

• TG and TH contain the same admissible sizes, i.e. Sizes(TG) = Sizes(TH).

• TG and TH have the same combinatorics, i.e.

ATG = ATH ,

where AT is the ordinary generating function associated with T, defined by

AT(z) =
∞∑

n=1

|T ∩ Cn|zn

for complex numbers z.

• TG and TH have the same fundamental frequencies, i.e. ω(TG) = ω(TH)), where ω(T) is as defined in
§5.5.4

• TG and TH are mutual encodings, i.e. there are decoding functions φ and ψ such that (TG, φ) is an
encoding of TH and (TH, ψ) is an encoding of TG.

• The left- and right- choice functions O,P of G are in 1-1 correspondence with left- and right-choice
functions O′,P′ of H. Hence the Naive and Less Naive backtracking algorithms for TG for each choice
function are strict dynamical encodings of their corresponding versions for TH. Similarly, TG is locally
patchable if and only if TH is locally patchable, and if so then the locally patching algorithm for TG is
a strict dynamical encoding of that for TH.

Of these equivalences, the most “practically useful” is the mutual encoding property, necessary for efficient
implementation of the static radius-state tradeoff.

Example 46 For each n, the graph DB(1, 2n) contains a cycle C1 of length 2n corresponding to the path
(1, 2, . . . , 2n). On the other hand, DB(n, 2) contains a (hamiltonian) cycle C2, also of length 2n. C1 corresponds
to the discrete gradient of length 2n, whereas C2 is the DeBruijn encoding of that gradient using 2 states. In
the n = 4 case, for instance, this looks like:

0000 0001

0010 0011

0100 0101 0110 0111

1111
1110

1100 1101

1010 10111000 1001

1

2

3 4

5 6 7 8

9

10

12 11

16 15 14 13

1
2

3 4 5
6

7

8

9
10

111213
14

15

16
Higher State

Higher Radius

The fact that C1 are topologically equivalent corresponds to the radius-state tradeoff between high-state/low
radius encodings in DB(1, 2n) and low-state/high-radius encodings in DB(n, 2).

4Notice however that two patterns that have the same generating function A may not have the same fundamental frequencies. In
this sense, many of the properties in this list are “independent” combinatorically.

CHAPTER 7. PATTERN SPACE ANALYSIS 125

We thus have the outlines of a general procedure for static radius-state encoding:

To find a strict encoding in m states of a given pattern TG, find a subgraph of DB(n,m) for some
n that is a covering of the graph G. The minimum n for which this is possible determines the
smallest radius r for which T can be encoded in m states.

The static radius-state tradeoff is thus an “existence problem”: which graph topologies arise as subgraphs
of DB(n,m)? On the one hand, the fact that the high-radius→ high-state tradeoff is easy follows from the
fact that this existence problem is trivialized by increasing m, since DB(1,m) is the complete graph on m
elements and every graph can be easily be embedded in a sufficiently large complete graph. Theorem 4,
part 4, answers the reverse question for the simplest sorts of graphs, those which consist of disjoint unions
of cycles In effect, the result says that every such graph G that arises in DB(n,m), and has no more than 1
cycle for each size ≤ n, has a covering that arises as a subgraph of DB(2ndlog2(m)e, 2), and the proof of the
result gives a recipe for finding the covering. One direction in which I would like to generalize theorem 4
would be to show that there is some constant C such that any degree-k subgraph G arising in DB(n,m) with
sufficiently few small cycles, can be covered by a graph arising in DB(Cn logk(m), k); a constructive proof of
this result would be the substance of a generalized most-efficient radius-state tradeoff algorithm.

Given a positive answer to the existence problem of whether a pattern with a given topology can be built
with radius r and m states in the first place, the next engineering question is to ask how hard it is to find such
a pattern. This entails measuring how common such patterns are compared to a larger (and presumably
easier to construct) set of patterns that share some features with the original pattern. The exact form of
such a measure depends on what is considered “easier to construct” and which features are “shared”.
Given a graph G, it will typically be easy to construct a graph with the same out-degree distribution. If we
denote by NG the number of graphs isomorphic to G and by N the number of graphs with the same out-
degree distribution as G, then the log-likelihood ratio H = −log(NG/N) is a reasonable notion of “hardness”.
Theorem 4 allows us to compute this measure for the case of G being a hamiltonian cycle in DB(n,m); since
NG = (m!)mn−1

/mn and N = mmn
, we obtain (after applying Stirling’s approximation) that H ∼ n+m logm(e). If

it is considered “easy” to construct graphs with the same in- and out-degree distribution, then the measure
H′ = − logm(NG/N′) is also reasonable, where N′ is the number of graphs with the same degree distribution
as G. In this case, combining propositions 44 and 45 says that hamiltonian cycles in DB(n,m) have H′ = n.
In the future, generalizing Theorem 4 to compute the complete cycle distribution of DB(n,m) will allow a
much more thorough analysis of this problem.

7.7.2 k = 1: Induced Topology and Local Checkability

Just because a graph G arises as a subgraph of D(r,m) does not meant that there is a radius-r local check
scheme Θ for TG. This is because to be locally checkable with radius r, a pattern has to correspond to an
induced subgraph ofD(r,m). Since not all subgraphs ofD(r,m) are induced subgraphs, there will be patterns
associated with subgraphs of D(r,m) which cannot be locally checked at radius r. A very simple example
of this is that the hamiltonian cycles in DB(n,m), corresponding to DeBruijn encodings, are NOT induced
subgraphs of DB(n,m) and are not locally checkable with radius n/2.

The obvious question, therefore, is: when are patterns associated with non-induced subgraphs ofD(r,m)
locally checkable? And when they are locally checkable, what is their local check radius, in relation to r? This
is a stricter sort of existence question than purely topological, asking: when doesD(r,m) contain a subgraph
G of a given topology such that G is a retract of its own radius-1 neighborhood insideD(r,m)? Proposition
39 answers this question when G is a union of disjoint cycles. For all such G, γ(G) is an induced subgraph of
D(r+ 1/2,m), consisting of a union of irreducible cycles whose mutual distances withinD(r+ 1/2,m) are at
least 2. This has the immediate practical application of allowing us to find a local check scheme (and thus
local rule solution) to the DeBruijn encoding:

Corollary 9 If q is a DeBruijn sequence of length mn, then graph γ(q) corresponding to the n + 1-windows in q
constitute a radius-(n + 1)/2 local check scheme for the repeat pattern Tq. Hence, the local rule Fγ(q) will generate a
DeBruijn encoding from any initial condition.

CHAPTER 7. PATTERN SPACE ANALYSIS 126

Pictorially, this is the situation indicated in figure 7.8.

Theorem 4 implies that the maximum possible length of an irreducible cycle in DB(n,m) is at most mn−1,
and that this bound is tight. Imposing condition of “irreducibility” on a cycle, which is determined by its
1-neighborhood, constrains its size by factor of 1/m, compared with the largest non-irreducible cycles in
DB(n,m). As a result:

Corollary 10 For any infinite locally checkable patterns T, the quantity

1/m2·LCR(T)

is a tight lower bound on:

• the density of Sizes(T) in the natural numbers.

• the coefficients in GrowthT(n).

• the elements in the set of fundamental frequencies, ω(T).

Analogous numerical bounds derived without considering the induced topological structure are too small
by a factor of 1/m.

Given a check scheme Θ in D(r,m), it might be the case that a radius smaller than r is sufficient to
generate the same pattern as that generated by Θ. The discussion above about induced cycles implies a
very simple criterion for determining this:

Proposition 46 SupposeΘ is a local check scheme with G(Θ) ⊂ D(r,m). Then r(Θ) is the smallest radius r for which
there is a check scheme Θ′ of radius r with Θ(C) = Θ′(C) if and only if there is an irreducible cycles C ⊂ G(Θ) such
that γ−1(C) is not irreducible.

This result generates a simple algorithm for minimizing a check scheme’s radius. Specifically, for any
directed graph G let IrrCyc(G) denote a list of the irreducible cycles in G.

Algorithm 3: Radius Minimization Algorithm
Data: Local Check Scheme Θ
Result: Minimal Check Scheme Θ̃
minimal← FALSE;
Θ̃ ← Θ;
while ¬ minimal do

if ∃ C ∈ IrrCyc(G(Θ̃)) such that γ−1(C) is reducible then
minimal← TRUE;

else
Θ̃ ← γ−1(Θ̃);

end
end

7.7.3 k > 1: Local Geometry and Robustness

Throughout this thesis we’ve focused on robust rules – dynamical rules which produce some desired
pattern from many initial conditions. The notion of robustness for the pattern itself is somewhat different:
intuitively, a locally checkable pattern is robust if small changes to the set of admissible configurations do
not radically change the patterns overall properties. In this section, we briefly discuss this idea of robust
patterns, and show how the notion can be understood in terms of the patterns’ associated DeBruijn graph.

It turns out that a pattern’s robustness under perturbation is neither a topological nor induced-topological
invariant. Instead, it is a function of the patterns more detailed “local geometry.” To see why, let’s take for
example a repeat pattern Tq. The graph G(Tq) contains a single cycle C corresponding to the single repeating
unit q. The cycle C is embedded in DB(|q|,m) in some way, looking something like this:

CHAPTER 7. PATTERN SPACE ANALYSIS 127

Suppose that distances in the drawing above are meant to be literal, that the cycle curved and twisted so
that in some points nodes that are far away in the cycle come close together in the ambient space. Near
these points, a small number of “point mutations” in the structure of the pattern could dramatically change
the topology of the graph, and thus the properties of the resulting pattern:

The mutation caused the segment to break into two subsegments, both with significantly shorter lengths.
On the other hand, suppose the cycle were instead been embedded in DB like this:

in which no point comes close to another in the cycle, except through the cycle itself. In this case, more
mutations will be necessary to drastically change shape of G(Θ), and thus the resulting pattern scaling
properties.

This example exposes that:

• The classes of topologies of patterns than arise from single-point mutations of a pattern can depend
on features of the pattern other than the pattern’s topology. Two LCSs with the same topology – e.g.
two repeat patterns consisting of a single cycle – can mutate to different things, somehow depending
on the shape of the pattern’s graph in the ambient space. Said another way, the evolution behavior of
patterns under mutation is NOT a topological invariant.

• Some points in a pattern are more vulnerable than others. These places, where small numbers of
mutations can have large effects, are the places where the pattern’s local “curvature” is high.

These observations suggest that we should think about another level of detail in pattern space beyond
topology, considering geometric notions of curvature. It is just this sort of curvature information that is
captured by taking k > 1 in def. 35. A pattern Θ whose graph G(Θ) is k-flat at every point will require
at least k mutations to significantly change topology. A pattern that has constant curvature is one with no
points being especially vulnerable to change.

From the viewpoint of “local-to-global engineering”, we would like to know how adding a given level
of robustness effects the ability design patterns with given topological structures (and therefore, a given set
of qualitative features). For the simplest form of patterns (again, those that are unions of disjoint cycles),
proposition 39 gives a recipe for increasing robustness for a fixed topology:

Simply apply the γ operator k times to obtain robustness protection against k additional muta-
tions.

CHAPTER 7. PATTERN SPACE ANALYSIS 128

Moreover, Theorem 4 shows that

For each layer of robustness against one additional mutation, (a) the maximal obtainable pattern
decreases by a factor of 1/m, and (b) the “hardness” H1 increases by 1 unit.

In the future, it would be desirable to expand theorem 4 to apply to more general geometries. Another
direction of generalization would be to compute average robustness, not just maximum robustness, by
“integrating” curvature along paths in the graphs. In the long run, it may be possible to prove an analog of
a “Gauss-Bonnet” theorem for the DeBruijn graph, connected the topology of a subgraph with (bounds on)
the average curvature. This would be practically useful for understanding the limits on pattern robustness.

Related Work

The DeBruijn graph, especially in its connections to coding theory, has been a subject of fairly extensive
study in computer science [10, 11, 30]. Its connection to cellular automata – through the route of regular
languages – has also been noticed in [37] (though little of its structure is recognized or used there). For some
reason, however, the study of its structure as the key classifier of both regular languages and stable fixed
points of robust local rules seems to have been largely neglected.

The DeBruijn theory as developed in this chapter seems (as far as I can tell) to be essentially orthogonal
to the standard theory of regular languages. On the one hand, the Myhill-Nerode monoid decomposition
theory (see e.g. [8]) is essentially blind to the “internal structure” of the labels on the NDFA graph corre-
sponding to a regular language. But these labels – i.e. the symbol strings sitting on top of the nodes in the
DeBruijn graphs – are precisely what make the distinctions between the levels in the DeBruijn hierarchy
make sense. By abstracting away from the physical representation of agents and their local fixed-radius state
configurations, to a level where many different labeling schemes could have produced equivalent graph
structures, the monoid theory loses much of the structure that matters for our purposes. Practical results
of this are, for example, that the radius-minimization algorithm I describe in §7.7.2 is quite different from
the minimal automata algorithm described by Eilenberg, and that the counting and characterization ques-
tions throughout the chapter simply do not arise in the monoid theory. The algebraic generating function
representation of languages loses much of the same structure (and more).

The fact that regular languages generated by a specific “physical instantiation” with fixed-radius agents
have very nontrivial “geometry” not captured by the standard theories seems to me to be an area where
much structure goes essentially unrecognized. Perhaps the main reason this has happened is that the
questions of information requirements (the k = 0, 1 cases) and robustness (the k > 1 case) are motivated by
the construction problem with spatially embedded computing agents but no so clearly by the recognition
or decidability problems that are normally studied regarding languages. The rich detailed structure hinted
at in this chapter, which matters integrally for local-rule design and analysis problems, may point to a new
direction of research in language theory.

Chapter 8

Two Applications

In this chapter I sketch two applications of the techniques developed in the previous chapters: building
a prototype Global-to-Local Compiler, and analyzing a developmental gene regulatory network from the
fruit fly Drosophila melanogaster.

8.1 A Prototype Global-to-Local Compiler

A Global-to-Local Compiler is a procedure which takes as input a target pattern and set of resource limits,
and whose output is a local rule generating the pattern using no more than the specified resources. The
utility of such a compiler is that it “takes out the work” of having to figure out exactly how to program local
rules, and allows a user’s global design intent to be directly transduced into local agent programs. In this
section I show how to assemble the results from previous chapters to build a prototypical Global-to-Local
compiler for our 1-D model.

8.1.1 What Kind of a Thing is a Global-to-Local Compiler?

Loosely speaking, the general mathematical format of a global-to-local compiler is simply an algorithmically
computable function GC:

GC : Global Task Set −→ Local Solution Set

such that for any task T in the global task set, GC(T) is a local solution to T. In the present case, the Global
Tasks are spatial pattern formation problems, so the domain of our compiler will be T , the set of all 1-D
patterns T over finitely many states. Our Local Solutions are local fixed-radius rules, so the range will be
D, the set of all such rules (as defined in §1.2).

Of course, in many situations, agents have limitations on their radius and memory. A Glocal-to-Local
compiler should also therefore take as input a description of resource limitations, in the form of a maximum
usable radius R and amount of state M. Ideally, the compiler would then output a local rule that is a solution
to the given global task, and which uses no more than the indicated resources. However, there is a tradeoff
between R and M, so it may be impossible to meet specified limits on R and M simultaneously, at least for
the given pattern. Hence, there are three forms of Global-to-Local Compiler:

• (Type 1) A function GC1 whose inputs are a pattern T and a radius limit R, and whose output is a local
rule solution F to T such that r(F) ≤ R, using whatever amount of state M might be necessary.

• (Type 2) A function GC2 whose inputs are a pattern T and a state limit M, and whose output is a local
rule solution F with no more than M states, using whatever radius might be necessary.

• (Type 3) A function GC3 whose inputs are pattern T, the radius limit R, and the state limit M, and
whose outputs are:

129

CHAPTER 8. TWO APPLICATIONS 130

– either a solution F to pattern T, such that r(F) ≤ R and which uses no more than M states,

– or, an error message “∅” when the resource limits conflict and no solution exists meeting both.

We could implement any of these three types by deploying the radius/state tradeoff algorithms from chapter
6 in different ways.

Finally, the compiler should in general be performance optimal, meaning that its output should be a rule
that solves each global task as fast and as with as little state/radius overall as possible. Hence, if there are
different classes of global tasks whose optimal solutions have different architectures, the compiler should
treat these tasks separately. In the present case, this means that the basic pattern classes, as discussed in
§4.3, should each be solved by their respective optimal local rules.

8.1.2 Pattern Description for Input Specification

The results of the previous chapters get us most of the way to the compiler. One missing piece, however, is
that to make the procedure really automatic and computable, the input pattern T must be described finitely.
Just thinking of T as an unstructured set of final configurations, as we have been doing since making Def-
inition 8 in §1.3, is not enough. If we want to work with big or infinite pattern sets (which we have been),
we need to do something more sophisticated.

We thus are bumping up against a more general Problem about spatial multi-agent systems that could
have been listed in the introduction to the thesis, along with the existence, construction, optimization, &c
problems:

A Description Problem: Find a description language that efficiently and intuitively captures the
inherent structure of global tasks.

An extremely simple approach is an idea I call local feature invariance: the user specifies a set of sample
configurations that are instances of the pattern, together with a feature radius at which she’d like the features
of the samples to be preserved. We then compute the simplest local check scheme consistent with those
features.

Formally, let X = {X1,X2, . . . ,XK} be a finite set of configurations (the samples) and fix an r > 0 (the feature
radius). Let

B(X, r) = {Br(i,X)|X ∈ X, i ∈ {1, . . . , |X|}},

that is, the set of all distinct r-neighborhoods present in the samples. Define a local check scheme Θ(X, r) to
accept only r-neighborhoods consistent with the samples, i.e.

Θ(X, r)(B) =

1, If B ∈ B(X, r)
0, otherwise

.

Denote the pattern generated by Θ(X, r) as T(X, r). By definition, T(X, r) is the set of all configurations Y
such that Θ(X, r) accepts every r-neighborhood in Y. Since all the r-neighborhoods accepted by Θ(X, r) are
exactly those appearing as r-neighborhoods in the sample set X, T(X, r) can simply be thought of as the
largest pattern consistent with the features of the original samples, at scale determined by r. In words, the
samples are a set of “pictures” that indicate features to be generalized into the complete (and often infinite)
pattern.

For example, let
X1 = {(100000010000001000000)}.

This sample is evidently “trying” to capture the 1000000 repeat pattern. Taking large enough radius
generates the “right” answer, i.e.

T(X1, 4) = T1000000.

CHAPTER 8. TWO APPLICATIONS 131

By choosing a smaller radius, other structures emerge. For instance,

T(X1, 2) = 10000 · (T10000 × T00000) · 00000.

Only a few samples are required to generate complex patterns. For the three-sample set

X2 = {100100, 10001000, 1001000},

we have
T(X2, 3) = T100 · T1000.

Thus the logic and concatenation operators {∧,∨, ◦,×} described in at the end of chapter 2 are easily ex-
pressed by the invariant features of their samples.

There are many other approaches to addressing the description problem besides local feature invariance,
and the question of description has interest beyond that of building a compiler. See appendix §F for a
discussion of several, include the use of formal logic.

8.1.3 The Compiler

We’re now ready describe a global-to-local compiler. Here, I will first build a compiler of Type 1; the other
types can be patterned on this construction.

Step 0: Input. Obtain input in the form of a sample set X, a feature radius r, and a maximal allowable
system radius R.

Step 1: Generate Pattern. Compute the check scheme Θ(X, r) defined local feature invariance technique
defined in §8.1.2.

Step 2: Minimize Radius. Use algorithm 3 in §7.7.2 to compute Θ̃(X, r), the minimum-radius check scheme
equivalent to Θ(X, r).

Step 3: Resource Tradeoff. Use the radius→ state tradeoff algorithm defined in §6.1.2 to compute:

Θ(X, r,R) =

(
Θ̃(X, r)

)R/2
, if Θ(X, r) is single-choice(

Θ̃(X, r)
)(R−2)/2

, otherwise
.

Step 4: Construct Optimal Rule. Using the pattern classification described in §4.3, the single-choice
algorithm fΘ construction from Chapter 3, and the algorithms F̃Θ and F̂Θ from Chapter 4, define:

F(X, r,R) =

fΘ(X,r,R), if Θ(X, r) is single-choice
F̃Θ(X,r,R), if Θ(X, r) is multi-choice and not locally patchable
F̂Θ(X,r,R), if Θ(X, r) is locally patchable and nontrivial

.

The compiler is given by the function GC : (X, r,R) 7→ F(X, r,R). GC(X, r,R) is, by construction a local rule
that solves the pattern T(X, r), with radius at most R.

I have implemented a version of this compiler in Matlab. Fig. 8.1 shows a screen shot of the Matlab code in
action. The input to this example were three samples

X = {100010001000, 122222122222122222, 10001000122222122222}.

The chosen feature radius is 3, and the pattern generated is T1000 · T122222. The output includes an GraphViz
.dot file containing the minimal local check scheme graph, and a tracing of the power spectrum order
measure as the system self-organizes, as well as the local rule itself. It is important to note that this compiler
is prototypical: a real global-to-local compiler, to be used be a real spatial computer programmer, would have
to handle larger classes of problems and work on a large class of underlying spaces. In chapter 9 I indicate
how in future work this might be accomplished.

CHAPTER 8. TWO APPLICATIONS 132

Figure 8.1: Top: Compiler console with commands being run. Three samples input are: 100010001000, 122222122222122222,
10001000122222122222. Feature radius is 3. The pattern generated is T1000 · T122222. Middle Left: Minimal-radius local check
scheme graph as generated by compiler. MIddle Right: Compiler selects random initial and runs forward generated rule until
final configuration is reached. Selected timesteps from trajectory produced on random initial condition are shown. Timesteps proceed
from top to bottom. Bottom Left: Power spectrum of initial condition (blue line) and final condition (green line), the showing the
emergence of global order in the latter in comparison to the former.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Frequency

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

0.11

0.12

0.13

0.14

P
o
w
e
r

Initial

Final

!"""

!"""!

!"""!"

!"""!""

"""!"""

""!"""!

""!"""#

"!"""!"

"!"""!$

!"""!$$

!$$$

!$$$$

!$$$$$

!$$$$$!

$$$$$!$

$$$$!$$

$$$!$$$

$$!$$$$

$!$$$$$

!$$$$$#

"""!$$$

""!$$$$

"!$$$$$

"!"""#

!"""#

$$$$$#

$$$$#

CHAPTER 8. TWO APPLICATIONS 133

8.2 Analyzing a Drosophila Gene Network

In this section, I will show how the techniques of spatial multi-agent systems may be useful in analyzing
the structure of a genetic regulatory network that figure in the embryonic development of the common fruit
fly, Drosophila melanogaster. I present the necessary background material from Drosophila biology in §8.2.1,
describe a simple multi-agent model of the Drosophila embryo in 8.2.2, and get to the analysis in §8.2.3.

8.2.1 Drosophila melanogaster

Drosophila melanogaster is a two-winged insect that looks like this: – but about half that size. It is one
of the most commonly used model organisms in biology, especially in developmental genetics.

Shortly after a Drosophila egg is fertilized, fluorescence imaging techniques reveal the existence of a distinct
striped pattern that is roughly radially symmetric around the embryo’s major axis:

The stripes are important because they are developmental precursors of major body components in the
adult fly.

To see how these stripes are made, let’s “zoom in” and consider the embryo at the cellular level. Any
individual cell in the embryo is like a partially-mixed fluid compartment containing biomolecules, mostly
proteins and mRNAs. Experiments show that the macroscopic stripes correspond to contiguous bands of
cells that contain differing concentrations of specific proteins. These proteins are the product of expression
of specific genes in the fly’s DNA.

Among these genes are the so-called “Segment Polarity” genes, which are known to be crucial in the stripe-
formation process. Cells in a band corresponding to one stripe have certain Segment Polarity genes turned
“on” (highly expressed) and others turned “off”, while in other bands the reverse is true. The spatial pattern
of on/off states for each of eight core Segment Polarity gene/proteins has a well-defined repetitive sequence,
as shown here:

ENgrailedWinGless

Cubitus Interruptus (mRNA)Cubitus Interruptus repressor HedgeHog Cubitus Interruptus (protein)

SLoPpy Mid

For instance, the gene called engrailed (EN, shown top left), repeats in a 4-cell “Off-Off-On-Off” pattern. The
superposition of all these repetitive expression patterns constitute the stripes.

But this begs the question. Each of the cells in the embryo has the same underlying genetic program, and
the embryo began life as a roughly homogenous single cell. Nonetheless, cells quickly develop into sharply
different gene expression regions. How does this happen? The answer lies in the fact that the genes making
up the stripes regulate each other’s expression.

When an increase in the abundance of one gene’s protein product sets off biochemical reactions that cause
another gene’s expression to also increase, the former is said to “up-regulate” (or induce) the latter. Con-
versely, when an increase in one gene’s protein product leads to a decrease in another gene’s expression,

CHAPTER 8. TWO APPLICATIONS 134

cell
i

cell
i+1PROTEIN

mRNA

Positive
Up-Regulation

Negative
Down-Regulation

mid MID

slpSLP

en EN

wg

CN CI ci

hh

WG

WG

HH HH

Basal
Production

cell
i-1
WG

HH

. ii-1i-2 i+1

Figure 8.2: Top: Drosophila segment regulatory network, as taken from [24]. Genes involved include engrailed (en), wingless (wg),
sloppy (slp), cubitus interruptus (ci), cubitus interruptus N-terminal fragment (CN), hedgehog (hh), and mid. Bottom: Inter-cellular spatial
coupling of networks, shown along the anterior-posterior axis of the embryo.

the relationship is one of ”down-regulation” (or inhibition). The genes underlying a given development
process are typically linked to each other through sequences of regulatory interactions. The totality of these
molecules and their interactions are collectively known as a gene regulatory network.

Gene regulatory networks are often represented using graphs. Each node in the network corresponds to a
protein or mRNA species that arises from the expression of the genes underlying the network. The edges
correspond to regulatory interactions: up-regulation is represented by edges with arrowheads, and down-
regulation by edges with circular heads. A series of edges indicates a chain of regulatory dependences, with
cycles corresponding to feedback loops. The network structure is an abstraction of the system’s chemical
dynamics, describing the manifold ways in which one gene influences all the others to which it is connected.
In practice, gene regulatory network diagrams are inferred by distilling up- and down-regulatory influences
from the biological literature about a given system.

The graph of the specific Segment Polarity Network (SPN) describing the interactions of the Drosophila
segment polarity genes is shown in Fig. 8.2. For example, the arrow from the node labeled EN to the node
labeled hh indicates that the protein engrailed induces the transcription of mRNA of the hedgehog gene. (Fur-
ther details of the specific interactions in the SPN network, corresponding to the various edges in the graph,
are described in appendix §H.) In the case of the Drosophila stripes, some of the proteins involved in the
Segment Polarity regulatory network interact across cell membranes with proteins in neighboring cells. The
concentration dynamics of the network in one cell is linked by such intercellular signals to that of its neigh-
bors. The overall structure is thus a spatially coupled regulatory network, as indicated at the bottom of fig. 8.2.

Recent work in computational biology [34, 12, 24] have examined models of this coupled network (and
related variants), based on differential equations of the form:

dSi
j

dt
= f j

(
Si

1,S
i
2, . . . ,S

i
N,S

i−1
1 ,Si−1

2 , . . . ,Si−1
N ,Si+1

1 ,Si+1
2 , . . .Si+1

N

)
, (8.1)

in which Si
j represents the concentration of substance j in cell i. The functions f j express the regulatory

dependences of the system as determined by the network structure. Influences from within a given cell
correspond to the Si variables while interactions with neighbors are captured by the presence of the Si−1 and
Si+1 variables.

CHAPTER 8. TWO APPLICATIONS 135

The general forms of the functions f j are based on chemical principles (e.g. the law of mass action, Michaelis-
Menten enzyme kinetics), and the specific parameters are chosen to fit the known data. The knowledge that
gene product k up-regulates expression of gene j is captured by taking ∂ f j/∂Sk > 0; the sign would be flipped
for down-regulation; and no influence represented by ∂ f j/∂Sk = 0. Typically, models in the literature [12, 24]
utilize so-called Hill functions to represent the induction/inhibition dynamics. For example, the induction of
hedgehog by Engrailed would be represented by the equation:

d hh(t)
dt

=
1
τEn

(
En(t)n

En(t)n + kn − hh(t)
)
, (8.2)

where hh(t) and En(t) represent the concentrations of hedgehog and Engrailed, respectively, at time t, and τEn,
n and k are parameters. The first term of the RHS of eq. 8.2 generates an “S”-like shaped response curve,
by which increasing concentration of engrailed leads to faster hedgehog production rate – but the effect levels
off eventually. The second term represents a standard first-order degradation process by which hedgehog is
removed from the system, so that in the absence of any stimulated production by Engrailed, hedgehog concen-
tration will eventually tend to 0. Further details of an full mathematical model are described in appendix §H.

Coupled ODE systems like these are too complex to be solved analytically, but simulations and analysis of
simplified versions indicate a key fact: the inherent spatial dynamics of the coupled network can create or-
dered spatial patterns. Intuitively, a gene being on in one cell influences other genes through the regulatory
dynamics to turn off; this in turn induces genes in neighboring cells to turn on, which effects other genes in
those cells, &c. For a large range of parameters and initial conditions (though not all), the cell on-off patterns
will converge to spatially interlocking consistent stable states, corresponding to the observed expression.
Even though any individual cell only has direct access to information about neighboring cells, inter-cell
interactions force stable equilibria at correct the global pattern.

This realization suggests several profound biological questions:

• Are there generic network structure (“genotypic”) features that translate into pattern (“phenotypic”)
features?

• What changes in the network would need to be made to achieve other patterns? Conversely, what
other patterns are accessible with small modifications?

• For what are the networks optimized (if anything)? For robustness? or efficiency? or perhaps flexible
evolvability?1 Is there a theoretical tradeoff between these objectives, and if so, are actual systems
close to optimal?

Answering these questions would provide a link between a fundamental phenotypic observable (the spatial
expression pattern), the basic genotypic structure (the regulatory network), and the developmental con-
straints on their co-evolution. In the next section, I show how treating the embryo as a spatial multi-agent
system and applying the techniques from previous chapters may afford the beginnings of a useful approach.

8.2.2 Multi-Agent Model

In constrast to the ODE model described above, here we model the Drosphila embryo as a spatial multi-agent
system.2 The model consists of cell-agents, connected in a organism graph, operating according to local
regulatory program rules. Specifically:

1Robustness means: small changes to the network do not change the final pattern much. Efficiency means: the minimal number of
nodes or inter-node connections are used to achieve a given pattern. Evolvability means: the network structure is built so that typical
network changes are biased towards creating a variety of useful new patterns.

2The Drosophila stripes first begin to appear at a stage before that which we model here, when cell boundaries are not yet well defined.
Once cell boundaries are invaginated, intercellular interactions significantly sharpen and stabilize the stripes. Stripe localization in
the pre-cellular stage is probably mediated by discrete and regularly spaced nuclei [17], but this question is outside the scope of the
current investigation.

CHAPTER 8. TWO APPLICATIONS 136

1. Cells correspond to agents. Using the setup from §6.1.2, the agents each carry several binary-valued
slots. A slot corresponds to a specific gene, and the slot’s binary state corresponds to that gene’s being on
or off. The “tuple” of slot-states in a single agent represents the ensemble of on/off states in the cell’s gene
expression. Pictorially:

0

1

1

0

0

1

0

1

EN
WG

CN

ci

HH

CI

SLP
MID

The total number of states is 2k, where k is the number of gene slots. This model of states is similar to a
variety of boolean gene network models [14].3

2. The organism consists of agents connected in a cylindrical two-dimensional graph:

0

1

1

0

0

1

0

1

This structure corresponds to the fact that at this developmental stage, the cells of the Drosophila embryo lie
on the two-dimensional surface of the three-dimensional ellipsoidal embryo [17].

3. The gene regulatory network corresponds to a nearest-neighbor local rule updating the agents’ states:

F()
0

1

1

0

0

1

0

1

0

1

1

0

0

1

0

1

0

1

1

0

0

1

0

1

EN en

wg

ptc

cid CID CN
PH

hh

WG

PTC

HH

0

1

1

0

0

1

0

1

0

1

1

0

0

1

0

1

0

1

1

0

0

1

0

1

0

1

1

0

0

1

0

1

!→ 0

1

1

0

0

1

0

1

⇒

The network graph, in other words, somehow generates a finite state automata that computes outputs (the
state of the cell) from local inputs (states of neighbors). This notion of the regulatory network as a input-
output transducer follows [6]. Because the stripe pattern is rotationally symmetric around the anterior-
posterior axis of the embryo, we will assume that the update rule is rotationally decoupled, allowing us to
treating the organism as a cylinder of parallel one-dimensionally spatially coupled gene networks.4 Notice
that we’ve bypassed the level of differential equations models and gone straight from the network influence
graph to the state update rule.

3Whether it is appropriate to treat cell states, which in reality are molecular concentrations, with a discrete on/off binary variable,
is an open question [14].

4Two- and three-dimensional effects are relevant when modeling the stripe formation processes biophysically – to make diffusion
constants, &c, work out dimensionally. At the level we model it here, these effects can probably be ignored.

CHAPTER 8. TWO APPLICATIONS 137

Figure 8.3: Global-to-local compiler implemented on the two-dimensional cyclindrical organism graph. For the rotation of the T0010
pattern, the compiler constructs a single-choice radius-3 solution. Shown here are selected timesteps from the trajectory of this rule
operating on a randomly chosen initial condition.

8.2.3 Analysis

Let’s focus first on the engrailed gene. It’s pattern is to repeat Off-Off-On-Off, in a 4-cell period. In terms of
the multi-agent model, this is the repeat pattern T0010.

Suppose we isolated the engrailed portion of the network, and allowed it to operate only by its own
endogenous dynamics. A very simple local checkability argument shows that such dynamics could stably
produce the observed pattern. Specifically:

• The engrailed pattern T0010 has check scheme radius 2, and would require a radius of at least 5/2 to
solve robustly.5

• However, nearest-neighbor local rules have r = 1, falling short of the required minimum.

To see what this means physically, think back to the differential equations model described in equations 8.1
and 8.2. A local check in the multi-agent model corresponds to a locally interlocking stable steady state of the
the differential equation. The simple local check argument above is an abstraction of the complex underlying

dynamics, implying that no equation of the form 8.1 and 8.2 can have a non-degenerate stable solution
dSi

j

dt = 0, ∀i, j
of the observed form, if the engrailed terms are decoupled from the others. (See appendix §H for more details.)
In network graph terms, several non-trivial edges must feed out and in of engrailed in a feedback loop. So
even if we knew nothing about the actual network, the local check concept helps us predict a very simple
network feature.

Let’s carry this analysis one step further. What does the theory of previous chapters tell us about what a
two-state rule that did create T0010 would look like? Like all repeat patterns, T0010 is a single-choice pat-
tern. Hence, the simple gradient construction fΘ will yield a radius-3 solution with two states. Using the
global-to-local compiler described in the previous section, it is simple to implement this solution in the
two-dimensional cylindrical geometry, are shown in fig. 8.3.

5Meaning that a cell would have to receive direct information from at least one of its distance-3 neighbors.

CHAPTER 8. TWO APPLICATIONS 138

A) B)

Anterior Posterior Anterior Posterior

Figure 8.4: Global-to-local compiler implementing a solution to the T0010 pattern with an r = 1 nearest-neighbor rule, using the
radius-state tradeoff algorithm. The generated rule uses three state slots. Panel A) shows a portion of an anterior-posterior cross
section of a randomly chosen initial condition. B) shows the final state in the same cross section after the rule converges. The lower
panels show a whole-organism view at three timesteps along the trajectory.

However, fΘ requires any given cell agent to potentially receive direct information from a cell three steps
away. How would we be able to implement this rule in a nearest neighbor system? The obvious answer from
the theory of chapter 6 is to make a radius/state tradeoff. That is, we should add state slots, corresponding
to other genes. The newly added states will need to have their update depend on the original state and vice
versa, establishing a feedback relationship which resolves the correct pattern. To achieve a nearest-neighbor
(r = 1) rule, we need to find a radius-1/2 check scheme Θ for T0010 – since the fΘ construction doubles the
radius of check scheme.

We are thus faced with the question of how many states we need to add, and what the feedback relationships
should look like. Luckily the “cut-and-shift” radius→ state tradeoff algorithm in §6.1.2 gives us a standard
way to do this. Applying this algorithm to the problem of checking T0010 with radius 1/2 check, we obtain a
check scheme using three slots:

0 0

0 0

1 0

0 001

0 00

1 000

1.

Intuitively, what the three state slots do is feed forward the result of one slot on to the next slot – in the next
cell – until each of the three slots is used, and feedback closes the loop spatially. Figure 8.4 illustrates the
global-to-local compiler implementing this check scheme and the nearest-neighbor rule created from it.

The result of the compiler and cut-and-shift algorithm can be viewed as a “null-hypothesis” prediction for
what a nearest-neighbor network that can stably form the T0010 will look like. The obvious question is to
determine which aspects of this prediction are consistent with the actual structure of the Drosophila segment
polarity network.

Focus on the three proteins engrailed (En), wingless (Wg), and SLoPpy (slp). If we highlight the expression
profiles of these three, we see:

CHAPTER 8. TWO APPLICATIONS 139

WinGless

SLoPpy

EnGrailed

The expression structure is consistent with what would be expected if these proteins were playing the role of
the various shifts in the local check scheme produced by the ”cut-and-shift” algorithm. But for the expres-
sion profile to be meaningful, we have to delve deeper and see whether the actual regulatory relationships
confirm the picture. Moreover, if these three do form a cut-and-shift local check, this raises the question of
what role the other genes play.

Specifically, we need to isolate a path within the SPN network that puts these three proteins in a stable
spatial feedback sequence. In what follows, I describe a simple chain of steps that identify such a path. Each
step summarizes a differential-equations stable steady-state computation, using the specific edge structure
of the network in Figure 8.2. For more mathematical details on the meanings of these steps, please see
appendix §H.

Step 1: Suppose that we began with a cell expressing wingless, but none
(or only a small amount) of the others:

wg WG

1

Step 2: Suppose also that the next cell to the right,
Cell 2, is expressing engrailed at a high enough
level to so that the bistable activation from wg Cell
1 system remains expressing en and suppressing
sloppy:

wg WG

ENen

1 2

slp SLP

Step 3: The en-slp negative feedback relationship
in Cell 2 will stabilize en expression. This in turn
activates hedgehog and overcomes basal expres-
sion to suppress cubitus interruptus, its protein,
and repressor fragment (CN):

wg WG ENen

1 2

hhHH

ciCICN

CHAPTER 8. TWO APPLICATIONS 140

Step 4: In Cell 2, the lack of CI means that no
wg will be produced so any residual wg will de-
gradea. However, the presence of hh also inhibits
the cleavage of CI into CN in Cell 1, which in turn
stabilizes the expression of wg in Cell 1:

aAnd be suppressed by Mid, although here this link is un-
necessary and could be used for other things.

wg WG ENen

1 2
hhHH

ci

CI CN
WG

ENen

2

hh HH

3

EN SLP

ciCI

CN

mid Mid

wg

Step 5: Meanwhile, over in the next right cell, Cell
3, the lack of wg from cell 2 will cause any residual
small amount of en and slp to degrade. Hence, ci
will be transcribed, so CI will be expressed, and
the ci → wg link be active. Since hh expresses
in Cell 2, CI will not be cleaved. However, Mid
will be being expressed (since slp is not), so wg is
supressed.

Step 6: Shifting attention back to Cell 1, if the cell
to the left had a lower initial expression of en, then
Wg from Cell 1 will favor the slp expression equi-
librium and residual en will die out. Moreover,
mid will be surpressed, but wg suppression will
be stabilized by CN expression:

wg WG

1

ciCI

0

en

slpSLP

mid Mid

WGCN

Refocussing attention on the three original proteins, and highlighting the active links that directly contribute
to pattern functionality, we have:

WG

1
CI

0

en

SLPMid

WG CN

EN

2

hh

HH

3

EN SLP

Mid

slp

WGCI
WG

CI

CN

Finally, consolidate the “intermediate” interactions between slp, wg, and en. This reduces to:

CHAPTER 8. TWO APPLICATIONS 141

1 2 30

WG ENSLP

SLP WGEN SLPEN WG

EN

SLP

WG

This is the interaction structure underlying the cut-and-shift local check scheme. So, because it picks not
just the correct pattern but also the local structural generator of the pattern, the cut-and-shift mechanism
might therefore be thought of as part of a “rationalization” of the structure of the segment polarity network.
We have made some small progress toward answering the first of the three “profound” biology questions
mentioned that the end of §8.2.1, the essential result being that:

The coordination of multiple input-output state relationships that unfold over space and time
allows cellular agents with single-cell views to generate a long-range coordinate pattern

The analysis also begins to address questions of designability and optimality.

Because of its structural generality, the cut-and-shift mechanism indicates how the network might be mod-
ified to create other patterns. To modify the pattern phenotype to have extend to additional cell, it would
suffice to cut the link between last slot and the first, connect in a new “last” slot, and link that up to the
first slot. Implementing this change with regulatory elements is straightforward conceptually, requiring
the addition of two new network elements (one to take the role of the new slot, and the other to mediate
the cutting of the link between the old last slot and the first slot). However, building this in practice may
be difficult because it would involve identifying and integrating several new proteins with very specific
interactions.

The analysis also shows that the segment polarity network is minimal in one regard but not in another. All
the elements of the network are used in the cut-and-shift pathway, and removing any one would prevent
correct operation. Moreover, the smallest possible network that could implement the cut-and-shift pathway
would require, for each of the three target state slots, one to promote the next state distally in the neighboring
cell and two to repress the other states proximally in the current cell, as shown in the “consolidated” figure.
The actual segment polarity cut-and-shift pathway – the bright blue arrows in the “non-consolidated” figure
– does not use significantly more than this minimal number. It does, however, use more nodes than is mini-
mally necessary – all the eight of the nodes of the network are utilized in the putative cut-and-shift pathway,
while (as in the consolidated figure) in theory the cut-and-shift pattern could be achieved with just three
proteins. But this node-minimal version would require each protein, by virtue of its own biophysics, to have
one effect across a cell membrane and another within the cell, without any mediation by interactions with
other proteins. This is very hard to imagine biochemically. In the actual network, the several extra nodes
essentially act as “helpers” which reverse protein effects when moving across the membrane. In summary,
it might be said that the SPN is appears close to edge-minimal but not node-minimal.

In regard to robustness the situation is somewhat subtle. Each of the steps the regulatory path is fairly
parameter-robust, depending in some parameter regime only on the sign of the relationship (i.e. its being
up- or down-regulation). Moreover, the fact that the cut-and-shift mechanism is a check scheme means that,
locally, the system is robust to changes in initial conditions – i.e. the pattern is a stable attractor of the system
that is unique within some reasonably large basin of attraction. On the other hand, it is not guaranteed that
the system will converge to this basin from all starting points. Moreover, it is probably the case that there
are large classes of perturbations to which the Drosophila embryo is not robust, since a diffuse pre-pattern in
wingless, set up by other gene regulatory networks acting earlier in development, seems to be empirically
required for the segment polarity network to function.6 So while there is a local robustness, there may not

6It is definitely known that genetic mutations that lead to drastic mistakes in the wingless pre-pattern are not corrected during the

CHAPTER 8. TWO APPLICATIONS 142

be complete global robustness.

This distinction can understood by comparing the difference between the static concept of ”local checkabil-
ity” – i.e. the ideas of chapter 2 – and the dynamic local rule that is used to generate that a check scheme –
the ideas of chapters 3 and 4. Local checkability defines local structural correctness, but more structure is
required to control the specific dynamic paths from disorder to order. While the preceding analysis suggest
that SPN is implementing (in large part) a cut-and-shift check scheme Θ, it does not address whether any
specific local rule is in force. Dynamic analysis at that level is an important next step of this work. Most
starkly, the real biological pathway is probably less robust than theoretically possible – compared, for exam-
ple, to the completely robust rule constructed from the local check scheme by the global-to-local compiler as
shown in Fig. 8.4.

If all these ideas are borne out in the long run, we may summarize by saying that the Drosophila segment
polarity network is partially optimized for each of the main optimality criteria – robustness, flexible evolv-
ability, minimality – but apparently not completely pushed toward any one extreme optimum. However,
there are many caveats regarding the analysis presented here. The influence graph model could be wrong,
for example, or perhaps some other pathway is primarily responsible for the expression pattern; or perhaps
some other motif aside from the cut-and-shift radius-state tradeoff is a more complete explanation of overall
network dynamics [35, 12]. Laboratory experimentation – especially comparative studies in closely related
Drosopholid species to explore the evolutionary predictions – is the necessary next step if models of this kind
are to be truly validated.

Finally, it is useful to note that in this analysis, we are essentially using a high level discrete-state “local
check scheme” abstraction to perform an intelligent directed search for steady state of the lower-level
differential equation model (compare with the exhaustive search technique used in [24]). It would be
reasonably straightforward to automate such analysis and search large numbers of networks from other
related organisms for similar structures.

stage in which the SPN usually works [17]. However, the structure of the SPN itself is probably also modified by these genetic changes,
so its hard to know exactly what the bounds of stability are. The needed experiment, which has not been done due to its enormous
technical difficulty, is to perturb the pre-pattern in real time in wild-type flies at various levels of disturbance to probe the exact limits
of initial condition robustness.

Chapter 9

Conclusions and Future Work

9.1 Discussion

In this thesis, I developed the beginnings of a theory of design and analysis for local-to-global algorithms
in spatial multi-agent systems. First, I identified those patterns that are robustly self-organizable in one
dimension via the concept of local checkability, and characterized them in graph-theoretic terms (Chapters
2 and 7). I then solved the inverse problem, using the idea of a self-organized distributed Turing machine
to generate robust local rule solutions (Chapter 3). Next, I used smart protocols to bring to bear the detailed
structure of locally checkable properties to optimize the performance of those rules (Chapter 4). I then
developed a measure of global order in multi-agent systems to analyze the inherent limits on how fast local
rules can create structures (Chapter 5). Next, I analyzed resource usage properties of local check schemes,
and demonstrated a radius/state resource tradeoff (Chapter 6). Finally, I combined these techniques to
address applications of local-to-global theory from an engineering and scientific perspective (Chapter 8).

9.2 Future Work

Three main aspects of future work are: generalization, application, and deeper analysis.

9.3 Generalization

One of the key questions is whether the concepts and techniques developed in the previous chapters apply
beyond the one-dimensional model. Initial exploration indicates that, to a large extent, they do.

The Modeling Framework: The spatial model defined in §1.1, and used throughout the rest of this thesis,
is based on the “One Dimensional Directed Finite Lattices” – the graphs Ln defined at the beginning of §1.1.
Having introduced the basic spatial structure in terms of a graph, all further definitions (local balls, local
rule dynamics, timing models, patterns, robust solutions &c) were defined in graphical terms. A useful
consequence of this modeling choice is that generalizing the model from one dimension to other more
sophisticated spaces is essentially trivial: simply replace the graphs Ln with graphs describing different
spaces, and all the definitions of Chapter 1 automatically go through.

For example, consider replacing Ln with the undirected line graphs Un, defined by

Un = (Vn,En) = ({1, . . . ,n}, {{1, 2}, {2, 3}, . . . , {n − 1,n}}).

Local rules on configurations over Un are functions from local balls in the configuration graphs over Un.
Unlike balls over Ln, these balls do not have any local orientation information, so the local rule functions
defined on them will be blind to directionality. Similary, if we instead use the ring graphs Rn defined by:

Rn = (Vn,En) = ({1, . . . ,n}, {(1, 2), (2, 3), . . . , (n − 1,n), (n, 1)},

143

CHAPTER 9. CONCLUSIONS AND FUTURE WORK 144

A) One-Dimensional Spaces B) Two-Dimenionsional Torus C) Cylinder

D) Two-Dimesional Lattice E) Three-Dimsional Lattice F) Triangulated Sphere

Figure 9.1: A variety of graphically modeled spaces that can be “plugged in” to the agent framework discussed in Chapter 1,
including torii, cylinders, two- and three-dimensional lattices, and the triangulated sphere

the resulting configurations will have no well-defined ”end” agents. Higher-dimensional geometries are
also easily defined (fig. 9.1). Local rules are defined in such spaces, because local ball neighborhoods
are defined in the graph structure. All the graphs shown in fig. 9.1 are reasonably highly-structured and
“regular” (though not in the graph-theoretic sense). To the extent that spatial structure is lost we move
closer to traditional distributed computing (see e.g. [23]) and further from the distinct territory of spatial
multi-agent systems, though using approximately regular spaces may be great utility. The problem of graph
self-assembly, in which the self-organization problem is actually to construct the underlying space itself, is
of great interest and an area of active research [15].

Local Checkability: The concept of local checkability makes sense for spaces other than the one-dimensional
directed line, simply by using the same definition of local check scheme (def. 18) with different underlying
graphs. More importantly, the proof of proposition 5 requires very few geometric properties of the direct
line graphs. Hence, the result that local checkability is necessary for robust solvability is probably very
general, so future research on local check schemes in more complex spaces is worthwhile.

As in the one-dimensional case, the analog of repeat patterns on regular spaces are locally checkable,
while the analog of proportionate patterns are not. Panels A and B of Fig. 9.2 show a locally checkable two-
dimensional repeat pattern and a non-locally checkable proportionate pattern, respectively. Thus, some
of the intuition we developed about one-dimensional locally checkable patterns holds for other spaces.
However, there are some extremely important differences. While all one-dimensional local check schemes
Θ always have some underlying periodicities, local check schemes in more complex geometries need not
have any inherent periodicity whatever. For example, the well-known fractal “Sierpinski Gasket” pattern
as shown in panel C) of Figure 9.2, is locally checkable with radius 1 but has no inherent periodicity.

Another difference is more unintuitive, and potentially of great use. In one dimension, it is easy to see

CHAPTER 9. CONCLUSIONS AND FUTURE WORK 145

that all local encodings of one-dimensional locally checkable patterns are again locally checkable (this un-
derlies the radius/state tradeoff in Chapter 6). No pattern in one dimension that simply could not be locally
checked with any radius for a fixed amount of state suddenly becomes checkable with more state. However,
in more complex geometries, the situation is much more flexible. For example, consider the “cross pattern”
in which agents on the diagonals are in one state (blue) and the others in another state (white), as shown
in panel D). This pattern is locally checkable with radius 1 and two states. Applying the encoding function
which sets the state of any agent whose radius-1 neighborhood contains four or more blue states to red, the
cross pattern is encoded into a pattern with a single red region the very center, as shown in panel E). This
“center-marked” pattern is not locally checkable in two states with any finite radius but is the local encoding
of a checkable pattern. The center-marked pattern, and similar constructions, can iteratively serve as the
“hidden scaffold” for a huge variety of meaningful and complex structures. This includes proportionate
and circular patterns, among many others (see panels F-I). Exploring the pattern design possibilities of local
check schemes in higher dimensions is rich area of future work.

Local Rule Constructions: Just as local checkability can be generalized to spaces beyond the one-dimensional
lattice, it seems likely that the local rules to construct those check schemes can also be significantly gener-
alized. Suppose, for example, that a two-dimensional local check scheme is “single-choice.” Just as in one
dimension, this means that in any direction, a two-dimensional local block can be extended by at most one
choice of states that are consistent with the local check scheme. (The Sierpinski Gasket corresponds to a
two-dimensional single choice check scheme, for example.) In this case, the two-dimensional gradient is well
defined, and can be implemented almost identically to the one-dimensional case described in §3.1, with
radius twice that of the check scheme. Figure 9.3 shows a variety of complex locally checkable patterns being
constructed by generalizations of the rules from chapters 3 and 4, in the ellipsoidal geometry described in
the Introduction. Exploring and developing such rules further is an important direction for future work.

The techniques of chapters 5,6, and 7, also have potential to be generalized. Fourier analysis can easily
be generalized to many different spaces to capture periodic structure, while generalize autocorrelation
analysis will be useful to quantify non-periodic ordered structures. DeBruijn graphs can also be associated
to any underlying space graph, by taking the set of nodes to be the local configurations of a fixed radius
in the underlying space, and the edges determined by spatial proximity. While in the one-dimensional
case the canonical DeBruijn structures are the cycles corresponding to periodic patterns, the subgraphs
corresponding to higher dimensional check schemes are more complex and suggest that interesting and
useful geometric questions may be asked (see figure 9.4).

9.3.1 Application

Future lines of research also involve several possible applications. There are three main areas of application
which I envisage as being especially relevant:

1. The results of Chapter 8 in analyzing Drosophila suggest a variety of biological experiments to pursue.
Spatial multi-agent modeling in general, and the specific concepts of this thesis, may provide useful
guide for an experimental program in the study of the evolution-development connection.

2. The algorithms and concepts developed here may be useful for programming distributed self-assembly
tasks. The ability to input a “building plan” into a global-to-local compiler and obtain as output rules
that local agent-based blocks or robots can use to construct the building, especially given resource-
tradeoff capabilities, may enable new approaches to distributed construction.

3. The ideas developed to analyze and engineer spatial multi-agent systems may provide a useful
”agent-based” perspective on the theories of computation, formal languages, and cellular automata.
Exploring the implications of local check schemes, the self-organized Turing machine, and global
order measures, and especially their higher-dimensional analogs, may open new areas with these
more traditional disciplines.

CHAPTER 9. CONCLUSIONS AND FUTURE WORK 146

A) B) C) Two-D Repeat Pattern Two-D Proportionate Pattern Sierpinski Gasket Pattern

D) E) F)Cross Pattern Center-Marked Pattern Proportionate Pattern Encoding

G) H) I)Proportionate Diamond Pattern Target Pattern Scaffolding Central Circular Pattern Encoding

Figure 9.2: A) Two-D lattice repeat pattern. This pattern is locally checkable with radius 3. B) Non-locally checkable 2-D lattice
proportionate pattern. C) The Sierpinski gasket pattern is locally checkable with radius 1 but is aperiodic. D) The cross pattern. E) The
Center-Marked pattern, using the cross pattern as an encoding scaffold (grayed-out). F) The same proportionate pattern from B), now
produced as an encoding of a locally checkable pattern (grayed out). G) Another 2-D lattice pattern resulting from a local encoding
of a checkable pattern. H) In a two-D continuous (or Amorphous) environment, a local check scheme that is useful to scaffold the
Proportionate Circular Pattern shown in I). By combining circular and proportionate patterns, arbitrarily complicated vector spline
images can be synthesized from local check schemes in two- or higher-dimensional spaces.

CHAPTER 9. CONCLUSIONS AND FUTURE WORK 147

A) B) C) D)
Figure 9.3: Trajectories of local rules constructing check schemes defined on two-dimensional ellipsoidal geometries. A) The
“Watermelon” pattern. B) Vertical stripes pattern. C) The cross pattern (same pattern as in Fig. 9.2D, in this geometry). D) The
“Football” pattern, which involves first self-organizing a “circumference” and then patterning the two hemispheres with orthogonal
“grip” patterns.

CHAPTER 9. CONCLUSIONS AND FUTURE WORK 148

1

2

12

22

26

3

14

23

27

33

4

20

5

21

6

7

18

8

40

16

32

9

24

41

10

25

48

11

30

49

13

31

54

15

38

55

17

39

58

19

47

59

28

29

34

35

36

37

42

43

44

45

46

50

51

52

53

56

57

1

2

6

3

7

11

4

8

12

5

9

13

10

14

15

16

17

18

19

20

21

22

23

24

25

Torus

???

Figure 9.4: Two-dimensional local check schemes and their corresponding DeBruijn subgraphs. Top: The DeBruijn graph for the
pattern shown in Fig. 9.2A is a 5-by-5 torus. Bottom: The DeBruijn graph for the Cross pattern check. I don’t yet know a standard
model for its topology.

9.3.2 Deeper Analysis

Finally, there are several questions about the one-dimensional model which bear further investigation.
These include:

• More thoroughly understanding the self-organized coherent structures inherent in any local rule, their
effect on computation, and connection to the theory of Cellular Automata “particles” mentioned at
the end of chapter 3.

• Developing techniques for constructing more sophisticated, non-locally checkable patterns from spe-
cialized initial conditions. For example, given a 1-dimensional proportionate pattern, what is largest
set of initial conditions on which a local rule can form it? And what “local-rule” engineering techniques
could be used?

• Addressing questions of dynamic patterns, beyond static “picture-formation” tasks explored here;
more generally, developing a theory of “whole trajectory” properties, not just properties that apply to
the “final state” alone.

• Further understanding the topological and geometric structure of DeBruijn space, and

• Developing a theory of the robustness of local rules to systematic perturbations in their structure.
For example: given a pattern T, which robust local solution F to T produces the least error when the
look-up table defining F is slightly modified? (Or are all robust solutions, at a given resource level,
roughly equivalent in this regard?)

Bibliography

[1] H. Abelson et al. Amorphous computing. Comm. ACM, 43(5), 2001.

[2] H. Abelson, G. Sussman, and J. Sussman. Structure and Interpretation of Computer Programs. The MIT
Press, 1996.

[3] W. Butera. Programming a Paintable Computer. PhD thesis, MIT, 2002.

[4] S. Camazine, J. L. Deneubourg, N. R. Franks, J. Sneyd, G. Theraulaz, and E. Bonabeau. Self-Organizing
Biological Systems. Princeton Univ. Press, 2001.

[5] J. Conway. The game of life. Scientific American, March 1970.

[6] Eric Davidson. The Regulatory Genome. Academic Press, 2006.

[7] N. DeBruijn. A combinatorial problem. Indagationes Math., 8, 1946.

[8] S. Eilenberg. Automata,Languages, and Machines. Academic Press, 1973.

[9] Phillipe Flageolet. Algebraic Combinatorics. Self-Published Online, 2007.

[10] H. Fredricksen. A new look at the de bruijn graph. Discrete Applied Mathematics, 37, 1992.

[11] S. W. Golomb. Shift Register Sequences. Aegean Park Press, 1981.

[12] N T Ingolia. Topology and robustness in the Drosophila segment polarity network. PLoS Biology,
2(6):805–815, June 2004.

[13] J M Kahn, R H Katz, and K S J Pister. Mobile networking for smart dust. In Proc. ACM/IEEE Intl. Conf.
on Mobile Computing and Networking (MobiCom 99), 1999.

[14] S. Kauffman. The Origins of Order. Oxford Univ. Press, 1993.

[15] E. Klavins. Directed self-assembly using graph grammars. In Foundations of Nanoscience, 2004.

[16] M. Kloetzer and C. Belta. Hierarchical abstractions for robotic swarms. In Proc. IEEE ICRA 06, 2006.

[17] Peter Lawrence. The Making of a Fly. Wiley, 1992.

[18] H. Lewis and C. Papadimitriou. Elements of the Theory of Computation. Prentice Hall, 1997.

[19] W. Li. Power spectrum of regular languages and cellular automata. Complex Systems, 1989.

[20] L. Libkin. Elements of Finite Model Theory. Springer, 2004.

[21] N. Linial, Y. Mansour, and M. Nisan. Constant depth circuits, fourier transform, and learnability.
Journal of the Association for Computing Machinery, 40(3), 1993.

[22] M. Lothaire. Algebraic Combinators on Words. Cambridge University Press, 2005.

[23] N. Lynch. Distributed Algorithms. Morgan Kaufman, New York, 1996.

149

BIBLIOGRAPHY 150

[24] W. Ma et al. Robustness and modular design of the Drosophila segment polarity network. Molecular
Systems Biology, 2006.

[25] J. D. McLurkin. Stupid robot tricks: A behavior-based distributed algorithm library for programming
swarms of robots. Master’s thesis, MIT, 2004.

[26] R. McNaughton and S. Papert. Counter-Free Automata. MIT Press, 1971.

[27] M. Mitchell, J. Crutchfield, and R. Das. Evolving cellular automata to perform computations: A
review of recent work. In Proc. of the First International Conference on Evolutionary Computation and Its
Applications. Russian Academy of Sciences, 1996.

[28] G. Myerson. How small can a sum of roots of unity be. The American Mathematical Monthly, 93(6), 1986.

[29] R. Nagpal. Programmable Self-Assembly: Constructing Global Shape Using Biologically-Inspired Local Inter-
actions and Origami Mathematics. PhD thesis, MIT, 2001.

[30] A. Ralston. De bruijn sequences – a model example of the interaction of discrete mathematics and
computer science. Mathematics Magazine, 55(3), 1982.

[31] C. Reynolds. Flocks, herds, and schools: A distributed behavioral model. In Proc. SIGGRAPH, 1987.

[32] D. Rus et al. Self-reconfiguration robots. Communications of the ACM, 45, March 2002.

[33] J. v. Neumann. The Theory of Self-reproducing Automata. U. Illinois Press, 1966.

[34] G von Dassow, E Meir, E Munre, and G M Odell. The segment polarity network is a robust develop-
mental module. Nature, 406:188–192, July 2000.

[35] G von Dassow and G M Odell. Design and constraints of the Drosophila segment polarity modeul:
Robust spatial patterning emerges from intertwined cell state switches. J. of Experimental Zoology,
294:179–215, 2002.

[36] G. Werner Allen et al. Monitoring volcanic eruptions. In Proc. EWSN 05, 2005.

[37] S. Wolfram. Rev. Mod. Phys., 55, 1983.

[38] L. Wolpert. Positional information. J. Theor. Bio., 25(1), 1969.

[39] D. Yamins. Structural Organization Theory. Harvard University Undergraduate Thesis, 2002.

[40] D. Yamins. In Proceedings of the 2005 Conference on Autonomous Agents and Multi-Agent Sytems, 2005.

Appendix A

Local Balls and Parts

A.1 Counting Ball Types

The following question is very simple to answer, and turns out to be very useful: for any fixed n and r, what
are the isomorphism classes of balls of radius r in Ln? And, what can an agent determine about its position
and the size of the configuration merely from observing the structure of its local neighborhood?

There are several cases. If n ≤ r – what we’ll term “very small” balls – then for each i ∈ {1, . . . , 2r + 1},
the r-ball around position i is a graph with n nodes, and a ? at one of the nodes. For example, if n = 3 and
r = 3, the r-balls in Ln are:

* * *
Figure A.1: The balls of radius 3 in L3. Stars denote the “middle” agent in each case.

Notice that each ball is unique, i.e. no two positions yield the same ball, and moreover that each agent can
derive from the structure of the graph that n = 3. (Notice also that without the ?’s, it would be impossible
to distinguish these balls, which is why I introduced the ? in the first place.)

If r + 1 ≤ n ≤ 2r – the “small” balls – then for all i ≤ bn/2c, there are two balls of length r + i, one at
position i and the other at position n − i + 1. For example, if n = 6 and r = 3:

*
*

Figure A.2: The radius 3 balls at position 2 and 5 in L6.

If n is even this counts all the balls. If n is odd, then there is one ball of length n, with the ? at position
(n + 1)/2. Again, balls at all positions have unique structure, so each agent can tell what its position is.
Without prior knowledge of n, only positions n − r ≤ i ≤ r + 1 can determine n from the structure of ball;
these are “small center” agents; those i < n − r know they’re closer to the left and are thereby “left-end”
agents, while those with i > r know they’re closer to the right and are thereby “right-end” agents.

Finally, if n ≥ 2r+1 – the “large” balls – then: First, for i ≤ r there are two balls each of size r+ i, similar in
structure to the left and right-end configurations in the previous case (and we’ll call them the same thing).
Then, there are n− 2r “central” balls of size 2r+ 1 whose positions are r+ 1 ≤ i ≤ n− r, all of which look the
same. For example, if r = 3 (and n ≥ 7), these are:

*
Figure A.3: A radius 3 central ball.

151

APPENDIX A. LOCAL BALLS AND PARTS 152

The left- and right-end agents can determine their positions, but the central balls cannot. Unlike in the
previous cases where all the balls were unique, now many of the balls will the same.

The local balls Br,S are simply versions of each of the above graphs, labeled by elements of S. Hence
there are basically four overall classes of balls:

• Central balls, which have size 2r + 1 – and only arise in configurations of size ≥ 2r + 1. Denote the
central balls Bcentral(r). There are m2r+1 central balls, where m = |S|.

• Left balls, of size between r + 1 and 2r or less – which arise only in configurations of size r + 1 and
greater. Denote them Ble f t(r). There are mr+1 ∑r−1

i=0 mi = mr+1(mr
− 1)/(m − 1) of these.

• Right balls, also of size between r + 1 and 2r or less – and again only arising in configurations of size
r + 1 and greater. Denote them Bright(r). There are also mr+1(mr

− 1)/(m − 1) right balls.

• Small central balls, of size between r + 1 and 2r − 1. Denote them Bsmall(r). There are
∑r−1

i=1 im2r−i =
mr+1(mr

−mr + r − 1)/(m − 1)2 of these.

• Very small balls, of size between 1 and r. Denote these Bv−small(r). There are
∑r

i=1 imi = m(rmr+1
−mr

−

mr + 1)/(m − 1)2 of these.

Hence, over all there are

m2r+1 + 2mr+1 mr
− 1

m − 1
+mr+1 mr

−mr + r − 1
(m − 1)2 +m

rmr+1
−mr

−mr + 1
(m − 1)2 = m

(
mr+1

− 1
m − 1

)2

local r-balls.
Usually, we’ll combine classes 2 and 3 into the “left and right-end balls” and classes 4 and 5 into the

“small balls”. We also distinguish two classes of configurations X – the “small configurations” with |X| ≤ 2r,
and the “large” configurations with |X| ≥ 2r + 1.

A.2 Reduction to Parts

Proposition 47 Let T = Θ(C) be a locally checkable pattern, and suppose Y is T-repeatable (or expandable). Then
any configuration X all of whose parts are contained in Y is also T-repeatable (or expandable).

Proof: Suppose Y is Θ-repeatable, and Br(X) ⊂ Br(Y). Then, we have to show that given any integer n, there
is some Θ-admissible Z containing (at least) n repeats of X.

The fact that Y is repeatable guarantees that we can find a Θ-admissible configuration with as many
repeats of Y as we want. We choose a configuration Zn that has n ·M repeats of Y, where M = |X| − 2r. To
see why we do this, consider this figure:

Y

|X|-2r times

n times

|X|-2r times |X|-2r times

Y Y Y Y Y Y YY

Each of the copies of Y contains at least one instance of each part in X, since by assumption Br(X) ⊂ Br(Y).
Write out a list of the r-balls in X, calling the left-most r-ball b1,, the r-ball one step to the right b2¡ and so on,
defining bi = X(i : i + 2r), until i = M (the right-most part of X). Now, in Zn, locate the first instance of the
left-most part b1, in the left-most copy of Y, say at position k1. Then locate the first instance of the next part
b2 that occurs in second copy of Y, say at position k2. Then locate an instance of b3 in the third copy of Y.
Keep doing this until each one of the M parts of X has been located, at positions ki:

K1 K2
. . .

KM
Y Y . . . Y Y Y . . . Y

APPENDIX A. LOCAL BALLS AND PARTS 153

Excise the points in Zn between ki and k j+1, to get

Z′n = Zn(1 : k1) ◦ Zn(k2) ◦ Zn(k3) . . .Zn(kM : |Zn|) = Zn(1 : k1 − 1) ◦
(
©

M
i=1Z(ki)

)
◦ Zn(kM + 1 : |Zn|)

where©N
i=1ai indicates the concatenation a1 ◦ a2 ◦ a3 ◦ . . . ◦ aN. Of course, putting the parts of X next to each

other simply makes X, so we’re left with

X Y Y . . . Y Y Y . . . Y

one instance

n times

|X|-2r times |X|-2r times

or, formally,
Z′n = Zn(1 : k1 − r − 1) ◦ X ◦ Zn(kM + r + 1 : |Zn|).

Now, repeat above process n − 1 more times, finding positions k j for j = 1, . . . ,n(|X| − 2r) at which the r-ball
around k j is an instance of b j, where j is taken modulo |X| − 2r (shifted by 1). That is,

Zn(k j − r : k j + r) = b1+mod(j−1,|X|−2r).

Then excise the positions between the k js, for all j that are not multiples of |X|, but retaining the parts
between k j=l(|X|−2r) and kl(|X|−2r)+1. To do this each time without disturbing the copy of X just made to the left,
we have to assume that the right-most element of the j(|X| − 2r) + 1-st copy of Y is at least distance r away
from left-most element if the j(|X| − 2r)-st copy, i.e. k j|X|−2r+1 − k j|X|−2r > 3r. This way, we’re left with:

X

n times

X X

or, formally,
Z′n =

(
©

n−1
j=0 Zn(k jM + 1 : k jM+1 − 1)X

)
◦ Z(knM + 1 : |Zn|)

which is what we wanted in the first place. �
In chapter 1 I also described the T-required set of X, denoted RT(X). This was defined to be the set of

subconfigurations Y such that any T-admissible configuration Z containing X would have also to contain Y:

RT(X) = {Y|∀ Z ∈ T, X b Z ⇒ Y b Z}.

Recall that we defined Br(X) to be thet set of parts in X (without regard to order or number of each). Then
Br(RT(X)) is the set of parts of configurations required by X, and, reversing the order, RT(Br(X)) is the set of
configurations required by any configuration that contains the parts of X. We have:

Proposition 48 A locally checkable pattern T = Θ(C) satisfies

Br(RT(Br(X))) = Br(RT(X)),

where r = r(Θ). That is: “the set of all parts set used in configurations required by the parts of X, without regard to
how they’re put together, is the same as the set of parts used in configurations required by X itself. ”

Proof: What we have to show formally is that

Br(RΘ(Br(X))) = Br(RΘ(X)),

APPENDIX A. LOCAL BALLS AND PARTS 154

where
RΘ(Br(X)) = {Y|∀ Z ∈ Θ(C), Br(X) ⊂ Br(Z) ⇒ Y b Z}.

So suppose that Y ∈ Θ(Br(X)). Then any Θ-admissible Z such that Br(X) ⊂ Br(Z) must have Y b Z. Hence
a fortiori Y ∈ Θ(X) and thus Θ(Br(X)) ⊂ Θ(X) and thus Br(Θ(Br(X))) ⊂ Br(Θ(X)). On the other hand, if
y < Br(Θ(Br(X))), that means there is a Z with Br(X) ⊂ Br(Z) such that y < Br(Z). Obviously y < Br(X) also.
Now, in particular, X1 and X|X|−2r are in Br(Z). Define Z1 to be the segment of Z from its left end upto the
first (or any) instance of X1; then define Z2 be the of Z from the first (or any) of instance of X|X|−2r to its right
end. Then Z1X(r : |X| − r)Z2 is Θ-admissible and contains X but not y since y < Br(X). Hence y cannot be in
Br(Θ(X)). �

Appendix B

Naive Backtracking Proofs

B.1 Appendix: Proof of Prop. 14

Proof: In the course of this proof, we use the shorthand definitions that:

• α1[B], α2[B], α3[B], and α4[B] are radius-2r + 2 boolean functions denoting when Rules 1,3,9 and 10
apply, respectively.

• β1[B] and β1[B] are the booleans denoting when Rules 5 and 6 apply, respectively.

• γ1[B] and γ2[B] are the booleans denoting when Rules 2 and 4 apply, respectively.

• δ[B] is the boolean denoting when Rule 8 applies.

• ε[B] is the boolean denoting when Rule 7 applies.

Let X be any configuration. Let Bi = B2r+2(i,X). Recall the notation S for the original states and
S′ = {B,C,4i}. Suppose that Bi(0) ∈ S for all i. Given that Bi(0) ∈ S, we know that α3,4[Bi], β1,2[Bi], γ1,2[Bi],
and ε[Bi], must all not hold, since they require Bi(0) < S. Moreover, β3[Bi] and δ[Bi] cannot hold since they
would require Bi+1(0) = C and Bi+1(0) = 4Bi(0) respectively. Now suppose in addition that F[Bi] ∈ S for all i
as well. Then, α1[Bi] and α2[Bi] cannot hold either, since they would require F[Bi] = B. Now, if α1[B]i fails to
hold then since Bi(0) ∈ S by assumption, either: a)?(Bi) , |Bi|, that is, i is not the end agent, or b) ?(Bi) = |Bi|,
i.e. i is the end agent. In case a) either Θ¬[X[i − 2r − 1 : i − 1]] or Θ[X[i − 2r : i]]; if the former, then let j
the maximum l < i such that Θ[X[i − 2r : j] (such a j must exist since it is vacuously true for j = 0), and
we’ll have B j+1(0) ∈ S, Θ−r−1(B j+1), and Θ¬r (B j+1); but then α1[B j+1] whence F[B j+1] < S, against assumption.
In case b) ?(B) = |B|, in which case either Θ¬[X[|X| − 2r − 1 : |X| − 1]] or η[B|X|], and for the same reasons as
above, the former cannot be true, so ηB|X| must hold. Hence Θ[X[i − 2r : i]] for all i and ηB|X| , which implies
X ∈ Θ(C). Thus, if Bi(0),F[Bi] ∈ S for all i, X must be a fixed point of F and X ∈ Θ(C). (Obviously any
X ∈ Θ(C) satisfies Bi(0),F[Bi] ∈ S for all i, so Θ(C) ⊂ f ix(F), where f ix(F) is the set of fixed points of F.)

Now, suppose X0 < Θ(C). Then for some i, either Bi(0) < S or F[Bi] < S. Wlog we can assume the latter
since if Bi(0),Bi+1(0) ∈ S, then F(Bi) , Bi(0) implies F(Bi) < S; thus, if Bi(0) ∈ S for all i, the only “live” agents
(which will change state if called) will change out of S; under live call sequence s eventually such an agent
will be called. We now have three cases: (I) B j0 (0) = 4i for some i, (II) B j0 (0) = B, or (III) B j0 (0) = C.

Case (I): B j0 (0) = 4E for some E: [picture] First of all, for all j < j0 − 1, F(B j) = B j(0). Now, there are two
subcases: if i) B j0−1(0) = E and L¬[B j0 − 1], then γ1(B j0 − 1), whence

F[B j0−1] = min{ j ∈ [0,m − 1]|Θ[B j0−1[−2r : −1] ◦ j]},

and F[B j0] = B j0 . Hence for any call sequence, s = (s1, . . . , sk, . . . ,), Fk(X)[1 : j0] = X[1 : j0] unless j0 − 1 ∈ si
for some i ≤ k. Given a call sequence s let sk0 be the first si such that j0 − 1 ∈ si (which must exist since the
timing model is assumed to be live). Then

Xk0 , Fk0
s (X)[1 : j0] = X[1 : j0 − 2] ◦ ζ ◦ X[j0] ◦ Y

155

APPENDIX B. NAIVE BACKTRACKING PROOFS 156

where ζ = F[B j0−1], a state necessarily > E and Y is some configuration of length |X| − j0. All agents j in Xk0

with j < j0 are fixed, and α3 applies to B2r+2(j0,Xk0). So let sl0 be the first call in s with l0 > k0 containing j0,
and

Xl0 = X[1 : j0 − 2] ◦ ζ ◦ BY′

where Y′ is some configuration of length |X| − j0. But the first j0 − 1 agents are in S, so Xl0 is then in case (II)
below. On the other hand, if (ii) B j0−1(0) , E or L[B j0 − 1], F[B j] = B j(0) for all j < j0, and already α3 applies
to B j0 , so Xl0 is in case (II), where l0 is (like above) the minimal time l at in which sl0 contains j0.

Thus all configurations in case (I) eventually end up in case (II) below, with the same j0.
Case (II): B j0 (0) = B. First we will state and prove a simple lemma. Let b be an r-ball. The set of extensions

of b in Θ, denoted extΘ(b), is the set of all subconfigurations-with-right-ends Z such that Θ(b′i) holds for all
b′i = Br(i, b ◦ Z) for i ≥ ?(b). The set of incomplete extensions exti

Θ
(b) is the set of all subconfigurations Z

(without reference to right-ends) such that b′i = Br(i, b ◦ Z) for ?(b) ≤ i ≤ |Z| + |b| − r.

Lemma 2 For all configurations X of the form

X = Y ◦ B ◦ Z

such that Θ[Br(i,Y)] for all i < |Y| − r, then for all live call sequences s over X there is a k > 0 such that for all l ≤ k,
and agents i ≤ |Y|, F fixes i in Fl

s(X), and either

• Fk
s(X) = Y ◦W, with Y ◦W ∈ Θ(C) ⊂ f ix(F), whenever extΘ(Y[|Y| − 2r : |Y|]) contains some element (like W)

of size |Z| + 1, OR

• Fk
s(X) = Y ◦ C ◦ Z′, for some configuration Z′ of size |Z|, whenever extΘ(Y[|Y| − 2r : |Y|]) does not contain an

element of size |Z| + 1.

In the latter case, the trajectory {Xl = Fl
s(X)|l ≤ k} is such that the set {Xl[|Y|+1 : |Y|+ j]| j ≤ |Z|} contains all elements

of exti
Θ

(Y[|Y| − 2r : |Y|]) of size |Z| or less (in lexicographic order).

Notice that taking |Y| = 0 in this lemma implies that for all configurations of the form X = B ◦Z, there is
k such that either Fk(X) is solved whenever extΘ(∅) contains an element of length |X|, i.e. for all such initial
conditions, F solves X whenever X is a solvable size.
Proof: (Of Lemma) We will now prove the statement by induction on n, the size of |Z|. Let’s first do the
base-case n = 0. Then X = Y ◦ B, and the only active agent in X is |X| itself, since X satisfies Θ for all agents
in Y (and thus up to |X| − 1). Let B = B2r+2(|X|,X). Obviously either β1[B] or γ2[B]. In the former case,
there is state j such that Y ◦ j is a Θ-satisfying configuration, and for each live call sequence s, after the first
call k(s) containing |X|, Fk(s)(X) = Y ◦ j′, the minimum possible such j. Evidently j ∈ extΘ(Y[|Y| − 2r : |Y|]),
and we’re in possibility 1 of the T(0) statement, with W = the singleton subconfiguration containing only
j′. If γ2[B], after the first call k(s) containing |X|, Fk(s)(X) = Y ◦ C. γ2[B] will only hold if for no j is Y ◦ j
a Θ-satisfying configuration, and evidently extΘ(Y[|Y| − 2r : |Y|]) does not contain an element of size 1, so
we’re in possibility 2 of the base-case.

Now suppose that the statement of the lemma has been demonstrated for all sizes i ≤ n − 1. Suppose
X = Y ◦ B ◦ Z, where |Z| = n, and Θ[Br(i,Y)] for all i < |Y| − r. Let Bk

j = B2r+2(j,Xk) where Xk = Fk(X). Let
J = |Y| + 1, the location of the B between Y and Z. All agents i < J are fixed by F in X. If X(J + 1) , B, then
agent J is fixed as well, while F[B j+1] = B In this case, after the first time t0 at which J + 1 is called, then
Xt0 = Ft0 (X) = Y ◦ B ◦ B ◦ Z′[2 : |Z|]. In Xt0 , agents i ≤ J + 1 are all fixed by F except for agent J. Now, there
are two cases: i) there is no j such that X[J − 2r : J − 1] ◦ j satisfies Θ, in which case Bt0

J satisfies β1, and
F[Bt0

J] = C. In this case, we’re done, in the second possibility of the statement T(n). If ii), there is j such that
Θ[X[J − 2r : J − 1] ◦ j], then γ1(Bt0

J) and ζ1 , F(Bt0
J) = min{ j|Θ[X[J − 2r : J − 1] ◦ j]}. Thus

Xt0+1 = Y ◦ ζ1 ◦ BZ′′[2 : |Z|].

Now, Xt0+1 fits into the inductive hypothesis, so at some later time t1 either Xt1 = Y ◦ ζ1 ◦W, with Y ◦ ζ ◦W ∈
Θ(C) if extΘ(Y[|Y| − 2r + 1 : |Y|] ◦ ζ1) has an element of size |Z|, in which case, the we’re done and in the first

APPENDIX B. NAIVE BACKTRACKING PROOFS 157

case of T(n); or Xt1 = Y◦ζ1 ◦C◦ Z̃1, when extΘ(Y[|Y| −2r+1 : |Y|]◦ζ1) has no element of size |Z|. Throughout
all agents i ≤ J have been fixed by F. Now, suppose A) L(Bt1

J), that is,

ζ1 , max{ j|Θ[X[J − 2r : J = 1] ◦ j]}.

In this case, β2(Bt1
J) holds, so that at the next time t2 > t1 when J is called, Xt2 = Y ◦ C ◦ Z̃2, and we’re

done (in possibility 1 of T(n)). On the other hand, if B) L¬(Bt1
J), that is, ζ1 , max{ j|Θ[X[J − 2r : J = 1] ◦ j]},

then F[Bt1
J+1] = 4ζ1 , and after the first time t2 > t1 calling J + 1, Xt2 = Y ◦ ζ1 ◦ 4ζ1 ◦ X̃2. As in the analysis

in Case (I) in the main body of the proof, after the first call at time t3 > t2 to J, Xt3 = Y ◦ ζ2 ◦ 4ζ ◦ X̃3,
where ζ2 = min{ j > ζ1|Θ[X[J − 2r : J = 1] ◦ j]}. The inductive hypothesis again applies to Xt3 , so at time t4
either Xt4 = Y ◦ ζ2 ◦W2, having been solved; or extΘ(Y[|Y| − 2r + 1 : |Y|] ◦ ζ2) has no element of size |Z|, so
Xt4 = Y ◦ ζ2 ◦C ◦ Z̃3.Again the two cases A) or B) apply; repeating the same reasoning, we eventually reach
such time where either the configuration is solved, or case A) applies, and the induction is complete. �

Back to case (II), when B j0 (0) = B. In this case X = Y ◦ B ◦ Z, satisfying the conditions of the lemma.
Hence for some k, either Fk(X) = Y ◦W, a solution in Θ, or Fk(X) = Y ◦ C ◦ Z′, whenever there is no solution
to Θ of size |X| that extends Y, and we’re in Case (III) below.

Case (III): B j0 (0) = C. There are three subcases: i) j0 , 1 and L¬(B j0−1), ii) j0 , 1 and L(B j0−1), and iii) j = 1.
In case i) all agents j ∈ {1, . . . , j0 − 1} are fixed by F, F[B j0] = 4B j0−1(0). At the first timestep where j0 is called,
call it l0 like above,

Xl0 = X[1 : j0 − 1] ◦ 4X[j0]−1 ◦ Y

where Y is some configuration of size |X| − j0. But then we’re in case (I)i from above, so that eventually for
l1 > l0,

Xl1 = X[1 : j0 − 2] ◦ ζ1 B ◦Y′

and thus in case (II) above, with the same j0. In light of the argument there, for some l2 > l1 either Xl2 is
solved, or if X[1 : j0 − 2] ◦ ζ1 cannot be extended,

Xl2 = X[1 : k0 − 2] ◦ ζ1 C ◦Y′,

and we’re in the same case (III). If i) holds again, the same argument yields a ζ2 > ζ1, and the reasoning
repeats. Eventually if the configuration is not solved, and we keep returning to (III), i) can hold at most
m − 1 total times before L(B j0−1) must hold, in which case L(B j0−1), and we’re in the next case ii). In case ii),
then for all j ∈ {1, j0} except j0 − 1, F fixes the state of j, while F[B j0−1] = C. At the first timestep where j0 − 1
is called, say k0,

Xk0 = X[1 : j0 − 2] ◦ C ◦ C ◦ Y.

But then Xk0 is in this same case (III), with jk0
0 = j0 − 1. Iterating this reasoning, either X is eventually solved,

or eventually for some K, we repeat through case (III) ii) enough times so that jK0 = 1, i.e. we’re in case iii
below. In case iii), α4[B1] applies, and defining l0 again to the first timestep where j0 is called,

Xl0 = BZ

for some Z. This configuration satisfies the conditions of the lemma with |Y| = 0; thus as noted above, there
will be k such that Fk(X) is solved if there is a solution of size |X|. �

B.2 Appendix to §3.3

The goal of this appendix is to prove propositions 15, 16, and 17.
Proof: (Of prop. 15). Let extΘ,?n (Y) denote the set of extensions of Y other than Y itself. We will show by
induction on |X| − |Y| that:

• If extΘ(Y) contains a configuration of size |X|, TTS(FO
Θ
,X) ≤ max(4 · |extΘ,∗n (Y)|, 1).

APPENDIX B. NAIVE BACKTRACKING PROOFS 158

• If extΘ(Y) does not contain a configuration of size |X|, for some time T such that |extΘn (Y)| ≤ T ≤
max(4 · |extΘ,∗n (Y)|, 1), (FO

Θ
)T(X) = Y ◦ S ◦ Z′ where S = 4Y(|Y|) or C.

The base case is that |Y| = |X| − 1, i.e. X = Y ◦ B. Then, if Y has Θ-admissible extension of size X, that
means there is a state s such that Y ◦ s is Θ-admissible. FO

Θ
will have the right-end agent adopt this state

within one timestep, so TTS(FO
Θ
,X) = 1 ≤ max(4 · |extΘ∗n (Y), 1)|. If Y has no Θ-admissible extension of size

|X|, then either the state of the last agent in Y, Y(|Y|), is the largest relative to O or not; in the former case,
within one timestep, FO

Θ
will have the right-end agent take the state C, and in the latter, 4Y(|Y|. So, T = 1.

Now |extΘ,∗(Y)| = 0 and |extΘn (Y)| = 1, so |extΘn (Y)| = 1 = T = max(|extΘ,∗(Y)|, 1), and we have the result.
Now, suppose X = Y ◦B ◦Z for |Z| > 1. If extΘ,∗(Y) is empty, then extΘ(Y) cannot contain a configuration

of size |X|; again, T = 1, |extΘ,∗(Y)| = 0 and |extΘn (Y)| = 1, so |extΘn (Y)| = 1 = T = max(|extΘ,∗(Y)|, 1). On the
other hand, suppose extΘ,∗(Y) is non empty. Let BY = Y[|Y| − 2r − 1 : |Y|], and out(BY) be the set of all nodes
o ∈ G(Θ) for which (BY, o) is an edge in G(Θ). Enumerate the nodes of out(BY) = {o1, . . . , ok} in the order that
O assigns them, where k is the out-degree of BY in G(Θ). After s timesteps, with 1 ≤ s ≤ 2,

X1 , (FO
Θ)s1 (X) = Y ◦ o1 ◦ B ◦ Z′.

Now we proceed in steps:

1. suppose extΘ(Y ◦O(BY, 1)) contains a configuration of size |X|. The inductive assumption tells us that

TTS(FO
Θ,X1) ≤ max(4 · |extΘ,∗n (Y ◦ o1)|, 1)

so that
TTS(FO

Θ,X) ≤ 2 +max(4 · |extΘ,∗n (Y ◦ o1)|, 1).

Now, the key point is that
|extΘ,∗n (Y)| = k +

∑
oi∈out(BY)

|extΘ,∗n−1(Y ◦ oi)|.

Since
out(BY) +

∑
oi∈out(BY)

|extΘ,∗n−1(Y ◦ oi)| ≥ 1 + |extΘ,∗n−1(Y ◦ o1),

so that since |extΘ,∗(Y)| > 0,

2 +max(4 · |extΘ,∗n (Y ◦ o1)|, 1) ≤ 4|extΘ,∗n (Y)| = max(4 · |extΘ,∗n (Y)|, 1).

2. On the other hand, now suppose extΘ(Y ◦ O(BY, 1)) does not contain a configuration of size |X|. First
suppose k = 1. Then applying the inductive assumption, for some T1

(FO
Θ)T1+s(X) = Y ◦ o1 C ◦Z′

where
|extn−1(Y ◦ o1)| ≤ T ≤ max(4|extΘ,∗n−1(Y ◦ o1)|, 1).

Hence

X2 , (FO
Θ)T1+s+1(X) =

Y ◦ C ◦ Z′′, if Y is O-maximal
Y ◦ 4Y(|Y|) ◦ Z′′, otherwise

.

Since
T1 + s + 1 > 2 + |extΘn−1(Y ◦ o1)| ≥ |extΘn (Y)|

and
T1 + s + 1 ≤ 3 +max(4 · |extΘ,∗n−1(Y ◦ o1)|, 1) ≤ max(4 · |extΘ,∗n (Y)|, 1)

we have our result.

APPENDIX B. NAIVE BACKTRACKING PROOFS 159

3. If k > 1, then
(FO
Θ)T1+s(X) = Y ◦ o1 4o1 ◦Z

′

instead. Hence after two timesteps

(FO
Θ)T1+s+2(X) = Y ◦ o2 C ◦Z′′.

Now we return to step 1, and go through reasoning again.

Repeating the above steps at most k times, we find that there are Tl such that

|extΘn−1(Y ◦ ol)| ≤ Tl ≤ max(4|extΘ,∗n−1(Y ◦ ol)|, 1)

for which

• if extΘ(Y) contains a configuration of size n, then if we let j be the minimum l for which extΘ(Y ◦ ol)
contains a configuration of n, then

TTS(f ,X) ≤ s + 2(j − 1) +
j∑

l=1

Tl

,

• while if extΘ(Y) contains no configuration of size n, then for T = 1 + s + 2(k − 1) +
∑k

l=1 Tl

(FO
Θ)T(X) =

Y ◦ C ◦ Z′′, if Y is O-maximal
Y ◦ 4Y(|Y|) ◦ Z′′, otherwise

.

But

1 + s + 2(k − 1) +
k∑

l=1

Tl ≥ 2k +
∑

l

|extΘn−1(Y ◦ ol) ≥ |extΘn (Y)|

and

1+ s+2(k−1)+
k∑

l=1

Tl ≤ 1+2k+
∑

l

max(4|extΘ,∗n−1(Y◦ ol)|, 1) ≤ 3k+1+
∑

l

4 · |extΘ,∗n−1(Y◦ ol)| ≤ max(4|extΘ,∗n (Y)|, 1).

�
Proof: (of prop 16)

Proposition 16 consists of three separate claims:

1. There are constants A and B such that AgO,Θ(n) + B · n ≤ TTSavg(FO
Θ

)(n). d

2. There are constants C and D such that TTSavg(FO
Θ

)(n) ≤ CgO,Θ(n) +D · n.

3. There are constants E and F such that TTSworst(FO
Θ

)(n) ≤ E ·
(∑n

l=1 gO,Θ(l)
)
+ F · n. d

I will demonstrate 1 first, then 3, and then 2.

Claim 1: Given a local check schemeΘ of radius r over m states, by prop. 11, the set Sizes(Θ(C)) is of the
form

Sizes(Θ(C)) =

MΘ⋃
i=1

A(aΘi , d
Θ
i)

 ∪ BΘ

where A(a, d) is the arithmetic progression with initial value a and common difference d; BΘ is a finite set
with maximal element m(2r+1)m2r

, and aΘi , d
Θ
i ≤ m2r for each i (so that MΘ < m4r). For any H ⊂ G(Θ), Sizes(Ĥ)

satisfies the same result:

Sizes(Ĥ) =

MH⋃
j=1

A(aH
j , d

H
j)

 ∪ BH

APPENDIX B. NAIVE BACKTRACKING PROOFS 160

where max(BH) < m(2r+1)m2r
, aH

j , d
H
j ≤ m2r for all j; and the added proviso that all for all j, aH

j = aΘi for some i,

and dH
j is divisible by dΘi for some i. Hence, S(H) , Sizes(Θ(C)) − Sizes(Ĥ) is also, ignoring a finite set with

maximal element m(2r+1)m2r
, a union of arithmetic progressions whose initial values and common differences

are less than m2r.
Now let A be the set of configurations X such that (i) |X| ∈ S(HO,Θ(P∗)) and (ii) X = P∗ ◦ B ◦ Y for some

subconfiguration-with-left-end Y. Let An = A ∩ C≤n. Let n− = max{m < n | m ∈ S(HO,Θ(P∗))}. Since by
definition of P∗, S(HO,Θ(P∗)) is infinite, by virtue of the discussion in the previous paragraph, it contains an
arithmetic progression with common difference at most m2r. Hence, n − n− ≤ m2r. Then since |P∗| ≤ m2r,

µn(A) ,
|An|

|C≤n|
≥
|Cn− |

|C≤n|
·

1
m|P∗ |+1

≥
mn−m2r

(mn − 1)/m − 1
·

1
m|P∗ |+1

≥
1

mm2r+2r+1
.

Hence, TTSavg(FO
Θ

)(n) ≥ µ〈TTS(FO
Θ
,X)〉X∈An .

Now, as noted above, HO,Θ(P∗) is defined precisely that so that on any configuration X = P ◦ B ◦ Y,
the trajectory of FO

Θ
on X will search through all of the elements of HO,Θ(P∗), or stop at a solution, before

constructing any other elements of Θ(C). Since for X ∈ An there is no element of |X| in ĤO,Θ(P∗), that means
for such X, the trajectory FO

Θ
will contain configurations of the form Z ◦ B ◦ Y′ for every Z ∈ ĤO,Θ(P∗) of size

n− or less. Hence TTS(FO
Θ
,X) ≥ gO,Θ(n−).

Now, if ĤO(P∗) is infinite, then by prop. 12, there is a k ≥ 1 and C(r) ≥ 1
m2r+1 such that for all n, gO(n) ≥ Cnk.

Hence, TTS(FO
Θ
,X) ≥ gO(n−) > C(r)

2 gO(n−) + C(r)
2 · n

−. On the other hand, if Ĥ(
OP∗) is finite, then by prop.

11, it contains elements of size at most m2r+1 + |P∗|, and is of size at mm2r+1
. After finishing the completing

the last element of Ĥ(
OP∗) of size n− or less, the right-moving turing head is at position at most m2r+1 + |P∗|.

However, to complete the configuration it must move at least through the rest of the configuration, taking
at least n−−m2r+1

− |P∗| timesteps. Now, |P∗| ≤ m2r+1. Hence TTS(FO
Θ
,X) ≥ n−−2m2r+1

≥ αgO(n−)+βn− where
α = (1/2)(1/mm2r+1

) and β = 1/2. Thus, taking C1 = min(C(r)/2, α) and C2 = min(C(r)/2, β), we have

TTSS(f ,X) ≥ C1gO(n−) + C2n−

for all for X ∈ B(P∗) ∩ Cn− . Since n − n− < m2r, we have, by prop. ref that gO(n) ≤ 1
m2r+1 gO(n−). Hence,

TTSavg
S

(FO
Θ)(n) ≥

C1

m2r+1 gO(n) +
C2

m2r+1 · n,

so we have the lower bound as desired.
Before moving on to Claim 2 and 3, we state a useful lemma. Let Y be any subconfiguration-with-right-

end. Y corresponds to a initial path PY in G(Θ). Let P′Y denote the acyclic subpath of Y, which is unique, and
let Y′ denote the configuration associated with Y′. The heart of Claim 2 and 3 is contained in the following
sharpening of part 1 of prop. 15:

Lemma 3 Suppose X is a configuration of size n of the form X = Y ◦ B ◦ Z, and extΘ(Y) contains a configuration of
size n. Then there is a constant A(m, r) such that

TTS(FO
Θ,X) ≤ A(m, r) · gO,Θ(PY)(n).

Proof: (Of Lemma) The result follows from a detailed analysis of the structure of HO,Θ(P′Y).

Remark 1 For any i.a.p, P, recall the definition of HO,Θ(P) and αP
O,Θ. A moment’s thought reveals that there are two

possible cases for the structure of HO,Θ(P), the second of which breaks into two subcases (for notational ease, we’ll drop
the O,Θ and P from α and H from hereon):

1. Ĥ = extΘ(P), in which case Sizes(Θ) − Sizes(extΘ(P)) is infinite.

2. Ĥ * extΘ(P). In this, let β be the final node of α, and G′ = α∪G(Θ)≥β; then Sizes(Θ)− Sizes(G′) is finite. This
case has two subcases:

APPENDIX B. NAIVE BACKTRACKING PROOFS 161

(a) α is acyclic. In this case: for some non-final node β′ in α, the O-minimal node in out(β,G(Θ)) is β′. The
edge e(P) , (β, β′) is not in H, and so the cycle C(P) = α(β′ : β) ◦ β′ is therefore not in H. If we let
H′ = H ∪ {e(P)}, then Sizes(Θ) − Sizes(H′) is finite.

(b) α contains a cycle. In this case, if we let γ be the last instance of a unique node in α, then the O-minimal
node in out(γ,G(Θ)) is β, and β = α(i) for some i < |α|. In fact, α is the line graph α[1 : i] followed
by the single irreducible cycle C(P) = α(i : |α|) ◦ β. The edge e(P) , (γ, β), and the cycle C(P), are
in H. Moreover: enumerate the nodes of the cycle C(Y′) as {v1, . . . , v|C(P)|, and for v j ∈ C(P) define
W(v j) = {w ∈ out(v j) |w >O,v j v j+1}. For w ∈ W(v j), let G′w be the graph α[1 : i] ◦ C[1 : j] ∪ G(Θ)≥w,
with the node (v j,w) added. Then

H̃(P) , Ĥ ∪
|C(P)|⋃

j=1

⋃
w∈W(v j)

G′w

is a subgraph of G(Θ) such that Sizes(Θ) − Sizes(H̃)) is finite.

In figure 3.5, graphs 1, 2, 5, and 6 are in case 2.i, while 3 and 4 are in case 2.ii. (None of them are in are case 1, since
all of those in the figure are P∗, the maximal HO,Θ(P).)

Now, let’s take each of the three cases one at a time. In case 1, we can apply prop. 15 directly to get

TTS(FO
Θ,X) ≤ 4|extΘn−|Y|+|Y′ |(P

′

Y)| = 4|Ĥ ∩ C≤(n−|Y|+|Y′)| = 4gO,Θ(Y′)(n − |Y| + |Y|′) = 4 · gO,Θ(Y)(n)

and so we have the result in this case.
In case 2.i: Let’s compute the trajectory of X under FO

Θ
. If extH(Y) contains a configuration of size n,

then by 15, TTS(FO
Θ
,X) ≤ 4 · gO,Θ(Y)(n). If extH(Y) does not a configuration of size n, then (by prop. 15)

at most 4 · gO,Θ(Y)(n) timesteps, the turing head as searched through all of H ∩ C≤n, and has come around
to the end of α. It goes over the edge e(Y′); and for some T1 ≤ 4 · gO,Θ(Y)(n) + 3 the configuration is now
XT1 , (FO

Θ
)T1 = α ◦ β′(P) ◦ B ◦ Z′. Now, if extH(α ◦ β′(Y′)) contains a configuration of size n, then by prop.

15, TTS(FO
Θ
,XT1) ≤ 4 · gO,Θ(Y)(n − |α|), so that TTS(FO

Θ
,X) ≤ 4 · gO,Θ(Y)(n) + 4 · gO,Θ(Y)(n − |α|) + 3. On the

other hand, if extH(α ◦ β′(Y)) does not contain a configuration of size n, after at most 4 · gO,Θ(Y)(n − |α|)
timesteps, the turing head as searched through all of extH

n−|α|(β
′(Y′)), and has come around to the end of α

again. It goes over the edge e(Y′) again; so for some T2 with T2 ≤ 4 · gO,Θ(Y)(n − |α|) + 3 the configuration
XT2 is now α ◦ C(Y′) ◦ β′(Y′) ◦ B ◦ Z′. If extH(α ◦ C(Y′) ◦ β′(Y′)) contains a configuration of size n, for some
TTS(FO

Θ
,XT2) ≤ 4 · gO,Θ(Y)(n − |α| − |C(P)|); while if there no such extensions, it goes around the cycle again

... Repeating this reasoning, we see that either

TTS(FO
Θ,X) ≤ 3l +

l∑
k=0

gO,Θ(Y)(n − k|C(Y′)|)

or by some Tl ≤ 3(l + 1) +
∑l

k=0 gO,Θ(Y)(n − k|C(Y′)|), the configuration is

XTl = α ◦ C(P)l−1
◦ B ◦ Z′

for some Z′. Since Sizes(Θ) − Sizes(H′) (where H′ is (as above) H ∪ {e(P)}) is finite, if we take n large enough
(bigger than m(2r+1)m2r

, although probably a better bound can be found), there must be a configuration in Ĥ′
of size n. Now, denote H≥v = H ∩ G(Θ)≥v. Let

H1 = H≥α≤β′ (Y′)

and
H2 = H≥α≥β′ (Y′) .

Note that
Sizes(H′) = Sizes(H1) ∪ (Sizes(H2) + |C(Y′)| ·N).

APPENDIX B. NAIVE BACKTRACKING PROOFS 162

Hence, n is either in Sizes(H1) or n = d + l|C(P)| for d ∈ Sizes(H2). But now, applying Useful Fact 1, we can
chose l ≤ A(m, r) , m(2r+1)m2r+1

. That means that extH(α ◦ C(Y′)l
◦ β′(Y′) contains a configuration of size n for

l ≤ A(m, r). Thus,
TTS(FO

Θ,X) ≤ 3A(m, r) + A(m, r)gO,Θ(Y) · n.

So we have the result in this case.
In case 2.ii: Since we’re in this case,

H̃(Y′) = Ĥ ∪
|C(Y′)|⋃

j=1

⋃
w∈W(v j)

G′w

is such that Sizes(Θ) − Sizes(H̃(Y′)) is finite. (Where G′w and W(v j) are as defined above.) Hence, if n is large
enough, since n is in Sizes(Θ), there must a size-n configuration in H̃(Y′). Thus, there is a size-n configuration
either in Ĥ or in D ,

⋃|C(Y′)|
j=1

⋃
w∈W(v j) G′w. First, assume extH(Y) contains a configuration of size n. Then by

15, TTS(FO
Θ
,X) ≤ 4 · gO,Θ(Y)(n), and we’re done. Now, let’s assume D contains a size-n configuration, while

Ĥ does not. Since there is no size-n configuration in extH(Y), by arguments similar to previous case, for
some T ≤ 4 · gO,Θ(Y)(n), the configuration will be

XT , α ◦ C(Y′)m
◦ C(Y′)[1 : K] ◦ B

where m = b(n − α)/|C(Y′)|c and k = mod(n − α − 1, |C(Y′)|). Now, the trajectory of FO
Θ

on XT is to create all
configurations of the form

α ◦ C(Y′)k
◦ C(Y′)(1 : j) ◦ x

for all paths in G(Θ)≥w of size n − |α| − k|C(Y′)|, for all w ∈ S(v j). These are precisely the configurations
in D. By Useful Fact 1, there will be such a solution with |x| ≤ A(m, r) ≤ m(2r+1m2r

. Hence, TTS(FO
Θ
,XT) ≤

4 · |D ∩ C≤A(m,r)| ≤ 4mA(m,r). Thus TTS(FO
Θ
,X) ≤ 4 · gO,Θ(Y)(n) + 4mA(m,r), and we have the result. �

Claim 3: Step 1: Let X be any configuration of size n. Let j be the minimal position in X such that
X(j) = 4i,B or C. Suppose X(j) = 4i for some i. By arguments identical to those at the beginning of the
proof of cor. 1, TTS(f ,X) ≤ TTS(f , X̃) + n + 3, where X̃ is some configuration of the form Y ◦ B ◦ Z, in which
Y is Θ-consistent.

For notational convenience, for j ≤ |Y|, let Y j = Y[1 : j] and b j = Y[j − 2r − 1 : j]. Also, abbreviate
s1 ≥O,b j s2 by s1 ≥ j s2. Now, let k be the maximal l ≤ |Y| such that there is a state s such that extΘ(Yl ◦ s)
has a configuration of size n, and such that s ≥l Y(l + 1), and let s∗ be the O-minimal state that satisfies this.
Then by definition, for all j ∈ [k + 1, |Y| − 1], extΘ(Y j ◦ s) does not contain a size n configuration for any s
such that s > j Y(j + 1). Similarly, extΘ(Yk ◦ s) does not contain a size n configuration for any s such that
Y(k + 1) <k s <k s∗. If n is sufficiently large, we therefore know that

Sizes(Θ) − Sizes(extΘ(Y j ◦ s)

is infinite for all s > j Y(j + 1). But then extΘ(Y′j ◦ s) = HO,Θ(Y′j ◦ s), for all s > j Y(j + 1), so

|extΘn (Y j ◦ s)| ≤ V · gO,Θ(P∗)(n − j + |Y′j|) ≤ Vmm2r+1
gO,Θ(P∗)(n − j)

, by definition of P∗. Similarly, |extΘ(Yl ◦ s)| ≤ Vmm2r+1
· gO,Θ(P∗)(n− l) for all s such that Y(k+ 1) <k s <k s∗. On

the other hand by arguments identical to those in the proof of 1, by some time T,

T ≤ 4|extΘn (Y)| + 4
|Y|−1∑
j=k+1

∑
s> jY(j)

|extΘn (Y j ◦ s)| + 4
∑

Y(k+1)<ks<ks∗
|extΘn (Yk ◦ s)|,

we have
X̃T , (FO

Θ)T(X̃) = Y[1 : j] ◦ s∗ ◦ B ◦ Z′.

APPENDIX B. NAIVE BACKTRACKING PROOFS 163

But X̃T is of the form to which the lemma above can be applied. Hence TTS(FO
Θ
, X̃) ≤ T+A(m, r)gO,Θ(Y′)(n) <

VA(m, r)GO,Θ(P∗)(n). Hence

TTS(FO
Θ,X) ≤ 3n + B

n∑
l

gO,Θ(l)

as desired, where B = 2VAmm2r+1
. Since X was arbitrary, this is a bound on the worst-case runtime.

Claim 2: The proof claim 3 actually shows that a configuration X whose left-most error with respect
to Θ is at position j is solved by FO

Θ
in at most 3n + j · A(m, r)gO,Θ(|X|) timesteps. Let D j(n) be the set of

configurations of size n whose left-most error is at position j. It is easy to see that there that the measure
of D j(n) in Cn is no greater than β j/(2r+1)(1 − β), where β is the fraction of r-balls that are not Θ-admissible.
Hence

TTSavg(FO
Θ)(n) ≤

n∑
k=1

mk(m − 1)
mn − 1

k∑
j

(3n + j · A(m, r)gO,Θ(n)) · β j/(2r+1)(1 − β)

= (3n + A(m, r)gO,Θ(n))
n∑

k=1

mk(m − 1)
mn − 1

k∑
j

jβ j/(2r+1)(1 − β)

≤ (3n + A(m, r)gO,Θ(n)) · 2(1 − β)β1/2r+1 β

(β − 1)2

(B.1)

as desired. �
Proof: (Of prop. 17) Given a path P, denote by P f the final node of P. Now suppose P is an initial acyclic
path, and let G′P = P ∪ G(Θ)≥P f . Let Ĝ′P denote the set of configurations corresponding to maximal paths in

G′P, and Ĝ′P,n = |Ĝ
′

P ∩ C≤n|. Then if
Sizes(Θ) − Sizes(G(Θ)≥P f)

is infinite, HO,Θ(P) = G′P, and hence, gO,Θ(n) ≥ V · |Ĝ′P,n|.
Now, by remark 1 embedded in the previous proof, any HO′,Θ(P) always has one of three forms: (1) one

of the G′P, or (2) a line graph (case 2.i) or “line +cycle” graph (case 2.ii) α, together with, for each point in α
a union of (at most m2r+1) graphs of the form G′P. Hence, HO′,Th(P∗O′) in particular has this form. In case (1),
VgO′,Θ(P∗O′)(n) ≤ gO,Θ(n). In case (2).i, gO′,Θ(n) ≤ m2r+1

|Ĝ′
P̃,n
| where P̃ is the path which maximizes the latter;

so gO′,Θ(n) ≤ m2r+1/V · gO,Θ(n). Finally, in case 2.ii,

gO′,Θ(n) ≤ m2r+1
n∑
l

|Ĝ′
P̃,l
| ≤ (m2r+1/V)

∑
l

gO,Θ(n).

�

Appendix C

Details of Faster Algorithm Proofs

C.1 Proofs for §4.1.2

Proof: (prop. 18). First we state a technical lemma:

Lemma 4 For any initial configuration X0 (live) call sequence s, either the trajectory (F̃Θ)n
s (X0) eventually converges

to a solved state, or hits a configuration of the form

X∗ = Y ◦ B ◦ C∗Θ(l : |C∗Θ|) ◦ (C∗Θ)m
◦ pΘ (C.1)

and for which Γ(B) holds, where B = B2r+2(|Y|,X). In the synchronous timing model, this event will occur within
3 +m2r+1 + 6|X| timesteps.

In words, the algorithm drives all initial conditions to the “special state” in which the “gcd criteria”
is present. The proof of this lemma is included below. As a result of the lemma, however, we need only
show that any configuration of the form in eq. C.1 will be solved, and, in the synchronous timing model,
solved within 2|X| + A timesteps, where is A is a constant depending only on m and r. To this end, we next
demonstrate that for any configuration X of the form in eq. C.1, the trajectory of F̃Θ on X is effectively a
subtrajectory of the trajectory of FO

Θ
on X, where O is the left-choice function used in the definition of F̃Θ.

Denote the trajectory of F̃ under some live call sequence s by {X,X1,X2, . . . , }, and that of FO by
{X,X1

a ,X2
a , . . . , }. Now, notice that each point Xi or Xi

a in either trajectory is either solved, or of the form
Yi
◦ d ◦ Zi where Yi is Θ-consistent and d = B, C, or 4 j for some j. Denote the position of the left-most d in

Xi by pi and that in Xi
a by p′i . Then the claim is that:

Lemma 5 There is an infinite string of times t0
1, t

f
1 , t

0
2, t

2
f , . . ., such that for all j ∈ [t0

k , t
f
k], we have p j−Dk−1 = p′j and

X j−Dk−1 (1 : p j+Dk) = X j
a(1 : p′j), where Dk = t0

k −
∑k−1

l=1 (t f
l − f 0

l).

This lemma is proved given below. We can thus put X j−Dk in 1-1 correspondence with X j
a, and the former

is then effectively an infinite subtrajectory of the latter. Moreover, since FO
Θ

is a solution to X on all live call
sequences, F̃ must also be, and the time-to-solution to FO

Θ
is an upper bound for that of F̃, for every call

sequence. Since all initial conditions are forced into the form eq. C.1, F̃ is thus a solution overall.
What remains is to show that the time to solution in the synchronous model for configurations of the

form in eq. C.1 is at most 2|X|+B for a constant B depending only on m and r. Let A(m, r) , m2r+1+m(2r+1)m2r
.

Let’s distinguish several cases:

I. A ≥ |X| − |Y|. Define j to be the maximal l for which there is a state s >O,Y[l−2r:l] Y(l + 1) such that
extΘ(Y[1 : l] ◦ s) contains a configuration of size n. Within this case, there are two subcases:

a. j ≥ A. In this case, lemma 5 tells us that TTS(F̃,X) ≤ 4 · |extΘn (Y[1 : j])| ≤ 4mA.

164

APPENDIX C. DETAILS OF FASTER ALGORITHM PROOFS 165

b. j < A. In this case, let’s distinguish two further subcases:

i. If extΘ(Y) contains a configuration of size n, then again lemma 5 tells us that TTS(F̃,X) ≤ 4mA.
ii. If extΘ(Y) does not contain a configuration of size n, then, due to lemma 5, within T ≤

4 · |extΘn (Y[1 : A])| ≤ 4mA timesteps, the configuration will have become

XT = Y[1 : A] ◦ C ◦ ◦C∗Θ(l : |C∗Θ|) ◦ (C∗Θ)m
◦ pΘ

for some l and m. Then, within 2(A − j) timesteps, the configuration will become

X̃ , XT+2(A− j) = Y[1 : j] ◦ B ◦ C∗Θ(l : |C∗Θ|) ◦ (C∗Θ)m
◦ pΘ

for some l and m, and Γ(B2r+2(j, X̃)) holds. Thus, we are in the next case.

II. |X| − |Y| ≥ A. Let Y f = Y[|Y| − 2r : |Y|]. Let o1 = O∗(Y f). Let ζ1 = Y f [2 : 2r + 1] ◦ o1; then let o2 = O∗(ζ1)
and ζ2 = ζ1[2 : 2r + 1] ◦ o2; . . . , and so, defining oi = O∗(ζi−1) and ζi = ζi−1[2 : 2r + 1] ◦ oi; until
such i∗ as ζi∗ = ζ j for some j < i∗. The sequence ζ = (ζ1, . . . , ζi∗) traces out a non-self-intersecting line
graph L = (ζ1, . . . , ζ j) in G(Θ), attached to a cycle C = (ζ j, . . . , ζi∗−1, ζ j). Let ol = o1 ◦ o2 ◦ . . . ◦ ol, and
c = o j+1 ◦ . . . oi. By definition of what F̃ does when α̃1 and γ̃1 are activated, the first j steps of the
trajectory of X under F̃ are

Xk = Y ◦ ok ◦ B ◦ C∗Θ(lk : |C∗Θ|) ◦ (C∗Θ)mk ◦ pΘ

for appropriate lk and mk and k ≤ j. Thereafter, the configuration at timestep k is

Xk = Y ◦ o j ◦ cnk ◦ c(1 : hk) ◦ B ◦ C∗Θ(lk : |C∗Θ|) ◦ (C∗Θ)mk ◦ pΘ.

At each step, Γ(B2r+2(|Y| + k,Xk)) holds. This goes on until T = 2(|X| − |Y|) the configuration is

XT = Y ◦ o j ◦ cnT ◦ c(1 : hT) ◦ B.

From this point, and hereon, the trajectory constructs all configurations of the form

XT+np = Y ◦ o j ◦ cn
◦ p (C.2)

where p are the various paths starting at ζ j in G(Θ), and np ≤ 4m|p|.

Now, as j is at most m2r+1, so |c|nT + hT > m(2r+1)m2r
. On the other hand, since Γ(B2r+2(j,X j)) holds,

extΘ(Y ◦ o j) contains a configuration of size n, so that for some acyclic path p from ζ j to δΘ,

n = |p| + |pΘ| + |Y| + j + |c| ·M +
∑

i

dili

where the li range over the lengths of the cycles in scc(p). But by Useful Fact 1 from the previous
chapter, we can choose the di such that

∑
i dili ≤ m(2r+1)m2r

, with the multiple of |c| equal to some large
enough M∗. Thus, for some path p∗ of size ≤ m(2r+1)m2r

, from ζ j to δΘ we have that X̂ , Y ◦o j ◦ cM∗
◦ p∗ is

a configuration of size n. But one of the configurations of the form in eq. C.2 will equal X̂, and system
with halt in a solved stated. Since np∗ ≤ 4mA, TTS(F̃,X) ≤ 2(|X| − |Y|) + 4mA.

�
Proof: (Lemma 4) Throughout we will assume that the synchronous timing model holds, though the proof
technique will work for any live timing model. Let Xi = (F̃Θ)i(X). Let a configuration X be given. In what
follows, let B j[X] denote the 2r + 2 ball around agent j in configuration X. If Θ(X) = 1, so that there is no j
for which Θ[Br(j,X)] fails, then F̃Θ(X) = X. If Θ(X) , 1, let j be the minimal l for which Θ[X[j − 2r : j]] fails
to hold. Now, there are a bunch of cases:

I. If X(j) = 4i for some i, so that X = Y ◦ 4i ◦ Z for some Θ-consistent Y, then

APPENDIX C. DETAILS OF FASTER ALGORITHM PROOFS 166

a. δ̃[B j−1(X)] holds, then X1 = Y[1 : j − 2]s∗(B) 4i Z′ for some Z′, and i , s∗(B). Then we’re next case,

b. δ̃[B j−1(X)] does not hold, then

i. if β̃3[B] then X1 = Y[1 : j] ◦ C ◦ Z′ for some Z′, and we’re in case (II) below; while otherwise,
ii. α̃4[B j(X)] must hold, and X1 = Y[1 : j] ◦ B ◦ Z′ for some Z′, and we’re in case (III) below.

II. If X(j) = C, so that X = Y ◦ C ◦ Z for some Θ-consistent Y, then:

a. j = 1, then α̃3 applies, and X1 = B ◦ Z′ for some Z′;

b. otherwise, and b̃eta3[B] then

i. β̃4[B j+1[X]] then X1 = Y[1 : j − 1] ◦ C ◦ b ◦ Z′ where b is a Θ-consistent r-ball; then either:

A. β̃3[B j−1[X]] will apply, so that X2 = Y[1 : j − 2] ◦ C ◦ C ◦ b ◦ Z′, and β̃4[B j[X]], so that
X3 = Y[1 : j − 2] ◦ Cb′ is a Θ-consistent r + 1 ball, and this repeats until either case (a)
holds at most 2 j timesteps later, or until at most 2 j timesteps later, we’re in the next case
with j = j′ for j′ < j:

B. ε̃[B j−1[X]] holds at most t < 2 j timesteps later, in which case Xt+1 = Y[1 : j′ < j] ◦
4Y(j−1)circZ′ and we’re in case (I)(a), from whence within 2 timesteps, we’re in case
(I)(b)(ii), so within three timesteps, we’re in case (III) below.

ii. or β̃4[B j+1[X]] does not hold, thenΘ¬[X[j+1 : 2r+ j+1]] whence Γ¬(X[j−2r−1 : −1],B[2+ j :
j+ 2r+ 2])), so β̃3[B j−1[X]] must hold, so that X1 = Y[1 : j− 1]◦C◦C◦Z′ and Γ¬(X1[j− 2r− 2 :
j − 2],X1[j + 1 : j + 2r + 1])), so that this same case (II)(b)(ii) applies to agent j − 1; and so on,
until case (II)(a) holds within 2 j timesteps.

c. otherwise, and β̃3[B j[X]] does not hold, then if β̃4[B j[X]] holds, then β̃3[B j−1[X]] must hold, and
we’re in case (II)(b)(i) above.

d. otherwise, then if ε̃[B j[X]] applies, we’re in case (II)(b)(i) above,

e. otherwise, then α̃4[B] must appliy, so X1 = Y[1 : j − 1] ◦ B ◦ Z′, and we’re in Case (III).

III. If X(j) = B, so that X = Y ◦ B ◦ Z for some Θ-consistent Y and arbitrary Z, then

a. either there is no x ∈ G(Θ) in a nontrivial cycle such that X[j − 2r − 1 : j − 1] <G(Θ) x; that
is, X[j − 2r − 1 : −1] is “after all the cycles”. In this case, because G(Θ) is single terminus,
X[j − 2r − 1 : j − 1] ∈ p, where p is the unique path in G(Θ) from γΘ to δΘ, in which case either

i. |X| − j = |p| − A, where A is the position of X[j − 2r : j − 1] in p, in which case FO
Θ

solves the
configuration within |p| −A+ 1 ≤ m2r timesteps (the m2r comes from the maximal length of a
acyclic path).

ii. or |X| − j < |p| − A, so within at most m2r steps, β̃1 applies, and the configuration is in case
(II)(b)(ii), so within |X| steps we’re in case (b) below, with j = 1

iii. or |X| − j > |p| − A, so again within at most m2r steps, β̃2 applies, and again the configuration
is in case (II)(b)(ii), so within |X| steps, we’re also in case (b) below with j = 1.

b. or X[j − 2r − 1 : −1] is “before a cycle” in G(Θ), that is, there is x ∈ G(Θ) in a non-trivial cycle,
and a path from X[j − 2r − 1 : j − 1] too x. In this case, C j be the cycle that is “next” relative to O.
Then with |X| timesteps, applications of α̃2 and γ̃1 alternate until the configuration has become
Y′ ◦Cm

j ◦C j(1 : l)◦B for some Y′ and appropriate m and l; then β̃2 applies, so that the configuration

becomes Y′ ◦Cm
j ◦C j(1 : l) ◦B; then applications of β̃3 and β̃4 alternate, producing configurations

of the form:
X̃t = Ỹt

◦ C ◦ C∗Θ(l : |C∗Θ|) ◦ (C∗Θ)k
◦ pΘ

with (k + 1)|C∗
Θ
| − l increasing by 1 every two timesteps, until within T < |X| timesteps, either

i. Case (II)(a) arises, so within one timestep, the configuration is B ◦ C∗
Θ

(l : |C∗
Θ
|) ◦ (C∗

Θ
)k
◦ pΘ,

which has to fit the claim given n ∈ Sizes(Θ),

APPENDIX C. DETAILS OF FASTER ALGORITHM PROOFS 167

ii. or for the configuration X̃T satisfies
• (?(B) > 1) and (?(B) < |B|), and
• (LP

O)¬[B], and
• Θ−r−2[B] ∧Θ−r−1[B] ∧ (B(0) = C)

where j = |ỸT
| + 1, B = B j[X̃T], whence ε̃[B] and δ̃[B j−1[X̃T]]. But then

X̃T+1 = ỸT[1 : j − 1] ◦ 4B(−1) ◦ C∗Θ(l : |C∗Θ|) ◦ (C∗Θ)k
◦ pΘ,

so
X̃T+2 = ỸT[1 : j − 2] ◦ s∗(B) ◦ 4B(−1) ◦ C∗Θ(l : |C∗Θ|) ◦ (C∗Θ)k

◦ pΘ

so
X̂ , X̃T+3 = ỸT[1 : j − 2] ◦ s∗(B) ◦ B ◦ C∗Θ(l : |C∗Θ|) ◦ (C∗Θ)k

◦ pΘ

and Γ(b1, b2) where b1 = X̂(j − 2r − 1 : j − 1) and b2 = X̂(j + 1 : j + 2r + 1), which is the desired
form.

This proof shows that all trajectories eventually wind up in case (III); adding up the time steps that each
step might take, as indicated, shows that all cases wind up in case (III) within 5|X| timesteps. Analysis of
Case (III) shows that either the trajectory winds up in (III)(a)(i) and ends before an additional m2r timesteps,
or within additional |X|+ 2 timsteps, ends up in the trajectory winds up in (III)(b)(ii). Thus the desired form
is achieved with 6|X| +m2r + 2 timesteps. �
Proof: (Lemma 5) Let any configuration of the form C∗

Θ
(l : |C∗

Θ
|)◦ (C∗

Θ
)m
◦pΘ be called “special.” Now suppose

X = Y ◦ B ◦ Z

for some special configuration Z, as in eq. C.1. Let Y f = Y[|Y| − 2r : |Y|]. Recall the definition of O∗(B) as:

• the O-minimal state s for which there is path from B[−2r : −1] ◦ s to δΘ such that

|p| − |pΘ| − η(B[2 : 2r + 2],C∗Θ) + r is divisible by gcd(p)

when Γ(B[−2r − 1 :,−1],B[2 : 2r + 2]) holds.

• O(B[−2r − 1 : −1], 1) otherwise.

Let t0
1 = 0. Let o1 = O∗(Y f). Let ζ1 = Y f [2 : 2r + 1] ◦ o1; then let o2 = O∗(ζ1) and ζ2 = ζ1[2 : 2r + 1] ◦ o2; . . . ,

oi = O∗(ζi−1) and ζi = ζi−1[2 : 2r + 1] ◦ oi and so on. Let ol = o1 ◦ o2 . . . ◦ ol. Now, by definition of what F̃ does
when α̃1 and γ̃1 are activated, the trajectory of X under F̃ consists of configurtions of the form

Xl = Y ◦ ol ◦ B ◦ Z[l + 1 : |Z|]

for l ≤ j, until at T = 2(|X| − |Y|) the configuration is

XT = Y ◦ o|X|−|Y|−1 ◦ B.

Now lets see what happens under F. Let I j = {s1, . . . , sk} denote the set of states s such that

O(ζ j, 1) ≤O,ζ j s <O,ζ j O∗(ζ j).

If O(ζ j, 1) = O∗(ζ j) then I j is empty. Then: (1) let t f
1 be the first timestep j for which I j is nonempty. The

trajectory of X under F is identical with that of F̃ for t ∈ [t0
1 = 0, t f

1]. (2) In first step after t f
1 the trajectory of F

on X will come to
Y ◦ ot f

1
◦ s1 ◦ B ◦ Z[2 : |Z|].

Then, since
Γ(ζt f

1
[2 : 2r] ◦ s1,Z[t f

1 + 2 : t f
1 + 2r + 2])

APPENDIX C. DETAILS OF FASTER ALGORITHM PROOFS 168

does NOT hold (by assumption), ext(ζt f
1
[2 : 2r] ◦ s1) cannot contain a configuration of size |X|. Hence the

head eventually returns, and configuration becomes

Y ◦ ot f
1
◦ s1 ◦ C

|X|−|Y|−t f
1−1.

Within two timesteps it becomes

Y ◦ ot f
1
◦ s1 ◦ B ◦ C

|X|−|Y|−t f
1−2.

Unless s2 = O∗(ζt f
1
),

Γ(ζt f
1
[2 : 2r] ◦ s2,Z[2 : 2r + 2])

does not hold. Again, ext(ζt f
1
[2 : 2r] ◦ s2) cannot have a configuration of size |X|. Thus, the head eventually

returns, and configuration now becomes

Y ◦ ot f
1
◦ s2 ◦ C

|X|−|Y|−t f
1−1.

Within two timesteps, it becomes

Y ◦ ot f
1
◦ s3 ◦ B ◦ C

|X|−|Y|−t f
1−2.

Unless s3 = O∗(Y f), the cycle repeats again (3) Hence, eventually, we’ll reach the state O∗(Y f), and the
trajectory will be

Y ◦ ot f
1
◦ ot f

1+1 ◦ B ◦ C
|X|−|Y|−t f

1−2.

Let t0
2 denote the time at which this occurs. (4) Then repeat the calculation in steps (1)-(3). Let t f

2 denote the
first timestep j > t0

2 for which I j is non-empty. The trajectory of X under F̃ from t = 2 to t = t f
2 − t2

2 is identical
(up to the position of the first turing head) with the trajectory of X under F, from t = t0

2 to t = t f
2 . Again, the

Γ predicate repeatedly will not hold, and thus the extensions are empty. Eventually the trajectory becomes

Y ◦ ot f
1+2 ◦ B ◦ C

|X|−|Y|−t f
1−3.

Repeating steps (1)-(4) until the head B hits the right end, we see that the trajectory becomes

Y ◦ o|X|−|Y|−1 ◦ B

after
|X| − |Y| − 1 +

∑
t0
l+1 − t f

l

steps.
This calculation establishes the result for trajectories during which the turing head is moving right. An

analogous computation works for when it is moving left. This computation is also done assuming the
synchronous timing model, but works completely for any live call sequence by replacing the phrase “the
next timestep” with “the next timestep when agent [x] is called” for whatever the relevant agent(s) x are. �

C.2 Details of the General Algorithm

In the following, I describe the details of the construction of the local rule for a general graph G(Θ). Make
the following preliminary definitions:

• Define the boolean

LR(B) = Θr,r+1[B]⇒ (B(0) = P(B[1 : 2r + 1], |L(B[1 : 2r + 1])|)).

In words, B(0) “maxes out” relative to P the choices for states consistent to the left B[1 : 2r + 1].

APPENDIX C. DETAILS OF FASTER ALGORITHM PROOFS 169

• Define the boolean

TR(b) = 1 if b ∈ G(Θ) and scc(p) = 0 for all paths p with p0 = b.

In words, there is no path from b to a cycle in G(Θ), so b is a “right-terminal” node. Let A0 = {b|TR(b)}.

• Let Sol(B) be the boolean that is 1 if there is a state j such that
∧2r

i=0 B[−2r − i : −1] ◦ j ◦ B[1 : i] and
Θ−r−1(B) andΘr+1(B). In words, Sol(B) holds when a single change to B(0) will produce a locally solved
ball. Let

Solv(B) = min{ j|
2r∧

i=0

B[−2r − i : −1] ◦ j ◦ B[1 : i]}.

That is, Solv(B) is the minimal that will achieve the local solution, when Sol(B) holds.

• Let A1 = ∪{in(b,G(Θ)) | b ∈ A0} − A0. These are the “almost-terminal” nodes.

• Let the elements of A1 be numbered 1 through |A1|. For b ∈ A1, write m(b) for the associated number.
For each j ∈ {1, . . . , |A1|}, let b(j) ∈ A1 be such that m(b(j)) = j. These numbers allow us to distinguish
the various “gateway” nodes in the single-terminus components.

• For each j ∈ {0, . . . , |A1|}, associate states C j and, for k ∈ {1, . . . ,m}, 4k
j . These include the states C0 and

4
k
0, which are analogous to the original 4 and C states. These are the states which allow the agent to

determine which single-terminus graph it is computing the gcd criterion relative to.

• For each b ∈ A1, make the inductive definition

γi , P(γi−1, 1), and Ai
b = (γi, γi−1) ◦ Ai−1

b

in which γ0 = b. Repeat this until such i∗ as γi∗ = γi for some i < i∗. Let Ab = Ai∗
b . Each Ab is of the form

of a “cycle+path” graph; let Cb denote the cyclic portion and Lb denote the linear portion. These are
the “most-terminal” cycles and lines within the single-terminus graphs associated with the node b.

• For each b ∈ A1, Ab consists of nodes γi. Introduce the numbering functions n j for each j = 1, . . . , |A1|,
defined so that nm(b)(γi) = i. (Thus, for example, nm(b)(b) = 0). These numberings are the distances of
the nodes the terminal cycles Cb relative to the gateway node b.

• Let A2 =
⋃

b∈A1
Ab, and A = A0 ∪ A1 ∪ A2. Let C =

⋃
b∈A1

Cb.

Now, we are ready to define the gcd criterion implementation, generalizing the boolean Γ defined in
§4.1.2. Let B be a ball of radius 2r + 2. Let b1 = B(−2r − 1 : −1) and b2 = B(2 : 2r + 2), considered as r-balls.
Let the boolean function Γ(B) be defined as TRUE when:

1. b1 ∈ G(Θ) and b2 ∈ A.

2. if b2 ∈ A0, there is a path from b1 to b2 of length ?(b1) + ?(b2).

3. if b2 = A − A0 − C, then for some 1 ≤ j ≤ |A1|, B(0) = C j, or 4k
j , such that n j(b2) is defined; and there is

an (acyclic) path from b1 to b(j) of length n j(b2) + ?(b1) + ?(b2);

4. if b2 ∈ C, then for some 1 ≤ j ≤ |A1|, B(0) = C j, or 4k
j , such that n j(b2) is defined; and there is an acyclic

path p from b2 to b(j) such that

|p| − n j(b2) − ?(b1) − ?(b2) is divisible by gcd(p).

Let L̃P
O[B] be the boolean defined as

L̃P
O[B] = Γ(B)⇒ (@s >O,b1 B(0) | Γ(B[−2r − 2 : −1] ◦ s ◦ B[1 : 2r + 2]])).

Let s∗(B) be the O-minimal s >O,b1 B(0) for which Γ(B[−2r− 2 : −1] ◦ s ◦ B[1 : 2r+ 2]]), which is defined when
Γ(B) ∧ (̃LP

O)¬.
Now, define the algorithm F[B], with radius 2r + 3, by:

APPENDIX C. DETAILS OF FASTER ALGORITHM PROOFS 170

• Rule 1: If
ω1[B] = Θ−r−1[B] ∧Θr+1[B] ∧ (B(0) < S) ∧ Sol(B)

then let F[B] = Solv(B).

• Rule 2: Else if
ω2[B] = Θ−r−1[B] ∧Θ¬−r[B] ∧ (B(0) ∈ S)

then let F(B) = B0.

• Rule 3: Else if

ω3[B] = (?(B) > 1) ∧ (B(−1) = B0) ∧Θ−r−2[B] ∧ ((B[1 : 2r + 1] ∈ A0)⇒ LR(B))

then F(B) = B0.

• Rule 4: Else if

ω4[B] = (?(B) > 1) ∧ (B(−1) = B1) ∧Θ−r−2[B] ∧ ((B[0 : 2r] ∈ A1) ∧Θr+1(B)⇒ (B[1 : 2r + 1] < A0))

then let F(B) = B1.

• Rule 5: Else if

ω5[B] = (?(B) > 1) ∧ (B(0) = B1) ∧ (B[1 : 2r + 1] ∈ A1) ∧ (B[2 : 2r + 2] ∈ A0)

then let F(B) = Cm(B[1:2r+1]).

• Rule 6: Else if

ω6[B] = (?(B) < |B|) ∧Θ−r−1[x] ∧ (B(0),B(1) ∈ {B0,B1}) ∧ (∃ j|Θ[B[−2r : −1] ◦ j])

then let F[B] = O(B[−2r − 1 : −1], 1).

• Rule 7: Else if

ω7[B] = (?(B) < B)∧Θ−r−1[X]∧((B(0) = B0)∨(B(0) = 4R
B(1)))∧TR(B[2 : 2r+2])∧(B(1) , P(B[2 : 2r+2], |L(B[2 : 2r+2])|))

then let F[B] = 4R
B(1).

• Rule 8: Else if

ω8[B] = (?(B) > 1)∧Θ−r−2[X]∧(B(−1) = 4R
B(0))∧TR(B[1 : 2r+1])∧(B(0) , P(B[1 : 2r+1], |L(B[1 : 2r+1])|))

, then F[B] = P+1(B).

• Rule 9: Else if

ω9[B] = (?(B) < B) ∧Θ−r−1[X] ∧Θr+1[B] ∧ (∃ jB(0) = 4R
j) ∧ (B(0) , 4R

B(1))

let F[B] = C0.

• Rule 10: Else if

ω10[B] = (?(B) < |B|) ∧Θ−r−1[B] ∧ (B(0) = B0) ∧ (
∧
Θ¬[B[−2r : −1] ◦ j]),

OR

(?(B) = |B|) ∧ (B(0) = B0) ∧Θ−r−1[B] ∧ (
m−1∧
j=0

b¬j [B]),

where η[B] = (?(B) = |B|) ∧
∨0

l=−r+1Θ
¬[B[l − r : 0]], then let F[B] = C0.

APPENDIX C. DETAILS OF FASTER ALGORITHM PROOFS 171

• Rule 11: Else if

ω11[B] = (?(B) > 1) ∧Θr+1[B] ∧ (∃ j, j′(B(−1) = C j) ∧ (B(0) = C j′)) ∧ (∃ j|Θ[j ◦ B[1 : 2r + 1]]),

then let F[B] = P(B[1 : 2r + 1], 1).

• Rule 12: Else if

ω12[B] = (B(1) = C j)∧L̃P
O[B]∧((j = 0)∧(B[2 : 2r+2] ∈ A1)⇒ (B[3 : 2r+3] < A0))∧((B(0) = C j)∨ω11[B+2]¬)

let F[B] = C j.

• Rule 13: Else if

ω13[B] = (?(B) < B) ∧ (B(1) = C0) ∧ L̃P
O[B] ∧ (B[2 : 2r + 2] ∈ A1),

let F[B] = Cm(B[2:2r+1]).

• Rule 14: Else if

ω14[B] = (?(B) > 1) ∧ ((B(0) = C j) ∨ (B(0) = 4 j
B(−1))) ∧ Γ(B

−1) ∧ (̃LP
O)¬[B−1],

let F[B] = 4 j
B(−1).

• Rule 15: Else if
ω15[B] = (?(B) < |B|) ∧ (B(1) = 4 j

B(0)) ∧ Γ(B) ∧ (̃LP
O)¬(B),

let F̃[B] = s∗(B).

• Rule 16: Else if

ω16[B] = (?(B) > 1)∧Θ−r−2[B]∧Θ−r−1[B]∧ (B(0) = 4 j
k)∧ (B(−1) = P(B[−2r− 2 : −2],P−1

B[−2r−2:−2](k)+ 1)),

let F[B] = B1.

• Rule 17: Else if
ω17[B] = B(0) < S

then let F[B] = B0.

C.3 Proof of Prop. 22

Recall the definition:

F̂(B) =

F̂1(B), if B ∈ BW
F̂2(B), otherwise

where F̂1 and F̂2 are defined as in §§4.2.1-4.2.2.
To compute the runtime of F̂, first we compute TTS(F̂2), in the three timing models. Let’s tackle the

k-bounded asynchronous model, Sk. Let X be an initial condition and fix a call sequence s ∈ Sk(|X|). Let Xt

denote (F̂2)t
s(X), for any call sequence s ∈ Sk. Let Bt

j = Br(j,Xt). Now, let’s note several thing:

1. By definition if R(B j) ≥ 2L+ |C|, then the configuration is “solved” locally to agent j, and agent j’s state
will never change under subsequence application of F̂2.

2. Now, if R(B j) ≥ 2L + |C|, then for some t ≤ k|X|, R(Bt
j+1) ≥ 2L + |C|. This is because: if we let t be

the first agent j + 1 is called, either (a) R(Bt−1
j+1) ≥ 2L + |C| already, whence in light of point 1 above,

R(Bt
j+1) ≥ 2L + |C|, or (b) R(Bt−1

j+1) < 2L + |C| , in which case since L(Bt−1
j+1 ≥ R(Bt−1

j) ≥ 2L + |C|, the ω3

predicate is activated, so once j is called, R(Bt
j) ≥ 2L + |C|. Finally, since s ∈ Sk, the first call to any

given agent in a configuration of size |X| is made within k|X| timesteps, so we can assume t ≤ k|X|.

APPENDIX C. DETAILS OF FASTER ALGORITHM PROOFS 172

3. Hence, repeating the reasoning in point 2 above another l times, if R(B j) ≥ 2L + |C|, then for some
t ≤ k · l · |X|, R(Bt

j+o) ≥ 2L + |C|, for all 0 ≤ o ≤ l.

4. Given an agent j, there is a t1 ≤ k|X| there is h such that j − |C| ≤ h ≤ j such that R(Bt1
h) > 0. This is

because, if R(Bh) = 0 for all h ∈ [j − |C|, j], when the first agent in h ∈ [j − |C|, j] is called (which must
happen within k|X| timesteps, the predicate ω4 applies, and R(Bh) becomes greater than 0.

5. Given an agent j in X, let a be the maximal l ≤ j such that R(B0
l) = R(B0

j); and let b be the minimal l ≥ j
such that R(B0

l) = R(B0
j). Of course, j − a, b − j ≤ R(B0

j). Suppose R(B0
j) < 2L + |C|. Then let t1 be the

first time t at which an agent c ∈ [a, b + 1] is called for which F̂2(c,Xt) , X(c). Such a t1 must exist if
R(B0

j) < 2L + |C|), and t1 ≤ k|X|. Furthermore the call must be to either agent b + 1 or a. There are two

cases: (I) If b + 1 is the first effective call, then R(Bt1−1
b+1) < R(Bt1−1

b), so R(Bt1
j) = R(B0

j) + 1. If (II) a is the

first effective call, L(Bt1−1
a) ≤ R(Bt1−1

a−1), so R(Bt1
a−1) ≥ R(Bt1

j)+ 1. Both cases have the commonality that, as
long as R(B0

j) < 2L + |C|, then there is some t ≤ k|X| and j1 ≥ j − R(B0
j) such that R(Bt

j1
) ≥ R(B0

j) + 1.

6. Item 5 is the inductive hypothesis of, and item 4 the base case of, the proof of the claim that: for some
and j in X, there is tl ≤ k · l · |X| and jl ≥ j −

∑
o≤l l such that

R(Btl
jl
) ≥ min(2L + |C|,R(B0

j) + l).

Now, this implies that for some T1 ≤ k · (2L + |C|) · |X|, there is jl ≥ j − D such that R(BT1
jl

) ≥ 2L + |C|,
where

D ,
2L+|C|∑

i=1

i =
1
2

(2L + C)(2L + C + 1).

7. But now applying item 2 implies that for some T2 ≤ k · D · |X|, R(BT1+T2
j) ≥ 2L + |C|. But that means

that the configuration is completely solved by T1 + T2, which is bounded by k · |X| · (1+ 2L+ |C|+D) <
k(2L + |C| + 1)2

|X|. Hence TTS(F̂2,X, s) ≤ k(2L + |C| + 1)2 for all s ∈ Sk, so

TTSworst
Sk

(F̂2)(n) ≤ k(2L + |C| + 1)2,

a constant independent of system size.

Because the expected round time of the totally asynchronous model is less than 2 log(|X|), the same
reasoning as in the k-bounded case applies here, replacing k|X|whenever it is mentioned with 2 ·X · log(X).
Hence averaging over s,, we have that TTSworst

Sa (F̂2)(n) ≤ 2(2L + |C| + 1)2
· log(n). On other hand, almost all

initial conditions will require at least one action at an agent within every r-ball. Hence, TTSavg(F̂2)(n) ≥
(1/(2r + 1) · log(n). Summarizing,

1
2r + 1

log(n) ≤ TTSavg
Sa (F̂)(n) ≤ TTSworst

Sa (F̂2)(n) ≤ 2(2L + |C| + 1)2
· log(n).

Now, let’s turn our attention to the totally synchronous model. Here the situation is a little bit more subtle.
Let X be an initial condition, and lets again use the notation Xt = (F̂2)t(X) and Bt

j = Br(j,Xt).

1. Just as in the previous cases, if R(B j) ≥ 2L + |C|, then the first time j + 1 is called t ≤ k|X|, R(Bt
j+1) ≥

2L + |C|. But again j + 1 is called at every timestep in the synchronous model, so if R(B j) ≥ 2L + |C|,
R(Bl

j+o) ≥ 2L + |C|, for all 0 ≤ o ≤ l.

2. Given agent j in X, let at
j be the maximal l ≤ j such that R(Bt

l) = R(Bt
j); and let b j be the minimal l ≥ j

such that R(Bt
l) = R(Bt

j). Evidently j − at
j, b

t
j − j ≤ R(Bt

j). Now, suppose that j is such that

R(B0(a j − l), R(B0
b j+l) < R(B0

j) for all l ≤ 2L + |C|.

APPENDIX C. DETAILS OF FASTER ALGORITHM PROOFS 173

Then, as long as R(B0
j1

) < 2L + |C|, Bl
j = Bl−1

j + 1, al
j = al−1

j , and bl
j = bl−1

j + 1 for all l ≤ 2L + |C|. Hence

R(B2L+|C|
j) ≥ 2L + |C|.

3. For all agents k in X, let jk be the maximal l ≤ k for which R(B0(a jk − l) and R(B0
b jk+l) < R(B0

j) for

all l ≤ 2L + |C|. Then the combining points 1 and 2 above shows that R(BT
k) ≥ 2L + |C| for some

T ≤ 2L + |C| + k − jk. Hence,
TTS(F̂2,X) ≤ 2L + |C| + E(X) (C.3)

where E(X) , maxk∈X(j − jk).

4. Now, a moment’s thought will show that E(X) is at most the length of the maximal contiguous
substring of X with periodicity no greater than 2L + |C|. That is, define

perl(X) = {Y b X | Y(1 : |Y| − l) = Y(l : |Y|)}

and

Dk(X) = max

|Y|, Y ∈
k⋃

l=1

perl(X)

 .
Then,

E(X) ≤ D2L+|C| (C.4)

5. Conversely, for all configurations X and local rules f of radius r the drive X to a configuration in Z,
as long as |C| > 1,

TTSSs (f ,X) ≥
1

2(2r + 1)
D|C|−1(X) (C.5)

. To see why this holds, suppose X = Y ◦W ◦ Z, where W is periodic with period l < |C|. Then, for
all j ∈ [|Y| + 1, |Y| + |W|], we have R(B0

j) ≤ 1. Moreover, since W(1 : |W| − l) = W(l : |W|), under the
synchronous application of any rule of radius r, W(2r+ 1 : |W| − l− 2r− 1) =W(2r+ l+ 1 : |W| − 2r− 1).
But then for all j ∈ [|Y|+ 2r+ 1, |Y|+ |W| − 2r− 1], R(B1

j) ≤ 1. Repeating this another |Y|/2(2r+ 1) times,

we find that R(Bl
|X|+|Y|/2) ≤ 1 for al l ≤ Y|/2(2r + 1), which yields the result.

6. Combining eqs. C.3, C.4, and C.5, we find

1
2(2r + 1)

〈D|C|−1(X)〉X∈Cn ≤ TTSavg
Ss (F̂2)(n) ≤ 2L + |C| + 〈D2L+|C|(X)〉X∈Cn

and
1

2(2r + 1)
max
X∈Cn

D|C|−1(X) ≤ TTSworst(F̂2)(n) ≤ 2L + |C| +max
X∈Cn

D2L+|C|(X).

7. Now, maxX∈Cn D2L+|C|(X) = n. Hence, the worst-case scaling of F̂2 will be linear in system size in
the synchronous model. The intuitive point here is that “small tandem repeats” are in general a
problem for synchronous local rules. By “tandem repeats”, I mean subconfigurations composed of
many repeats of small, equally-sized subunits that are incorrect relative to C1:

. . .
tandem repeats

. . .

Any order that a local rule wishes to establish that does not respect the shift symmetry of the tandem
repeats has to wait for the symmetry to broken from somewhere else in the system (i.e. the ends).
The problems that synchronous algorithms have with tandem repeats are a specific instance of a
much more general phenomenon in which “low order symmetries” – and small tandem repeats are

APPENDIX C. DETAILS OF FASTER ALGORITHM PROOFS 174

precisely subconfigurations that have small shift symmetry – cause difficulties in synchronous update
environments. This principle is behind most of the impossibility results in distributed computing.

The worst-case behavior here is, unlike in previous local rules and situations, not representative of
the average behavior. It is a standard result of analytic combinatorics that, considered as a random
variable Dl(X) with X ∈ Cn over m states, has mean no greater than logm(n) ([22]). Thus the average
runtime scales logarithmically.

Combining all this information, we have that F̂ scales

• as O(1), in the worst-case, for the k-bounded asynchronous timing model or the synchronous timing
model if |C| = 1 for some cycle C ∈ G(Θ).

• as O(log(n)) in the worst and average-case, for the totally asynchronous timing model

• as O(log(n)) in the average and O(n) in the worst case for the synchronous timing model if |Ci| > 1 for
all cycles Ci in G(Θ).

This establishes prop. 22.

Appendix D

Details of P̃

D.1 P̃ is More Robust

Proof: (Of Proposition 28.) First, for any pattern T and M ≤ N, let f N
M(T) = |TM|/|T≤N |, i.e. the number of

elements of size M relative to the number of all elements of size N or less. Notice that if T is infinite then
limN→∞

∑N
M=1 f N

M(T) 1
M = 0.

Assume wlog that z is empty. Now, let

C(N) =
qbN/qc(1 + bN/qc)

2

be the normalizing function for P̃. Then suppose X is an configuration with |X| = n and consider X ◦ y for
some finite configuration y with |y| = d. We have:

P̃[X ◦ y](p/q) =
1

C(N + d)

b(N+d)/qc∑
m=1

N+d−mq−1∑
s=0

P[X ◦ y(s : s +mq − 1)](pm)

=
1

C(N + d)

b(N+d)/qc∑
m=1

(Xm + Cm)

(D.1)

where

Xm =

N−mq−1∑
s=0

P[X ◦ y(s : s +mq − 1)](pm)

and

Cm =

N+d−mq−1∑
s=N−mq

P[X ◦ y(s : s +mq − 1)](pm).

Note |Xm| ≤ min(0, (N − mq + 1))K where K is the the largest possible value of the norm-square of a fourier
coefficient of a signal; and note that |Cm| ≤ dK. Now

P̃[X](p/q) =
1

C(N)

bN/qc∑
m

Xm.

Hence ∣∣∣P̃[X ◦ y](p/q) − P̃[X](p/q)
∣∣∣ ≤ ∣∣∣∣∣∣∣

(
1

C(N + d)
−

1
C(N)

) bN/qc∑
m=1

Xm

∣∣∣∣∣∣∣ +
∣∣∣∣∣∣∣ 1
C(N + d)

b(N+d)/qc∑
m=1

Cm

∣∣∣∣∣∣∣ .

175

APPENDIX D. DETAILS OF P̃ 176

Now,
∣∣∣∣(1

C(N+d) −
1

C(N))
∣∣∣∣ = O(1/N3) and

∑bN/qc
m=1 Xm = O(1/N2), so the first term is O(1/N). The second term is

bounded above by

1
C(N + d)

b(N+d)/qc∑
m=d1e

dK =
dKb(N + d)/qc

C(N + d)

and since C(N + d) ∼ O((N + d)2), we have overall that

|P̃[X ◦ y](p/q) − P̃[X](p/q)| = O
(1

N

)
.

Now, P̃[T′](ω) = limN→∞ P̃N[T′](ω) where

P̃N[T′](ω) =
1
|T′
≤N |

∑
X′∈T′

≤N

P̃[X′](ω).

However,

1
|T′
≤N |

∑
X′∈T′

≤N

P̃[X′](ω) =
N∑

M=1

|T′M|
|T′
≤N |

1
|T′M|

∑
X′∈T′M

P̃[X′](ω)

=

N∑
M=1

f N
M(T′)

1
|T′M|

∑
X′∈T′M

P̃[X′](ω)

=

N−d∑
M=1

f N−d
M−d(T)

1
|TM−d|

∑
X∈TM−d

P̃[X](ω) +O
(1

M − d

)
.

(D.2)

Hence

lim
N→∞

|P̃N[T′](ω) − P̃N−d[T](ω)| ≤ lim
N→∞

N−d∑
M=1

f N−d
M−d(T)

C
M − d

= 0.

�

D.2 Computing P̃ from F

Proof: (Of Proposition 29.) For notational ease, define al = Fl[X]. Now, by definition,

P̃[X](p/q) =
1

C(N)

bN/qc∑
m

N−mq−1∑
s=0

|Fmp(X(s : s +mq − 1))|2.

Now, let’s concentrate on Fmp(X(s : s +mq − 1). Because of the Fourier inversion property,

X(k) =
N−1∑
l=0

ale2πilk/N.

Plugging this into the definition of Fmp(X(s : s +mq − 1) we get

Fmp(X(s : s +mq − 1) =
1

mq

mq−1∑
k=0

X(k + s)e−2πik mp
mq =

1
mq

mq−1∑
k=0

N−1∑
l=0

ale2πil(k+s)/Ne−2πikp/q,

and changing the order of summation gives

Fmp(X(s : s +mq − 1) =
1

mq

N−1∑
l=0

ale2πils/N
mq−1∑

k

e2πik
(

l
N−

p
q

)
.

APPENDIX D. DETAILS OF P̃ 177

Now,
mq−1∑
k=0

e2πik
(

l
N−

p
q

)
=

e2πilmq
− 1

e2πi
(

l
N−

p
q

)
− 1
= eπi(p/q−l/N+lmq/N) sin(πqlm/N)

π
(

l
N −

p
q

) .

Putting this in, and taking the norm-square, we get

|Fmp(X(s : s +mq − 1)|2 =
(

1
mq

)2 ∑
l,k

(al ⊗ ak)†e−πi(k−l)(2s+mq−1)/N
sin

(
πmq l

N

)
sin

(
πmq k

N

)
sin

(
π

(
l

N −
p
q

))
sin

(
π

(
k
N −

p
q

)) .
Summing over s gives

N−mq−1∑
s=0

|Fmp(X(s : s +mq − 1)|2 =
(

1
mq

)2 ∑
l,k

(al ⊗ ak)†A(s)
sin(πqlm/N) sin(πqkm/N)

sin(π
(

l
N −

p
q

)
) sin(π

(
k
N −

p
q

)
)

where

A(s) =
N−mq−1∑

s=0

e−πi(k−l)(2s+mq−1)/N.

It is easy to compute that

A(s) =

N −mq, l = k
e2πi(k−l)/N sin((k−l)πmq/N)

sin((l−k)π/N) , l , k
.

Hence, summing over m and collecting conjugate terms,

P̃[X](p/q) =
∑

l

||al||
2 1

C(N)

∑
m

N −mq
(mq)2

sin(πmq
(

l
N −

p
q

)
)

sin(π
(

l
N −

p
q

)
)

2

+
∑
k,l

((al ⊗ ak)†e2πi(k−l)/N + (ak ⊗ al)†e2πi(l−k)/N)
2C(N)

∑
m

1
(mq)2

sin((k − l)πmq/N)
sin((l − k)π/N)

sin(πmq
(

l
N −

p
q

)
)

sin(π
(

l
N −

p
q

)
)

sin(πmq
(

k
N −

p
q

)
)

sin(π
(

k
N −

p
q

)
)

where C(N) is the normalization function from above. Now,

(al ⊗ ak)†e2πi(k−l)/N + (ak ⊗ al)†e2πi(l−k)/N = cos
(

2(k − l)π
N

)
(al ⊗ ak + ak ⊗ al)†.

Hence,
P̃[X](p/q) =

∑
k,l

(al ⊗ ak + ak ⊗ al)† fN,p/q(l/N, k/N)

where

fN,p/q(l/N, k/N) =
1

2C(N)

∑

m
N−mq
(mq)2

(
sin(πmq

(
l

N−
p
q

)
)

sin(π
(

l
N−

p
q

)
)

)2

, l = k∑
m

1
(mq)2

sin((k−l)πmq/N)
sin((l−k)π/N)

sin(πmq
(

l
N−

p
q

)
)

sin(π
(

l
N−

p
q

)
)

sin(πmq
(

k
N−

p
q

)
)

sin(π
(

k
N−

p
q

)
)
, l , k

.

Now, we have to show that f is a delta function as advertised. First let’s take the case k = l. Consider
the function

G(N, t, q) =
1
N

bN/qc∑
m=1

(
sin(πmqt)

)2 (N −mq)
(mq)2 .

Putting aside issues of differentiability for the moment, the second derivative of G with respect to t is
easily computed to be:

∂2G
∂t2 =

1
N

bN/qc∑
m=1

2π2(N −mq) cos(2πmqt).

APPENDIX D. DETAILS OF P̃ 178

This is easily evaluated in closed form using standard techniques, although the formula is unwieldy. If tq
is is integral, there is a singularity; for tq non-integral, for large N we can approximate bN/qc by N/q, and
compute

∂2G
∂t2 ∼ −π

2 +
π2q csc2(πqt) sin2(πNt)

N
∼ −π2.

Hence, in the large N limit,

G(N, t, q) ∼ −
π2

2
t2 + Bt + C

for some constants B and C. To evaluate these constants, notice that t = 0, 1/q, 2/q, . . ., G(N, t, q) = 0, so C = 0
and B = π2

2q . Plugging this information back into the formula for f , we see that

fN,p/q(l/N, l/N) ∼
π2q

q +N

∣∣∣∣∣1q − l
N

∣∣∣∣∣ l
N

1

sin2
[
π

(
l

N −
p
q

)]
where l is calculated modulo N/q. This is a discrete delta function, for on the one hand, the second-order
polynomial in the numerator is bounded over its whole range, and scales with N as O(1/N). When bounded
from p/q, the sine term in the denominator is bounded, so the ratio scales as O(1/N) away from p/q. At
l/N ∼ p/q, both the numerator and the denominator go to zero, at the same rate. To see this, consider

fN,p/q((p/q)N + k, (p/q)N + k) ∼
kπ2(N + kq)
N2(N + q)

csc2(π/q + π(k/N − p/q)).

Taking the taylor series of the RHS about N = ∞, we get

fN,p/q((p/q)N + k, (p/q)N + k) ∼
1
k
+ q(1 − (1/k))

1
N
+O(1/N2).

Notice that at k = 0, fN,p/q(p/q, p/q) = 1.
In the k , l case, it is again easy to see that the numerator is bounded over its range and scales as O(1/N2)

with N, while denominator is bounded away from either k or l = (p/q)N and does not scale with N, so away
from p/q, the function goes to zero with N. The computation for asymptotics near either k or l = (p/q)N for
the k , l case is somewhat more onerous than the k = l, but delivers essentially the same result. In particular,
consider the function

H(N, q, t, s) =
bN/qc∑
m=1

1
(mq)2

(
sin(πmqt)

) (
sin(πmqs)

) (
sin(πmq(t − s))

)
.

Computing its second partial derivatives, one finds that

∂2H
∂s2 = −2π2

bN/qc∑
m=1

cos(π(s − 2t)mq)sin(πsmq),

∂2H
∂t2 = 2π2

bN/qc∑
m=1

cos(π(2s − t)mq)sin(πtmq),

and
∂2H
∂s∂t

= π2
bN/qc∑
m=1

sin(2π(s − t)mq).

These sums can be evaluated in closed form, though unlike in the case of k = l it turns out to be impossible
here to take a simple limit as N → ∞. Instead, it turns out to be useful to define the following function,
known as the Clausen function:

Cl(θ) =
∞∑

n=1

sin(nθ)
n2 .

APPENDIX D. DETAILS OF P̃ 179

Now if we consider
H̃(t, s) =

1
4q2

[
Cl(2πqt) + Cl(2π(s − t)q) − Cl(2πs)

]
and compute its second partials, they are identical to those computed for H, except with bN/qc replaced
with ∞. (Of course, those sums are seemingly diverging, but this relation to the Clausen function gives
them meaning.) Hence, we can take H̃ as an approximation to H. The key fact is that there is a standard
integral representation due to Clausen:

Cl(θ) = −
∫ θ

0
log

[
2sin

(t
2

)]
dt.

Using this allows for the computation of the asmyptotic expansion of H around t = 1/q of the form

H(N, q, t, s) ∼ (C1(f) + C2(f)Log[g − 1/q])(tq − 1) +O((tq − 1)2)

where Ci(f) are functions of f (that are somewhat unwieldy but nonetheless obtainable in closed form).
Hence, the upshot is the same as in k = l case. �

In the above argument, I used a variety of infinite series without regard to convergence, differentiated
using series formulae without regard to differentiability, and committed a variety of related sins. To see
why these were generally OK (say, in the k = l case), notice that we could have first rewritten the function
G(N, t, q), via some pretty nasty algebra (using the taylor series of the exponential function) as:

G(N, t, q) =
1

4q3

(
2NH2(bN/qc) + e−xyΦ(e−x, 2, y) + exyΦ(ex, 2, y) + Li2(e−x) − Li2(2, ex)

)
+

+
1
4q

(
2H1(bN/qc) +

e−xy

y
H(1, y, 1 + y, e−x) +

exy

y
H(1, y, 1 + yc, ex) + Log[1 − e−x] + Log[1 − ex]

)
(D.3)

where x = 2πitq, y = 1 + bN/qc, and Hi=1,2(N) =
∑N

n (1/ni) are the harmonic numbers of order 1 and 2,
Φ(x, a, s) =

∑
∞

k=0
xk

(a+k)s is the so-called Lerch generalized polylogarithm, Li2(x) = Φ(x, 1, 2) is the dilogarithm
function, and H is the standard hypergeometric function. The asymptotics of the two harmonic number
terms are independent of t, while the other things are well understood in the literature to have good enough
convergence derivatives for our purposes. The k , l case is similar.

It is interesting to note that this re-writing in terms of well-known series functions is simply a more
sophisticated version of the computation done above. On the one hand, the Lerch and hypergeometric
function terms are very small and go away in the limit, and the H1(N) is also small (∼ log(N)/N), as is
as the pure logarithm term. The H2(N) term contributes contributes a constant π2/3, and the difference
of dilogarithm terms yields the second order polynomial 2π2(| f | − f 2 + (1/6)). The π2/3 constants cancel,
leaving the homogenous quadratic.

D.3 Computing Examples of P̃

Finally, we’ll compute some examples of P̃.

Example 47 Consider T = {(100)n
|n ∈ N}. Notice that for X ∈ T, the original Fourier coefficients are

a0 = aN/3 = a2/3 = 1 and 0. Hence, by the theorem P̃[X] ∼ 1
3 (δ0 + δ1/3 + δ2/3). Since this is the same for all

X, this is also the value of P̃[T]. Now consider T′ consisting of substrings of elements of {(100)n
|n ∈ N}.

Notice that T′ =
⋃

i, j=0,1,2 0i
◦ T ◦ 10 j, i.e. T′ is obtained from T by concatenating a finite number of finite

strings both ends. Hence by the proposition P̃[T′] = P̃[T]. This computation says that for a pattern that
“intuitively really has” a frequency correctly captured by the original definition of spectral density P̃ it will
still be captured by P̃, and that P̃ captures more things that intuitively make sense.

APPENDIX D. DETAILS OF P̃ 180

Example 48 Now let T = {0n1n
|n ∈ N}, in the words, the half-proportion pattern T1/2. For X = 0n1n, recall

that

P[X]
(

k
2n

)
=

 (csc(kπ
2n))

n2 , k odd
0, k even

.

Hence, for k/N bounded away from 0, these go to 0, and by the theorem, P̃[X](ω) = 0 for ω > 0. At 0, it is
easier to compute directly from the definition:

P̃[0n1n] =
1

n(1 + 2n)

 n∑
k=1

2(n − k + 1) +
1
k2

k−1∑
j=1

((k − j)2 + j2)

 + 2n∑
k=n+1

1
k2

2n−k∑
j=0

((k − n + j)2 + (n − j)2)

 .
Expanding the two main terms in the above expression separately, using simple formulas for sum-of-squares,
&c, we find that

P̃[0n1n] =
n(1 + 4n) +Hn

3n(1 + 2n)
+

1
n(1 + 2n)

2n∑
k=n+1

(2n − k + 1)(2k2 + 2n(1 + n) − k(1 + 2n))
3k2

=
n(2 + 3n) + (1 + 6n(1 + n))(Hn −H2n) + 2n(1 + n)(1 + 2n)(ψ1(n + 1) − ψ1(1 + 2n))

3n(1 + 2n)

where Hn is the n-th harmonic number and ψ1 is the first-order “polygamma” function (defined as the
derivative of the digamma function ψ, which itself is the log derivative of the Γ function). Now, as n→ ∞,
well-known asymptotics (as shown, for example, in Abramowitz and Stegun) show that

1. 2n(ψ1(n + 1) − ψ1(1 + 2n)→ 1 and

2. Hn ∼ log(n).

Hence, as n→∞,

P̃[0n1n] ∼
n(2 + 3n) + (1 + 6n(1 + n))(log(n) − log(2n)

3n(1 + 2n)
→

3
2
− log(2).

Putting all this together shows that P[T1/2] =
(

3
2 − log(2)

)
δ0.

Appendix E

Generic Dynamic Encoding

The radius-state tradeoff defined above works only for a very specific class of algorithms. It is desirable
to have a generic procedure for making such tradeoffs for any local rule, like the algorithms for the static
tradeoff. This would involve finding a generally-applicable process for encoding the dynamics of one local
rule in the operation of another, with different states and radius.

Even defining the notion of dynamic encoding properly, much less finding such encodings algorithmically,
turns out to be difficult. The discussion in the previous section indicates that the size of the encoded
structures, and the complexity of their internal substructures, increases with the number of different states
to be encoded and the complexity of the transitions between them. As a result, the dynamic motion of these
larger encoded structures will be somewhat slower than the dynamics of the original states they encode,
at least in asynchronous timing models. For instance, the encoded trajectory shown in eq. 6.5 requires
2r + 6 (asynchronous) timesteps in place of 2 (asynchronous) timesteps in the original trajectory 6.4. This is
because the larger encoded structures contain internal substructures, and when only a few agents at a time
are updated, the multiple parts of these substructures will require extra time to propagate and transition
between.

This observation introduces some complication in properly defining the notion of a dynamic encoding.
Suppose we’re given a local rule F of radius r operating on configurations over state set S – that is, a mapping
F : Br,S → S. Then an encoding of F of radius r′ over state set S′ will of course have two elements: an
encoded rule F′ : Br′,S′ → S′, and a decoding function φ : Br′,S′ → S. The dynamics of F′, once suitably
decoded by φ, should track those of F. This means that some sort of commutation relationship should hold
between φ, F, and F′:

CS′

	φ

��

F′ // CS′

φ

��
CS

F // CS

.

One might be tempted to make this relationship precise by requiring commutation of the above diagram.
That is, for all configurations X and agent calls s ⊂ {1, . . . , |X|},

φ(F′s(X)) = Fs(φ(X)). (E.1)

This might be reasonable for the synchronous timing model, i.e. when s is the call to all agents. However
exact commutation is usually, however, too strong a requirement for asynchronous environments. If we did
mandate exact commutation, implying an exact matching of the trajectories, then the encoding described the
previous section would be invalidated since the encoded version would, at least in asynchronous models,
fall behind the original trajectory by several timesteps every time a B→ B ◦ B→ B transition occured.

Put another way, a dynamic encoding can only really be expected to provide a “weak bisimulation”
between the original rule and its encoded version. Given an exact accounting of time, nontrivial asynchrony
will reveal gaps caused by the hidden operations with regard to which F and F′ fail to be equivalent. Thus,
we need a definition of encoding which allows for a looser tracking of the original trajectory by the encoded

181

APPENDIX E. GENERIC DYNAMIC ENCODING 182

trajectory. We can loosen the tracking quite alot by simply asking that for any live call sequence s, there
is some live subsequence s′ such that the trajectory of the encoded system under s is a subtrajectory of the
original system under s′. In other words, there is some way to selectively “stop and start the clock” of the
original system, by calling it on a subsequence, such that the resulting trajectory can be viewed as a “slowed
down” version of the encoded system’s trajectory. Formally,

Definition 37 [Loose Dynamic Encoding] Given a call sequence s = (s1, s2, . . . ,), a sub-call sequence of s is a call
sequence s′ = (s′1, s

′

2, . . .) for which for some monotone increaseing sequence j1, j2, . . . , of natural numbers, s′i ⊂ s ji .
A pair (F′, φ), where F′ : Br′,S′ → S′ and φ : Br′,S′ → S is a loose dynamic r′-encoding of F : Br,S → S if for
all configurations X and all live call sequences s over X, there is a live sub-call sequence s′ of s such that trajectory
φ((F′)n

s (X)) is a subtrajectory of Fn
s′ (φ(X)).

It is not hard to verify that the replacement procedure defining F′ from FO
Θ

is a loose dynamic encoding,
with the decoding function φ simply codifying the translations described in words in the previous section.
Moreover, we can verify that def. 37 is reasonably satisfactory for the problem of dynamic radius-state
tradeoff by virtue of the following simple result.

Proposition 49 Suppose S = S1 ∪ S2 is a state set, and T ⊂ CS1 . Suppose also that f : Br,S → S is a solution to T in
all live timing models and that (F, φ) is an R-encoding of f where F : BR,S1 → S1 and φ : BR,S1 → S1 ∪ S2. Finally,
suppose φ has the property that

φ(X) ∈ CS1 ⇒ φ(X) = X. (E.2)

Then F is a solution to T in any live timing model.

In words, if we have a local rule f that solves a pattern using some extra state, an encoded version F of
f that uses no extra states, and for which an decoding φ can be found that is the identity when φ detects no
encodings of those excess states (eq. E.2), then the F must also solve the pattern.
Proof: Let X0 be an initial configuration in CS1 such that |X0| is a T-admissible size, and let s be a live
call sequence. There must be a live call sequence s′ for which φ(Fs(X0)) is a subsequence of fs′ (φ(X0)), so
{φ(y)|y ∈ Ω(F, s,X0)} ⊂ Ω(f , s′,X0). Since f is a solution to T under all live call sequences, Ω(f , s′,X0) is a
singleton subset of CCS1 , so therefore there is a z ∈ T ⊂ CS1 such that φ(y) = z for all y ∈ Ω(F, s,X0)}. But then
by the assumption in eq. E.2, y = z for all such y, so that Ω(F, s,X0) = {z}, implying F is a solution. �

One flaw in the definition 37, however, is that resulting encoded solution is not guaranteed to have the
same runtime scaling as the original solution. To achieve this, we can add an additional requirement to def.
37 that the subsequences s′ of s and φ(F′s′) of F(φ(X)) can always been taken to be reasonably dense. This
would imply that the number of inequivalent hidden operations between the encoded and original systems
is sufficiently small that their clocks need not be very distorted before their trajectories are expected to line
up. In the encoding described above for the Naive backtracking algorithm, for example, the subsequence
s′ can always to taken to contain at least one complete round of agent calls in every 2r + 6 complete rounds
in s, and the resulting φ(F′s) will always contain one configuration in every 2r + 6 timesteps of FO

Θ
(φ(X)).

Hence, the runtime of F′ is at worst a multiple of (2r + 6)2 times the worst-case runtime of FO
Θ

. On the other
hand, adding a “density” requirement of this kind introduces a parameter into the definition, which is itself
unpleasant. It may be difficult to find a “clean” notion of dynamic encoding that is loose enough to be
generally applicable but strong enough to guarantee runtime equivalence.

Whatever the ultimate definition of dynamic turns out to be, what I’d really like is to find an algorithm
for making a dynamic radius state tradeoff. That is,

Wish 1 I wish I could find computable functions

Γ : D×N→D and γ :N→N,

whereD is the set of all local rules, such that Γ(f ,m) is a radius-γ(r(f)) encoding of f over m states.

Experience has shown me that this is probably hard, and may be impossible. The reason I have found it
difficult is that the only approach I know to making dynamic radius state tradeoffs is to locate the “emergent

APPENDIX E. GENERIC DYNAMIC ENCODING 183

turing heads” induced by the local rule and, having isolated them, encode using a technique along the lines
of the previous section. Making this approach algorithmic would thus include as a subproblem finding an
algorithm to detect and analyze the induced turing heads that may arise in configurations of all sizes. Since
there are finitely many local rules of a given radius and number of states, there must be a finite upper bound
for each m and r on the “size” of the largest induced turing head, whatever that formally means. However,
intuitive comparison to a number of other problems from the theory of cellular automata suggests that this
bound will be an uncomputable function. This is why I’ve had to work on a case-by-case basis to achieve
the goal of removing the requirement of extra state from the local rules defined in previous chapters.

Appendix F

Other Approaches to Pattern Description

The choice of description language made in §8.1.2 has a large impact on the nature of the compilers defined
in §8.1.3. There are other approaches to pattern description aside from local feature invariance.

F.1 Direct Specification

One obvious candidate would be to just have the user specify a local check scheme directly, inputting which
local neighborhoods were to be accepted and which were to be rejected. After all, a check scheme is in the
end a finite description of a potentially infinite pattern set. However, as examples 12 and 13 in chapter 2
make clear, it would be enormously laborious and confusing to do this. The typical number of accepted
neighborhoods even in a simple pattern is large, and it is often not intuitive to think about all the separate
local agent views. Local feature invariance generates the same output, with a much smaller and more
intuitive input.

F.2 Formal Logic

Another approach would be the use of formal logic. For each pattern, this would mean writing a logic
formula that defined the pattern as a set. Given the structure of locally checkable patterns, first order logic
would be a natural choice.

Roughly speaking, a first order formula in variable x1, . . . xn is a symbol string composed of the symbols

{
′=′,′ ¬′,′ ∧′,′ ∀′,′ ∈′, x1, . . . , xn}

that encapsulates a “logical proposition” about the object x. The simplest propositions are those that express
equality between two objects, i.e.

φ(x1, x2) , [x1 = x2]

expresses the idea that the two objects x1 and x2 are the same.1 Formulas are built up by composing the
various symbols above. The ‘¬’ symbol is “negation”, so that for any initial statement φ(x), the statement
¬(φ(x)) expresses that “not φ(x)” holds. The ‘∧’ symbol is the logical “AND”, so that φ(x1)∧ψ(x2) expresses
that both φ(x1) and ψ(x2) hold true. The ‘∀’ symbol declares that some statement must hold for all x, so that
∀xφ(x) means that any possible x’s (in whatever domain is understood), the statement φ(x) holds. The ‘∈’
symbol is a domain restrictor, so that ∀y ∈ x, φ(x) means that φ(x) is only required to hold for those objects
y in x. The notions of “there exists” and the logical “OR” can be built out of these symbols. The notation

1The symbol ‘,’ means “φ is defined to be”, which is used instead of the usual ‘=’ sign to prevent confusion with the logical symbol.

184

APPENDIX F. OTHER APPROACHES TO PATTERN DESCRIPTION 185

∃xφ(x) is a shorthand for ¬(∀x(¬φ(x))) and φ(x) ∨ ϕ(y) is shorthand for ¬((¬φ(x1)) ∧ ¬ϕ(x2))).

For example, the formula φ(x) defining x to be a set containing at least 2 distinct elements is:

φ(x) , ∃y1, y2 ∈ x, ¬(y1 = y2).

A similar formula ψ(x) could be used to describe x as having no more than 2 elements. Hence, ψ(x) ∧ φ(x)
describes x as having size exactly 2. A formula built up from these kinds of operations gets longer and
longer. The length of φ,, |φ(x)| simply counts how many symbols where used to compose it.

Now, to make first-order formulas “speak about” multi-agent configurations, we have to “enrich” the logic
to the point where it could describe multi-agent system configurations. To do this, we’d add symbols
describing the internal agent states, and perhaps the basic spatial relationships between agents.2 Once this
is accomplished, we could, for example, write a formula φ(X) which held true if and only if configuration
X contained at least 12 agents in state 2. Such formulas can describe any local check scheme Θ, simple by
taking the “OR” over all Θ-accepted neighborhoods.

Just as with the local feature invariance approach, we’d then have to find some way to translate logical
formulas into local check schemes. The key to doing this is to use results about the inherent locality of
first-order logic. In the 1970s, Hanf, Gaifman, and others realized that any first-order logic formula φ(x)
can be understood as a series of “local conditions” [20]. The basic intuition behind this is that the simplest,
shortest, formulas only speak about objects that are very “close” to each other. To make a formula describe
a relationship between two structures that are “far away” from each other, requires us to use several rounds
of composition. In our model, this literally means that a short first-order formula can only describe relations
between neighboring agents, while a longer one is required to increase the radius of the relationship. If we
let R(φ) denote the radius at which formula φ can describe inter-agent relations, Hanf and Gaifman’s main
point was to show R(φ) is bounded by a simple function of the length |φ(x)| of the formula. The reason for
this is that:

• The logical operations∧ and¬ do not change the locality radius. That is, R(¬φ) ≤ R(φ) for all formulas
φ, and R(φ ∧ ψ) ≤ max(R(φ),R(ψ)).

• And the quantifier ∃ at most doubles the radius, so that R(∃xφ(x)) ≤ 2R(φ).

Thus, building up formulas by composing simpler formulas, we see inductively that R(φ) ≤ 2|φ|. Intuitively,
what is going on here is that the only way to make a formula describe a new relationship between one agent
and another one nearby is to introduce an existential quantifier. Chains of such quantifies are required to
make the formula have a long-range radius.

These locality results were proved in the context of first-order logic without added constants like those
required to make formulas talk about multi-agent configurations. However, it is easy to show that the
results extend at the expense of small addition to the radius. As a result, we have that:

Proposition 50 Any pattern defined by a first-order logic formula φ is locally checkable by a local check scheme
Θ(φ) with radius r ≤ 3|φ|; and conversely, all patterns of the form Θ(C) for some local check scheme Θ are first-order
definable.

Because the inductive procedure for constructing the locality argument is computable at each step,Θ(φ) can
be algorithmically derived from φ. Hence, we could use formulas as the input to a global-local compiler by
defining:

GCLogical(φ) = FΘ(φ).

This translation from logic to check scheme to local rule is elegant. But I have not focused on this approach
because:

Experience shows logic is not a particularly efficient representation of patterns.

2The references [39, 40] describe a systematic way to do this.

APPENDIX F. OTHER APPROACHES TO PATTERN DESCRIPTION 186

That is, it’s no easier to write a formula φ for a spatial pattern T then it is to use the local feature invariance
approach, and in fact, usually much more laborious. In fact, the local feature invariance approach might be
thought of as an easy way to generate logical formulas, in which the set-theoretic abstract of the logic can
be forgotten. Perhaps for more complicated logics describing more sophisticated patterns the full logical
approach will be useful.3 Logic descriptions can be useful in describing other self-organizing goal spaces
[16].

3And then, the question becomes: Will the locality results still hold for the more complicated logics? After all, not all meaningful
logical concepts are local. For instance, the concept of “connectedness” is nonlocal. There is no way to use local conditions, and
therefore, first-order logic, to express the condition that the set of agents in configuration with a certain internal state are in a unbroken
consecutive line.

Appendix G

Details of Pattern Space Analysis

G.1 Gross Structure of Pattern Space

It is useful to separate the question in terms of the isomorphism classes of balls described in appendix
§A.1, which broke down into five classes: (i) Central balls, which have size 2r + 1 – and only arise in
configurations of size ≥ 2r + 1; (ii) Left balls, of size between r + 1 and 2r or less – which arise at the left
ends of in configurations of size r + 1 and greater; (iii) Right balls, also of size between r + 1 and 2r or less
– arising at the right end of configurations of size r + 1 and greater; (iv) Small central balls, arising at the
center of configurations of size between r+ 1 and 2r− 1; and (v) small balls, of size between 1 and r, arising
as configurations of size less than r.

Let’s focus for a moment on the central balls. They are equivalent to m-ary sequences of length 2r + 1.
Recall in §7.1, we defined the DeBruijn graph DB(n,m) to be the directed edge-labeled graph

(Vn,m,En,m),

whose nodes Vn,m are [m]n, the m-ary sequences of length n, and whose edges are

En,m = {(vi, v j, k) ∈ V(n,m) × V(n,m) × [m]|v j = (vi(2), vi(3), . . . , vi(n), k)}.

It is immediately apparent from the definition that:

Dcentral(r,m) = DB(2r + 1,m),

i.e. when we just focus on central balls D(r,m) reduces to the DeBruijn graph. Now, what about the rest?
Let’s add in just left and right balls of size exactly 2r, i.e. considering nodes in

Bcentral(r) ∪ Ble f t,2r)(r) ∪ Bright,2r(r).

What are the induced edges on this? A left ball of size 2r consists of a pair (x, (r, ?)) where x is any m-ary
sequence of length 2r, while a right ball consists of (x, (r + 1, ?)). The only edges incident on a left ball are
not from right balls or central balls, so we need only focus on out-going edges. There are m outgoing edges
to the nodes (xi, (r + 1, ?)) in Bcentral(r). There is also an edge to (x, (r + 1, ?)), the right ball with the same
underlying sequence. Similarly, the only incident edges on a right ball (x, (r + 1, ?)) are the left ball wit the
same underlying sequence, and the m edges from (ix, (r + 1, ?).

Thus, the structure looks like:

187

APPENDIX G. DETAILS OF PATTERN SPACE ANALYSIS 188

DB

Now, we add in the left and right balls, and small central balls, of size exactly 2r − 1. Each left 2r − 1 ball
(x, (r − 1, ?)) has

• m left-end balls of size 2r, i.e. (xi, (r, ?))

• 1 small central ball of size 2r − 1, i.e. (x, (r + 1, ?)).

• no incoming edges from any central or right-end balls or left-end balls of size 2r − 1 or greater.

Each small central 2r − 1 ball (x, (r + 1, ?)) has:

• one incoming edge from a left-end ball (account for above)

• one outgoing edge to a right-end ball (x, (r + 1, ?)).

• No other edges, whatsoever

Each right-end ball of size 2r − 1 (x, (r + 2, ?)) has:

• one incoming edge from a small central ball (accounted for above)

• m incoming edges from right-end balls (ix, (r + 1, ?)) of size 2r

• no outgoing edges to any central, left-end balls or right-end balls of size 2r − 1 or greater.

Hence, the picture is now:

DB

Repeating this same computation r − 2 more times, exhausts all the balls except for the very small balls.
These fit into line graphs that are not connected to the main body of the graph. Hence, overall we have:

APPENDIX G. DETAILS OF PATTERN SPACE ANALYSIS 189

DB

In summary,D(r,m):

• Has one strongly connected component, namely the copy of DB(n,m) corresponding to the m2r+1

central balls.

• Has 1+
∑r

i=1 mi = (mr+1
−1)/(m−1) connected components, one for the main component and the others

for each of the small balls.

• All nodes in the strongly connected component have indegree and out-degree m.

• All nonterminal nodes corresponding to left-end balls have indegree 1 and out-degree m + 1.

• All nonterminal nodes corresponding to right-end balls have indegree m + 1 and outdegree 1.

• All nodes corresponding to small central or very small balls are belong to a single weakly connected
component, having indegree and outdegree 1.

• Initial nodes (with indegree 0) correspond to left-most balls with the ? at position 1, and terminal
nodes to right-most balls b with the ? at position |b|.

G.2 Proof of Prop. 40

Proof: Suppose C1 and C2 are k-flat cycles in DB(n,m) such that d = dist(C1,C2) ≥ k + 1. Let x ∈ C1, y ∈ C2
be points of closest approach, and let y′ = pd−1(y,C2). Notice that d ≤ n. Let C′1 and C′2 be cycles in
DB(n − k + 1,m) such that C1 = γk−1(C′1) and C2 = γk−1(C′2) (which we know exist and are unique by the
second part of proposition 39). C′1 and C′2 are 1-flat, i.e. irreducible, and d′ = dist(C1,C2) = d − k + 1 ≥ 2. If
we could prove the result just for irreducible cycles (i.e. the k = 1 case), then we’d have that C′1 }

a
b C′2 is an

irreducible cycle, where x = γk−1
C′1

(a) and y′ = pd−1(y,C2) = γk−1
C′2

(b). But then since γ commutes with +, by the
first part of proposition 39, we have

γk−1(C′1 }
a
b C′2) = C1 }

x
y′ C2

is a k-flat cycle, as desired.
We must now show the k = 1 case. Let C1 and C2 be two irreducible cycles of DB(n,m) such that

d(C1,C2) > 1, with x, y, and y′ defined as above. Then there is a path α from x to y with |α| = d and a path β
from y′ = pd(y∗,C2) to x′ = cd(x∗,C1) of length d as constructed in corollary 4. Now, there are three cases:

Case (i): d ≤ min(|C1|, |C2|). In this case, our operation is given by:

C1 }
x
y′ C2 = C1(x′ : x) ◦ α ◦ C2(y : y′) ◦ β.

Graphically, this is the situation illustrated in figure 7.9.
Now, for any set X ⊂ DB let N1(X) = {y ∈ DB|∃x ∈ X|p(y) = p(x)}. Since α(1) = x, irreducibility of C1

implies N1(α(1)) ∩ C1 = {x} and dist(C1,C2) > 1 implies N1(α(1)) ∩ C2 = ∅. Analogously, since α(|α|) = y,

APPENDIX G. DETAILS OF PATTERN SPACE ANALYSIS 190

N1(α(|α|)) ∩ (C1 ∪ C2) = {y∗}. Then suppose z ∈ N1(α(i)) ∩ (C1 ∪ C2) for 2 ≤ i ≤ |α| − 1. Then if z ∈ C2, the
path α(1 : i − 1) ◦ z is a path of length i < |α| = d from x to z, contradicting the minimality of d. On the other
hand, if z ∈ C1 then z ∈ Pd−i(y), yielding a path of length d − i from C2 to C1, which by the previous lemma
is a contradiction to minimality. Thus:

N1(α) ∩ (C1 ∪ C2) = {x, y}.

For the same reasons, the path β satisfies

N1(β) ∩ (C1 ∪ C2) = {y′, x′}.

Finally, N1(α) ∩ N1(β) = ∅. To see this, suppose otherwise. If (α(i), β(j)) is a valid edge in DB(n,m); then
(β(j − 1), α(j + 1)) is also a valid edge. Hence α′ = α(1 : i) ◦ β(j : d) and β′ = β(1 : j − 1) ◦ α(i + 1 : d) are paths
from from x to cd(x,C1), and pd(y,C2) to y, respectively. Obviously

|α′| + |β′| = |α| + |β| = d + d = 2d.

On the other hand, because C1 and C2 are irreducible cycles of length > d, the paths C1(x : x′) and C2(y′ : y)
are acyclic, and because d ≤ n, these must be the unique shortest paths by proposition 37 part i. Hence
|α′| > d and |β′| > d which contradicts |α′| + |β′| = 2d. Putting all this together, yields that C1 }x

y′ C2 is an
irreducible cycle.

Case (ii): min(|C1|, |C2) < d ≤ max(|C1|, |C2|). Then suppose wlog that |C1| > |C2|. Then note that
dist(x∗, β(d−|C2|)) = d. So let y1 = β(d−|C2|) and defineα1 = sp(x∗, y1). Note that |α1| = d and N1(α1)∩(C1∪C2) =
{x∗} by similar arguments as above. In this case,

C1 }
x
y′ C2 = C1(cd(x∗,C1) : x∗) ◦ α1 ◦ β(y1 : cd(x∗,C1))

which is an irreducible cycle of length |C1(cd(x∗,C1) : x∗)|+|α1|+|β(y1 : cd(x∗,C1))| = |C1|−d+d+|C2| = |C1|+|C2|.
Case (iii): Suppose d > min(|C1|, |C2|). Retaining the definitions of y1 and α1 as above, now define

x1 = α1(d − |C1|) and β1 = sp(pd(y∗,C2), x1). Again, N1(β1) ∩ (C1 ∪ C2) = {pd(y∗,C2)} and |β1| = d. Repeating
these steps, we recursively define

yi = βi−1(d − |C2|); αi = sp(x∗, yi); xi = αi(d − |C1|); βi = sp(pd(y∗,C2), xi)

noting that in each case |αi| = |βi| = d and

N1(αi) ∩ (C1 ∪ C2) = {x∗}, N1(βi) ∩ (C1 ∪ C2) = {pd(y∗,C2)},

preserving irreducibility at each step. Now applying the second part of proposition 38 inductively to αi and
βi, to get (from the equality)

βi+1(1 : 1 + |C1| + i(|C1| + |C2|)) = βi(1 : 1 + |C1| + i(|C1| + |C2|))

and
βi+1(2 + |C1| + i(|C1| + |C2|)) , βi(2 + |C1| + i(|C1| + |C2|))

whenever i < bd/(|C1| + |C2|)c and

αi+1(1 : 2 + (i + 1)(|C1| + |C2|)) = αi(1 : 2 + (i + 1)(|C1| + |C2|),

and
αi+1(3 + (i + 1)(|C1| + |C2|)) , αi(3 + (i + 1)(|C1| + |C2|))

whenever i < bd/(|C1| + |C2|)c − 1. Hence for i∗ = bd/(|C1| + |C2|)c, αi∗+1 = αi∗ and βi∗+1 = βi∗ , implying that
αi∗ (d) = βi∗ (d − |C2|) and βi∗ (d) = αi∗ (d − |C1|). Thus,

C1 }
x
y′ C2 = αi∗ (d − |C1| : d − 1) ◦ βi∗ (d − |C2| : d − 1).

Since irreducibility is preserved at each step, this is an irreducible cycle of length |C1| + |C2|. �
Notice that by construction N1(C1 }x

y′ C2) ∩ (C1 ∪ C2) ⊂ {x, y′}.

APPENDIX G. DETAILS OF PATTERN SPACE ANALYSIS 191

G.3 Proof of Prop. 43

Proof: We need only construct irreducible cycles of all sizes between 1 and mn−1, for then we can apply γ.
To prove this, it will be useful to have the following:

Lemma 6 If C is an irreducible cycle in DB, then there is an irreducible cycle of length |mn−1
| − |C|.

Proof: (of lemma) If |C| = |mn−1, then the result is trivial. Thus, assume |C| < |mn−1
|, and let Cbig be an

irreducible cycle of size mn−1, which exists as per proposition 42. Of course, C * Cbig, since any irreducible
cycle cannot contain any other cycle properly.

First let’s suppose |C ∩ Cbig
| = |C| − 1, i.e. all but one element of C – call it x – are in Cbig. Let xp be the

unique element of P(x)∩Cbig and xc the unique element of C(x)∩Cbig. Then xc, xp ∈ C. Let y = p(xc,Cbig) and
z = c(xp,Cbig). x is the sibling of z and let x′ be the sibling of y. Now let D = (Cbig

\ {y, z}) ∪ {x, x′}. This is
essentially the inverse of the operation done in proposition 42. For this reason, D is easily seen to be union
to two disconnected components, one of which contains, and thus is equal to, C. For that reason, the other
component of D is of size |Cbig

| − |C| = mn−1
− |C|, proving the desired result.

Now suppose that |C∩Cbig
| = |C| −2, i.e. Cbig is missing two elements of C. If the two gaps are separated,

i.e. not consecutive, fill in one at a time as in the previous case. This will result in a final D of with three
disconnected irreducible components, C∪C1∪C2, such that |C|+ |C1|+ |C2| = mn−1. But then apply corollary
8 to D \ C to get a single irreducible cycle of size |C1| + |C2| = mn−1

− |C| as desired. On the other hand if
the two missing elements of C are consecutive, then a similar cut procedure can be done – except now the
result will, like the case of one missing element, be two components, one of which is C and other of which
has size mn−1

− |C|.
The case of several missing elements is a straightforward generalization. �
In light of the lemma, we need only prove the existence of irreducible cycles of all sizes between 1 and

mn−2. So now consider the set H0 consisting of the nodes whose numbers have residue 1 modulo m. In
terms of m-ary sequences, H0 = {ixi|x ∈ [m]n−2

}. The edges in H0 are (i jxi) → (jxi j). Thus, for y = ixi ∈ H0
the sequence of edges specified by reading off the digits of ix are valid in H0. But therefore the connected
component containing y also contains (y1y2 . . . yn−1y1), (y2y3 . . . yn−1y1y2), . . ., and (yn−1y1 . . . yn−2yn−1); and
infact, this is the whole connected component, comprising a loop of length n. If y = (z1, . . . zl)k for kl = n− 1,
then the length of underlying cycle is l. Hence the sizes of the connected components of H0 are all divisors
of n − 1, and every divisor of n − 1 is represented as the size of least one component of H0.

Recall the loops ti which had length i, for i < n. If i is a divisor of n − 1, then ti is a component of H0. If i
is not a divisor of n− 1, then it is connected to precisely two components in H0, both of length n− 1. Modify
H0 by removing these two components and replacing them with ti. The result, which we’ll denote H1, is a
set of irreducible cycles whose mutual distances are at least 2, all of whose sizes are at most n − 1, and all
sizes i ≤ n − 1 are representing. The total number of nodes in H1 is

mn−1
− 2(n − 1)ψ(n − 1) +

∑
d-n−1

d,

where ψ(n) is the number of integers between 1 and n not dividing n.
Now, let A = {a1, a2, . . . , aN} is a finite multiset of natural numbers ≤ l, i.e. a collection of numbers in [l]

such that any element might appear several times. Then if each i ∈ [l] is represented at least once in A, any
number less than (or equal to)

∑
A =

∑
i ai can be written as a sum of elements of A. Notice that for all n,m

except for the case n = 6,m = 2,
2(n − 1)ψ(n − 1) −

∑
d-n−1

d ≤ mn−2.

Thus, in all cases except n = 6,m = 2, the sizes of H1 are a multiset in which all elements are at most n − 1,
all i ≤ n − 1 appear at least once, and the total sum is bigger than mn−2. Hence applying proposition 8, we
are done except for the case n = 6,m = 2.

In the case n = 6 and m = 2, we must make irreducible cycles of size 16 of less. The cycles ti, i = 1, 2, 3, 4, 5,
combine to produce irreducible cycles of all sizes up to 1 + 2 + 4 + 5 = 15; since there is a hamiltonian cycle
H in DB(5, 2), which has size 16, γ(H) is an irreducible cycle of size 16 in DB(6, 2). �

APPENDIX G. DETAILS OF PATTERN SPACE ANALYSIS 192

G.4 Proof of Prop. 45

Proof: We need only compute N(n,m), the number of hamiltonian cycles in DB(n,m) and apply γ.
The m = 2 case is representative, and is simpler to describe. DB(n, 2) is pair of trees (figure G.1). Now,

suppose D is a hamiltonian cycle in DB(n, 2) (red arrows in figure G.1 A). Our overall strategy is: i) show
that the hamiltonian cycles in DB(n, 2) are in 1-1 correspondence with irreducible covers of DB(n, 2); ii) then,
given any irreducible cover I of DB(n, 2) we turn it into a 1-dispersed covering of DB(n+1, 2,) by applying γ;
we build 22n

−1 distinct hamiltonian cycles around each 1-dispersed covering; iii) this establishes a recursive
relationship for N(n, 2) in terms of N(n − 1, 2).

Step i): To make an irreducible cover from a hamiltonian cycle H, first cut the self-loop node off the cycle
by removing the edges (1, 2) and (2n, 1) and replacing with (1, 1) and (2n, 2). The resulting object H1 is a
disjoint covering with two elements: the self-loop, and everything else. Now, move on to node 2, which is
connected either to node 3 or to node 4. Let c2 denote which one, i.e. c2 = c(2,H1), the child of node 2 in H1.
Let c′2 be the other child, the one not connected to 2. Let y2 = p(c′2,H1), the parent of c′2. Remove the edges
(2, c2) and (y2, c′2) and replace with (2, c′2) and (y2, c2). The resulting object H2 is a disjoint cover with three
elements. (See figure G.1 B). What we’ve been doing in these cuts is applying }−1, the inverse of the sum
operation.

To continue this process in general, suppose we’ve made i cuts, forming Hi, a disjoint cover with i + 1
components. Let cp(x,Hi) denote the component of x in Hi. Find the first (with respect to the numbering)
node xi+1 ∈ Hi such that both children in C(xi) are in the same component, i.e. if we write C(xi+1) = {c1

i+1, c
2
i+1},

then cp(c1
i+1,Hi) = cp(c2

i+1,Hi). Let ci+1 = c(xi,Hi) and c′i+1 be the unique element of C(xi) − {ci+1}. Let
pi+1 = p(c′i+1,Hi). Then let

Hi+1 = Hi − {(xi+1, ci+1), {(pi+1, c′i+1)} + {(xi+1, c′i+1), {(pi+1, ci+1)}

so that
Hi = Hi+1 − (cp(xi+1,Hi+1) ∪ cp(ci+1,Hi+1)) + cp(xi+1,Hi+1) }xi+1

pi+1
cp(ci+1,Hi+1).

Repeat the above steps until the end of the first tree has been reached, producing the cover I(H) (see
figure G.1 C). I(H) has no remaining point both of whose chidren are in the same component, and so is
an irreducible cover. The process as described is evidently reversible, showing that hamiltonian cycles in
DB(n, 2) are equivalent to irreducible covers of DB(n, 2).

Step ii): γ(I(H)) is a 1-dispersed cover of DB(n, 2) whose elements are 2-flat cycles (see figure G.2 A).
Define a disjoint cover D of DB(n, 2) according to the following procedure:

• On the nodes in the main body the first tree, let D simply replicate the edges implied by γ(I) (green
edges in figure G.2B).

• On the nodes in the main body of the second tree, let children for each tree be chosen arbitrarily (red
edges in figure G.2B).

• The leaf edges are now determined by disjointness (purple edges in figure G.2B).

• The resulting object D may have several disjoint cycles (figure G.3A). Consider the leaf-nodes in the
second tree that map to leaf nodes in the first tree, call the set L′. All of the cycles in D are accessible
by edges from L′. Pick the the first node (lowest number) x1 in L′ such that the two children of x1 are
in different components. Let c1 = c(x1,D) and c′1 be the other child of x1 and p1 = p(c′1,D), and now
sum at (x1, p1), i.e.

D1 = D − (cp(x1,D) ∪ cp(p1,D)) + cp(x1,D) }x1
P1

cp(p1,D).

Now find the next node x2 in L′ whose children are different components, and sum. Repeat this
process until one component remains, a hamiltonian cycle (figure G.3B).

In the four items above, there was choice only the in the second step. Since there are 2n−1 nodes in the
main body of the second tree, and each non-self-loop node has 2 possible choices (while the self-loop node
has 1), there are a total of 22n−1

−1 ensemble choices. Denote the ensemble choice u, and D(I,u) the hamiltonian
cycle the results from the above procedure.

APPENDIX G. DETAILS OF PATTERN SPACE ANALYSIS 193

Step iii:) The hamiltonian cycle D(I,u) determines I and u uniquely. On the one hand, the edges in the
main tree body of the second tree, D(I,u) simple is equal to the edges chosen in u; hence u can be read off
directly. On the other hand, the edges in the top n − 1 rows of D(I,u) are equal to the edges implied by γ(I),
while the edges between the n − 1st and nth row may have changed in order to accommodate the sums in
step 4 of the construction procedure. Call the the top n − 1 rows Tn−1. No image γ(I) will contain node 2, so
whichever node is not pointed to by 2 is the top node in γ(I) – and by excluding neighbors, all the nodes in
Tn−1 ∩ γ(I) can be determined. The key thing is that these nodes actually uniquely determine I itself. Ths is
because Tn−1 ∩ γ(I) determines the edges of I in the entire first tree of the DB(n − 1,m) (a node in DB(n,m)
determines an edge in DB(n − 1,m) under γ−1), and the requirement of irreducibility determines the rest of
the edges).

Hence for each hamiltonian cycle H of DB(n − 1, 2) and each choice ensemble u, D(I(H),u) is a distinct
hamiltonian cycle of DB(n, 2). This means that there are 22n−2

−1 distinct hamiltonian cycles of DB(n, 2) for
each one in DB(n − 1, 2), and thus:

N(n, 2) = 22n−2
−1N(n − 1, 2) = 22n−1

−nN(2, 2) = 22n−1
−n

as claimed. Having seen the m = 2 case, the general case is similar. �

APPENDIX G. DETAILS OF PATTERN SPACE ANALYSIS 194

B)
A)

C)

Fi
gu

re
G

.1
:

A
)D

B(
5,

2)
w

it
h

ed
ge

s
of

ha
m

ilt
on

ia
n

cy
cl

e
hi

gh
lig

ht
ed

in
re

d.
B)

Fi
rs

tt
w

o
st

ep
s

of
pr

oc
es

s
co

nv
er

ti
ng

ha
m

ilt
on

ia
n

cy
cl

e
to

ir
re

du
ci

bl
e

co
ve

r.
C

)C
om

pl
et

ed
ir

re
du

ci
bl

e
cy

cl
e

re
su

lt
in

g
fr

om
ha

m
ilt

on
ia

n
cy

cl
e

sh
ow

n
in

A
).

APPENDIX G. DETAILS OF PATTERN SPACE ANALYSIS 195

B)

45

64
63

62
61

60
57

58
59

46
47

48

39
40

36

34

9

24
23

22
21

20
17

18
19

10
11

12

5
6

3

2

13

32
31

30
29

28
25

26
27

14
15

16

7
8

4

44

49
50

51
52

53
56

55
54

43
42

41

38
37

35

1 33

45

64
63

62
61

60
57

58
59

46
47

48

39
40

36

34

9

24
23

22
21

20
17

18
19

10
11

12

5
6

3

2

13

32
31

30
29

28
25

26
27

14
15

16

7
8

4

44

49
50

51
52

53
56

55
54

43
42

41

38
37

35

1 33

Fi
gu

re
G

.2
:

A
)E

m
be

dd
in

g
of

ir
re

du
ci

bl
e

co
ve

r
in

fig
ur

e
G

.1
C

)a
s

1-
di

sp
er

se
d

co
ve

r
of

D
B(

6,
2)

,w
it

h
2-

fla
tc

yc
le

s.
B)

R
es

ul
to

fc
ho

os
in

g
ed

ge
s

in
bo

tt
om

tr
ee

ar
bi

tr
ar

ily
(r

ed
ed

ge
s)

,
an

d
fil

lin
g

in
le

af
no

de
s

to
m

ai
nt

ai
n

di
sj

oi
nt

ne
ss

(p
ur

pl
e

ed
ge

s)
.

APPENDIX G. DETAILS OF PATTERN SPACE ANALYSIS 196

45

64
63

62
61

60
57

58
59

46
47

48

39
40

36

34

9

24
23

22
21

20
17

18
19

10
11

12

5
6

3

2

13

32
31

30
29

28
25

26
27

14
15

16

7
8

4

44

49
50

51
52

53
56

55
54

43
42

41

38
37

35

1 33

45

64
63

62
61

60
57

58
59

46
47

48

39
40

36

34

9

24
23

22
21

20
17

18
19

10
11

12

5
6

3

2

13

32
31

30
29

28
25

26
27

14
15

16

7
8

4

44

49
50

51
52

53
56

55
54

43
42

41

38
37

35

1 33

B)

Fi
gu

re
G

.3
:

A
)C

om
po

ne
nt

s
re

su
lt

in
g

fr
om

ed
ge

ch
oi

ce
s

in
fig

ur
e

G
.2

B)
.B

)H
am

ilt
on

ia
n

cy
cl

e
re

su
lt

in
g

fr
om

co
nn

ec
ti

ng
al

on
g

le
af

-l
ea

fe
dg

es
fr

om
bo

tt
om

to
to

p.
Br

ig
ht

bl
ue

ed
ge

s
sh

ow
ed

ge
s

ch
an

ge
d.

Appendix H

Drosphila Regulatory Networks

H.1 The Chao-Tang Model

The Chao-Tang model of the Drosophila melanogaster Segment Polarity Network [24] has the following
components:

• Engrailed protein (square node labeled En) and mRNA (ellipse labeled en)

• Mid protein and mRNA

• Sloppy (Slp) protein and mRNA.

• Wingless (Wg) protein and mRNA

• Hedgehog (Hh) protein and mRNA

• Cubitus interruptus (CI) protein and mRNA,

• and cubitus interruptus fragment (CN).

Cubitus interruptus is produced basally, i.e. automatically without stimulation; whereas all other
substances in the network are only produced if induced by some other substance in the network. All
substances are degraded with first-order degradation processes. The interactions between components
may are taken to be:

• The mRNA molecules induce production of associated proteins.

• Engrailed protein induces production of hedgehog mRNA.

• Engrailed protein inhibits product of cubitus interruptus mRNA.

• Hedgehog protein from a neighboring cell inhibits the cleavae of Cubitus interruptus protein into CN.

• Cubitus interruptus protein induces production of wingless mRNA.

• Cubitus interruptus repressor fragment inhibits production of wingless mRNA.

• Wingless protein from a neighboring cell induces production of engrailed and sloppy mRNAs.

• Mid protein inhibits production of wingless mRNA.

• Sloppy protein inbitis production of mid mRNA.

197

APPENDIX H. DROSPHILA REGULATORY NETWORKS 198

This model is summarized by the following regulatory network:

cell
i

cell
i+1

PROTEIN

mRNA

Positive
Up-Regulation

Negative
Down-Regulationmid MID

slpSLP

en

wg

CN CI ci

hh

WG

WG

HH HH
Basal

Production

cell
i-1
WG

HH

EN

Figure H.1: The Chao-Tang SPN model network graph.

This network contains links between its own nodes, representing intra-cellular interactions, as well as
links between nodes of other “copies” of the same graph, representing inter-cellular interactions.

Such a model can be captured mathematically in some generality. Let [A]i denote the concentration of
subtance A in cell i at time t. Let

[A − na]i =
[A]i−1 + [A]i+1

2
denote the average of subtance A’s concentration values from neighboring cells to cell i. Then the ODE
equations corresponding to Chao-Tang model are generated according to the rules:

• First order degradation processes are represented by terms of the form:

d[A]i

dt
= −

1
τA

[A] (H.1)

where τA is the half-life of the substance.

• The (positive) induction of substance B by substance A from the same cell is represented by:

d[B]i

dt
=

1
τB

[A]nAB
i

[A]nAB
i + knAB

AB

(H.2)

where nAB is the cooperative coefficient for the interaction and kAB is the reaction rate (these are,
theoretically, biologically measurable parameters).

• The (negative) inhibition of substance B by substance A from the same cell is represented by

d[B]i

dt
=

1
τB

knAB
AB

[A]nAB
i + knAB

AB

(H.3)

• The induction/inhibition of substance B by substance A from neighboring cells is represented by
replacing [A] with [A − na] in eqs. H.3 and H.2, respective.

• When multiple interactions impinge on the same component, the effect is multiplicative, e.g. if A
inhibits C and B induces C, then:

d[C]i

dt
=

1
τC

knAC
AC

[A]nAC + knAC
AC

·
[B]nBC

i

[B]nBC
i + knBC

BC

(H.4)

APPENDIX H. DROSPHILA REGULATORY NETWORKS 199

For example, the evolution of sloppy mRNA from the interaction model described above generated by these
rules is:

d[slp]i

dt
=

1
τslp

 [Wg − na]nWg−slp

i

[Wg − na]nWg−slp

i + knWg−slp

Wg−slp

·

knEn−slp

En−slp

[En]nEn−slp

i + knEn−slp

En−slp

− [slp]i

 .
The result of the choice in eq. H.4 to model multiple interactions as multiplicative is to “prefer” inhibitions
over inductions, i.e. when an inhibitory link is active, it will overwhelm active inductive links. In terms of
circuit logic, this says that multiple interactions coming into a node are always interpreted as AND gates.

The five above rules described in equations H.1-H.4 can be applied more generally than just to the specific
network structure of the Segment Polarity Network described above. Given any network graph G, and
associated parameters ni j, ki j, there an the associated model of ODEs. Let’s call this the “Chao-Tang-form
model associated with G, ni j, ki j”, and denote it F(G, (ni j, ki j)).

H.2 Analysis

A simple observation about the Chao-Tang-form models is that substances that only interact with themselves
within the cell or respond to the concentrations of the same substance in neighboring cells only have at
most one spatially uniform stable fixed point configuration. Suppose A were such a substance, and wlog
suppose one spatially uniform stable fixed point is the 0 point. Then, the ODE describing it is either of the
form

d[A]
dt
= K1

[A]n

[A]n + Kn
2

Km
3

[A − na]m + Km
3
− K4[A]

or
d[A]

dt
= K1

[A − na]n

[A − na]n + Kn
2

Km
3

[A]m + Km
3
− K4[A]

where K1−4 are positive constants and n,m ≥ 1. In the former case, there would have to be some ε > 0 that
for all a ∈ [0, ε] that

K1

an + Kn
2

Km
3

am + Km
3
< K4an−1.

But then K4 ≥ K1/Kn
2 , which makes 0 a global basin of attraction. The latter case is analyzed similarly.

A more sophisticated and general type of analysis is possible. LetG denote a network graph (as in fig. H.1).
Let a real configuration Y with n cells over G denote a function Y whose arguments are pairs (i,A), assigning
the numerical concentration value for substance A ∈ G in cell i. Formally, Y is a function Y : [n]×G → <≥0,
where [n] = {1, . . . ,n}. A binary configuration with n cells is a function X : [n] × G → {0, 1}. Given a threshold
ε > 0, define the ε-thresholding of real configuration Y, denoted Yε, to be the binary configuration given by
Yε(i,A) = 0 if X(i,A) < ε and 1 otherwise.

Given a network graph G, and a binary configuration X over G, we say X is consistent with G if for all cells i
and and nodes A, X(i,A) = 1 if and only if

• There is at least one cell j neighboring i (or j = i) and one substance B in j such that X(j,B) = 1 and
(j,B) is linked by a inductive edge to (i,A).

• There are no j,B such that X(j,B) = 1 and (j,B) is linked by an inhibitory edge to (i,A).

The key point is that:

Proposition 51 Given a network graph G and ε > 0, there is an open set Ω(G, ε) in parameters space such that for
each q ∈ Ω(G, ε), the associated Chao-Tang-form model F(G, q) satisfies:

• A real configuration Y (of whatever number of cells) can only be a stable fixed point of F(G, q) whenever Yε is
consistent with G; and

APPENDIX H. DROSPHILA REGULATORY NETWORKS 200

• For every binary configuration X consistent with G, there is a stable fixed-point configuration Y of F(G, q) such
that Yε = X.

The proof of this result is a straightforward induction on the number of nodes and edges in G. Now, the
“pathway” identified in §8.2.3 is a periodic binary configuration that is consistent with the network shown
in figure H.1 (for any number of cells). Hence, there is a nontrivial parameter regime for the Chao-Tang
segment-polarity model on which it corresponds to a stable fixed point.

