Stochastic Differential Equations

Poisson Processes

- The Tao of ODEs
- The Tao of Stochastic

Processes

- The Basic Object: Poisson Counter
- The Poisson Counter
- The Poisson Counter
- Statistics of the Poisson

Counter

- Statistics of the Poisson

Counter

- Statistics of the Poisson

Counter

- Another representation
- Poisson Processes
- Calculus for Poisson

Processes

- Calculus for Poisson

Processes
Calculus for Poisson
Processes

- Using Ito Calculus
- FSCTJPs
- Poisson Counters and

FSCTJPs

- A PDE for the Distribution
- A PDE for the Distribution
- A PDE for the Distribution
- Where to go from here?

Wiener Processes and Brownian Motions

Poisson Processes

The Tao of ODEs

Poisson Processes

- The Tao of ODEs

You get told:

The Tao of ODEs

Poisson Processes

- The Tao of ODEs

You get told:

$$
x \in \mathbb{R}^{n}
$$

The Tao of ODEs

Poisson Processes

- The Tao of ODEs

- The Tao of Stochastic

Processes

- The Basic Object: Poisson Counter
- The Poisson Counter
- The Poisson Counter
- Statistics of the Poisson Counter
- Statistics of the Poisson Counter
- Statistics of the Poisson

Counter

- Another representation
- Poisson Processes
- Calculus for Poisson

Processes

- Calculus for Poisson

Processes

- Calculus for Poisson

Processes

- Using Ito Calculus
- FSCTJPs
- Poisson Counters and

FSCTJPs

- A PDE for the Distribution
- A PDE for the Distribution
- A PDE for the Distribution
- Where to go from here?

Wiener Processes and Brownian Motions

The Tao of ODEs

Poisson Processes

- The Tao of ODEs

- The Tao of Stochastic

Processes

- The Basic Object: Poisson Counter
- The Poisson Counter
- The Poisson Counter
- Statistics of the Poisson Counter
- Statistics of the Poisson Counter
- Statistics of the Poisson Counter - Another representation
- Poisson Processes
- Calculus for Poisson

Processes

- Calculus for Poisson

Processes
Calculus for Poisson
Processes

- Using Ito Calculus
- FSCTJPs
- Poisson Counters and FSCTJPs
- A PDE for the Distribution
- A PDE for the Distribution
- A PDE for the Distribution
- Where to go from here?

Wiener Processes and Brownian Motions

You get told:

$$
\mathscr{x} \in \mathbb{R}^{n}
$$

Fix x_{0} and a dynamical equation

$$
\frac{d x}{d t}=f(x) .
$$

The Tao of ODEs

Poisson Processes

- The Tao of ODEs

- The Tao of Stochastic

Processes

- The Basic Object: Poisson Counter
- The Poisson Counter
- The Poisson Counter
- Statistics of the Poisson Counter
- Statistics of the Poisson Counter
- Statistics of the Poisson Counter
- Another representation
- Poisson Processes
- Calculus for Poisson

Processes

- Calculus for Poisson

Calculus for Poisson
Processes

- Using Ito Calculus
- FSCTJPs
- Poisson Counters and FSCTJPs
- A PDE for the Distribution
- A PDE for the Distribution
- A PDE for the Distribution
- Where to go from here?

You get told:

$$
x \in \mathbb{R}^{n},
$$

Fix x_{0} and a dynamical equation

$$
\frac{d x}{d t}=f(x) .
$$

Then you quote an Existence and Uniqueness theorem.

The Tao of ODEs

Poisson Processes

- The Tao of ODEs

- The Tao of Stochastic

Processes

- The Basic Object: Poisson Counter
- The Poisson Counter
- The Poisson Counter
- Statistics of the Poisson Counter
- Statistics of the Poisson Counter
- Statistics of the Poisson Counter - Another representation
- Poisson Processes
- Calculus for Poisson

Processes

- Calculus for Poisson

Calculus for Poisson
Processes

- Using Ito Calculus
- FSCTJPs
- Poisson Counters and FSCTJPs
- A PDE for the Distribution
- A PDE for the Distribution
- A PDE for the Distribution
- Where to go from here?

Wiener Processes and Brownian Motions

You get told:

$$
x \in \mathbb{R}^{n},
$$

Fix x_{0} and a dynamical equation

$$
\frac{d x}{d t}=f(x) .
$$

Then you quote an Existence and Uniqueness theorem.
Lo and behold, a trajectory!

$$
x(t)=g\left(t, x_{0}\right)
$$

The Tao of ODEs

Poisson Processes

- The Tao of ODEs

- The Tao of Stochastic

Processes

- The Basic Object: Poisson Counter
- The Poisson Counter
- The Poisson Counter
- Statistics of the Poisson Counter
- Statistics of the Poisson Counter
- Statistics of the Poisson Counter - Another representation
- Poisson Processes
- Calculus for Poisson

Processes

- Calculus for Poisson
- Calculus for Poisson

Processes

- Using Ito Calculus
- FSCTJPs
- Poisson Counters and

FSCTJPs

- A PDE for the Distribution
- A PDE for the Distribution
- A PDE for the Distribution
- Where to go from here?

Wiener Processes and Brownian Motions

You get told:

$$
x \in \mathbb{R}^{n},
$$

Fix x_{0} and a dynamical equation

$$
\frac{d x}{d t}=f(x)
$$

Then you quote an Existence and Uniqueness theorem.
Lo and behold, a trajectory!

$$
x(t)=g\left(t, x_{0}\right)
$$

Underlying it all is calculus, with

The Tao of ODEs

Poisson Processes

- The Tao of ODEs

- The Tao of Stochastic

Processes

- The Basic Object: Poisson Counter
- The Poisson Counter
- The Poisson Counter
- Statistics of the Poisson Counter
- Statistics of the Poisson Counter
- Statistics of the Poisson Counter - Another representation
- Poisson Processes
- Calculus for Poisson

Processes

- Calculus for Poisson

Processes

- Calculus for Poisson

Processes

- Using Ito Calculus
- FSCTJPs
- Poisson Counters and

FSCTJPs

- A PDE for the Distribution
- A PDE for the Distribution
- A PDE for the Distribution
- Where to go from here?

Wiener Processes and Brownian Motions

You get told:

$$
x \in \mathbb{R}^{n},
$$

Fix x_{0} and a dynamical equation

$$
\frac{d x}{d t}=f(x) .
$$

Then you quote an Existence and Uniqueness theorem.
Lo and behold, a trajectory!

$$
x(t)=g\left(t, x_{0}\right)
$$

Underlying it all is calculus, with

- The Leibniz Rule.

The Tao of ODEs

Poisson Processes

- The Tao of ODEs

- The Tao of Stochastic

Processes

- The Basic Object: Poisson Counter
- The Poisson Counter
- The Poisson Counter
- Statistics of the Poisson Counter
- Statistics of the Poisson Counter
- Statistics of the Poisson Counter
- Another representation
- Poisson Processes
- Calculus for Poisson

Processes

- Calculus for Poisson

Processes

- Calculus for Poisson

Processes

- Using Ito Calculus
- FSCTJPs
- Poisson Counters and

FSCTJPs

- A PDE for the Distribution
- A PDE for the Distribution
- A PDE for the Distribution
- Where to go from here?

You get told:

$$
x \in \mathbb{R}^{n},
$$

Fix x_{0} and a dynamical equation

$$
\frac{d x}{d t}=f(x) .
$$

Then you quote an Existence and Uniqueness theorem.
Lo and behold, a trajectory!

$$
x(t)=g\left(t, x_{0}\right)
$$

Underlying it all is calculus, with

- The Leibniz Rule.
- The Chain rule.

The Tao of ODEs

Poisson Processes

- The Tao of ODEs

- The Tao of Stochastic

Processes

- The Basic Object: Poisson Counter
- The Poisson Counter
- The Poisson Counter
- Statistics of the Poisson Counter
- Statistics of the Poisson Counter
- Statistics of the Poisson Counter
- Another representation
- Poisson Processes
- Calculus for Poisson

Processes

- Calculus for Poisson

Processes
Calculus for Poisson
Processes

- Using Ito Calculus
- FSCTJPs
- Poisson Counters and

FSCTJPs

- A PDE for the Distribution
- A PDE for the Distribution
- A PDE for the Distribution
- Where to go from here?

You get told:

$$
x \in \mathbb{R}^{n},
$$

Fix x_{0} and a dynamical equation

$$
\frac{d x}{d t}=f(x) .
$$

Then you quote an Existence and Uniqueness theorem.
Lo and behold, a trajectory!

$$
x(t)=g\left(t, x_{0}\right)
$$

Underlying it all is calculus, with

- The Leibniz Rule.
- The Chain rule.
- The Fundamental Theorem of Calculus.

The Tao of Stochastic Processes

Poisson Processes

- The Tao of ODEs
- The Tao of Stochastic

Processes
The Basic Object: Poisson
Counter

- The Poisson Counter
- The Poisson Counter
- Statistics of the Poisson

Counter

- Statistics of the Poisson Counter
- Statistics of the Poisson Counter Another representation
- Poisson Processes
- Calculus for Poisson

Processes

- Calculus for Poisson

Processes
Calculus for Poisson
Processes

- Using Ito Calculus
- FSCTJPs
- Poisson Counters and

FSCTJPs

- A PDE for the Distribution
- A PDE for the Distribution
- A PDE for the Distribution

Where to go from here?

Wiener Processes and Brownian Motions

It's all very deterministic.

The Tao of Stochastic Processes

Poisson Processes

- The Tao of ODEs
- The Tao of Stochastic

Processes

- The Basic Object: Poisson

Counter

- The Poisson Counter
- The Poisson Counter
- Statistics of the Poisson

Counter

- Statistics of the Poisson Counter
- Statistics of the Poisson Counter
Another representation
- Poisson Processes
- Calculus for Poisson

Processes

- Calculus for Poisson

Processes
Calculus for Poisson
Processes

- Using Ito Calculus
- FSCTJPs
- Poisson Counters and

FSCTJPs

- A PDE for the Distribution
- A PDE for the Distribution
- A PDE for the Distribution
- Where to go from here?

It's all very deterministic. How do we put noise in?

The Tao of Stochastic Processes

Poisson Processe

The Tao of ODEs

- The Tao of Stochastic

Processes
The Basic Object: Poisson
Counter

- The Poisson Counter
- The Poisson Counter
- Statistics of the Poisson Counter
- Statistics of the Poisson Counter
- Statistics of the Poisson Counter
- Another representation
- Poisson Processes
- Calculus for Poisson

Processes

- Calculus for Poisson

Processes
Calculus for Poisson
Processes

- Using Ito Calculus
- FSCTJPs
- Poisson Counters and FSCTJPs
- A PDE for the Distribution
- A PDE for the Distribution
- A PDE for the Distribution
- Where to go from here?

It's all very deterministic. How do we put noise in?
Can we do something like:

$$
\begin{equation*}
d x=f(x) d t+\text { Noise } \tag{1}
\end{equation*}
$$

And then follow the procedure from before?

The Tao of Stochastic Processes

Poisson Processe

The Tao of ODEs - The Tao of Stochastic

Processes
The Basic Object: Poisson
Counter

- The Poisson Counter
- The Poisson Counter
- Statistics of the Poisson Counter
- Statistics of the Poisson Counter
- Statistics of the Poisson Counter
Another representation
- Poisson Processes
- Calculus for Poisson

Processes

- Calculus for Poisson

Processes
Calculus for Poisson
Processes

- Using Ito Calculus
- FSCTJPs
- Poisson Counters and FSCTJPs - A PDE for the Distribution - A PDE for the Distribution - A PDE for the Distribution - Where to go from here?

It's all very deterministic. How do we put noise in?
Can we do something like:

$$
\begin{equation*}
d x=f(x) d t+\text { Noise } \tag{1}
\end{equation*}
$$

And then follow the procedure from before? No. We will have to:

The Tao of Stochastic Processes

Poisson Processe

The Tao of ODEs

It's all very deterministic. How do we put noise in?
Can we do something like:

$$
\begin{equation*}
d x=f(x) d t+\text { Noise } \tag{1}
\end{equation*}
$$

And then follow the procedure from before? No. We will have to:
■ Make a careful definition of noise and its statistics.

The Tao of Stochastic Processes

It's all very deterministic. How do we put noise in?
Can we do something like:

$$
\begin{equation*}
d x=f(x) d t+\text { Noise } \tag{1}
\end{equation*}
$$

And then follow the procedure from before? No. We will have to:
■ Make a careful definition of noise and its statistics.

- Redo the basic notions of calculus - now stochastically.

The Tao of Stochastic Processes

Poisson Processes

- The Tao of ODEs

It's all very deterministic. How do we put noise in?
Can we do something like:

$$
\begin{equation*}
d x=f(x) d t+\text { Noise } \tag{1}
\end{equation*}
$$

And then follow the procedure from before? No. We will have to:

- Make a careful definition of noise and its statistics.
- Redo the basic notions of calculus - now stochastically.
- Use it to tranform statistical information into deterministic.

The Tao of Stochastic Processes

It's all very deterministic. How do we put noise in?
Can we do something like:

$$
\begin{equation*}
d x=f(x) d t+\text { Noise } \tag{1}
\end{equation*}
$$

And then follow the procedure from before? No. We will have to:

- Make a careful definition of noise and its statistics.
- Redo the basic notions of calculus - now stochastically.
- Use it to tranform statistical information into deterministic.

The GRAND PRINCIPLE: non-deterministic trajectories generated by statistical differential equations should be governed by a deterministic differential equation on the probability density of states.

The Tao of Stochastic Processes

Poisson Processes

- The Tao of ODEs

It's all very deterministic. How do we put noise in?
Can we do something like:

$$
\begin{equation*}
d x=f(x) d t+\text { Noise } \tag{1}
\end{equation*}
$$

And then follow the procedure from before? No. We will have to:

- Make a careful definition of noise and its statistics.
- Redo the basic notions of calculus - now stochastically.
- Use it to tranform statistical information into deterministic.

$$
\begin{equation*}
\frac{\partial \rho}{\partial t}=F(x, t, \text { noise coefficients }) \tag{2}
\end{equation*}
$$

The Tao of Stochastic Processes

It's all very deterministic. How do we put noise in?
Can we do something like:

$$
\begin{equation*}
d x=f(x) d t+\text { Noise } \tag{1}
\end{equation*}
$$

And then follow the procedure from before? No. We will have to:

- Make a careful definition of noise and its statistics.
- Redo the basic notions of calculus - now stochastically.
- Use it to tranform statistical information into deterministic.

The GRAND PRINCIPLE: non-deterministic trajectories generated by statistical differential equations should be governed by a deterministic differential equation on the probability density of states.

The Basic Object: Poisson Counter

- The Tao of ODEs
- The Tao of Stochastic

Processes

- The Basic Object: Poisson

Counter

- The Poisson Counter
- The Poisson Counter
- Statistics of the Poisson Counter
- Statistics of the Poisson Counter
- Statistics of the Poisson Counter - Another representation

We will approach the definition of noisy differential equations through two limiting procedures, one in space and one in time.

The Basic Object: Poisson Counter

- The Tao of ODEs
- The Tao of Stochastic

Processes

Counter

- The Poisson Counter
- The Poisson Counter
- Statistics of the Poisson Counter
- Statistics of the Poisson Counter
- Statistics of the Poisson Counter - Another representation

We will approach the definition of noisy differential equations through two limiting procedures, one in space and one in time.
$N: \mathbb{N} \rightarrow \mathbb{N}$ given by

$$
N_{1}(m)=N_{1}(m-1)+ \begin{cases}1 & \text { with probability } \lambda \\ 0 & \text { with probability } 1-\lambda\end{cases}
$$

with $N(0)=0$.

The Basic Object: Poisson Counter

Poisson Processe

- The Tao of ODEs
- The Tao of Stochastic

Processes

Counter

- The Poisson Counter
- The Poisson Counter

We will approach the definition of noisy differential equations through two limiting procedures, one in space and one in time.
$N: \mathbb{N} \rightarrow \mathbb{N}$ given by

$$
N_{1}(m)=N_{1}(m-1)+ \begin{cases}1 & \text { with probability } \lambda \\ 0 & \text { with probability } 1-\lambda\end{cases}
$$

with $N(0)=0$.

The Basic Object: Poisson Counter

Poisson Processes

- The Tao of ODEs
- The Tao of Stochastic

Processes

Counter

- The Poisson Counter
- The Poisson Counter
- Statistics of the Poisson

Counter

- Statistics of the Poisson

Counter

- Statistics of the Poisson Counter - Another representation

We will approach the definition of noisy differential equations through two limiting procedures, one in space and one in time.
$N: \mathbb{N} \rightarrow \mathbb{N}$ given by

$$
N_{1}(m)=N_{1}(m-1)+ \begin{cases}1 & \text { with probability } \lambda \\ 0 & \text { with probability } 1-\lambda\end{cases}
$$

with $N(0)=0$.
It’s a "Pascal process" (I think) because:

$$
\rho(m, n)=\binom{m}{n} \lambda^{n}(1-\lambda)^{m-n}
$$

The Poisson Counter

Poisson Processes

- The Tao of ODEs
- The Tao of Stochastic

Processes

- The Basic Object: Poisson

Counter - The Poisson Counter

- The Poisson Counter
- Statistics of the Poisson

Counter

- Statistics of the Poisson Counter
- Statistics of the Poisson Counter
- Another representation
- Poisson Processes
- Calculus for Poisson

Processes

- Calculus for Poisson

Processes

- Calculus for Poisson

Processes

- Using Ito Calculus
- FSCTJPs
- Poisson Counters and

FSCTJPs

- A PDE for the Distribution
- A PDE for the Distribution
- A PDE for the Distribution
- Where to go from here?

Wiener Processes and Brownian Motions

Define for each k

$$
N_{k}\left(\frac{m}{k}\right)=N_{k}\left(\frac{m-1}{k}\right)+ \begin{cases}1 & \text { with probability } \lambda / k \\ 0 & \text { with probability } 1-\lambda / k\end{cases}
$$

with $N(0)=0$.

The Poisson Counter

Poisson Processes

- The Tao of ODEs
- The Tao of Stochastic

Processes

- The Basic Object: Poisson

Counter O The Poisson Counter

- The Poisson Counter
- Statistics of the Poisson Counter
- Statistics of the Poisson Counter
- Statistics of the Poisson Counter
- Another representation
- Poisson Processes
- Calculus for Poisson

Processes

- Calculus for Poisson

Processes

- Calculus for Poisson

Processes
Using Ito Calculus

- FSCTJPs
- Poisson Counters and

FSCTJPs

- A PDE for the Distribution
- A PDE for the Distribution
- A PDE for the Distribution
- Where to go from here?

Define for each k

$$
N_{k}\left(\frac{m}{k}\right)=N_{k}\left(\frac{m-1}{k}\right)+ \begin{cases}1 & \text { with probability } \lambda / k \\ 0 & \text { with probability } 1-\lambda / k\end{cases}
$$

with $N(0)=0$.

Definition $1 N_{\lambda}: \mathbb{R} \rightarrow \mathbb{N}$

$$
N_{\lambda} \stackrel{d}{=} \lim _{k \rightarrow \infty} N_{k}
$$

The Poisson Counter

Poisson Processes

- The Tao of ODEs
- The Tao of Stochastic

Processes

- The Basic Object: Poisson

Counter

- The Poisson Counter
- Statistics of the Poisson Counter
- Statistics of the Poisson Counter
- Statistics of the Poisson Counter
- Another representation
- Poisson Processes
- Calculus for Poisson

Processes

- Calculus for Poisson

Processes

- Calculus for Poisson

Processes
Using Ito Calculus

- FSCTJPs
- Poisson Counters and FSCTJPs - A PDE for the Distribution - A PDE for the Distribution - A PDE for the Distribution - Where to go from here?

Define for each k

$$
N_{k}\left(\frac{m}{k}\right)=N_{k}\left(\frac{m-1}{k}\right)+ \begin{cases}1 & \text { with probability } \lambda / k \\ 0 & \text { with probability } 1-\lambda / k\end{cases}
$$

with $N(0)=0$.

Definition $1 N_{\lambda}: \mathbb{R} \rightarrow \mathbb{N}$

$$
N_{\lambda} \stackrel{d}{=} \lim _{k \rightarrow \infty} N_{k}
$$

N_{λ} has a well-defined rate.

The Poisson Counter

Poisson Processe

- The Tao of ODEs
- The Tao of Stochastic

Processes

- The Basic Object: Poisson

Counter

- The Poisson Counter
- Statistics of the Poisson Counter
- Statistics of the Poisson Counter
- Statistics of the Poisson Counter
- Another representation

Define for each k

$$
N_{k}\left(\frac{m}{k}\right)=N_{k}\left(\frac{m-1}{k}\right)+ \begin{cases}1 & \text { with probability } \lambda / k \\ 0 & \text { with probability } 1-\lambda / k\end{cases}
$$

with $N(0)=0$.

Definition $1 N_{\lambda}: \mathbb{R} \rightarrow \mathbb{N}$

$$
N_{\lambda} \stackrel{d}{=} \lim _{k \rightarrow \infty} N_{k}
$$

N_{λ} has a well-defined rate. That is,

$$
\lim _{\Delta \rightarrow 0}\left[\frac{\operatorname{Prob}\left[N_{\lambda}(t+\Delta)=N_{\lambda}(t)+1\right]}{\Delta}\right]
$$

is a constant function of time.

The Poisson Counter

Poisson Processe

The Tao of ODEs

- The Tao of Stochastic

Processes

- The Basic Object: Poisson

Counter

- The Poisson Counter
- Statistics of the Poisson Counter
- Statistics of the Poisson Counter
- Statistics of the Poisson Counter
- Another representation
- Poisson Processes
- Calculus for Poisson

Processes

- Calculus for Poisson

Processes
Calculus for Poisson
Processes

- Using Ito Calculus
- FSCTJPs
- Poisson Counters and FSCTJPs - A PDE for the Distribution - A PDE for the Distribution - A PDE for the Distribution

Where to go from here?

Define for each k

$$
N_{k}\left(\frac{m}{k}\right)=N_{k}\left(\frac{m-1}{k}\right)+ \begin{cases}1 & \text { with probability } \lambda / k \\ 0 & \text { with probability } 1-\lambda / k\end{cases}
$$

with $N(0)=0$.

Definition $1 N_{\lambda}: \mathbb{R} \rightarrow \mathbb{N}$

$$
N_{\lambda} \stackrel{d}{=} \lim _{k \rightarrow \infty} N_{k}
$$

In particular:

$$
\lim _{\Delta \rightarrow 0}\left[\frac{\operatorname{Prob}\left[N_{\lambda}(t+\Delta)=N_{\lambda}(t)+1\right]}{\Delta}\right]=\lambda
$$

This is why N_{λ} is called a poisson counter with rate λ.

The Poisson Counter

Poisson Processes

- The Tao of ODEs
- The Tao of Stochastic

Processes

- The Basic Object: Poisson Counter
- The Poisson Counter
- The Poisson Counter
- Statistics of the Poisson

Counter

- Statistics of the Poisson

Counter

- Statistics of the Poisson

Counter

- Another representation
- Poisson Processes
- Calculus for Poisson

Processes

- Calculus for Poisson

Processes

- Calculus for Poisson

Processes

- Using Ito Calculus
- FSCTJPs
- Poisson Counters and

FSCTJPs

- A PDE for the Distribution
- A PDE for the Distribution
- A PDE for the Distribution
- Where to go from here?

Wiener Processes and Brownian Motions

Statistics of the Poisson Counter

- The Tao of ODEs
- The Tao of Stochastic

Processes

- The Basic Object: Poisson

Counter

- The Poisson Counter
- The Poisson Counter - Statistics of the Poisson Counter
- Statistics of the Poisson

Counter

- Statistics of the Poisson

Counter

- Another representation
- Poisson Processes
- Calculus for Poisson

Processes

- Calculus for Poisson

Processes
Calculus for Poisson
Processes

- Using Ito Calculus
- FSCTJPs
- Poisson Counters and

FSCTJPs

- A PDE for the Distribution
- A PDE for the Distribution
- A PDE for the Distribution
- Where to go from here?

Wiener Processes and Brownian Motions

We can derive the statistics of this process. Let

$$
P_{i}(t)=\operatorname{Prob}\left[N_{\lambda}(t)=i\right] .
$$

Statistics of the Poisson Counter

- The Tao of ODEs
- The Tao of Stochastic

Processes

- The Basic Object: Poisson Counter
- The Poisson Counter
- The Poisson Counter - Statistics of the Poisson

Counter

- Statistics of the Poisson

Counter

- Statistics of the Poisson

Counter

- Another representation
- Poisson Processes
- Calculus for Poisson

Processes

- Calculus for Poisson

Processes
Calculus for Poisson
Processes

- Using Ito Calculus
- FSCTJPs
- Poisson Counters and

FSCTJPs

- A PDE for the Distribution
- A PDE for the Distribution
- A PDE for the Distribution
- Where to go from here?

Wiener Processes and Brownian Motions

We can derive the statistics of this process. Let

$$
P_{i}(t)=\operatorname{Prob}\left[N_{\lambda}(t)=i\right] .
$$

What is $P_{0}(1) ?$

Statistics of the Poisson Counter

- The Tao of ODEs
- The Tao of Stochastic

Processes

- The Basic Object: Poisson Counter
- The Poisson Counter
- The Poisson Counter - Statistics of the Poisson

Counter

- Statistics of the Poisson

Counter

- Statistics of the Poisson Counter
- Another representation
- Poisson Processes
- Calculus for Poisson

Processes

- Calculus for Poisson

Processes

- Calculus for Poisson

Processes

- Using Ito Calculus
- FSCTJPs
- Poisson Counters and

FSCTJPs

- A PDE for the Distribution
- A PDE for the Distribution
- A PDE for the Distribution
- Where to go from here?

We can derive the statistics of this process. Let

$$
P_{i}(t)=\operatorname{Prob}\left[N_{\lambda}(t)=i\right] .
$$

It is

$$
P_{0}(1)=\lim _{n \rightarrow \infty}\left(1-\frac{\lambda}{n}\right)^{n}
$$

Statistics of the Poisson Counter

- The Tao of ODEs
- The Tao of Stochastic

Processes

- The Basic Object: Poisson Counter
- The Poisson Counter
- The Poisson Counter
- Statistics of the Poisson

Counter

- Statistics of the Poisson

Counter

- Statistics of the Poisson Counter
- Another representation
- Poisson Processes
- Calculus for Poisson

Processes

- Calculus for Poisson

Processes
Calculus for Poisson
Processes

- Using Ito Calculus
- FSCTJPs
- Poisson Counters and

FSCTJPs

- A PDE for the Distribution
- A PDE for the Distribution
- A PDE for the Distribution
- Where to go from here?

We can derive the statistics of this process. Let

$$
P_{i}(t)=\operatorname{Prob}\left[N_{\lambda}(t)=i\right] .
$$

But recall

$$
\lim _{n \rightarrow \infty}\left(1+\frac{x}{n}\right)^{n}=e^{x}
$$

Statistics of the Poisson Counter

- The Tao of ODEs
- The Tao of Stochastic

Processes

- The Basic Object: Poisson

Counter

- The Poisson Counter
- The Poisson Counter
- Statistics of the Poisson

Counter

- Statistics of the Poisson

Counter

- Statistics of the Poisson Counter
- Another representation
- Poisson Processes
- Calculus for Poisson

Processes

- Calculus for Poisson

Processes

- Calculus for Poisson

Processes

- Using Ito Calculus
- FSCTJPs
- Poisson Counters and

FSCTJPs

- A PDE for the Distribution
- A PDE for the Distribution
- A PDE for the Distribution
- Where to go from here?

We can derive the statistics of this process. Let

$$
P_{i}(t)=\operatorname{Prob}\left[N_{\lambda}(t)=i\right] .
$$

So

$$
P_{0}(1)=\lim _{n \rightarrow \infty}\left(1-\frac{\lambda}{n}\right)^{n}=e^{-\lambda}
$$

Statistics of the Poisson Counter

- The Tao of ODEs
- The Tao of Stochastic

Processes

- The Basic Object: Poisson

Counter

- The Poisson Counter
- The Poisson Counter

Counter

- Statistics of the Poisson

Counter

- Statistics of the Poisson

Counter

- Another representation
- Poisson Processes
- Calculus for Poisson

Processes

- Calculus for Poisson

Processes

- Calculus for Poisson

Processes

- Using Ito Calculus
- FSCTJPs
- Poisson Counters and FSCTJPs
- A PDE for the Distribution
- A PDE for the Distribution
- A PDE for the Distribution
- Where to go from here?

We can derive the statistics of this process. Let

$$
P_{i}(t)=\operatorname{Prob}\left[N_{\lambda}(t)=i\right] .
$$

So

$$
P_{0}(1)=\lim _{n \rightarrow \infty}\left(1-\frac{\lambda}{n}\right)^{n}=e^{-\lambda}
$$

In general,

$$
P_{0}(t)=e^{-\lambda t}
$$

and

$$
P_{n}(t)=\frac{(\lambda t)^{n}}{n!} e^{-\lambda t} .
$$

Statistics of the Poisson Counter

- The Tao of ODEs
- The Tao of Stochastic

Processes

- The Basic Object: Poisson Counter
The Poisson Counter
- The Poisson Counter
 Counter
- Statistics of the Poisson

Counter

- Statistics of the Poisson Counter
- Another representation
- Poisson Processes
- Calculus for Poisson

Processes

- Calculus for Poisson

Processes

- Calculus for Poisson

Processes

- Using Ito Calculus
- FSCTJPs
- Poisson Counters and

FSCTJPs

- A PDE for the Distribution
- A PDE for the Distribution - A PDE for the Distribution

Where to go from here?

We can derive the statistics of this process. Let

$$
P_{i}(t)=\operatorname{Prob}\left[N_{\lambda}(t)=i\right] .
$$

So

$$
P_{0}(1)=\lim _{n \rightarrow \infty}\left(1-\frac{\lambda}{n}\right)^{n}=e^{-\lambda}
$$

In general,

$$
P_{0}(t)=e^{-\lambda t}
$$

and

$$
P_{n}(t)=\frac{(\lambda t)^{n}}{n!} e^{-\lambda t} .
$$

Of course,

$$
\sum_{n} P_{n}(t)=e^{-\lambda t} \sum_{n} \frac{(\lambda t)^{n}}{n!}=e^{-\lambda t} e^{\lambda t}=1
$$

Statistics of the Poisson Counter

Poisson Processes

- The Tao of ODEs
- The Tao of Stochastic

Processes

- The Basic Object: Poisson

Counter

- The Poisson Counter
- The Poisson Counter
- Statistics of the Poisson

Counter

- Statistics of the Poisson

Counter

- Statistics of the Poisson

Counter

- Another representation
- Poisson Processes
- Calculus for Poisson

Processes

- Calculus for Poisson

Processes

- Calculus for Poisson

Processes

- Using Ito Calculus
- FSCTJPs
- Poisson Counters and

FSCTJPs

- A PDE for the Distribution
- A PDE for the Distribution
- A PDE for the Distribution
- Where to go from here?

Wiener Processes and Brownian Motions

$$
E\left[N_{\lambda}\right](t)=\sum_{n} n P_{n}(t)=\lambda e^{-\lambda t} \sum_{n} \frac{(\lambda t)^{n}}{n!}=\lambda t
$$

Statistics of the Poisson Counter

Poisson Processes

- The Tao of ODEs
- The Tao of Stochastic

Processes

- The Basic Object: Poisson Counter
- The Poisson Counter
- The Poisson Counter
- Statistics of the Poisson

Counter

- Statistics of the Poisson

Counter

- Statistics of the Poisson

Counter

- Another representation
- Poisson Processes
- Calculus for Poisson

Processes

- Calculus for Poisson

Processes

- Calculus for Poisson

Processes

- Using Ito Calculus
- FSCTJPs
- Poisson Counters and

FSCTJPs

- A PDE for the Distribution
- A PDE for the Distribution
- A PDE for the Distribution
- Where to go from here?

$$
E\left[N_{\lambda}\right](t)=\sum_{n} n P_{n}(t)=\lambda e^{-\lambda t} \sum_{n} \frac{(\lambda t)^{n}}{n!}=\lambda t
$$

Moreover, we can calculate higher moments as well:

$$
\begin{equation*}
E\left[N_{\lambda}^{m}\right](t)=e^{-\lambda t} \sum_{n} n^{m}(\lambda t)^{n} / n! \tag{2}
\end{equation*}
$$

Statistics of the Poisson Counter

Poisson Processes

- The Tao of ODEs
- The Tao of Stochastic

Processes

- The Basic Object: Poisson Counter
- The Poisson Counter
- The Poisson Counter
- Statistics of the Poisson

Counter

- Statistics of the Poisson

Counter

- Statistics of the Poisson

Counter

- Another representation
- Poisson Processes
- Calculus for Poisson

Processes

- Calculus for Poisson

Processes

- Calculus for Poisson

Processes

- Using Ito Calculus
- FSCTJPs
- Poisson Counters and

FSCTJPs

- A PDE for the Distribution
- A PDE for the Distribution
- A PDE for the Distribution
- Where to go from here?

$$
E\left[N_{\lambda}\right](t)=\sum_{n} n P_{n}(t)=\lambda e^{-\lambda t} \sum_{n} \frac{(\lambda t)^{n}}{n!}=\lambda t
$$

Moreover, we can calculate higher moments as well:

$$
\begin{align*}
E\left[N_{\lambda}^{m}\right](t) & =e^{-\lambda t} \sum_{n} n^{m}(\lambda t)^{n} / n! \\
& =\lambda t e^{-\lambda t} \sum_{j}(j+1)^{m-1}(\lambda t)^{j} / j! \tag{2}
\end{align*}
$$

Statistics of the Poisson Counter

Poisson Processe

- The Tao of ODEs
- The Tao of Stochastic

Processes

- The Basic Object: Poisson Counter
- The Poisson Counter
- The Poisson Counter
- Statistics of the Poisson

Counter

- Statistics of the Poisson

Counter

- Statistics of the Poisson

Counter

- Another representation
- Poisson Processes
- Calculus for Poisson

Processes

- Calculus for Poisson

Processes

- Calculus for Poisson

Processes

- Using Ito Calculus
- FSCTJPs
- Poisson Counters and FSCTJPs
- A PDE for the Distribution
- A PDE for the Distribution
- A PDE for the Distribution
- Where to go from here?

$$
E\left[N_{\lambda}\right](t)=\sum_{n} n P_{n}(t)=\lambda e^{-\lambda t} \sum_{n} \frac{(\lambda t)^{n}}{n!}=\lambda t
$$

Moreover, we can calculate higher moments as well:

$$
\begin{align*}
E\left[N_{\lambda}^{m}\right](t) & =e^{-\lambda t} \sum_{n} n^{m}(\lambda t)^{n} / n! \\
& =\lambda t e^{-\lambda t} \sum_{j}(j+1)^{m-1}(\lambda t)^{j} / j! \tag{2}\\
& =\lambda t e^{-\lambda t} \sum_{j} \sum_{k}\binom{m-1}{k} j^{k}(\lambda t)^{k} / j!
\end{align*}
$$

Statistics of the Poisson Counter

Poisson Processes

- The Tao of ODEs
- The Tao of Stochastic

Processes

- The Basic Object: Poisson Counter
- The Poisson Counter
- The Poisson Counter
- Statistics of the Poisson

Counter
O Statistics of the Poisson
Counter
Statistics of the Poisson
Counter

- Another representation
- Poisson Processes
- Calculus for Poisson

Processes

- Calculus for Poisson

Processes
Calculus for Poisson
Processes

- Using Ito Calculus
- FSCTJPs
- Poisson Counters and

FSCTJPs

- A PDE for the Distribution
- A PDE for the Distribution
- A PDE for the Distribution
- Where to go from here?

Wiener Processes and Brownian Motions

$$
E\left[N_{\lambda}\right](t)=\sum_{n} n P_{n}(t)=\lambda e^{-\lambda t} \sum_{n} \frac{(\lambda t)^{n}}{n!}=\lambda t
$$

Moreover, we can calculate higher moments as well:

$$
\begin{align*}
E\left[N_{\lambda}^{m}\right](t) & =e^{-\lambda t} \sum_{n} n^{m}(\lambda t)^{n} / n! \\
& =\lambda t e^{-\lambda t} \sum_{j}(j+1)^{m-1}(\lambda t)^{j} / j! \\
& =\lambda t e^{-\lambda t} \sum_{j} \sum_{k=0}^{m-1}\binom{m-1}{k} j^{k}(\lambda t)^{k} / j! \tag{2}\\
& =\lambda t \sum_{k=0}^{m-1}\binom{m-1}{k} E\left[N_{\lambda}^{k}\right](t) .
\end{align*}
$$

Statistics of the Poisson Counter

Poisson Processes

- The Tao of ODEs
- The Tao of Stochastic

Processes

- The Basic Object: Poisson Counter
- The Poisson Counter
- The Poisson Counter
- Statistics of the Poisson

Counter

- Statistics of the Poisson

Counter

- Statistics of the Poisson

Counter

- Another representation
- Poisson Processes
- Calculus for Poisson

Processes

- Calculus for Poisson

Processes
Calculus for Poisson
Processes

- Using Ito Calculus
- FSCTJPs
- Poisson Counters and

FSCTJPs

- A PDE for the Distribution
- A PDE for the Distribution
- A PDE for the Distribution
- Where to go from here?

Wiener Processes and Brownian Motions

$$
E\left[N_{\lambda}\right](t)=\sum_{n} n P_{n}(t)=\lambda e^{-\lambda t} \sum_{n} \frac{(\lambda t)^{n}}{n!}=\lambda t
$$

Moreover, we can calculate higher moments as well:

$$
\begin{align*}
E\left[N_{\lambda}^{m}\right](t) & =e^{-\lambda t} \sum_{n} n^{m}(\lambda t)^{n} / n! \\
& =\lambda t e^{-\lambda t} \sum_{j}(j+1)^{m-1}(\lambda t)^{j} / j! \\
& =\lambda t e^{-\lambda t} \sum_{j} \sum_{k=0}^{m-1}\binom{m-1}{k} j^{k}(\lambda t)^{k} / j! \tag{2}\\
& =\lambda t \sum_{k=0}^{m-1}\binom{m-1}{k} E\left[N_{\lambda}^{k}\right](t)
\end{align*}
$$

This recursive calculation of moments is a hallmark of stochastic processes.

Statistics of the Poisson Counter

- The Tao of ODEs
- The Tao of Stochastic

Processes

- The Basic Object: Poisson

Counter

- The Poisson Counter
- The Poisson Counter
- Statistics of the Poisson

Counter

- Statistics of the Poisson

Counter

- Statistics of the Poisson

Counter

- Another representation
- Poisson Processes
- Calculus for Poisson

Processes

- Calculus for Poisson

Processes

- Calculus for Poisson

Processes

- Using Ito Calculus
- FSCTJPs
- Poisson Counters and

FSCTJPs

- A PDE for the Distribution
- A PDE for the Distribution
- A PDE for the Distribution
- Where to go from here?

The mathematically inclined among you will be wondering: Is it OK to do what I did?

Statistics of the Poisson Counter

Poisson Processes

- The Tao of ODEs
- The Tao of Stochastic

Processes

- The Basic Object: Poisson Counter
- The Poisson Counter
- The Poisson Counter
- Statistics of the Poisson Counter
- Statistics of the Poisson Counter - Statistics of the Poisson Counter
- Another representation
- Poisson Processes
- Calculus for Poisson

Processes

- Calculus for Poisson

Processes

- Calculus for Poisson

Processes

- Using Ito Calculus
- FSCTJPs
- Poisson Counters and FSCTJPs
- A PDE for the Distribution
- A PDE for the Distribution
- A PDE for the Distribution
- Where to go from here?

Wiener Processes and Brownian Motions

The mathematically inclined among you will be wondering: Is it OK to do what I did?
Well, yes:

Theorem 1 Suppose $X_{n}: \mathbb{N}[1 / n] \rightarrow \mathbb{N}$ is a sequence of time-invariant random variables such that

$$
X=\lim _{n \rightarrow \infty} X_{n}: \mathbb{R} \rightarrow \mathbb{N}
$$

exists and satisfies

$$
\lim _{\tau \rightarrow 0}\left[\frac{\operatorname{Prob}[X(t+\tau)=X(t)+1]}{\tau}\right]=\lambda
$$

and

$$
\lim _{\tau \rightarrow 0}\left[\frac{\operatorname{Prob}[X(t+\tau)=X(t)]}{\tau}\right]=1-\lambda
$$

Then $X \stackrel{d}{=} N_{\lambda}$.

Statistics of the Poisson Counter

Poisson Processes

- The Tao of ODEs
- The Tao of Stochastic

Processes

- The Basic Object: Poisson Counter
- The Poisson Counter
- The Poisson Counter
- Statistics of the Poisson Counter
- Statistics of the Poisson Counter - Statistics of the Poisson Counter
- Another representation
- Poisson Processes
- Calculus for Poisson

Processes

- Calculus for Poisson

Processes

- Calculus for Poisson

Processes

- Using Ito Calculus
- FSCTJPs
- Poisson Counters and

FSCTJPs

- A PDE for the Distribution
- A PDE for the Distribution
- A PDE for the Distribution
- Where to go from here?

Wiener Processes and Brownian Motions

The mathematically inclined among you will be wondering: Is it OK to do what I did?
Well, yes:

Theorem 1 Suppose $X_{n}: \mathbb{N}[1 / n] \rightarrow \mathbb{N}$ is a sequence of time-invariant random variables such that

$$
X=\lim _{n \rightarrow \infty} X_{n}: \mathbb{R} \rightarrow \mathbb{N}
$$

exists and satisfies

$$
\lim _{\tau \rightarrow 0}\left[\frac{\operatorname{Prob}[X(t+\tau)=X(t)+1]}{\tau}\right]=\lambda
$$

and

$$
\lim _{\tau \rightarrow 0}\left[\frac{\operatorname{Prob}[X(t+\tau)=X(t)]}{\tau}\right]=1-\lambda
$$

Then $X \stackrel{d}{=} N_{\lambda}$.
Hence, N_{λ} is "the" poisson limit process with rate λ.

Another representation

- The Tao of ODEs
- The Tao of Stochastic

Processes

- The Basic Object: Poisson Counter
- The Poisson Counter
- The Poisson Counter
- Statistics of the Poisson

Counter

- Statistics of the Poisson Counter
- Statistics of the Poisson

Counter

- Another representation
- Poisson Processes
- Calculus for Poisson

Processes

- Calculus for Poisson Processes
- Calculus for Poisson

Processes

- Using Ito Calculus
- FSCTJPs
- Poisson Counters and FSCTJPs
- A PDE for the Distribution
- A PDE for the Distribution
- A PDE for the Distribution
- Where to go from here?

Wiener Processes and Brownian Motions

Another way to think about N_{λ} is as that process which satisfies:

Another representation

Poisson Processes

- The Tao of ODEs
- The Tao of Stochastic

Processes

- The Basic Object: Poisson Counter
- The Poisson Counter
- The Poisson Counter
- Statistics of the Poisson Counter
- Statistics of the Poisson Counter
- Statistics of the Poisson

Counter

- Another representation
- Calculus for Poisson

Processes

- Calculus for Poisson

Processes

- Calculus for Poisson

Processes

- Using Ito Calculus
- FSCTJPs
- Poisson Counters and

FSCTJPs

- A PDE for the Distribution
- A PDE for the Distribution
- A PDE for the Distribution
- Where to go from here?

Wiener Processes and Brownian Motions

Another way to think about N_{λ} is as that process which satisfies:

$$
\frac{d P_{i}(t)}{d t}=-\lambda P_{i}(t)+\lambda P_{i-1}(t) .
$$

Another representation

Poisson Processes

- The Tao of ODEs
- The Tao of Stochastic

Processes

- The Basic Object: Poisson Counter
- The Poisson Counter
- The Poisson Counter
- Statistics of the Poisson Counter
- Statistics of the Poisson Counter
- Statistics of the Poisson Counter
- Another representation

Another way to think about N_{λ} is as that process which satisfies:

$$
\frac{d P_{i}(t)}{d t}=-\lambda P_{i}(t)+\lambda P_{i-1}(t) .
$$

That is, the transition matrix is:

$$
\dot{\mathbf{P}}(t)=\left[\begin{array}{cccccc}
-\lambda & 0 & 0 & 0 & 0 & \ldots \\
\lambda & -\lambda & 0 & 0 & 0 & \ldots \\
0 & \lambda & -\lambda & 0 & 0 & \ldots \\
\vdots & & & & & \vdots
\end{array}\right] \mathbf{P}(t)
$$

where $\mathbf{P}(t)=\left(P_{1}(t), P_{2}(t), \ldots\right)^{T}$.

Another representation

Poisson Processes

- The Tao of ODEs
- The Tao of Stochastic

Processes

- The Basic Object: Poisson Counter
- The Poisson Counter
- The Poisson Counter
- Statistics of the Poisson

Counter

- Statistics of the Poisson Counter
- Statistics of the Poisson Counter
- Another representation
- Calculus for Poisson

Processes

- Calculus for Poisson

Processes

- Calculus for Poisson

Processes

- Using Ito Calculus
- FSCTJPs
- Poisson Counters and

FSCTJPs

- A PDE for the Distribution
- A PDE for the Distribution
- A PDE for the Distribution
- Where to go from here?

Wiener Processes and Brownian Motions

Another way to think about N_{λ} is as that process which satisfies:

$$
\frac{d P_{i}(t)}{d t}=-\lambda P_{i}(t)+\lambda P_{i-1}(t) .
$$

That is, the transition matrix is:

$$
\dot{\mathbf{P}}(t)=\left[\begin{array}{cccccc}
-\lambda & 0 & 0 & 0 & 0 & \ldots \\
\lambda & -\lambda & 0 & 0 & 0 & \ldots \\
0 & \lambda & -\lambda & 0 & 0 & \ldots \\
\vdots & & & & & \vdots
\end{array}\right] \mathbf{P}(t)
$$

where $\mathbf{P}(t)=\left(P_{1}(t), P_{2}(t), \ldots\right)^{T}$.
This transition-matrix representation points to how poisson counters like N_{λ} can be really useful in representing probabilistic processes.

Poisson Processes

Poisson Processes

The Tao of ODEs

- The Tao of Stochastic

Processes

- The Basic Object: Poisson

Counter
-The Poisson Counter

- The Poisson Counter
- Statistics of the Poisson

Counter

- Statistics of the Poisson

Counter

- Statistics of the Poisson

Counter

- Another representation
- Calculus for Poisson

Processes

- Calculus for Poisson

Processes
Calculus for Poisson
Processes

- Using Ito Calculus
- FSCTJPs
- Poisson Counters and FSCTJPs
- A PDE for the Distribution
- A PDE for the Distribution
- A PDE for the Distribution
- Where to go from here?

Wiener Processes and Brownian Motions

Let us write the equation

$$
\begin{equation*}
d x=f(x, t) d t+g(x, t) d N_{\lambda} . \tag{3}
\end{equation*}
$$

Poisson Processes

Poisson Processe

- The Tao of ODEs
- The Tao of Stochastic

Processes

- The Basic Object: Poisson Counter
- The Poisson Counter
- The Poisson Counter
- Statistics of the Poisson

Counter

- Statistics of the Poisson Counter
- Statistics of the Poisson Counter
- Another representation
- Calculus for Poisson Processes
- Calculus for Poisson

Let us write the equation

$$
\begin{equation*}
d x=f(x, t) d t+g(x, t) d N_{\lambda} . \tag{3}
\end{equation*}
$$

This is a noisy (stochastic) analog of regular differential equations. But what does it mean?

Poisson Processes

Poisson Processes

- The Tao of ODEs
- The Tao of Stochastic

Processes

- The Basic Object: Poisson Counter
- The Poisson Counter
- The Poisson Counter
- Statistics of the Poisson Counter
- Statistics of the Poisson Counter
- Statistics of the Poisson Counter
- Another representation

Let us write the equation

$$
\begin{equation*}
d x=f(x, t) d t+g(x, t) d N_{\lambda} . \tag{3}
\end{equation*}
$$

This is a noisy (stochastic) analog of regular differential equations. But what does it mean?

Definition 2 A trajectory $x(t)$ is an Ito solution to the above equation if:

- When N_{λ} is constant on $[a, b], x$ satisfies $d x=f(x, t) d t$
- When N_{λ} jumps at t_{1}, x satisfies:

$$
\lim _{t \rightarrow t_{1}^{+}} x(t)=g\left(\lim _{t \rightarrow t_{1}^{-}} x(t), t_{1}\right)+\lim _{t \rightarrow t_{1}^{-}} x(t)
$$

in a neighborhood of t_{1}

- x is continuous from the left.

Poisson Processes

Poisson Processes

- The Tao of ODEs
- The Tao of Stochastic

Processes

- The Basic Object: Poisson Counter
- The Poisson Counter
- The Poisson Counter
- Statistics of the Poisson Counter
- Statistics of the Poisson Counter
- Statistics of the Poisson Counter
- Another representation

Let us write the equation

$$
\begin{equation*}
d x=f(x, t) d t+g(x, t) d N_{\lambda} . \tag{3}
\end{equation*}
$$

This is a noisy (stochastic) analog of regular differential equations. But what does it mean?

Definition 2 A trajectory $x(t)$ is an Ito solution to the above equation if:

- When N_{λ} is constant on $[a, b], x$ satisfies $d x=f(x, t) d t$
- When N_{λ} jumps at t_{1}, x satisfies:

$$
\lim _{t \rightarrow t_{1}^{+}} x(t)=g\left(\lim _{t \rightarrow t_{1}^{-}} x(t), t_{1}\right)+\lim _{t \rightarrow t_{1}^{-}} x(t)
$$

in a neighborhood of t_{1}

- x is continuous from the left.

This does not define a single trajectory - instead, it defines a set, which possess a statistical distribution inherited from the distribution on the Poisson counters.

Calculus for Poisson Processes

- The Tao of ODEs
- The Tao of Stochastic

Processes

- The Basic Object: Poisson Counter
- The Poisson Counter
- The Poisson Counter
- Statistics of the Poisson Counter
- Statistics of the Poisson Counter
- Statistics of the Poisson Counter - Another representation
- Poisson Processes - Calculus for Poisson

Processes

- Calculus for Poisson

Processes

- Calculus for Poisson

Processes

- Using Ito Calculus
- FSCTJPs
- Poisson Counters and FSCTJPs
- A PDE for the Distribution
- A PDE for the Distribution
- A PDE for the Distribution
- Where to go from here?

So, given

$$
d x=f(x, t) d t+\sum_{i} g_{i}(x, t) d N_{i}
$$

what are the statistical properties of the solutions?

Calculus for Poisson Processes

- The Tao of ODEs
- The Tao of Stochastic

Processes

- The Basic Object: Poisson Counter
- The Poisson Counter
- The Poisson Counter
- Statistics of the Poisson Counter
- Statistics of the Poisson Counter
- Statistics of the Poisson Counter Another representation

- Poisson Processes

 - Calculus for PoissonSo, given

$$
d x=f(x, t) d t+\sum_{i} g_{i}(x, t) d N_{i}
$$

what are the statistical properties of the solutions?
In other words, what are $E[x](t)$, higher moments, \&c?

Calculus for Poisson Processes

Poisson Processe

- The Tao of ODEs
- The Tao of Stochastic

Processes

- The Basic Object: Poisson Counter
- The Poisson Counter
- The Poisson Counter
- Statistics of the Poisson Counter
- Statistics of the Poisson Counter
- Statistics of the Poisson Counter - Another representation

So, given

$$
d x=f(x, t) d t+\sum_{i} g_{i}(x, t) d N_{i}
$$

what are the statistical properties of the solutions?
In other words, what are $E[x](t)$, higher moments, \&c?
The basic principle: first use calculus to get

$$
d\left(x^{m}\right)=\text { something } \times d t+\text { something } \times d N
$$

Calculus for Poisson Processes

Poisson Processes

- The Tao of ODEs
- The Tao of Stochastic

Processes

- The Basic Object: Poisson Counter
- The Poisson Counter
- The Poisson Counter
- Statistics of the Poisson Counter
- Statistics of the Poisson Counter
- Statistics of the Poisson Counter - Another representation

So, given

$$
d x=f(x, t) d t+\sum_{i} g_{i}(x, t) d N_{i}
$$

what are the statistical properties of the solutions?
In other words, what are $E[x](t)$, higher moments, \&c?
The basic principle: first use calculus to get

$$
d\left(x^{m}\right)=\text { something } \times d t+\text { something } \times d N
$$

Then take expectations:

$$
E\left[d\left(x^{m}\right)\right]=d E\left[x^{m}\right]=E\left[f_{1}(x, t)\right] d t+E\left[g_{2}(x, t)\right] d E[N] .
$$

Calculus for Poisson Processes

Poisson Processes

- The Tao of ODEs
- The Tao of Stochastic

Processes

- The Basic Object: Poisson Counter
- The Poisson Counter
- The Poisson Counter
- Statistics of the Poisson Counter
- Statistics of the Poisson Counter
- Statistics of the Poisson Counter
- Another representation
- Poisson Processes - Calculus for Poisson
- Calculus for Poisson

Processes

- Calculus for Poisson

Processes

- Using Ito Calculus
- FSCTJPs
- Poisson Counters and

FSCTJPs

- A PDE for the Distribution
- A PDE for the Distribution
- A PDE for the Distribution
- Where to go from here?

So, given

$$
d x=f(x, t) d t+\sum_{i} g_{i}(x, t) d N_{i}
$$

what are the statistical properties of the solutions?
In other words, what are $E[x](t)$, higher moments, \&c?
The basic principle: first use calculus to get

$$
d\left(x^{m}\right)=\text { something } \times d t+\text { something } \times d N
$$

Then take expectations:

$$
E\left[d\left(x^{m}\right)\right]=d E\left[x^{m}\right]=E\left[f_{1}(x, t)\right] d t+E\left[g_{2}(x, t)\right] d E[N] .
$$

Using $E\left[N_{\lambda}\right](t)=\lambda t$, we get

$$
d E\left[x^{m}\right](t)=E\left[f_{1}(x, t)+\lambda g_{2}(x, t)\right] d t
$$

Calculus for Poisson Processes

Poisson Processes

- The Tao of ODEs
- The Tao of Stochastic

Processes

- The Basic Object: Poisson Counter
- The Poisson Counter
- The Poisson Counter
- Statistics of the Poisson

Counter

- Statistics of the Poisson Counter
- Statistics of the Poisson Counter
- Another representation
- Poisson Processes - Calculus for Poisson
- Calculus for Poisson

Processes

- Calculus for Poisson

Processes

- Using Ito Calculus
- FSCTJPs
- Poisson Counters and

FSCTJPs

- A PDE for the Distribution
- A PDE for the Distribution
- A PDE for the Distribution
- Where to go from here?

So, given

$$
d x=f(x, t) d t+\sum_{i} g_{i}(x, t) d N_{i}
$$

what are the statistical properties of the solutions?
In other words, what are $E[x](t)$, higher moments, \&c?
The basic principle: first use calculus to get

$$
d\left(x^{m}\right)=\text { something } \times d t+\text { something } \times d N
$$

Then take expectations:

$$
E\left[d\left(x^{m}\right)\right]=d E\left[x^{m}\right]=E\left[f_{1}(x, t)\right] d t+E\left[g_{2}(x, t)\right] d E[N] .
$$

Using $E\left[N_{\lambda}\right](t)=\lambda t$, we get

$$
d E\left[x^{m}\right](t)=E\left[f_{1}(x, t)+\lambda g_{2}(x, t)\right] d t
$$

But this is a regular ODE!!

Calculus for Poisson Processes

Poisson Processes

- The Tao of ODEs
- The Tao of Stochastic

Processes

- The Basic Object: Poisson Counter
- The Poisson Counter
- The Poisson Counter
- Statistics of the Poisson Counter
- Statistics of the Poisson Counter
- Statistics of the Poisson Counter Another representation
- Poisson Processes
- Calculus for Poisson

Processes

- Calculus for Poisson

Processes

- Calculus for Poisson

Processes

- Using Ito Calculus
- FSCTJPs
- Poisson Counters and FSCTJPs
- A PDE for the Distribution
- A PDE for the Distribution
- A PDE for the Distribution
- Where to go from here?

In fact, if $\phi: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is any (nice) function, then $\phi(x)$ is itself a poisson process; same method gives us satistical info about $\phi(x)$.

Calculus for Poisson Processes

Poisson Processes

- The Tao of ODEs
- The Tao of Stochastic

Processes

- The Basic Object: Poisson Counter
- The Poisson Counter
- The Poisson Counter
- Statistics of the Poisson Counter
- Statistics of the Poisson Counter
- Statistics of the Poisson Counter - Another representation

In fact, if $\phi: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is any (nice) function, then $\phi(x)$ is itself a poisson process; same method gives us satistical info about $\phi(x)$. But what process is $\phi(x)$, in terms of $d t$ and $d N s$?

Calculus for Poisson Processes

Poisson Processes

- The Tao of ODEs
- The Tao of Stochastic

Processes

- The Basic Object: Poisson Counter
- The Poisson Counter
- The Poisson Counter
- Statistics of the Poisson Counter
- Statistics of the Poisson Counter
- Statistics of the Poisson Counter - Another representation

In fact, if $\phi: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is any (nice) function, then $\phi(x)$ is itself a poisson process; same method gives us satistical info about $\phi(x)$. But what process is $\phi(x)$, in terms of $d t$ and $d N s$? What is $d\left(x^{2}\right)$?

Calculus for Poisson Processes

Poisson Processes

- The Tao of ODEs
- The Tao of Stochastic

Processes

- The Basic Object: Poisson Counter
- The Poisson Counter
- The Poisson Counter
- Statistics of the Poisson Counter
- Statistics of the Poisson Counter
- Statistics of the Poisson Counter
- Another representation
- Poisson Processes
- Calculus for Poisson

Processes

- Calculus for Poisson

Processes

- Calculus for Poisson

Processes

- Using Ito Calculus
- FSCTJPs
- Poisson Counters and

FSCTJPs

- A PDE for the Distribution
- A PDE for the Distribution
- A PDE for the Distribution
- Where to go from here?

In fact, if $\phi: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is any (nice) function, then $\phi(x)$ is itself a poisson process; same method gives us satistical info about $\phi(x)$. But what process is $\phi(x)$, in terms of $d t$ and $d N s$? What is $d\left(x^{2}\right)$?

Regular calculus would tell us that

$$
d\left(x^{2}\right)=2 x d x .
$$

Calculus for Poisson Processes

Poisson Processes

- The Tao of ODEs
- The Tao of Stochastic

Processes

- The Basic Object: Poisson Counter
- The Poisson Counter
- The Poisson Counter
- Statistics of the Poisson Counter
- Statistics of the Poisson Counter
- Statistics of the Poisson Counter - Another representation

In fact, if $\phi: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is any (nice) function, then $\phi(x)$ is itself a poisson process; same method gives us satistical info about $\phi(x)$. But what process is $\phi(x)$, in terms of $d t$ and $d N s$? What is $d\left(x^{2}\right)$?

Regular calculus would tell us that

$$
d\left(x^{2}\right)=2 x d x
$$

That is wrong here!!

Calculus for Poisson Processes

Poisson Processes

- The Tao of ODEs
- The Tao of Stochastic

Processes

- The Basic Object: Poisson Counter
- The Poisson Counter
- The Poisson Counter
- Statistics of the Poisson Counter
- Statistics of the Poisson Counter
- Statistics of the Poisson Counter - Another representation

In fact, if $\phi: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is any (nice) function, then $\phi(x)$ is itself a poisson process; same method gives us satistical info about $\phi(x)$. But what process is $\phi(x)$, in terms of $d t$ and $d N s$? What is $d\left(x^{2}\right)$?

Regular calculus would tell us that

$$
d\left(x^{2}\right)=2 x d x
$$

That is wrong here!! The standard Leibniz rule and Chain rule an FTC NO LONGER WORK. Newtonian calculus is not accurate for statistical properties.

Calculus for Poisson Processes

Poisson Processes

- The Tao of ODEs
- The Tao of Stochastic

Processes

- The Basic Object: Poisson Counter
- The Poisson Counter
- The Poisson Counter
- Statistics of the Poisson

Counter

- Statistics of the Poisson Counter
- Statistics of the Poisson Counter
- Another representation
- Poisson Processes
- Calculus for Poisson
- Calculus for Poisson

Processes

- Using Ito Calculus
- FSCTJPs
- Poisson Counters and

FSCTJPs

- A PDE for the Distribution
- A PDE for the Distribution
- A PDE for the Distribution
- Where to go from here?

In fact, if $\phi: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is any (nice) function, then $\phi(x)$ is itself a poisson process; same method gives us satistical info about $\phi(x)$. But what process is $\phi(x)$, in terms of $d t$ and $d N s$? What is $d\left(x^{2}\right)$?

Regular calculus would tell us that

$$
d\left(x^{2}\right)=2 x d x
$$

That is wrong here!! The standard Leibniz rule and Chain rule an FTC NO LONGER WORK. Newtonian calculus is not accurate for statistical properties. Similarly, one CANNOT rearrange:

$$
d x=x d t+x d N \text { to get } \frac{d x}{x}=d t+d N
$$

Calculus for Poisson Processes

Poisson Processes

- The Tao of ODEs
- The Tao of Stochastic

Processes

- The Basic Object: Poisson Counter
- The Poisson Counter
- The Poisson Counter
- Statistics of the Poisson

Counter

- Statistics of the Poisson Counter
- Statistics of the Poisson Counter
- Another representation
- Poisson Processes
- Calculus for Poisson

Calculus for Poisson
Processes

- Using Ito Calculus
- FSCTJPs
- Poisson Counters and FSCTJPs
- A PDE for the Distribution

In fact, if $\phi: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is any (nice) function, then $\phi(x)$ is itself a poisson process; same method gives us satistical info about $\phi(x)$. But what process is $\phi(x)$, in terms of $d t$ and $d N s$? What is $d\left(x^{2}\right)$?

Regular calculus would tell us that

$$
d\left(x^{2}\right)=2 x d x
$$

That is wrong here!! The standard Leibniz rule and Chain rule an FTC NO LONGER WORK. Newtonian calculus is not accurate for statistical properties. Similarly, one CANNOT rearrange:

$$
d x=x d t+x d N \text { to get } \frac{d x}{x}=d t+d N
$$

DO NOT FAIL TO UNDERSTAND THESE POINTS!!

Calculus for Poisson Processes

- The Tao of ODEs
- The Tao of Stochastic

Processes

- The Basic Object: Poisson

Counter

- The Poisson Counter
- The Poisson Counter
- Statistics of the Poisson

Counter

- Statistics of the Poisson

Counter

- Statistics of the Poisson

Counter
Another representation

- Poisson Processes
- Calculus for Poisson

Processes

- Calculus for Poisson

Processes

- Using Ito Calculus
- FSCTJPs
- Poisson Counters and

FSCTJPs

- A PDE for the Distribution
- A PDE for the Distribution
- A PDE for the Distribution
- Where to go from here?

However, it's (almost) trivial to see what the answer is.

Calculus for Poisson Processes

Poisson Processes

- The Tao of ODEs
- The Tao of Stochastic

Processes

- The Basic Object: Poisson Counter
- The Poisson Counter
- The Poisson Counter
- Statistics of the Poisson

Counter

- Statistics of the Poisson Counter
- Statistics of the Poisson Counter
- Another representation
- Poisson Processes
- Calculus for Poisson

Processes

- Calculus for Poisson

However, it's (almost) trivial to see what the answer is.
Recall, a trajectory $x(t)$ is a solution if:

- When N_{λ} is constant on $[a, b], x$ satisfies $d x=f(x, t) d t$
- When N_{λ} jumps at t_{1}, x satisfies:

$$
\lim _{t \rightarrow t_{1}^{+}} x(t)=g\left(\lim _{t \rightarrow t_{1}^{-}} x(t), t_{1}\right)+\lim _{t \rightarrow t_{1}^{-}} x(t)
$$

in a neighborhood of t_{1}

- x is continuous from the left.

Calculus for Poisson Processes

However, it's (almost) trivial to see what the answer is.
On an interval where N_{i} doesn't change, standard calculus tells us:

$$
d \phi=\left\langle\frac{d \phi}{d x}, f(x)\right\rangle d t
$$

Calculus for Poisson Processes

Poisson Processes

- The Tao of ODEs
- The Tao of Stochastic

Processes

- The Basic Object: Poisson Counter
- The Poisson Counter
- The Poisson Counter
- Statistics of the Poisson Counter
- Statistics of the Poisson Counter
- Statistics of the Poisson Counter - Another representation

However, it's (almost) trivial to see what the answer is.
On an interval where N_{i} doesn't change, standard calculus tells us:

$$
d \phi=\left\langle\frac{d \phi}{d x}, f(x)\right\rangle d t .
$$

If N_{i} does change at t, then we have to add the discrete quantity:

$$
\phi\left(x+g_{i}(x)\right)-\phi(x) .
$$

Calculus for Poisson Processes

Poisson Processes

- The Tao of ODEs
- The Tao of Stochastic

Processes

- The Basic Object: Poisson Counter
- The Poisson Counter
- The Poisson Counter
- Statistics of the Poisson Counter
- Statistics of the Poisson Counter
- Statistics of the Poisson Counter
- Another representation

However, it's (almost) trivial to see what the answer is.
On an interval where N_{i} doesn't change, standard calculus tells us:

$$
d \phi=\left\langle\frac{d \phi}{d x}, f(x)\right\rangle d t .
$$

If N_{i} does change at t, then we have to add the discrete quantity:

$$
\phi\left(x+g_{i}(x)\right)-\phi(x) .
$$

Hence, just from the definition of "solution":

$$
d \phi(x, t)=\left\langle\frac{d \phi}{d x}, f(x)\right\rangle d t+\sum_{i=1}^{n}\left[\phi\left(x+g_{i}(x)\right)-\phi(x)\right] d N_{i} .
$$

Calculus for Poisson Processes

Poisson Processes

- The Tao of ODEs
- The Tao of Stochastic

Processes

- The Basic Object: Poisson Counter
- The Poisson Counter
- The Poisson Counter
- Statistics of the Poisson Counter
- Statistics of the Poisson Counter
- Statistics of the Poisson Counter
- Another representation

However, it's (almost) trivial to see what the answer is.
On an interval where N_{i} doesn't change, standard calculus tells us:

$$
d \phi=\left\langle\frac{d \phi}{d x}, f(x)\right\rangle d t .
$$

If N_{i} does change at t, then we have to add the discrete quantity:

$$
\phi\left(x+g_{i}(x)\right)-\phi(x) .
$$

Hence, just from the definition of "solution":

$$
d \phi(x, t)=\left\langle\frac{d \phi}{d x}, f(x)\right\rangle d t+\sum_{i=1}^{n}\left[\phi\left(x+g_{i}(x)\right)-\phi(x)\right] d N_{i} .
$$

This is the "Ito Rule"; it is a combination of modified Leibniz and Chain-rule for stochastic calculus.

Using Ito Calculus

Poisson Processes

The Tao of ODEs

- The Tao of Stochastic

Processes

- The Basic Object: Poisson Counter
- The Poisson Counter
- The Poisson Counter
- Statistics of the Poisson

Counter

- Statistics of the Poisson

Counter

- Statistics of the Poisson

Counter

- Another representation
- Poisson Processes
- Calculus for Poisson

Processes

- Calculus for Poisson

Processes

- Calculus for Poisson

Processes

- FSCTJPs
- Poisson Counters and

FSCTJPs

- A PDE for the Distribution
- A PDE for the Distribution
- A PDE for the Distribution
- Where to go from here?

Wiener Processes and Brownian Motions

Example 1 Suppose

$$
d x(t)=-k x(t) d t+d N_{1}(t)-d N_{2}(t)
$$

Using Ito Calculus

Poisson Processe

- The Tao of ODEs
- The Tao of Stochastic

Processes

- The Basic Object: Poisson

Counter

- The Poisson Counter
- The Poisson Counter
- Statistics of the Poisson

Counter

- Statistics of the Poisson

Counter

- Statistics of the Poisson

Counter
Another representation

- Poisson Processes
- Calculus for Poisson

Processes

- Calculus for Poisson

Processes

- Calculus for Poisson

Processes

- FSCTJPs
- Poisson Counters and

FSCTJPs

- A PDE for the Distribution
- A PDE for the Distribution
- A PDE for the Distribution
- Where to go from here?

Wiener Processes and Brownian Motions

Example 1 Suppose

$$
d x(t)=-k x(t) d t+d N_{1}(t)-d N_{2}(t)
$$

Then

Using Ito Calculus

Poisson Processes

- The Tao of ODEs
- The Tao of Stochastic

Processes

- The Basic Object: Poisson

Counter

- The Poisson Counter
- The Poisson Counter
- Statistics of the Poisson

Counter

- Statistics of the Poisson

Counter

- Statistics of the Poisson

Counter

- Another representation
- Poisson Processes
- Calculus for Poisson

Processes

- Calculus for Poisson

Processes
Calculus for Poisson
Processes

- Poisson Counters and

FSCTJPs

- A PDE for the Distribution
- A PDE for the Distribution
- A PDE for the Distribution
- Where to go from here?

Wiener Processes and Brownian Motions

Example 1 Suppose

$$
d x(t)=-k x(t) d t+d N_{1}(t)-d N_{2}(t)
$$

Then

$$
d E[x](t)=-k E[x](t) d t+\lambda_{1} d t-\lambda_{2} d t
$$

Using Ito Calculus

Poisson Processe

- The Tao of ODEs
- The Tao of Stochastic

Processes

- The Basic Object: Poisson

Counter

- The Poisson Counter
- The Poisson Counter
- Statistics of the Poisson

Counter

- Statistics of the Poisson Counter
- Statistics of the Poisson

Counter

- Another representation
- Poisson Processes
- Calculus for Poisson

Processes

- Calculus for Poisson

Processes
Calculus for Poisson
Processes

- Poisson Counters and

FSCTJPs

- A PDE for the Distribution
- A PDE for the Distribution
- A PDE for the Distribution
- Where to go from here?

Example 1 Suppose

$$
d x(t)=-k x(t) d t+d N_{1}(t)-d N_{2}(t)
$$

Then

$$
d E[x](t)=-k E[x](t) d t+\lambda_{1} d t-\lambda_{2} d t
$$

So using variation of constants:

Using Ito Calculus

Poisson Processe

- The Tao of ODEs
- The Tao of Stochastic

Processes

- The Basic Object: Poisson Counter
The Poisson Counter
- The Poisson Counter
- Statistics of the Poisson

Counter

- Statistics of the Poisson Counter
- Statistics of the Poisson Counter
- Another representation
- Poisson Processes
- Calculus for Poisson

Processes

- Calculus for Poisson

Processes
Calculus for Poisson
Processes

- Poisson Counters and FSCTJPs
- A PDE for the Distribution
- A PDE for the Distribution
- A PDE for the Distribution
- Where to go from here?

Example 1 Suppose

$$
d x(t)=-k x(t) d t+d N_{1}(t)-d N_{2}(t)
$$

Then

$$
d E[x](t)=-k E[x](t) d t+\lambda_{1} d t-\lambda_{2} d t
$$

So using variation of constants:

$$
E[x](t)=\frac{E[x](0)}{k}\left(\left(k-\lambda_{1}+\lambda_{2}\right) e^{-k t}+\lambda_{1}-\lambda_{2}\right) .
$$

Using Ito Calculus

Poisson Processe

- The Tao of ODEs
- The Tao of Stochastic

Processes

- The Basic Object: Poisson Counter
- The Poisson Counter
- The Poisson Counter
- Statistics of the Poisson

Counter

- Statistics of the Poisson Counter
- Statistics of the Poisson Counter - Another representation

Example 1 Suppose

$$
d x(t)=-k x(t) d t+d N_{1}(t)-d N_{2}(t)
$$

Then

$$
d E[x](t)=-k E[x](t) d t+\lambda_{1} d t-\lambda_{2} d t
$$

So using variation of constants:

$$
E[x](t)=\frac{E[x](0)}{k}\left(\left(k-\lambda_{1}+\lambda_{2}\right) e^{-k t}+\lambda_{1}-\lambda_{2}\right) .
$$

Furthermore, as for x^{2} :

Using Ito Calculus

Poisson Processe

- The Tao of ODEs
- The Tao of Stochastic

Processes

- The Basic Object: Poisson Counter
- The Poisson Counter
- The Poisson Counter
- Statistics of the Poisson

Counter

- Statistics of the Poisson Counter
- Statistics of the Poisson Counter
- Another representation

Example 1 Suppose

$$
d x(t)=-k x(t) d t+d N_{1}(t)-d N_{2}(t)
$$

Then

$$
d E[x](t)=-k E[x](t) d t+\lambda_{1} d t-\lambda_{2} d t
$$

So using variation of constants:

$$
E[x](t)=\frac{E[x](0)}{k}\left(\left(k-\lambda_{1}+\lambda_{2}\right) e^{-k t}+\lambda_{1}-\lambda_{2}\right) .
$$

Furthermore, as for x^{2} :
$d x^{2}=-2 k x^{2}(t) d t+\left[(x(t)+1)^{2}-x^{2}(t)\right] d N_{1}+\left[(x(t)-1)^{2}-x^{2}(t)\right] d N_{2}$

Using Ito Calculus

Poisson Processe

- The Tao of ODEs
- The Tao of Stochastic

Processes

- The Basic Object: Poisson Counter
- The Poisson Counter
- The Poisson Counter
- Statistics of the Poisson Counter
- Statistics of the Poisson Counter
- Statistics of the Poisson Counter
- Another representation

Example 1 Suppose

$$
d x(t)=-k x(t) d t+d N_{1}(t)-d N_{2}(t)
$$

Then

$$
d E[x](t)=-k E[x](t) d t+\lambda_{1} d t-\lambda_{2} d t
$$

So using variation of constants:

$$
E[x](t)=\frac{E[x](0)}{k}\left(\left(k-\lambda_{1}+\lambda_{2}\right) e^{-k t}+\lambda_{1}-\lambda_{2}\right) .
$$

Furthermore, as for x^{2} :

$$
\begin{equation*}
d x^{2}=-2 k x^{2}(t) d t+[1+2 x(t)] d N_{1}+[1-2 x(t)] d N_{2} . \tag{4}
\end{equation*}
$$

Using Ito Calculus

Poisson Processe

- The Tao of ODEs
- The Tao of Stochastic

Processes

- The Basic Object: Poisson Counter
- The Poisson Counter
- The Poisson Counter
- Statistics of the Poisson Counter
- Statistics of the Poisson Counter
- Statistics of the Poisson Counter
- Another representation

Example 1 Suppose

$$
d x(t)=-k x(t) d t+d N_{1}(t)-d N_{2}(t)
$$

Then

$$
d E[x](t)=-k E[x](t) d t+\lambda_{1} d t-\lambda_{2} d t
$$

So using variation of constants:

$$
E[x](t)=\frac{E[x](0)}{k}\left(\left(k-\lambda_{1}+\lambda_{2}\right) e^{-k t}+\lambda_{1}-\lambda_{2}\right) .
$$

Furthermore, as for x^{2} :

$$
\begin{equation*}
d x^{2}=-2 k x^{2}(t) d t+[1+2 x(t)] d N_{1}+[1-2 x(t)] d N_{2} . \tag{4}
\end{equation*}
$$

So

Using Ito Calculus

Poisson Processe

- The Tao of ODEs
- The Tao of Stochastic

Processes

- The Basic Object: Poisson Counter
- The Poisson Counter
- The Poisson Counter
- Statistics of the Poisson

Counter

- Statistics of the Poisson Counter
- Statistics of the Poisson Counter
- Another representation
- Poisson Processes
- Calculus for Poisson

Processes

- Calculus for Poisson

Processes
Calculus for Poisson

Example 1 Suppose

$$
d x(t)=-k x(t) d t+d N_{1}(t)-d N_{2}(t)
$$

Then

$$
d E[x](t)=-k E[x](t) d t+\lambda_{1} d t-\lambda_{2} d t
$$

So using variation of constants:

$$
E[x](t)=\frac{E[x](0)}{k}\left(\left(k-\lambda_{1}+\lambda_{2}\right) e^{-k t}+\lambda_{1}-\lambda_{2}\right) .
$$

Furthermore, as for x^{2} :

$$
\begin{equation*}
d x^{2}=-2 k x^{2}(t) d t+[1+2 x(t)] d N_{1}+[1-2 x(t)] d N_{2} . \tag{4}
\end{equation*}
$$

So

$$
\frac{d E\left[x^{2}\right]}{d t}=-2 k E\left[x^{2}\right]+2\left(\lambda_{1}-\lambda_{2}\right) E[x](t)+\lambda_{1}+\lambda_{2}
$$

Using Ito Calculus

Poisson Processe

- The Tao of ODEs
- The Tao of Stochastic

Processes

- The Basic Object: Poisson Counter
- The Poisson Counter
- The Poisson Counter
- Statistics of the Poisson Counter
- Statistics of the Poisson Counter
- Statistics of the Poisson Counter
- Another representation
- Poisson Processes
- Calculus for Poisson

Processes

- Calculus for Poisson

Processes
Calculus for Poisson

Example 1 Suppose

$$
d x(t)=-k x(t) d t+d N_{1}(t)-d N_{2}(t)
$$

Then

$$
d E[x](t)=-k E[x](t) d t+\lambda_{1} d t-\lambda_{2} d t
$$

So using variation of constants:

$$
E[x](t)=\frac{E[x](0)}{k}\left(\left(k-\lambda_{1}+\lambda_{2}\right) e^{-k t}+\lambda_{1}-\lambda_{2}\right) .
$$

Furthermore, as for x^{2} :

$$
\begin{equation*}
d x^{2}=-2 k x^{2}(t) d t+[1+2 x(t)] d N_{1}+[1-2 x(t)] d N_{2} . \tag{4}
\end{equation*}
$$

So

$$
\frac{d E\left[x^{2}\right]}{d t}=-2 k E\left[x^{2}\right]+2\left(\lambda_{1}-\lambda_{2}\right) E[x](t)+\lambda_{1}+\lambda_{2}
$$

Again, recursive calculuation of moments.

Using Ito Calculus

Poisson Processes

- The Tao of ODEs
- The Tao of Stochastic

Processes

- The Basic Object: Poisson Counter
- The Poisson Counter
- The Poisson Counter
- Statistics of the Poisson Counter
- Statistics of the Poisson Counter
- Statistics of the Poisson Counter
- Another representation
- Poisson Processes
- Calculus for Poisson

Processes

- Calculus for Poisson

Processes
Calculus for Poisson

Example 1 Suppose

$$
d x(t)=-k x(t) d t+d N_{1}(t)-d N_{2}(t)
$$

Then

$$
d E[x](t)=-k E[x](t) d t+\lambda_{1} d t-\lambda_{2} d t
$$

So using variation of constants:

$$
E[x](t)=\frac{E[x](0)}{k}\left(\left(k-\lambda_{1}+\lambda_{2}\right) e^{-k t}+\lambda_{1}-\lambda_{2}\right)
$$

Furthermore, as for x^{2} :

$$
\begin{equation*}
d x^{2}=-2 k x^{2}(t) d t+[1+2 x(t)] d N_{1}+[1-2 x(t)] d N_{2} . \tag{4}
\end{equation*}
$$

So

$$
\frac{d E\left[x^{2}\right]}{d t}=-2 k E\left[x^{2}\right]+2\left(\lambda_{1}-\lambda_{2}\right) E[x](t)+\lambda_{1}+\lambda_{2}
$$

Again, recursive calculuation of moments. (You stick in from above and use Variation of Constants formula.)

FSCTJPs

Poisson Processes

- The Tao of ODEs
- The Tao of Stochastic

Processes

- The Basic Object: Poisson

Counter

- The Poisson Counter
- The Poisson Counter
- Statistics of the Poisson

Counter

- Statistics of the Poisson

Counter

- Statistics of the Poisson

Counter

- Another representation
- Poisson Processes
- Calculus for Poisson

Processes

- Calculus for Poisson

Processes

- Calculus for Poisson

Processes

- Using Ito Calculus - FSCTJPs
- Poisson Counters and FSCTJPs
- A PDE for the Distribution
- A PDE for the Distribution
- A PDE for the Distribution
- Where to go from here?

Wiener Processes and Brownian Motions

Suppose you're given a finite-state transition scheme:

FSCTJPs

- The Tao of ODEs
- The Tao of Stochastic

Processes

- The Basic Object: Poisson

Counter

- The Poisson Counter
- The Poisson Counter
- Statistics of the Poisson

Counter

- Statistics of the Poisson Counter
- Statistics of the Poisson Counter
Another representation
- Poisson Processes
- Calculus for Poisson

Processes

- Calculus for Poisson

Processes
Calculus for Poisson
Processes

- Using Ito Calculus

- FSCTJPs

- Poisson Counters and

FSCTJPs

- A PDE for the Distribution
- A PDE for the Distribution
- A PDE for the Distribution
- Where to go from here?

Wiener Processes and Brownian Motions

Suppose you're given a finite-state transition scheme:

FSCTJPs

Poisson Processes

- The Tao of ODEs
- The Tao of Stochastic

Processes

- The Basic Object: Poisson Counter
- The Poisson Counter
- The Poisson Counter
- Statistics of the Poisson Counter
- Statistics of the Poisson Counter
- Statistics of the Poisson Counter
- Another representation
- Poisson Processes
- Calculus for Poisson

Processes

- Calculus for Poisson

Processes

- Calculus for Poisson

Processes

- Using Ito Calculus

- FSCTJPs

- Poisson Counters and FSCTJPs
- A PDE for the Distribution
- A PDE for the Distribution
- A PDE for the Distribution
- Where to go from here?

Suppose you're given a finite-state transition scheme:

Definition 3 A state-transition equation

$$
\dot{\mathbf{P}}(t)=A \mathbf{P}(t)
$$

is called a finite-state continuous time jump process (FSCTJP), when A is a stochastic matrix, i.e. columns sum to 0 and (off-diagonal) entries are non-negative.

FSCTJPs

Poisson Processes

- The Tao of ODEs
- The Tao of Stochastic

Processes

- The Basic Object: Poisson Counter
- The Poisson Counter
- The Poisson Counter
- Statistics of the Poisson Counter
- Statistics of the Poisson Counter
- Statistics of the Poisson Counter
- Another representation
- Poisson Processes
- Calculus for Poisson

Processes

- Calculus for Poisson

Processes

- Calculus for Poisson

Processes

- Using Ito Calculus

Suppose you're given a finite-state transition scheme:

Definition 3 A state-transition equation

$$
\dot{\mathbf{P}}(t)=A \mathbf{P}(t)
$$

is called a finite-state continuous time jump process (FSCTJP), when A is a stochastic matrix, i.e. columns sum to 0 and (off-diagonal) entries are non-negative.

Such systems have obvious potential for being useful representations of scientific phenonmena.

Poisson Counters and FSCTJPs

Theorem 2 [Basis Theorem] Any FSCTJP is equivalent, in distribution, to

$$
d x=\sum_{i=1}^{m} f_{i}(x) d N_{i}
$$

for some (nice) functions f_{i} and poisson counters N_{i} with rates $\lambda_{i}>0$.

Poisson Counters and FSCTJPs

- The Tao of ODEs
- The Tao of Stochastic

Processes

- The Basic Object: Poisson Counter
- The Poisson Counter
- The Poisson Counter
- Statistics of the Poisson Counter
- Statistics of the Poisson Counter
- Statistics of the Poisson Counter
- Another representation
- Poisson Processes
- Calculus for Poisson

Processes

- Calculus for Poisson

Processes

- Calculus for Poisson

Processes

- Using Ito Calculus
- FSCTJPs
- Poisson Counters and

FSCTJPs

- A PDE for the Distribution
- A PDE for the Distribution
- A PDE for the Distribution
- Where to go from here?

Theorem 2 [Basis Theorem] Any FSCTJP is equivalent, in distribution, to

$$
d x=\sum_{i=1}^{m} f_{i}(x) d N_{i}
$$

for some (nice) functions f_{i} and poisson counters N_{i} with rates $\lambda_{i}>0$.

Example 2

$$
\left[\begin{array}{l}
\dot{p}_{1}(t) \\
\dot{p}_{2}(t) \\
\dot{p}_{3}(t)
\end{array}\right]=\left[\begin{array}{ccc}
-3 & 0 & 8 \\
3 & -2 & 0 \\
0 & 2 & -8
\end{array}\right]\left[\begin{array}{l}
p_{1}(t) \\
p_{2}(t) \\
p_{3}(t)
\end{array}\right]
$$

with $x(0) \in\{3,7,9\}$.

Poisson Counters and FSCTJPs

- The Tao of ODEs
- The Tao of Stochastic

Processes

- The Basic Object: Poisson Counter
- The Poisson Counter
- The Poisson Counter
- Statistics of the Poisson Counter
- Statistics of the Poisson Counter
- Statistics of the Poisson Counter
- Another representation
- Poisson Processes
- Calculus for Poisson

Processes

- Calculus for Poisson

Processes

- Calculus for Poisson

Processes

- Using Ito Calculus
- FSCTJPs
- Poisson Counters and

FSCTJPs

- A PDE for the Distribution
- A PDE for the Distribution
- A PDE for the Distribution
- Where to go from here?

Theorem 2 [Basis Theorem] Any FSCTJP is equivalent, in distribution, to

$$
d x=\sum_{i=1}^{m} f_{i}(x) d N_{i}
$$

for some (nice) functions f_{i} and poisson counters N_{i} with rates $\lambda_{i}>0$.

Example 2

$$
\left[\begin{array}{l}
\dot{p}_{1}(t) \\
\dot{p}_{2}(t) \\
\dot{p}_{3}(t)
\end{array}\right]=\left[\begin{array}{ccc}
-3 & 0 & 8 \\
3 & -2 & 0 \\
0 & 2 & -8
\end{array}\right]\left[\begin{array}{l}
p_{1}(t) \\
p_{2}(t) \\
p_{3}(t)
\end{array}\right]
$$

with $x(0) \in\{3,7,9\}$.
Then

Poisson Counters and FSCTJPs

Poisson Processe

- The Tao of ODEs
- The Tao of Stochastic

Processes

- The Basic Object: Poisson Counter
- The Poisson Counter
- The Poisson Counter
- Statistics of the Poisson Counter
Statistics of the Poisson Counter
- Statistics of the Poisson Counter
- Another representation
- Poisson Processes
- Calculus for Poisson

Processes

- Calculus for Poisson

Processes
Calculus for Poisson
Processes

- Using Ito Calculus
- FSCTJPs
- Poisson Counters and

FSCTJPs

- A PDE for the Distribution
- A PDE for the Distribution
- A PDE for the Distribution
- Where to go from here?

Wiener Processes and Brownian Motions

Theorem 2 [Basis Theorem] Any FSCTJP is equivalent, in distribution, to

$$
d x=\sum_{i=1}^{m} f_{i}(x) d N_{i}
$$

for some (nice) functions f_{i} and poisson counters N_{i} with rates $\lambda_{i}>0$.

Example 2

$$
\left[\begin{array}{l}
\dot{p}_{1}(t) \\
\dot{p}_{2}(t) \\
\dot{p}_{3}(t)
\end{array}\right]=\left[\begin{array}{ccc}
-3 & 0 & 8 \\
3 & -2 & 0 \\
0 & 2 & -8
\end{array}\right]\left[\begin{array}{l}
p_{1}(t) \\
p_{2}(t) \\
p_{3}(t)
\end{array}\right]
$$

with $x(0) \in\{3,7,9\}$.
Then
$d x=\frac{(x-9)(x-7)}{6} d N_{3}+\frac{(x-3)(x-9)}{4} d N_{2}+\frac{(3-x)(x-7)}{2} d N_{8}$

A PDE for the Distribution

Poisson Processe

- The Tao of ODEs
- The Tao of Stochastic

Processes

- The Basic Object: Poisson Counter
- The Poisson Counter
- The Poisson Counter
- Statistics of the Poisson

Counter

- Statistics of the Poisson Counter
- Statistics of the Poisson Counter
- Another representation
- Poisson Processes
- Calculus for Poisson

Processes

- Calculus for Poisson

Processes
Calculus for Poisson
Processes
Using Ito Calculus

- FSCTJPs
- Poisson Counters and

Let ψ be any smooth function with $\psi=0$ for large $|x|$. Then of course

$$
d \psi=\left\langle\frac{d \phi}{d x}, f(x)\right\rangle d t+\sum_{i=1}^{n}\left[\psi\left(x+g_{i}(x)\right)-\psi(x)\right] d N_{i} .
$$

A PDE for the Distribution

Poisson Processes

- The Tao of ODEs
- The Tao of Stochastic

Processes

- The Basic Object: Poisson Counter
- The Poisson Counter

The Poisson Counter

- Statistics of the Poisson

Counter

- Statistics of the Poisson Counter
- Statistics of the Poisson Counter
- Another representation
- Poisson Processes
- Calculus for Poisson

Processes

- Calculus for Poisson

Processes
Calculus for Poisson
Processes
Using Ito Calculus

- FSCTJPs
- Poisson Counters and

Let ψ be any smooth function with $\psi=0$ for large $|x|$. Then of course

$$
d \psi=\left\langle\frac{d \phi}{d x}, f(x)\right\rangle d t+\sum_{i=1}^{n}\left[\psi\left(x+g_{i}(x)\right)-\psi(x)\right] d N_{i} .
$$

So

$$
\frac{d}{d t} E[\psi(x)](t)=E\left[\left\langle\frac{d \phi}{d x}, f(x)\right\rangle\right]+\sum_{i=1}^{n} \lambda_{i} E\left[\psi\left(x+g_{i}(x)\right)-\psi(x)\right] .
$$

A PDE for the Distribution

Poisson Processe

- The Tao of ODEs
- The Tao of Stochastic

Processes

- The Basic Object: Poisson Counter
- The Poisson Counter
- The Poisson Counter
- Statistics of the Poisson

Counter

- Statistics of the Poisson Counter
- Statistics of the Poisson Counter
Another representation
- Poisson Processes
- Calculus for Poisson

Processes
Calculus for Poisson
Processes

- Calculus for Poisson

Processes

- Using Ito Calculus
- FSCTJPs
- Poisson Counters and

Let ψ be any smooth function with $\psi=0$ for large $|x|$. Then of course

$$
d \psi=\left\langle\frac{d \phi}{d x}, f(x)\right\rangle d t+\sum_{i=1}^{n}\left[\psi\left(x+g_{i}(x)\right)-\psi(x)\right] d N_{i} .
$$

If $\rho(x, t)$ exists and is smooth then:

$$
\frac{d}{d t} E[\psi(x)](t)=\int\left\langle\frac{d \phi}{d x}, f(x)\right\rangle \rho(x, t) d x+\sum_{i=1}^{n} \lambda_{i} \int\left(\psi\left(x+g_{i}(x)\right)-\psi(x)\right) \rho
$$

A PDE for the Distribution

Poisson Processe

- The Tao of ODEs
- The Tao of Stochastic

Processes

- The Basic Object: Poisson Counter
- The Poisson Counter
- The Poisson Counter
- Statistics of the Poisson Counter
- Statistics of the Poisson Counter
- Statistics of the Poisson Counter
- Another representation
- Poisson Processes
- Calculus for Poisson

Processes
Calculus for Poisson
Processes

- Calculus for Poisson

Processes

- Using Ito Calculus
- FSCTJPs
- Poisson Counters and

Let ψ be any smooth function with $\psi=0$ for large $|x|$. Then of course

$$
d \psi=\left\langle\frac{d \phi}{d x}, f(x)\right\rangle d t+\sum_{i=1}^{n}\left[\psi\left(x+g_{i}(x)\right)-\psi(x)\right] d N_{i} .
$$

If $\rho(x, t)$ exists and is smooth then:

$$
\frac{d}{d t} E[\psi(x)](t)=\int\left\langle\frac{d \phi}{d x}, f(x)\right\rangle \rho(x, t) d x+\sum_{i=1}^{n} \lambda_{i} \int\left(\psi\left(x+g_{i}(x)\right)-\psi(x)\right) \rho
$$

And

$$
E[\psi(x)](t)=\int \psi(x) \rho(x, t) d x
$$

just by definition.

A PDE for the Distribution

Poisson Processes

- The Tao of ODEs
- The Tao of Stochastic

Processes

- The Basic Object: Poisson Counter
- The Poisson Counter
- The Poisson Counter
- Statistics of the Poisson

Counter

- Statistics of the Poisson Counter
- Statistics of the Poisson Counter
- Another representation
- Poisson Processes
- Calculus for Poisson

Processes

- Calculus for Poisson

Processes
Calculus for Poisson
Processes

- Using Ito Calculus
- FSCTJPs
- Poisson Counters and

Let ψ be any smooth function with $\psi=0$ for large $|x|$. Then of course

$$
d \psi=\left\langle\frac{d \phi}{d x}, f(x)\right\rangle d t+\sum_{i=1}^{n}\left[\psi\left(x+g_{i}(x)\right)-\psi(x)\right] d N_{i}
$$

If $\rho(x, t)$ exists and is smooth then:

$$
\frac{d}{d t} E[\psi(x)](t)=\int\left\langle\frac{d \phi}{d x}, f(x)\right\rangle \rho(x, t) d x+\sum_{i=1}^{n} \lambda_{i} \int\left(\psi\left(x+g_{i}(x)\right)-\psi(x)\right) \rho
$$

Now, differentiating w.r.t t and comparing gives:

$$
\int \psi(x) \frac{d \rho(x, t)}{d t}=\int\left[\frac{d \psi}{d x}+\sum_{i} \lambda_{i}\left(\psi\left(x+g_{i}(x)\right)-\psi(x)\right] \rho(x, t) d x\right.
$$

A PDE for the Distribution

Poisson Processes

- The Tao of ODEs
- The Tao of Stochastic

Processes

- The Basic Object: Poisson Counter
- The Poisson Counter
- The Poisson Counter
- Statistics of the Poisson Counter
- Statistics of the Poisson Counter
- Statistics of the Poisson Counter
- Another representation
- Poisson Processes
- Calculus for Poisson

Processes

- Calculus for Poisson

Processes

- Calculus for Poisson

Processes

- Using Ito Calculus
- FSCTJPs
- Poisson Counters and

Let ψ be any smooth function with $\psi=0$ for large $|x|$. Then of course

$$
d \psi=\left\langle\frac{d \phi}{d x}, f(x)\right\rangle d t+\sum_{i=1}^{n}\left[\psi\left(x+g_{i}(x)\right)-\psi(x)\right] d N_{i}
$$

If $\rho(x, t)$ exists and is smooth then:

$$
\frac{d}{d t} E[\psi(x)](t)=\int\left\langle\frac{d \phi}{d x}, f(x)\right\rangle \rho(x, t) d x+\sum_{i=1}^{n} \lambda_{i} \int\left(\psi\left(x+g_{i}(x)\right)-\psi(x)\right) \rho
$$

Now, differentiating w.r.t t and comparing gives:

$$
\begin{aligned}
& \int \psi(x) \frac{d \rho(x, t)}{d t}=\int\left[\frac{d \psi}{d x}+\sum_{i} \lambda_{i}\left(\psi\left(x+g_{i}(x)\right)-\psi(x)\right] \rho(x, t) d x\right. \\
& \int\left(-\psi(x) \frac{\partial(f \rho)}{\partial x}-\sum_{i} \lambda_{i} \psi \rho\right) d x+\sum_{i} \lambda_{i} \int \psi\left(x+g_{i}(x)\right) \rho(t, x) d x
\end{aligned}
$$

A PDE for the Distribution

- The Tao of ODEs
- The Tao of Stochastic

Processes

- The Basic Object: Poisson Counter
- The Poisson Counter
- The Poisson Counter
- Statistics of the Poisson Counter
- Statistics of the Poisson Counter
- Statistics of the Poisson Counter Another representation
- Poisson Processes
- Calculus for Poisson

Processes

- Calculus for Poisson

Processes

- Calculus for Poisson

Processes

- Using Ito Calculus
- FSCTJPs
- Poisson Counters and

FSCTJPs

- A PDE for the Distribution

Let $h_{i}(x)=x+g_{i}(x)$. Assume that h_{i} is finite-to-one. Change variables $x \rightarrow z$ so that $d z=|\operatorname{det}(I+d g)| d x$.

A PDE for the Distribution

- The Tao of ODEs
- The Tao of Stochastic

Processes

- The Basic Object: Poisson Counter
- The Poisson Counter

The Poisson Counter

- Statistics of the Poisson Counter
- Statistics of the Poisson Counter
- Statistics of the Poisson Counter
- Another representation
- Poisson Processes
- Calculus for Poisson

Processes

- Calculus for Poisson

Processes
Calculus for Poisson
Processes

- Using Ito Calculus
- FSCTJPs
- Poisson Counters and

FSCTJPs

- A PDE for the Distribution

Let $h_{i}(x)=x+g_{i}(x)$. Assume that h_{i} is finite-to-one. Change variables $x \rightarrow z$ so that $d z=|\operatorname{det}(I+d g)| d x$. Then by the chain rule:

$$
\int \psi\left(x+g_{i}(x)\right) \rho(x, t) d x=\int \psi(z) \rho\left(h_{i}^{-1}(z), t\right)\left|\operatorname{det}\left(I+d g_{i}\right)\right|^{-1} d z .
$$

A PDE for the Distribution

Poisson Processe

- The Tao of ODEs
- The Tao of Stochastic

Processes

- The Basic Object: Poisson Counter
The Poisson Counter
- The Poisson Counter
- Statistics of the Poisson Counter
- Statistics of the Poisson Counter
- Statistics of the Poisson Counter
- Another representation
- Poisson Processes

Calculus for Poisson
Processes

- Calculus for Poisson

Processes
Calculus for Poisson
Processes

- Using Ito Calculus
- FSCTJPs
- Poisson Counters and
- A PDE for the Distribution

Let $h_{i}(x)=x+g_{i}(x)$. Assume that h_{i} is finite-to-one. Change variables $x \rightarrow z$ so that $d z=|\operatorname{det}(I+d g)| d x$.
Then by the chain rule:
$\int \psi\left(x+g_{i}(x)\right) \rho(x, t) d x=\int \psi(z) \rho\left(h_{i}^{-1}(z), t\right)\left|\operatorname{det}\left(I+d g_{i}\right)\right|^{-1} d z$.
Hence

$$
\begin{align*}
\int \psi(x) \frac{\partial \rho}{\partial t} d x & =\int\left(-\psi \frac{\partial(f \rho)}{d x}-\sum_{i} \lambda_{i} \psi \rho\right) d x \tag{5}\\
& +\sum_{i} \lambda_{i} \int \psi(z) \rho\left(h_{i}^{-1}(z), t\right)|\operatorname{det}(I+d g)|^{-1} d z
\end{align*}
$$

A PDE for the Distribution

Poisson Processes

- The Tao of ODEs
- The Tao of Stochastic

Processes

- The Basic Object: Poisson Counter
The Poisson Counter
- The Poisson Counter
- Statistics of the Poisson

Counter

- Statistics of the Poisson Counter
- Statistics of the Poisson Counter
- Another representation
- Poisson Processes
- Calculus for Poisson

Processes

- Calculus for Poisson

Processes
Calculus for Poisson
Processes

- Using Ito Calculus
- FSCTJPs
- Poisson Counters and

FSCTJPs

- A PDE for the Distribution

Let $h_{i}(x)=x+g_{i}(x)$. Assume that h_{i} is finite-to-one. Change variables $x \rightarrow z$ so that $d z=|\operatorname{det}(I+d g)| d x$.
Then by the chain rule:
$\int \psi\left(x+g_{i}(x)\right) \rho(x, t) d x=\int \psi(z) \rho\left(h_{i}^{-1}(z), t\right)\left|\operatorname{det}\left(I+d g_{i}\right)\right|^{-1} d z$.
Hence

$$
\begin{align*}
\int \psi(x) \frac{\partial \rho}{\partial t} d x & =\int\left(-\psi \frac{\partial(f \rho)}{d x}-\sum_{i} \lambda_{i} \psi \rho\right) d x \tag{5}\\
& +\sum_{i} \lambda_{i} \int \psi(z) \rho\left(h_{i}^{-1}(z), t\right)|\operatorname{det}(I+d g)|^{-1} d z
\end{align*}
$$

This can be collected as $\int \psi(x)[$ stuff $]=0$.

A PDE for the Distribution

Poisson Processes

- The Tao of ODEs
- The Tao of Stochastic

Processes

- The Basic Object: Poisson Counter
- The Poisson Counter
- The Poisson Counter
- Statistics of the Poisson

Counter

- Statistics of the Poisson Counter
- Statistics of the Poisson Counter
- Another representation
- Poisson Processes
- Calculus for Poisson

Processes

- Calculus for Poisson

Processes
Calculus for Poisson
Processes

- Using Ito Calculus
- FSCTJPs
- Poisson Counters and

FSCTJPs
A PDE for the Distribution

Let $h_{i}(x)=x+g_{i}(x)$. Assume that h_{i} is finite-to-one. Change variables $x \rightarrow z$ so that $d z=|\operatorname{det}(I+d g)| d x$.
Then by the chain rule:
$\int \psi\left(x+g_{i}(x)\right) \rho(x, t) d x=\int \psi(z) \rho\left(h_{i}^{-1}(z), t\right)\left|\operatorname{det}\left(I+d g_{i}\right)\right|^{-1} d z$.
Hence

$$
\begin{align*}
\int \psi(x) \frac{\partial \rho}{\partial t} d x & =\int\left(-\psi \frac{\partial(f \rho)}{d x}-\sum_{i} \lambda_{i} \psi \rho\right) d x \tag{5}\\
& +\sum_{i} \lambda_{i} \int \psi(z) \rho\left(h_{i}^{-1}(z), t\right)|\operatorname{det}(I+d g)|^{-1} d z
\end{align*}
$$

This can be collected as $\int \psi(x)$ [stuff $]=0$. But $\psi(x)$ was chosen arbitrarily!

A PDE for the Distribution

Poisson Processes

- The Tao of ODEs
- The Tao of Stochastic

Processes

- The Basic Object: Poisson

Counter

- The Poisson Counter
- The Poisson Counter
- Statistics of the Poisson

Counter

- Statistics of the Poisson

Counter

- Statistics of the Poisson

Counter

- Another representation
- Poisson Processes
- Calculus for Poisson

Processes

- Calculus for Poisson

Processes

- Calculus for Poisson

Processes

- Using Ito Calculus
- FSCTJPs
- Poisson Counters and

FSCTJPs

- A PDE for the Distribution
- A PDE for the Distribution

Hence, stuff $=0$.

A PDE for the Distribution

Poisson Processes

- The Tao of ODEs
- The Tao of Stochastic

Processes

- The Basic Object: Poisson

Counter

- The Poisson Counter
- The Poisson Counter
- Statistics of the Poisson

Counter

- Statistics of the Poisson Counter
- Statistics of the Poisson Counter
- Another representation
- Poisson Processes
- Calculus for Poisson

Processes

- Calculus for Poisson

Processes
Calculus for Poisson
Processes

- Using Ito Calculus
- FSCTJPs
- Poisson Counters and

FSCTJPs

- A PDE for the Distribution
- A PDE for the Distribution

Hence, stuff $=0$.
This yields

$$
\frac{\partial \rho}{\partial t}=-\frac{\partial}{\partial x}(f \rho)+\sum_{i} \lambda_{i}\left[\rho\left(h_{i}^{-1}(x), t\right)|\operatorname{det}(I+d g)|^{-1}-\rho(x, t)\right]
$$

A PDE for the Distribution

- The Tao of ODEs
- The Tao of Stochastic

Processes

- The Basic Object: Poisson Counter
- The Poisson Counter
- The Poisson Counter
- Statistics of the Poisson

Counter

- Statistics of the Poisson Counter
- Statistics of the Poisson Counter - Another representation

Hence, stuff $=0$.
This yields

$$
\frac{\partial \rho}{\partial t}=-\frac{\partial}{\partial x}(f \rho)+\sum_{i} \lambda_{i}\left[\rho\left(h_{i}^{-1}(x), t\right)|\operatorname{det}(I+d g)|^{-1}-\rho(x, t)\right] .
$$

This is a deterministic PDE for the distribution. We've achieved the Grand Principle.

A PDE for the Distribution

Poisson Processes

- The Tao of ODEs
- The Tao of Stochastic

Processes

- The Basic Object: Poisson Counter
- The Poisson Counter
- The Poisson Counter
- Statistics of the Poisson Counter
- Statistics of the Poisson Counter
- Statistics of the Poisson Counter - Another representation

Hence, stuff $=0$.
This yields

$$
\frac{\partial \rho}{\partial t}=-\frac{\partial}{\partial x}(f \rho)+\sum_{i} \lambda_{i}\left[\rho\left(h_{i}^{-1}(x), t\right)|\operatorname{det}(I+d g)|^{-1}-\rho(x, t)\right]
$$

This is a deterministic PDE for the distribution. We've achieved the Grand Principle.

It's very hard to solve. But: things can be done (including solve for steady states).

Where to go from here?

Poisson Processes

- The Tao of ODEs
- The Tao of Stochastic

Processes

- The Basic Object: Poisson

Counter

- The Poisson Counter
- The Poisson Counter
- Statistics of the Poisson

Counter

- Statistics of the Poisson

Counter

- Statistics of the Poisson

Counter

- Another representation
- Poisson Processes
- Calculus for Poisson

Processes

- Calculus for Poisson

Processes

- Calculus for Poisson

Processes

- Using Ito Calculus
- FSCTJPs
- Poisson Counters and

FSCTJPs

- A PDE for the Distribution
- A PDE for the Distribution
- A PDE for the Distribution

Various things can now be done:

Where to go from here?

Poisson Processes

- The Tao of ODEs
- The Tao of Stochastic

Processes

- The Basic Object: Poisson Counter
- The Poisson Counter
- The Poisson Counter
- Statistics of the Poisson Counter
- Statistics of the Poisson Counter
- Statistics of the Poisson Counter - Another representation
- Poisson Processes
- Calculus for Poisson

Processes

- Calculus for Poisson
- Calculus for Poisson

Processes

- Using Ito Calculus
- FSCTJPs
- Poisson Counters and

FSCTJPs

- A PDE for the Distribution
- A PDE for the Distribution
- A PDE for the Distribution

Various things can now be done:

- Construct non-constant-rate poisson counters, i.e. let $\lambda=\lambda(t)$. And then, generalize results.

Where to go from here?

Poisson Processes

- The Tao of ODEs
- The Tao of Stochastic

Processes

- The Basic Object: Poisson Counter
- The Poisson Counter
- The Poisson Counter
- Statistics of the Poisson Counter
- Statistics of the Poisson Counter
- Statistics of the Poisson Counter - Another representation

Various things can now be done:
■ Construct non-constant-rate poisson counters, i.e. let $\lambda=\lambda(t)$. And then, generalize results.

- Construct non-deterministic-rate poisson counters, i.e. given $\lambda(t)$ by distribution. And generalize results.

Where to go from here?

Poisson Processes

- The Tao of ODEs
- The Tao of Stochastic

Processes

- The Basic Object: Poisson Counter
- The Poisson Counter - The Poisson Counter

Various things can now be done:

- Construct non-constant-rate poisson counters, i.e. let $\lambda=\lambda(t)$. And then, generalize results.
- Construct non-deterministic-rate poisson counters, i.e. given $\lambda(t)$ by distribution. And generalize results.
- Take away discretization in space, going from jump processes to continuous processes.

Where to go from here?

Poisson Processes

- The Tao of ODEs
- The Tao of Stochastic

Processes

- The Basic Object: Poisson Counter
- The Poisson Counter
- The Poisson Counter
- Statistics of the Poisson

Counter

- Statistics of the Poisson

Counter

- Statistics of the Poisson Counter - Another representation

Various things can now be done:

- Construct non-constant-rate poisson counters, i.e. let $\lambda=\lambda(t)$. And then, generalize results.
- Construct non-deterministic-rate poisson counters, i.e. given $\lambda(t)$ by distribution. And generalize results.
- Take away discretization in space, going from jump processes to continuous processes.

The first two can be done, and are interesting, but the third is really where it's at.
Wiener Processes and
Brownian Motions

- Spatial Continuization- Spatial Continuization- Spatial Continuization
- Brownian Motion- Properties Of BrownianMotion
- Stochastic DifferentialEquations
- Ito Calculus for Wiener
Processes
- Ito Calculus for WienerProcesses- Ito Calculus for WienerProcesses- Ito Calculus for Wiener
Processes
Calculating Moments
- The Langevin Equation
- The Langevin Equation
- Nyquist-Johnson Circuits
- Nyquist-Johnson Circuits
- Equipartition of Energy
- Equipartition of Energy
- Equipartition of Energy
Equipartition of Energy
- Equipartition of Energy
- A Distributional PDE
A Distributional PDE- A Distributional PDE

Wiener Processes and Brownian Motions

Spatial Continuization

Wiener Processes and Brownian Motions

- Spatial Continuization
- Spatial Continuization
- Spatial Continuization
- Brownian Motion
- Properties Of Brownian Motion
- Stochastic Differential Equations
- Ito Calculus for Wiener Processes
- Calculating Moments
- The Langevin Equation
- The Langevin Equation
- Nyquist-Johnson Circuits
- Nyquist-Johnson Circuits
- Equipartition of Energy
- A Distributional PDE
- A Distributional PDE
- A Distributional PDE

How should we continu-ize in space, as a limit of poisson counters?

Spatial Continuization

Wiener Processes and

Brownian Motions

- Spatial Continuization
- Spatial Continuization
- Spatial Continuization
- Brownian Motion
- Properties Of Brownian

Motion

- Stochastic Differential

Equations

- Ito Calculus for Wiener Processes
- Ito Calculus for Wiener Processes
- Ito Calculus for Wiener Processes
- Ito Calculus for Wiener Processes - Calculating Moments
- The Langevin Equation
- The Langevin Equation
- Nyquist-Johnson Circuits
- Nyquist-Johnson Circuits
- Equipartition of Energy
- A Distributional PDE
- A Distributional PDE
- A Distributional PDE

How should we continu-ize in space, as a limit of poisson counters? Take a limit in which the rate $\lambda \rightarrow 0$.

Spatial Continuization

How should we continu-ize in space, as a limit of poisson counters? Take a limit in which the rate $\lambda \rightarrow 0$.

Let w_{λ} be given by $d w_{\lambda}=\frac{1}{\sqrt{\lambda}}\left(d N_{\lambda / 2}^{+}-d N_{\lambda / 2}^{-}\right)$where $N_{\lambda / 2}^{+}, N_{\lambda / 2}^{-}$are independent poisson counters of rate $\lambda / 2$, $w_{\lambda}(0)=0$.

Spatial Continuization

Wiener Processes and

Brownian Motions

- Spatial Continuization
- Spatial Continuization
- Spatial Continuization
- Brownian Motion
- Properties Of Brownian

Motion

- Stochastic Differential

Equations

- Ito Calculus for Wiener Processes
- Ito Calculus for Wiener Processes
- Ito Calculus for Wiener Processes
- Ito Calculus for Wiener

Processes

- Calculating Moments
- The Langevin Equation
- The Langevin Equation
- Nyquist-Johnson Circuits
- Nyquist-Johnson Circuits
- Equipartition of Energy - Equipartition of Energy - Equipartition of Energy - Equipartition of Energy - Equipartition of Energy
- A Distributional PDE
- A Distributional PDE
- A Distributional PDE

How should we continu-ize in space, as a limit of poisson counters? Take a limit in which the rate $\lambda \rightarrow 0$.

Let w_{λ} be given by $d w_{\lambda}=\frac{1}{\sqrt{\lambda}}\left(d N_{\lambda / 2}^{+}-d N_{\lambda / 2}^{-}\right)$where $N_{\lambda / 2}^{+}, N_{\lambda / 2}^{-}$are independent poisson counters of rate $\lambda / 2$, $w_{\lambda}(0)=0$.

Spatial Continuization

Poisson Processes

Wiener Processes and

 Brownian Motions - Spatial Continuization- Spatial Continuization
- Brownian Motion
- Properties Of Brownian Motion
- Stochastic Differential Equations
- Ito Calculus for Wiener Processes
- Ito Calculus for Wiener Processes
- Ito Calculus for Wiener

Processes

- Ito Calculus for Wiener Processes
- Calculating Moments
- The Langevin Equation
- The Langevin Equation
- Nyquist-Johnson Circuits
- Nyquist-Johnson Circuits
- Equipartition of Energy
- A Distributional PDE
- A Distributional PDE
- A Distributional PDE
$d w_{\lambda}$ is:

Spatial Continuization

Poisson Processes

Wiener Processes and Brownian Motions - Spatial Continuization - Spatial Continuization

- Spatial Continuization
- Brownian Motion
- Properties Of Brownian Motion
- Stochastic Differential Equations
- Ito Calculus for Wiener Processes
- Calculating Moments
- The Langevin Equation
- The Langevin Equation
- Nyquist-Johnson Circuits
- Nyquist-Johnson Circuits
- Equipartition of Energy
- A Distributional PDE
- A Distributional PDE
- A Distributional PDE
$d w_{\lambda}$ is:
■ Zero-mean.

Spatial Continuization

Poisson Processes

Wiener Processes and Brownian Motions - Spatial Continuization

- Spatial Continuization
$d w_{\lambda}$ is:
■ Zero-mean.
- Memoryless.
- Spatial Continuization
- Brownian Motion
- Properties Of Brownian

Motion

- Stochastic Differential

Equations

- Ito Calculus for Wiener Processes
- Calculating Moments
- The Langevin Equation
- The Langevin Equation
- Nyquist-Johnson Circuits
- Nyquist-Johnson Circuits
- Equipartition of Energy
- A Distributional PDE
- A Distributional PDE
- A Distributional PDE

Spatial Continuization

Poisson Processes

Wiener Processes and Brownian Motions - Spatial Continuization

- Spatial Continuization
- Spatial Continuization
- Brownian Motion
- Properties Of Brownian Motion
- Stochastic Differential Equations
- Ito Calculus for Wiener Processes
- Calculating Moments
- The Langevin Equation
- The Langevin Equation
- Nyquist-Johnson Circuits
- Nyquist-Johnson Circuits
- Equipartition of Energy
- A Distributional PDE
- A Distributional PDE
- A Distributional PDE
$d w_{\lambda}$ is:
■ Zero-mean.
- Memoryless.
- More continuous as $\lambda \rightarrow 0$.

Spatial Continuization

Poisson Processes

Wiener Processes and
Brownian Motions

- Spatial Continuization
- Spatial Continuization
- Spatial Continuization
- Brownian Motion
- Properties Of Brownian

Motion

- Stochastic Differential

Equations

- Ito Calculus for Wiener Processes
- Calculating Moments
- The Langevin Equation
- The Langevin Equation
- Nyquist-Johnson Circuits
- Nyquist-Johnson Circuits
- Equipartition of Energy
- A Distributional PDE
- A Distributional PDE
- A Distributional PDE
$d w_{\lambda}$ is:
■ Zero-mean.
- Memoryless.
- More continuous as $\lambda \rightarrow 0$. What are its statistics?

Spatial Continuization

Poisson Processes

Wiener Processes and
Brownian Motions

- Spatial Continuization
- Spatial Continuization
- Spatial Continuization
- Brownian Motion
- Properties Of Brownian

Motion

- Stochastic Differential

Equations

- Ito Calculus for Wiener Processes
- Calculating Moments
- The Langevin Equation
- The Langevin Equation
- Nyquist-Johnson Circuits
- Nyquist-Johnson Circuits
- Equipartition of Energy
- A Distributional PDE
- A Distributional PDE
- A Distributional PDE
$d w_{\lambda}$ is:
■ Zero-mean.
- Memoryless.
- More continuous as $\lambda \rightarrow 0$.

What are its statistics? Ito's rule says:

$$
d w_{\lambda}^{m}=\left(\left(w_{\lambda}+\frac{1}{\sqrt{\lambda}}\right)^{m}-w_{\lambda}^{m}\right) d N^{+}+\left(\left(w_{\lambda}-\frac{1}{\sqrt{\lambda}}\right)^{m}-w_{\lambda}^{m}\right) d N^{-} .
$$

Spatial Continuization

Poisson Processes

Wiener Processes and
Brownian Motions

- Spatial Continuization
- Spatial Continuization
- Spatial Continuization
- Brownian Motion
- Properties Of Brownian

Motion

- Stochastic Differential

Equations

- Ito Calculus for Wiener Processes
- Calculating Moments
- The Langevin Equation
- The Langevin Equation
- Nyquist-Johnson Circuits
- Nyquist-Johnson Circuits
- Equipartition of Energy
- A Distributional PDE
- A Distributional PDE
- A Distributional PDE
$d w_{\lambda}$ is:
■ Zero-mean.
- Memoryless.
- More continuous as $\lambda \rightarrow 0$.

What are its statistics? Ito's rule says:

$$
d w_{\lambda}^{m}=\left(\left(w_{\lambda}+\frac{1}{\sqrt{\lambda}}\right)^{m}-w_{\lambda}^{m}\right) d N^{+}+\left(\left(w_{\lambda}-\frac{1}{\sqrt{\lambda}}\right)^{m}-w_{\lambda}^{m}\right) d N^{-} .
$$

Thus (using the binomial expansion)

Spatial Continuization

$d w_{\lambda}$ is:
■ Zero-mean.

- Memoryless.
- More continuous as $\lambda \rightarrow 0$.

What are its statistics? Ito's rule says:

$$
d w_{\lambda}^{m}=\left(\left(w_{\lambda}+\frac{1}{\sqrt{\lambda}}\right)^{m}-w_{\lambda}^{m}\right) d N^{+}+\left(\left(w_{\lambda}-\frac{1}{\sqrt{\lambda}}\right)^{m}-w_{\lambda}^{m}\right) d N^{-} .
$$

Thus (using the binomial expansion)

$$
\frac{d}{d t} E\left[w_{\lambda}^{m}\right]= \begin{cases}0 & \text { if } m \text { is odd } \\ \sum_{i=1}^{m / 2-1} \frac{1}{\lambda^{i-1}}\binom{m}{2 i} E\left[w_{\lambda}^{m-2 i}\right] & \text { if } m \text { if even }\end{cases}
$$

Spatial Continuization

Poisson Processes

Wiener Processes and
Brownian Motions

- Spatial Continuization
- Spatial Continuization
- Spatial Continuization
- Brownian Motion
- Properties Of Brownian

Motion

- Stochastic Differential

Equations

- Ito Calculus for Wiener Processes
- Ito Calculus for Wiener Processes
- Ito Calculus for Wiener Processes
- Ito Calculus for Wiener Processes - Calculating Moments - The Langevin Equation - The Langevin Equation - Nyquist-Johnson Circuits - Nyquist-Johnson Circuits
- Equipartition of Energy - A Distributional PDE - A Distributional PDE - A Distributional PDE
$d w_{\lambda}$ is:
■ Zero-mean.
- Memoryless.
- More continuous as $\lambda \rightarrow 0$.

What are its statistics? Ito's rule says:

$$
d w_{\lambda}^{m}=\left(\left(w_{\lambda}+\frac{1}{\sqrt{\lambda}}\right)^{m}-w_{\lambda}^{m}\right) d N^{+}+\left(\left(w_{\lambda}-\frac{1}{\sqrt{\lambda}}\right)^{m}-w_{\lambda}^{m}\right) d N^{-}
$$

Thus (using the binomial expansion)

$$
\frac{d}{d t} E\left[w_{\lambda}^{m}\right]= \begin{cases}0 & \text { if } m \text { is odd } \\ \sum_{i=1}^{m / 2-1} \frac{1}{\lambda^{i-1}}\binom{m}{2 i} E\left[w_{\lambda}^{m-2 i}\right] & \text { if } m \text { if even }\end{cases}
$$

Again, notice the recursive calculation of moments.

Spatial Continuization

Wiener Processes and

Brownian Motions

- Spatial Continuization
- Spatial Continuization - Spatial Continuization
- Brownian Motion
- Properties Of Brownian

Motion

- Stochastic Differential

Equations

- Ito Calculus for Wiener Processes
- Calculating Moments
- The Langevin Equation
- The Langevin Equation
- Nyquist-Johnson Circuits
- Nyquist-Johnson Circuits
- Equipartition of Energy
- A Distributional PDE
- A Distributional PDE
- A Distributional PDE

But now let's consider the limit $\lambda \rightarrow \infty$. Taking the limit and solving the recursion for m even gives

Spatial Continuization

Wiener Processes and

Brownian Motions

- Spatial Continuization
- Spatial Continuization
- Brownian Motion
- Properties Of Brownian Motion
- Stochastic Differential

Equations

- Ito Calculus for Wiener Processes
- Ito Calculus for Wiener Processes
- Ito Calculus for Wiener Processes
- Ito Calculus for Wiener Processes - Calculating Moments
- The Langevin Equation
- The Langevin Equation
- Nyquist-Johnson Circuits
- Nyquist-Johnson Circuits
- Equipartition of Energy
- A Distributional PDE
- A Distributional PDE
- A Distributional PDE

But now let's consider the limit $\lambda \rightarrow \infty$. Taking the limit and solving the recursion for m even gives

$$
\lim _{\lambda \rightarrow \infty} E\left[w_{\lambda}^{m}\right](t)=(m-1)(m-3) \ldots \cdot 3\left(\frac{t}{2}\right)^{m / 2}
$$

Spatial Continuization

Wiener Processes and

Brownian Motions

- Spatial Continuization
- Spatial Continuization - Spatial Continuization
- Brownian Motion
- Properties Of Brownian Motion
- Stochastic Differential

Equations

- Ito Calculus for Wiener Processes
- Ito Calculus for Wiener Processes
- Ito Calculus for Wiener Processes
- Ito Calculus for Wiener Processes - Calculating Moments
- The Langevin Equation
- The Langevin Equation
- Nyquist-Johnson Circuits
- Nyquist-Johnson Circuits
- Equipartition of Energy
- A Distributional PDE
- A Distributional PDE
- A Distributional PDE

But now let's consider the limit $\lambda \rightarrow \infty$. Taking the limit and solving the recursion for m even gives

$$
\lim _{\lambda \rightarrow \infty} E\left[w_{\lambda}^{m}\right](t)=(m-1)(m-3) \ldots \cdot 3\left(\frac{t}{2}\right)^{m / 2}
$$

These are the moments of a Gaussian.

Spatial Continuization

But now let's consider the limit $\lambda \rightarrow \infty$. Taking the limit and solving the recursion for m even gives

$$
\lim _{\lambda \rightarrow \infty} E\left[w_{\lambda}^{m}\right](t)=(m-1)(m-3) \cdots 3\left(\frac{t}{2}\right)^{m / 2}
$$

These are the moments of a Gaussian.
Hence, we're (roughly) justifed in making the following definition:

Definition 4

$$
d w=\lim _{\lambda \rightarrow \infty} d w_{\lambda}
$$

Spatial Continuization

But now let's consider the limit $\lambda \rightarrow \infty$. Taking the limit and solving the recursion for m even gives

$$
\lim _{\lambda \rightarrow \infty} E\left[w_{\lambda}^{m}\right](t)=(m-1)(m-3) \ldots \cdot 3\left(\frac{t}{2}\right)^{m / 2}
$$

These are the moments of a Gaussian.
Hence, we're (roughly) justifed in making the following definition:

Definition 4

$$
d w=\lim _{\lambda \rightarrow \infty} d w_{\lambda}
$$

$d w$ defines a continuous process $w: \mathbb{R} \rightarrow \mathbb{R}$ with Gaussian statistics.

Spatial Continuization

But now let's consider the limit $\lambda \rightarrow \infty$. Taking the limit and solving the recursion for m even gives

$$
\lim _{\lambda \rightarrow \infty} E\left[w_{\lambda}^{m}\right](t)=(m-1)(m-3) \ldots \cdot 3\left(\frac{t}{2}\right)^{m / 2}
$$

These are the moments of a Gaussian.
Hence, we're (roughly) justifed in making the following definition:

Definition 4

$$
d w=\lim _{\lambda \rightarrow \infty} d w_{\lambda}
$$

$d w$ defines a continuous process $w: \mathbb{R} \rightarrow \mathbb{R}$ with Gaussian statistics.
$d w$ is called a Brownian motion (if the limit exists, which it does).

Brownian Motion

Poisson Processes

Wiener Processes and

Brownian Motions

- Spatial Continuization
- Spatial Continuization
- Spatial Continuization
- Brownian Motion
- Properties Of Brownian

Motion

- Stochastic Differential

Equations

- Ito Calculus for Wiener Processes
- Ito Calculus for Wiener Processes
- Ito Calculus for Wiener
- Ito Calculus for Wiener

Processes

- Calculating Moments
- The Langevin Equation
- The Langevin Equation
- Nyquist-Johnson Circuits
- Nyquist-Johnson Circuits
- Equipartition of Energy
- A Distributional PDE
- A Distributional PDE
- A Distributional PDE

Properties Of Brownian Motion

Motion

- Stochastic Differential

Equations

- Ito Calculus for Wiener Processes
- Calculating Moments
- The Langevin Equation
- The Langevin Equation
- Nyquist-Johnson Circuits
- Nyquist-Johnson Circuits
- Equipartition of Energy
- A Distributional PDE
- A Distributional PDE
- A Distributional PDE

Some properties of Brownian motion are:

Properties Of Brownian Motion

Poisson Processes

Wiener Processes and
Brownian Motions

- Spatial Continuization
- Spatial Continuization
- Spatial Continuization
- Brownian Motion
- Properties Of Brownian

Motion

- Stochastic Differential

Equations

- Ito Calculus for Wiener Processes
- Ito Calculus for Wiener Processes
- Ito Calculus for Wiener Processes
Ito Calculus for Wiener Processes
- Calculating Moments
- The Langevin Equation
- The Langevin Equation
- Nyquist-Johnson Circuits
- Nyquist-Johnson Circuits
- Equipartition of Energy
- A Distributional PDE
- A Distributional PDE
- A Distributional PDE

Some properties of Brownian motion are:

- $w(0)=0$.

Properties Of Brownian Motion

Wiener Processes and Brownian Motions

- Spatial Continuization
- Spatial Continuization
- Spatial Continuization
- Brownian Motion
- Properties Of Brownian

Motion

- Stochastic Differential

Equations

- Ito Calculus for Wiener Processes
- Ito Calculus for Wiener Processes
- Ito Calculus for Wiener Processes
- Ito Calculus for Wiener

Processes

- Calculating Moments
- The Langevin Equation
- The Langevin Equation
- Nyquist-Johnson Circuits
- Nyquist-Johnson Circuits
- Equipartition of Energy
- A Distributional PDE
- A Distributional PDE
- A Distributional PDE

Some properties of Brownian motion are:

- $w(0)=0$.
- The statistics of $r(t, \tau)=w(t)-w(\tau)$ depend only on $|t-\tau|$

Properties Of Brownian Motion

Some properties of Brownian motion are:

- $w(0)=0$.
- The statistics of $r(t, \tau)=w(t)-w(\tau)$ depend only on $|t-\tau|$
- In fact, $E\left[r^{2}\right](t)=|t-\tau|$ (it's again a Gaussian).

Properties Of Brownian Motion

Some properties of Brownian motion are:

- $w(0)=0$.
- The statistics of $r(t, \tau)=w(t)-w(\tau)$ depend only on $|t-\tau|$

■ In fact, $E\left[r^{2}\right](t)=|t-\tau|$ (it's again a Gaussian).

- Two-dimensional thermodynamic motion is modeled by

$$
\left[\begin{array}{l}
d x \\
d y
\end{array}\right]=k\left[\begin{array}{l}
d w_{1} \\
d w_{2}
\end{array}\right]
$$

where w_{1}, w_{2} are independent brownian motions.

Properties Of Brownian Motion

Some properties of Brownian motion are:

- $w(0)=0$.
- The statistics of $r(t, \tau)=w(t)-w(\tau)$ depend only on $|t-\tau|$
- In fact, $E\left[r^{2}\right](t)=|t-\tau|$ (it's again a Gaussian).
- Two-dimensional thermodynamic motion is modeled by

$$
\left[\begin{array}{l}
d x \\
d y
\end{array}\right]=k\left[\begin{array}{l}
d w_{1} \\
d w_{2}
\end{array}\right]
$$

where w_{1}, w_{2} are independent brownian motions.

- Einstein, Smoluchowski, etc, figured this out (three dimensions), and also how to find k as a phyical constant.

Properties Of Brownian Motion

Some properties of Brownian motion are:

- $w(0)=0$.
- The statistics of $r(t, \tau)=w(t)-w(\tau)$ depend only on $|t-\tau|$
- In fact, $E\left[r^{2}\right](t)=|t-\tau|$ (it's again a Gaussian).
- Two-dimensional thermodynamic motion is modeled by

$$
\left[\begin{array}{l}
d x \\
d y
\end{array}\right]=k\left[\begin{array}{l}
d w_{1} \\
d w_{2}
\end{array}\right]
$$

where w_{1}, w_{2} are independent brownian motions.

- Einstein, Smoluchowski, etc, figured this out (three dimensions), and also how to find k as a phyical constant.
- $d w$ is self-similar. That is, given $a>0, \exists b$, such that

$$
w(a t) \stackrel{d}{=} b w(t) \quad \forall t .
$$

In fact $b=a^{1 / 2}$.

Stochastic Differential Equations

Wiener Processes and

 Brownian Motions- Spatial Continuization
- Spatial Continuization
- Spatial Continuization
- Brownian Motion
- Properties Of Brownian
Motion

- Ito Calculus for Wiener

 Processes- Ito Calculus for Wiener Processes - Calculating Moments
- The Langevin Equation
- The Langevin Equation
- Nyquist-Johnson Circuits
- Nyquist-Johnson Circuits
- Equipartition of Energy - Equipartition of Energy - Equipartition of Energy - Equipartition of Energy - Equipartition of Energy
- A Distributional PDE
- A Distributional PDE
- A Distributional PDE

Definition 5 Let

$$
d x=f(x) d t+\sum_{i} g_{i}(x) d w_{i}
$$

be interpreted using the limit procedure from above; that is, its solutions are limits of Ito solutions to

$$
d x_{\lambda}=f(x) d t+\sum_{i} \frac{g_{i}(x)}{\sqrt{\lambda}}\left(d N_{\lambda / 2}^{+}-d N_{\lambda / 2}^{-}\right)
$$

Stochastic Differential Equations

Wiener Processes and

- Spatial Continuization
- Spatial Continuization
- Spatial Continuization
- Brownian Motion
- Properties Of Brownian Motion - Stochastic Differential Equations
- Ito Calculus for Wiener Processes
- Ito Calculus for Wiener Processes
- Ito Calculus for Wiener Processes
- Ito Calculus for Wiener Processes - Calculating Moments
- The Langevin Equation
- The Langevin Equation
- Nyquist-Johnson Circuits
- Nyquist-Johnson Circuits
- Equipartition of Energy
- A Distributional PDE
- A Distributional PDE
- A Distributional PDE

Definition 5 Let

$$
d x=f(x) d t+\sum_{i} g_{i}(x) d w_{i}
$$

be interpreted using the limit procedure from above; that is, its solutions are limits of Ito solutions to

$$
d x_{\lambda}=f(x) d t+\sum_{i} \frac{g_{i}(x)}{\sqrt{\lambda}}\left(d N_{\lambda / 2}^{+}-d N_{\lambda / 2}^{-}\right)
$$

Such an equation is a Stochastic Differential Equation (SDE). Solutions are Wiener Processes.

Stochastic Differential Equations

Wiener Processes and

 Brownian Motions- Spatial Continuization
- Spatial Continuization
- Spatial Continuization
- Brownian Motion

- Properties Of Brownian

Definition 5 Let

$$
d x=f(x) d t+\sum_{i} g_{i}(x) d w_{i}
$$

be interpreted using the limit procedure from above; that is, its solutions are limits of Ito solutions to

$$
d x_{\lambda}=f(x) d t+\sum_{i} \frac{g_{i}(x)}{\sqrt{\lambda}}\left(d N_{\lambda / 2}^{+}-d N_{\lambda / 2}^{-}\right)
$$

Such an equation is a Stochastic Differential Equation (SDE). Solutions are Wiener Processes.

Example 3 [Ornstein-Uhlenbeck Process]

$$
d x=v d t ; \quad d v=-\alpha(\gamma-v) d t+\sigma d w
$$

Stochastic Differential Equations

Wiener Processes and

 Brownian Motions- Spatial Continuization
- Spatial Continuization
- Spatial Continuization
- Brownian Motion
- Properties Of Brownian Motion

Definition 5 Let

$$
d x=f(x) d t+\sum_{i} g_{i}(x) d w_{i}
$$

be interpreted using the limit procedure from above; that is, its solutions are limits of Ito solutions to

$$
d x_{\lambda}=f(x) d t+\sum_{i} \frac{g_{i}(x)}{\sqrt{\lambda}}\left(d N_{\lambda / 2}^{+}-d N_{\lambda / 2}^{-}\right)
$$

Such an equation is a Stochastic Differential Equation (SDE). Solutions are Wiener Processes.

Example 3 [Ornstein-Uhlenbeck Process]

$$
d x=v d t ; \quad d v=-\alpha(\gamma-v) d t+\sigma d w
$$

It has a zillion applications. Finance:

Stochastic Differential Equations

Wiener Processes and

 Brownian Motions- Spatial Continuization
- Spatial Continuization
- Spatial Continuization
- Brownian Motion
- Properties Of Brownian Motion

Definition 5 Let

$$
d x=f(x) d t+\sum_{i} g_{i}(x) d w_{i}
$$

be interpreted using the limit procedure from above; that is, its solutions are limits of Ito solutions to

$$
d x_{\lambda}=f(x) d t+\sum_{i} \frac{g_{i}(x)}{\sqrt{\lambda}}\left(d N_{\lambda / 2}^{+}-d N_{\lambda / 2}^{-}\right)
$$

Such an equation is a Stochastic Differential Equation (SDE). Solutions are Wiener Processes.

Example 3 [Ornstein-Uhlenbeck Process]

$$
d x=v d t ; \quad d v=-\alpha(\gamma-v) d t+\sigma d w
$$

It has a zillion applications. Finance:

- v is the spot interest rate.

Stochastic Differential Equations

Wiener Processes and

- Spatial Continuization
- Spatial Continuization
- Spatial Continuization
- Brownian Motion
- Properties Of Brownian

Definition 5 Let

$$
d x=f(x) d t+\sum_{i} g_{i}(x) d w_{i}
$$

be interpreted using the limit procedure from above; that is, its solutions are limits of Ito solutions to

$$
d x_{\lambda}=f(x) d t+\sum_{i} \frac{g_{i}(x)}{\sqrt{\lambda}}\left(d N_{\lambda / 2}^{+}-d N_{\lambda / 2}^{-}\right)
$$

Such an equation is a Stochastic Differential Equation (SDE). Solutions are Wiener Processes.

Example 3 [Ornstein-Uhlenbeck Process]

$$
d x=v d t ; \quad d v=-\alpha(\gamma-v) d t+\sigma d w
$$

It has a zillion applications. Finance:

- v is the spot interest rate.

■ γ is the long-term mean interest rate.

Stochastic Differential Equations

Wiener Processes and

 Brownian Motions- Spatial Continuization
- Spatial Continuization
- Spatial Continuization
- Brownian Motion
- Properties Of Brownian Motion

Definition 5 Let

$$
d x=f(x) d t+\sum_{i} g_{i}(x) d w_{i}
$$

be interpreted using the limit procedure from above; that is, its solutions are limits of Ito solutions to

$$
d x_{\lambda}=f(x) d t+\sum_{i} \frac{g_{i}(x)}{\sqrt{\lambda}}\left(d N_{\lambda / 2}^{+}-d N_{\lambda / 2}^{-}\right)
$$

Such an equation is a Stochastic Differential Equation (SDE). Solutions are Wiener Processes.

Example 3 [Ornstein-Uhlenbeck Process]

$$
d x=v d t ; \quad d v=-\alpha(\gamma-v) d t+\sigma d w
$$

It has a zillion applications. Finance:

- v is the spot interest rate.
- γ is the long-term mean interest rate.
- α is the "pressure to revert to the mean"

Stochastic Differential Equations

Wiener Processes and

Brownian Motions

- Spatial Continuization
- Spatial Continuization
- Spatial Continuization
- Brownian Motion
- Properties Of Brownian Motion

Definition 5 Let

$$
d x=f(x) d t+\sum_{i} g_{i}(x) d w_{i}
$$

be interpreted using the limit procedure from above; that is, its solutions are limits of Ito solutions to

$$
d x_{\lambda}=f(x) d t+\sum_{i} \frac{g_{i}(x)}{\sqrt{\lambda}}\left(d N_{\lambda / 2}^{+}-d N_{\lambda / 2}^{-}\right)
$$

Such an equation is a Stochastic Differential Equation (SDE). Solutions are Wiener Processes.

Example 3 [Ornstein-Uhlenbeck Process]

$$
d x=v d t ; \quad d v=-\alpha(\gamma-v) d t+\sigma d w
$$

It has a zillion applications. Finance:

- v is the spot interest rate.
- γ is the long-term mean interest rate.
- α is the "pressure to revert to the mean"
- σ is the financial volatility.

Ito Calculus for Wiener Processes

Let ϕ be a function $\mathbb{R}^{n} \rightarrow \mathbb{R}$, and suppose x is governed by a Wiener process SDE as above. $\phi(x)$ is itself a Winer process, but what is its SDE?

Ito Calculus for Wiener Processes

Let ϕ be a function $\mathbb{R}^{n} \rightarrow \mathbb{R}$, and suppose x is governed by a Wiener process SDE as above. $\phi(x)$ is itself a Winer process, but what is its SDE?
In other words, what is the Ito calculus for Wiener processes?

Ito Calculus for Wiener Processes

Let ϕ be a function $\mathbb{R}^{n} \rightarrow \mathbb{R}$, and suppose x is governed by a Wiener process SDE as above. $\phi(x)$ is itself a Winer process, but what is its SDE?
It's easy to derive as a limiting version of Poisson version.

Ito Calculus for Wiener Processes

Let ϕ be a function $\mathbb{R}^{n} \rightarrow \mathbb{R}$, and suppose x is governed by a Wiener process SDE as above. $\phi(x)$ is itself a Winer process, but what is its SDE?
Let's start by introducing the process y_{λ} given by:

$$
d y_{\lambda}=\frac{1}{\lambda}\left(d N_{\lambda / 2}^{+}+d N_{\lambda / 2}^{-}\right) .
$$

Ito Calculus for Wiener Processes

Let ϕ be a function $\mathbb{R}^{n} \rightarrow \mathbb{R}$, and suppose x is governed by a Wiener process SDE as above. $\phi(x)$ is itself a Winer process, but what is its SDE?
Let's start by introducing the process y_{λ} given by:

$$
d y_{\lambda}=\frac{1}{\lambda}\left(d N_{\lambda / 2}^{+}+d N_{\lambda / 2}^{-}\right) .
$$

This is a useful process, like $d w_{\lambda}$ defined above.

Ito Calculus for Wiener Processes

Let ϕ be a function $\mathbb{R}^{n} \rightarrow \mathbb{R}$, and suppose x is governed by a Wiener process SDE as above. $\phi(x)$ is itself a Winer process, but what is its SDE?
Let's start by introducing the process y_{λ} given by:

$$
d y_{\lambda}=\frac{1}{\lambda}\left(d N_{\lambda / 2}^{+}+d N_{\lambda / 2}^{-}\right) .
$$

This is a useful process, like $d w_{\lambda}$ defined above. Using Ito calculus, one finds $E\left[y_{\lambda}\right](t)=t+E\left[y_{\lambda}\right](0)$ and

Ito Calculus for Wiener Processes

Let ϕ be a function $\mathbb{R}^{n} \rightarrow \mathbb{R}$, and suppose x is governed by a Wiener process SDE as above. $\phi(x)$ is itself a Winer process, but what is its SDE?
Let's start by introducing the process y_{λ} given by:

$$
d y_{\lambda}=\frac{1}{\lambda}\left(d N_{\lambda / 2}^{+}+d N_{\lambda / 2}^{-}\right) .
$$

This is a useful process, like $d w_{\lambda}$ defined above. Using Ito calculus, one finds $E\left[y_{\lambda}\right](t)=t+E\left[y_{\lambda}\right](0)$ and $E\left[y_{\lambda}^{2}\right](t)=t^{2}+t / \lambda$.

Ito Calculus for Wiener Processes

Let ϕ be a function $\mathbb{R}^{n} \rightarrow \mathbb{R}$, and suppose x is governed by a Wiener process SDE as above. $\phi(x)$ is itself a Winer process, but what is its SDE?
Let's start by introducing the process y_{λ} given by:

$$
d y_{\lambda}=\frac{1}{\lambda}\left(d N_{\lambda / 2}^{+}+d N_{\lambda / 2}^{-}\right) .
$$

This is a useful process, like $d w_{\lambda}$ defined above. Using Ito calculus, one finds $E\left[y_{\lambda}\right](t)=t+E\left[y_{\lambda}\right](0)$ and $E\left[y_{\lambda}^{2}\right](t)=t^{2}+t / \lambda$. Hence

Ito Calculus for Wiener Processes

Let ϕ be a function $\mathbb{R}^{n} \rightarrow \mathbb{R}$, and suppose x is governed by a Wiener process SDE as above. $\phi(x)$ is itself a Winer process, but what is its SDE?
Let's start by introducing the process y_{λ} given by:

$$
d y_{\lambda}=\frac{1}{\lambda}\left(d N_{\lambda / 2}^{+}+d N_{\lambda / 2}^{-}\right) .
$$

This is a useful process, like $d w_{\lambda}$ defined above. Using Ito calculus, one finds $E\left[y_{\lambda}\right](t)=t+E\left[y_{\lambda}\right](0)$ and $E\left[y_{\lambda}^{2}\right](t)=t^{2}+t / \lambda$. Hence

$$
\operatorname{Var}\left[y_{\lambda}\right](t)=E\left[\left(y_{\lambda}(t)-E\left[y_{\lambda}\right](t)\right)^{2}\right]=t / \lambda .
$$

Ito Calculus for Wiener Processes

Let ϕ be a function $\mathbb{R}^{n} \rightarrow \mathbb{R}$, and suppose x is governed by a Wiener process SDE as above. $\phi(x)$ is itself a Winer process, but what is its SDE?
Let's start by introducing the process y_{λ} given by:

$$
d y_{\lambda}=\frac{1}{\lambda}\left(d N_{\lambda / 2}^{+}+d N_{\lambda / 2}^{-}\right) .
$$

This is a useful process, like $d w_{\lambda}$ defined above. Using Ito calculus, one finds $E\left[y_{\lambda}\right](t)=t+E\left[y_{\lambda}\right](0)$ and $E\left[y_{\lambda}^{2}\right](t)=t^{2}+t / \lambda$. Hence

$$
\operatorname{Var}\left[y_{\lambda}\right](t)=E\left[\left(y_{\lambda}(t)-E\left[y_{\lambda}\right](t)\right)^{2}\right]=t / \lambda
$$

But thus:

$$
y(t) \stackrel{d}{=} \lim _{\lambda \rightarrow \infty} y_{\lambda}=t
$$

a simple deterministic process!

Ito Calculus for Wiener Processes

So let ϕ be a twice-differential function $\mathbb{R}^{n} \rightarrow \mathbb{R}$, and suppose x is governed by a Wiener process SDE as above.

Ito Calculus for Wiener Processes

So let ϕ be a twice-differential function $\mathbb{R}^{n} \rightarrow \mathbb{R}$, and suppose x is governed by a Wiener process SDE as above.

Using the Ito Rule for ϕ on the process

$$
d x_{\lambda}=f(x) d t+\sum_{i} \frac{g_{i}(x)}{\sqrt{\lambda}}\left(d N_{\lambda / 2}^{+}-d N_{\lambda / 2}^{-}\right)
$$

we get

Ito Calculus for Wiener Processes

- Spatial Continuization
- Spatial Continuization
- Spatial Continuization
- Brownian Motion
- Properties Of Brownian

Motion

- Stochastic Differential

Equations

- Ito Calculus for Wiener Processes
- Calculating Moments
- The Langevin Equation
- The Langevin Equation
- Nyquist-Johnson Circuits
- Nyquist-Johnson Circuits
- Equipartition of Energy
- A Distributional PDE
- A Distributional PDE
- A Distributional PDE

So let ϕ be a twice-differential function $\mathbb{R}^{n} \rightarrow \mathbb{R}$, and suppose x is governed by a Wiener process SDE as above.

$$
\begin{align*}
d \phi & =\left\langle\frac{d \phi}{d x}, f(x)\right\rangle d t+\sum_{i}\left[\phi\left(x+\frac{g_{i}(x)}{\sqrt{\lambda}}\right)-\phi(x)\right] d N_{\lambda, i}^{+} \\
& +\sum_{i}\left[\phi\left(x-\frac{g_{i}(x)}{\sqrt{\lambda}}\right)-\phi(x)\right] d N_{\lambda, i}^{-} \tag{6}
\end{align*}
$$

Ito Calculus for Wiener Processes

Poisson Processes

Wiener Processes and

Brownian Motions

- Spatial Continuization
- Spatial Continuization
- Spatial Continuization
- Brownian Motion
- Properties Of Brownian Motion
- Stochastic Differential Equations
- Ito Calculus for Wiener Processes

So let ϕ be a twice-differential function $\mathbb{R}^{n} \rightarrow \mathbb{R}$, and suppose x is governed by a Wiener process SDE as above.

$$
\begin{align*}
d \phi & =\left\langle\frac{d \phi}{d x}, f(x)\right\rangle d t+\sum_{i}\left[\phi\left(x+\frac{g_{i}(x)}{\sqrt{\lambda}}\right)-\phi(x)\right] d N_{\lambda, i}^{+} \\
& +\sum_{i}\left[\phi\left(x-\frac{g_{i}(x)}{\sqrt{\lambda}}\right)-\phi(x)\right] d N_{\lambda, i}^{-} \tag{6}
\end{align*}
$$

Now, let's expand ϕ in a Taylor series in x, which gives us

Ito Calculus for Wiener Processes

Poisson Processes

Wiener Processes and Brownian Motions

- Spatial Continuization
- Spatial Continuization
- Spatial Continuization
- Brownian Motion
- Properties Of Brownian Motion
- Stochastic Differential Equations
- Ito Calculus for Wiener Processes
- Ito Calculus for Wiener Processes
- Calculating Moments
- The Langevin Equation
- The Langevin Equation
- Nyquist-Johnson Circuits
- Nyquist-Johnson Circuits
- Equipartition of Energy - A Distributional PDE - A Distributional PDE

So let ϕ be a twice-differential function $\mathbb{R}^{n} \rightarrow \mathbb{R}$, and suppose x is governed by a Wiener process SDE as above.

$$
\begin{align*}
d \phi & =\left\langle\frac{d \phi}{d x}, f(x)\right\rangle d t+\sum_{i}\left[\phi\left(x+\frac{g_{i}(x)}{\sqrt{\lambda}}\right)-\phi(x)\right] d N_{\lambda, i}^{+} \\
& +\sum_{i}\left[\phi\left(x-\frac{g_{i}(x)}{\sqrt{\lambda}}\right)-\phi(x)\right] d N_{\lambda, i}^{-} \tag{6}\\
d \phi & =\left\langle\frac{d \phi}{d x}, f(x)\right\rangle d t+\sum_{i}\left\langle\frac{d \phi}{d x}, g_{i}(x)\right\rangle \frac{d N_{i}^{+}-d N_{i}^{-}}{\sqrt{\lambda}} \\
& +\frac{1}{2} \sum_{i}\left\langle g_{i}(x), g_{i}(x) \frac{\partial^{2} \phi}{\partial x^{2}}\right\rangle \frac{d N_{i}^{+}+d N_{i}^{-}}{\lambda}+O\left(\lambda^{-3 / 2}\right) \tag{7}
\end{align*}
$$

Ito Calculus for Wiener Processes

Poisson Processes

Wiener Processes and Brownian Motions

- Spatial Continuization
- Spatial Continuization
- Spatial Continuization
- Brownian Motion
- Properties Of Brownian Motion
- Stochastic Differential

Equations

- Ito Calculus for Wiener Processes
- Ito Calculus for Wiener

Processes
O Ito Calculus for Wiener
Processes

- Ito Calculus for Wiener

Processes

- Calculating Moments
- The Langevin Equation
- The Langevin Equation
- Nyquist-Johnson Circuits
- Nyquist-Johnson Circuits
- Equipartition of Energy
- A Distributional PDE
- A Distributional PDE
- A Distributional PDE

So let's stare at:

Ito Calculus for Wiener Processes

Poisson Processe

Wiener Processes and

Brownian Motions

- Spatial Continuization
- Spatial Continuization
- Spatial Continuization
- Brownian Motion
- Properties Of Brownian Motion
- Stochastic Differential Equations
- Ito Calculus for Wiener Processes
- Ito Calculus for Wiener Processes O Ito Calculus for Wiener Processes
- Ito Calculus for Wiener

Processes

- Calculating Moments
- The Langevin Equation
- The Langevin Equation
- Nyquist-Johnson Circuits
- Nyquist-Johnson Circuits
- Equipartition of Energy
- A Distributional PDE
- A Distributional PDE
- A Distributional PDE

So let's stare at:

$$
\begin{align*}
d \phi & =\left\langle\frac{d \phi}{d x}, f(x)\right\rangle d t+\sum_{i}\left\langle\frac{d \phi}{d x}, g_{i}(x)\right\rangle \frac{d N_{i}^{+}-d N_{i}^{-}}{\sqrt{\lambda}} \\
& +\frac{1}{2} \sum_{i}\left\langle g_{i}(x), g_{i}(x) \frac{\partial^{2} \phi}{\partial x^{2}}\right\rangle \frac{d N_{i}^{+}+d N_{i}^{-}}{\lambda}+O\left(\lambda^{-3 / 2}\right) \tag{8}
\end{align*}
$$

Ito Calculus for Wiener Processes

Poisson Processes

Wiener Processes and

Brownian Motions

- Spatial Continuization
- Spatial Continuization
- Spatial Continuization
- Brownian Motion
- Properties Of Brownian Motion
- Stochastic Differential Equations
- Ito Calculus for Wiener Processes
- Ito Calculus for Wiener Processes - Ito Calculus for Wiener Processes
- Ito Calculus for Wiener

Processes

- Calculating Moments
- The Langevin Equation
- The Langevin Equation
- Nyquist-Johnson Circuits
- Nyquist-Johnson Circuits
- Equipartition of Energy
- A Distributional PDE
- A Distributional PDE
- A Distributional PDE

So let's stare at:

$$
\begin{align*}
d \phi & =\left\langle\frac{d \phi}{d x}, f(x)\right\rangle d t+\sum_{i}\left\langle\frac{d \phi}{d x}, g_{i}(x)\right\rangle \frac{d N_{i}^{+}-d N_{i}^{-}}{\sqrt{\lambda}} \\
& +\frac{1}{2} \sum_{i}\left\langle g_{i}(x), g_{i}(x) \frac{\partial^{2} \phi}{\partial x^{2}}\right\rangle \frac{d N_{i}^{+}+d N_{i}^{-}}{\lambda}+O\left(\lambda^{-3 / 2}\right) \tag{8}
\end{align*}
$$

This is just

Ito Calculus for Wiener Processes

Poisson Processes

Wiener Processes and

Brownian Motions

- Spatial Continuization
- Spatial Continuization - Spatial Continuization - Brownian Motion
- Properties Of Brownian Motion
- Stochastic Differential Equations
- Ito Calculus for Wiener Processes
- Ito Calculus for Wiener Processes
- Ito Calculus for Wiener

Processes

- Calculating Moments
- The Langevin Equation
- The Langevin Equation
- Nyquist-Johnson Circuits
- Nyquist-Johnson Circuits
- Equipartition of Energy
- A Distributional PDE
- A Distributional PDE
- A Distributional PDE

So let's stare at:

$$
\begin{align*}
d \phi & =\left\langle\frac{d \phi}{d x}, f(x)\right\rangle d t+\sum_{i}\left\langle\frac{d \phi}{d x}, g_{i}(x)\right\rangle \frac{d N_{i}^{+}-d N_{i}^{-}}{\sqrt{\lambda}} \\
& +\frac{1}{2} \sum_{i}\left\langle g_{i}(x), g_{i}(x) \frac{\partial^{2} \phi}{\partial x^{2}}\right\rangle \frac{d N_{i}^{+}+d N_{i}^{-}}{\lambda}+O\left(\lambda^{-3 / 2}\right) \tag{8}
\end{align*}
$$

This is just

$$
\begin{align*}
d \phi & =\left\langle\frac{d \phi}{d x}, f(x)\right\rangle d t+\sum_{i}\left\langle\frac{d \phi}{d x}, g_{i}(x)\right\rangle d w_{\lambda} \\
& +\frac{1}{2} \sum_{i}\left\langle g_{i}(x), g_{i}(x) \frac{\partial^{2} \phi}{\partial x^{2}}\right\rangle d y_{\lambda}+O\left(\lambda^{-3 / 2}\right) \tag{9}
\end{align*}
$$

Ito Calculus for Wiener Processes

Poisson Processes

Wiener Processes and

Brownian Motions

- Spatial Continuization
- Spatial Continuization - Spatial Continuization - Brownian Motion
- Properties Of Brownian Motion
- Stochastic Differential Equations
- Ito Calculus for Wiener Processes
- Ito Calculus for Wiener Processes O Ito Calculus for Wiener Processes
- Ito Calculus for Wiener

Processes

- Calculating Moments
- The Langevin Equation
- The Langevin Equation
- Nyquist-Johnson Circuits
- Nyquist-Johnson Circuits
- Equipartition of Energy - A Distributional PDE
- A Distributional PDE
- A Distributional PDE

So let's stare at:

$$
\begin{align*}
d \phi & =\left\langle\frac{d \phi}{d x}, f(x)\right\rangle d t+\sum_{i}\left\langle\frac{d \phi}{d x}, g_{i}(x)\right\rangle \frac{d N_{i}^{+}-d N_{i}^{-}}{\sqrt{\lambda}} \\
& +\frac{1}{2} \sum_{i}\left\langle g_{i}(x), g_{i}(x) \frac{\partial^{2} \phi}{\partial x^{2}}\right\rangle \frac{d N_{i}^{+}+d N_{i}^{-}}{\lambda}+O\left(\lambda^{-3 / 2}\right) \tag{8}
\end{align*}
$$

This is just

$$
\begin{align*}
d \phi & =\left\langle\frac{d \phi}{d x}, f(x)\right\rangle d t+\sum_{i}\left\langle\frac{d \phi}{d x}, g_{i}(x)\right\rangle d w_{\lambda} \\
& +\frac{1}{2} \sum_{i}\left\langle g_{i}(x), g_{i}(x) \frac{\partial^{2} \phi}{\partial x^{2}}\right\rangle d y_{\lambda}+O\left(\lambda^{-3 / 2}\right) \tag{9}
\end{align*}
$$

So now let's take the limit $\lambda \rightarrow \infty$, replacing $d w_{\lambda}$ with $d w, d y_{\lambda}$ with $d t$, and higher terms vanish.

Ito Calculus for Wiener Processes

Poisson Processes

Wiener Processes and Brownian Motions

- Spatial Continuization
- Spatial Continuization
- Spatial Continuization
- Brownian Motion
- Properties Of Brownian Motion
- Stochastic Differential

Equations

- Ito Calculus for Wiener Processes
- Ito Calculus for Wiener Processes
- Ito Calculus for Wiener Processes O Ito Calculus for Wiener
Processes
- Calculating Moments
- The Langevin Equation
- The Langevin Equation
- Nyquist-Johnson Circuits
- Nyquist-Johnson Circuits
- Equipartition of Energy
- A Distributional PDE
- A Distributional PDE
- A Distributional PDE

This gives us:

Ito Calculus for Wiener Processes

Poisson Processe

Wiener Processes and

Brownian Motions

- Spatial Continuization
- Spatial Continuization
- Spatial Continuization
- Brownian Motion
- Properties Of Brownian Motion
- Stochastic Differential

Equations

- Ito Calculus for Wiener Processes
- Ito Calculus for Wiener Processes
- Ito Calculus for Wiener Processes
- Ito Calculus for Wiener

Processes

- Calculating Moments
- The Langevin Equation
- The Langevin Equation
- Nyquist-Johnson Circuits
- Nyquist-Johnson Circuits
- Equipartition of Energy
- A Distributional PDE
- A Distributional PDE
- A Distributional PDE

This gives us:

$$
d \phi=\left\langle\frac{d \phi}{d x}, f(x)\right\rangle d t+\sum_{i}\left\langle\frac{d \phi}{d x}, g_{i}(x)\right\rangle d w_{i}+\frac{1}{2} \sum_{i}\left\langle g_{i}(x), g_{i}(x) \frac{\partial^{2} \phi}{\partial x^{2}}\right\rangle d t
$$

Ito Calculus for Wiener Processes

Poisson Processes

Wiener Processes and

Brownian Motions

- Spatial Continuization
- Spatial Continuization
- Spatial Continuization
- Brownian Motion
- Properties Of Brownian

Motion

- Stochastic Differential

Equations

- Ito Calculus for Wiener Processes
- Ito Calculus for Wiener Processes
- Ito Calculus for Wiener Processes
O Ito Calculus for Wiener
Processes
- Calculating Moments
- The Langevin Equation
- The Langevin Equation
- Nyquist-Johnson Circuits
- Nyquist-Johnson Circuits
- Equipartition of Energy
- A Distributional PDE
- A Distributional PDE
- A Distributional PDE

This gives us:
$d \phi=\left\langle\frac{d \phi}{d x}, f(x)\right\rangle d t+\sum_{i}\left\langle\frac{d \phi}{d x}, g_{i}(x)\right\rangle d w_{i}+\frac{1}{2} \sum_{i}\left\langle g_{i}(x), g_{i}(x) \frac{\partial^{2} \phi}{\partial x^{2}}\right\rangle d t$
This is the lto rule for SDEs.

Ito Calculus for Wiener Processes

Wiener Processes and

Brownian Motions

- Spatial Continuization
- Spatial Continuization
- Spatial Continuization
- Brownian Motion
- Properties Of Brownian

Motion

- Stochastic Differential Equations
- Ito Calculus for Wiener Processes
- Ito Calculus for Wiener Processes
- Ito Calculus for Wiener Processes
O Ito Calculus for Wiener
Processes
- Calculating Moments
- The Langevin Equation
- The Langevin Equation
- Nyquist-Johnson Circuits
- Nyquist-Johnson Circuits
- Equipartition of Energy
- A Distributional PDE
- A Distributional PDE
- A Distributional PDE

This gives us:
$d \phi=\left\langle\frac{d \phi}{d x}, f(x)\right\rangle d t+\sum_{i}\left\langle\frac{d \phi}{d x}, g_{i}(x)\right\rangle d w_{i}+\frac{1}{2} \sum_{i}\left\langle g_{i}(x), g_{i}(x) \frac{\partial^{2} \phi}{\partial x^{2}}\right\rangle d t$
This is the lto rule for SDEs.
It is the centerpiece of what's usually known as Ito calculus.

Ito Calculus for Wiener Processes

- Spatial Continuization
- Spatial Continuization
- Spatial Continuization
- Brownian Motion
- Properties Of Brownian Motion
- Stochastic Differential Equations
- Ito Calculus for Wiener Processes
- Ito Calculus for Wiener Processes
- Ito Calculus for Wiener Processes O Ito Calculus for Wiener
Processes
- Calculating Moments
- The Langevin Equation
- The Langevin Equation
- Nyquist-Johnson Circuits
- Nyquist-Johnson Circuits
- Equipartition of Energy
- A Distributional PDE
- A Distributional PDE
- A Distributional PDE

This gives us:
$d \phi=\left\langle\frac{d \phi}{d x}, f(x)\right\rangle d t+\sum_{i}\left\langle\frac{d \phi}{d x}, g_{i}(x)\right\rangle d w_{i}+\frac{1}{2} \sum_{i}\left\langle g_{i}(x), g_{i}(x) \frac{\partial^{2} \phi}{\partial x^{2}}\right\rangle d t$
This is the lto rule for SDEs.
It is the centerpiece of what's usually known as Ito calculus.
It can used to do all sorts of things, even just changing variables.

Ito Calculus for Wiener Processes

Wiener Processes and

Brownian Motions

- Spatial Continuization
- Spatial Continuization
- Spatial Continuization
- Brownian Motion
- Properties Of Brownian

Motion

- Stochastic Differential Equations
- Ito Calculus for Wiener Processes
- Ito Calculus for Wiener Processes
- Ito Calculus for Wiener Processes O Ito Calculus for Wiener
Processes
- Calculating Moments
- The Langevin Equation
- The Langevin Equation
- Nyquist-Johnson Circuits
- Nyquist-Johnson Circuits
- Equipartition of Energy
- A Distributional PDE
- A Distributional PDE
- A Distributional PDE

This gives us:
$d \phi=\left\langle\frac{d \phi}{d x}, f(x)\right\rangle d t+\sum_{i}\left\langle\frac{d \phi}{d x}, g_{i}(x)\right\rangle d w_{i}+\frac{1}{2} \sum_{i}\left\langle g_{i}(x), g_{i}(x) \frac{\partial^{2} \phi}{\partial x^{2}}\right\rangle d t$
This is the lto rule for SDEs.
It is the centerpiece of what's usually known as Ito calculus.
It can used to do all sorts of things, even just changing variables.

Now, we have to look into taking expectations.

Ito Calculus for Wiener Processes

Wiener Processes and

- Spatial Continuization
- Spatial Continuization
- Spatial Continuization
- Brownian Motion
- Properties Of Brownian

Motion

- Stochastic Differential Equations
- Ito Calculus for Wiener Processes
- Ito Calculus for Wiener Processes
- Ito Calculus for Wiener Processes - Ito Calculus for Wiener

Processes

- Calculating Moments
- The Langevin Equation
- The Langevin Equation
- Nyquist-Johnson Circuits
- Nyquist-Johnson Circuits
- Equipartition of Energy
- A Distributional PDE
- A Distributional PDE
- A Distributional PDE

This gives us:
$d \phi=\left\langle\frac{d \phi}{d x}, f(x)\right\rangle d t+\sum_{i}\left\langle\frac{d \phi}{d x}, g_{i}(x)\right\rangle d w_{i}+\frac{1}{2} \sum_{i}\left\langle g_{i}(x), g_{i}(x) \frac{\partial^{2} \phi}{\partial x^{2}}\right\rangle d t$
This is the Ito rule for SDEs.
It is the centerpiece of what's usually known as Ito calculus.
It can used to do all sorts of things, even just changing variables.

Now, we have to look into taking expectations.
But recall that $E[d w]=0$.

Calculating Moments

Wiener Processes and Brownian Motions

- Spatial Continuization
- Spatial Continuization
- Spatial Continuization
- Brownian Motion
- Properties Of Brownian Motion
- Stochastic Differential Equations
- Ito Calculus for Wiener Processes
- Ito Calculus for Wiener Processes
- Ito Calculus for Wiener Processes
- Ito Calculus for Wiener Processes - Calculating Moments
- The Langevin Equation
- The Langevin Equation
- Nyquist-Johnson Circuits
- Nyquist-Johnson Circuits
- Equipartition of Energy
- A Distributional PDE
- A Distributional PDE
- A Distributional PDE

Hence

Calculating Moments

Wiener Processes and

Brownian Motions

- Spatial Continuization
- Spatial Continuization
- Spatial Continuization
- Brownian Motion
- Properties Of Brownian Motion
- Stochastic Differential Equations
- Ito Calculus for Wiener Processes
- Ito Calculus for Wiener Processes
- Ito Calculus for Wiener Processes
- Ito Calculus for Wiener

Processes

- Calculating Moments
- The Langevin Equation
- The Langevin Equation
- Nyquist-Johnson Circuits
- Nyquist-Johnson Circuits
- Equipartition of Energy
- A Distributional PDE
- A Distributional PDE
- A Distributional PDE

Hence

$$
d E[\phi]=E\left[\left\langle\frac{d \phi}{d x}, f(x)\right\rangle\right] d t+\frac{1}{2} \sum_{i} E\left[\left\langle g_{i}(x), g_{i}(x) \frac{\partial^{2} \phi}{\partial x^{2}}\right\rangle\right] d t,
$$

a deterministic ODE, just like before.

Calculating Moments

Hence

$$
d E[\phi]=E\left[\left\langle\frac{d \phi}{d x}, f(x)\right\rangle\right] d t+\frac{1}{2} \sum_{i} E\left[\left\langle g_{i}(x), g_{i}(x) \frac{\partial^{2} \phi}{\partial x^{2}}\right\rangle\right] d t,
$$

a deterministic ODE, just like before.

Example 4 Suppose x is given by

$$
d x=-x d t+x d w
$$

What is the second moment of this process?

Calculating Moments

- Spatial Continuization
- Spatial Continuization
- Spatial Continuization
- Brownian Motion
- Properties Of Brownian

Motion

- Stochastic Differential Equations
- Ito Calculus for Wiener Processes

- Calculating Moments

- The Langevin Equation
- The Langevin Equation
- Nyquist-Johnson Circuits
- Nyquist-Johnson Circuits
- Equipartition of Energy
- A Distributional PDE
- A Distributional PDE
- A Distributional PDE

Hence

$$
d E[\phi]=E\left[\left\langle\frac{d \phi}{d x}, f(x)\right\rangle\right] d t+\frac{1}{2} \sum_{i} E\left[\left\langle g_{i}(x), g_{i}(x) \frac{\partial^{2} \phi}{\partial x^{2}}\right\rangle\right] d t,
$$

a deterministic ODE, just like before.

Example 4 Suppose x is given by

$$
d x=-x d t+x d w
$$

What is the second moment of this process?
Applying the rule above, we get

$$
d E\left[x^{2}\right](t)=E[2 x(-x d t+x d w)] d t+E\left[x^{2}\right] d t=E\left[-x^{2} d t+2 x^{2} d w\right]=-E[x
$$

Calculating Moments

- Spatial Continuization
- Spatial Continuization
- Spatial Continuization
- Brownian Motion
- Properties Of Brownian

Motion

- Stochastic Differential Equations
- Ito Calculus for Wiener Processes
- Calculating Moments
- The Langevin Equation
- The Langevin Equation
- Nyquist-Johnson Circuits
- Nyquist-Johnson Circuits
- Equipartition of Energy
- A Distributional PDE
- A Distributional PDE
- A Distributional PDE

Hence

$$
d E[\phi]=E\left[\left\langle\frac{d \phi}{d x}, f(x)\right\rangle\right] d t+\frac{1}{2} \sum_{i} E\left[\left\langle g_{i}(x), g_{i}(x) \frac{\partial^{2} \phi}{\partial x^{2}}\right\rangle\right] d t,
$$

a deterministic ODE, just like before.

Example 4 Suppose x is given by

$$
d x=-x d t+x d w
$$

What is the second moment of this process?
Applying the rule above, we get

$$
d E\left[x^{2}\right](t)=E[2 x(-x d t+x d w)] d t+E\left[x^{2}\right] d t=E\left[-x^{2} d t+2 x^{2} d w\right]=-E[x
$$

Hence

$$
E\left[x^{2}\right](t)=e^{-t} E\left[x^{2}\right](0)
$$

The Langevin Equation

Wiener Processes and

Brownian Motions

- Spatial Continuization
- Spatial Continuization
- Spatial Continuization
- Brownian Motion
- Properties Of Brownian

Motion

- Stochastic Differential

Equations

- Ito Calculus for Wiener Processes
- Calculating Moments

The Langevin equation - simplest stochastic version of Newton's equations:

The Langevin Equation

The Langevin equation - simplest stochastic version of Newton's equations:

$$
\frac{d \vec{r}}{d t}=\vec{v} ; \quad \frac{d \vec{v}}{d t}=-\zeta \vec{v}+C d w
$$

where ζ is the hydrodynamic friction and C is a constant to be determined.

The Langevin Equation

The Langevin equation - simplest stochastic version of Newton's equations:

$$
\frac{d \vec{r}}{d t}=\vec{v} ; \quad \frac{d \vec{v}}{d t}=-\zeta \vec{v}+C d w
$$

where ζ is the hydrodynamic friction and C is a constant to be determined. Hydrodynamics says:

$$
\zeta=6 \pi \eta a / m
$$

where η is viscosity, a is particle radius, and m mass.

The Langevin Equation

The Langevin equation - simplest stochastic version of Newton's equations:

$$
\frac{d \vec{r}}{d t}=\vec{v} ; \quad \frac{d \vec{v}}{d t}=-\zeta \vec{v}+C d w
$$

where ζ is the hydrodynamic friction and C is a constant to be determined. Hydrodynamics says:

$$
\zeta=6 \pi \eta a / m
$$

where η is viscosity, a is particle radius, and m mass. Can use Ito's equation to get that

$$
E\left[v^{2}\right](t)=v_{0}^{2} e^{-2 \zeta t}+\frac{C}{2 \zeta}\left(1-e^{-2 \zeta t}\right) .
$$

The Langevin Equation

Wiener Processes and

- Spatial Continuization
- Spatial Continuization
- Spatial Continuization
- Brownian Motion
- Properties Of Brownian

Motion

- Stochastic Differential

Equations

- Ito Calculus for Wiener

Processes

- Ito Calculus for Wiener Processes
- Ito Calculus for Wiener Processes
- Ito Calculus for Wiener

Processes

- Calculating Moments

The Langevin equation - simplest stochastic version of Newton's equations:

$$
\frac{d \vec{r}}{d t}=\vec{v} ; \quad \frac{d \vec{v}}{d t}=-\zeta \vec{v}+C d w
$$

where ζ is the hydrodynamic friction and C is a constant to be determined. Hydrodynamics says:

$$
\zeta=6 \pi \eta a / m
$$

where η is viscosity, a is particle radius, and m mass.
Can use Ito's equation to get that

$$
E\left[v^{2}\right](t)=v_{0}^{2} e^{-2 \zeta t}+\frac{C}{2 \zeta}\left(1-e^{-2 \zeta t}\right) .
$$

But stat. mech. tells us that in equilibrium

$$
E\left[v^{2}\right]=\frac{3 k T}{m} .
$$

The Langevin Equation

Poisson Processes

Wiener Processes and Brownian Motions

- Spatial Continuization
- Spatial Continuization
- Spatial Continuization
- Brownian Motion
- Properties Of Brownian Motion
- Stochastic Differential

Equations

- Ito Calculus for Wiener

Processes

- Ito Calculus for Wiener Processes
- Ito Calculus for Wiener Processes
- Ito Calculus for Wiener Processes
- Calculating Moments
- The Langevin Equation
- The Langevin Equation
- Nyquist-Johnson Circuits
- Nyquist-Johnson Circuits
- Equipartition of Energy
- A Distributional PDE
- A Distributional PDE
- A Distributional PDE

Hence $C=6 k T \zeta / \mathrm{m}$.

The Langevin Equation

Wiener Processes and Brownian Motions

- Spatial Continuization
- Spatial Continuization
- Spatial Continuization
- Brownian Motion
- Properties Of Brownian Motion
- Stochastic Differential

Equations

- Ito Calculus for Wiener Processes
- Calculating Moments
- The Langevin Equation - The Langevin Equation - Nyquist-Johnson Circuits - Nyquist-Johnson Circuits
- Equipartition of Energy - Equipartition of Energy - Equipartition of Energy - Equipartition of Energy - Equipartition of Energy
- A Distributional PDE
- A Distributional PDE
- A Distributional PDE

Hence $C=6 k T \zeta / m$.
Now, we can also use Ito rule to find $\operatorname{Var}[r](t)$ - the "mean square displacement":

$$
E\left[(r(t)-E[r](t))^{2}\right]=\frac{E\left[v^{2}\right](0)}{\zeta}\left(1-e^{-\zeta t}\right)^{2}+\frac{3 k T}{m \zeta^{2}}\left(2 \zeta t-3+4 e^{-\zeta t}-e^{-2 \zeta t}\right)
$$

The Langevin Equation

Hence $C=6 k T \zeta / m$.
Now, we can also use Ito rule to find $\operatorname{Var}[r](t)$ - the "mean square displacement":

$$
E\left[(r(t)-E[r](t))^{2}\right]=\frac{E\left[v^{2}\right](0)}{\zeta}\left(1-e^{-\zeta t}\right)^{2}+\frac{3 k T}{m \zeta^{2}}\left(2 \zeta t-3+4 e^{-\zeta t}-e^{-2 \zeta t}\right)
$$

At equilibrium this becomes

$$
\operatorname{Var}[r](t)=\frac{6 k T}{m \zeta} t
$$

The Langevin Equation

Poisson Processes

Wiener Processes and Brownian Motions

- Spatial Continuization
- Spatial Continuization
- Spatial Continuization
- Brownian Motion
- Properties Of Brownian Motion
- Stochastic Differential

Equations

- Ito Calculus for Wiener Processes
- Calculating Moments
- The Langevin Equation - The Langevin Equation - Nyquist-Johnson Circuits
- Nyquist-Johnson Circuits
- Equipartition of Energy - Equipartition of Energy - Equipartition of Energy - Equipartition of Energy - Equipartition of Energy
- A Distributional PDE
- A Distributional PDE
- A Distributional PDE

Hence $C=6 k T \zeta / m$.
Now, we can also use Ito rule to find $\operatorname{Var}[r](t)$ - the "mean square displacement":

$$
E\left[(r(t)-E[r](t))^{2}\right]=\frac{E\left[v^{2}\right](0)}{\zeta}\left(1-e^{-\zeta t}\right)^{2}+\frac{3 k T}{m \zeta^{2}}\left(2 \zeta t-3+4 e^{-\zeta t}-e^{-2 \zeta t}\right)
$$

At equilibrium this becomes

$$
\operatorname{Var}[r](t)=\frac{6 k T}{m \zeta} t
$$

But this is Einstein's result:

$$
D=\frac{k T}{m \zeta}=\frac{k T}{6 \pi \eta a} .
$$

Nyquist-Johnson Circuits

Poisson Processes

Wiener Processes and Brownian Motions

- Spatial Continuization
- Spatial Continuization
- Spatial Continuization
- Brownian Motion
- Properties Of Brownian Motion
- Stochastic Differential

Equations

- Ito Calculus for Wiener Processes
- Ito Calculus for Wiener Processes
- Ito Calculus for Wiener Processes
- Ito Calculus for Wiener Processes - Calculating Moments
- The Langevin Equation
- The Langevin Equation O Nyquist-Johnson Circuits
- Nyquist-Johnson Circuits
- Equipartition of Energy
- A Distributional PDE
- A Distributional PDE
- A Distributional PDE

Consider the resistor-inductor:

Nyquist-Johnson Circuits

Consider the resistor-inductor:

What is the expected energy at steady state?

Nyquist-Johnson Circuits

Consider the resistor-inductor:

What is the expected energy at steady state?
Well, energy in a circuit is $\frac{1}{2} L i^{2}$

Nyquist-Johnson Circuits

Poisson Processes

Wiener Processes and

Brownian Motions

- Spatial Continuization
- Spatial Continuization
- Spatial Continuization
- Brownian Motion
- Properties Of Brownian

Motion

- Stochastic Differential

Equations

- Ito Calculus for Wiener Processes
- Calculating Moments
- The Langevin Equation
- The Langevin Equation
- Equipartition of Energy
- Equipartition of Energy
- Equipartition of Energy
- Equipartition of Energy - Equipartition of Energy - A Distributional PDE - A Distributional PDE
- A Distributional PDE

Consider the resistor-inductor:

What is the expected energy at steady state?
Well, energy in a circuit is $\frac{1}{2} L i^{2}$
The Nyquist-Johnson model of current flow is

$$
L d i=-R i d t+\sqrt{2 k R T} d w
$$

Nyquist-Johnson Circuits

Poisson Processes

Wiener Processes and Brownian Motions

- Spatial Continuization
- Spatial Continuization
- Spatial Continuization
- Brownian Motion
- Properties Of Brownian Motion
- Stochastic Differential Equations
- Ito Calculus for Wiener Processes
- Ito Calculus for Wiener Processes
- Ito Calculus for Wiener

Processes

- Ito Calculus for Wiener

Processes

- Calculating Moments
- The Langevin Equation
- The Langevin Equation
- Nyquist-Johnson Circuits - Nyquist-Johnson Circuits
- Equipartition of Energy
- A Distributional PDE
- A Distributional PDE
- A Distributional PDE

Let's apply the Ito rule.

Nyquist-Johnson Circuits

Poisson Processes

Wiener Processes and
Brownian Motions

- Spatial Continuization
- Spatial Continuization
- Spatial Continuization
- Brownian Motion
- Properties Of Brownian Motion
- Stochastic Differential

Equations

- Ito Calculus for Wiener Processes
- Calculating Moments
- The Langevin Equation
- The Langevin Equation
- Nyquist-Johnson Circuits - Nyquist-Johnson Circuits
- Equipartition of Energy
- A Distributional PDE
- A Distributional PDE
- A Distributional PDE

Let's apply the Ito rule.

We find

Nyquist-Johnson Circuits

Poisson Processes

Wiener Processes and
Brownian Motions

- Spatial Continuization
- Spatial Continuization
- Spatial Continuization
- Brownian Motion
- Properties Of Brownian

Motion

- Stochastic Differential

Equations

- Ito Calculus for Wiener Processes
- Calculating Moments
- The Langevin Equation
- The Langevin Equation
- Nyquist-Johnson Circuits O Nyquist-Johnson Circuits
- Equipartition of Energy
- A Distributional PDE
- A Distributional PDE
- A Distributional PDE

Let's apply the Ito rule.

We find

$$
d i^{2}(t)=-\frac{2 R}{L} i^{2} d t+2 \frac{\sqrt{2 k R T}}{L} i d w+\frac{2 k R T}{L^{2}} d t
$$

Nyquist-Johnson Circuits

Poisson Processes

Wiener Processes and
Brownian Motions

- Spatial Continuization
- Spatial Continuization
- Spatial Continuization
- Brownian Motion
- Properties Of Brownian Motion
- Stochastic Differential

Equations

- Ito Calculus for Wiener Processes
- Calculating Moments
- The Langevin Equation
- The Langevin Equation
- Nyquist-Johnson Circuits O Nyquist-Johnson Circuits
- Equipartition of Energy
- A Distributional PDE
- A Distributional PDE
- A Distributional PDE

Let's apply the Ito rule.

We find

$$
d i^{2}(t)=-\frac{2 R}{L} i^{2} d t+2 \frac{\sqrt{2 k R T}}{L} i d w+\frac{2 k R T}{L^{2}} d t .
$$

Hence

Nyquist-Johnson Circuits

Wiener Processes and
Brownian Motions

- Spatial Continuization
- Spatial Continuization
- Spatial Continuization
- Brownian Motion
- Properties Of Brownian Motion
- Stochastic Differential

Equations

- Ito Calculus for Wiener Processes
- Calculating Moments
- The Langevin Equation
- The Langevin Equation
- Nyquist-Johnson Circuits O Nyquist-Johnson Circuits
- Equipartition of Energy
- A Distributional PDE
- A Distributional PDE
- A Distributional PDE

Let's apply the Ito rule.

We find

$$
d i^{2}(t)=-\frac{2 R}{L} i^{2} d t+2 \frac{\sqrt{2 k R T}}{L} i d w+\frac{2 k R T}{L^{2}} d t
$$

Hence

$$
d E\left[i^{2}\right](t)=-\frac{2 R}{L} E\left[i^{2}\right](t)+\frac{2 k R T}{L^{2}} d t
$$

Nyquist-Johnson Circuits

Wiener Processes and

Brownian Motions

- Spatial Continuization
- Spatial Continuization
- Spatial Continuization
- Brownian Motion
- Properties Of Brownian

Motion

- Stochastic Differential

Equations

- Ito Calculus for Wiener Processes
- Calculating Moments
- The Langevin Equation
- The Langevin Equation
- Nyquist-Johnson Circuits - Nyquist-Johnson Circuits
- Equipartition of Energy
- A Distributional PDE
- A Distributional PDE
- A Distributional PDE

Let's apply the Ito rule.

We find

$$
d i^{2}(t)=-\frac{2 R}{L} i^{2} d t+2 \frac{\sqrt{2 k R T}}{L} i d w+\frac{2 k R T}{L^{2}} d t .
$$

Hence

$$
d E\left[i^{2}\right](t)=-\frac{2 R}{L} E\left[i^{2}\right](t)+\frac{2 k R T}{L^{2}} d t
$$

So at steady state

$$
E\left[i^{2}\right]=\frac{k T}{L} .
$$

Thus

Nyquist-Johnson Circuits

Poisson Processes

Wiener Processes and
Brownian Motions

- Spatial Continuization
- Spatial Continuization
- Spatial Continuization
- Brownian Motion
- Properties Of Brownian

Motion

- Stochastic Differential

Equations

- Ito Calculus for Wiener Processes
- Calculating Moments
- The Langevin Equation
- The Langevin Equation
- Nyquist-Johnson Circuits
- Equipartition of Energy
- Equipartition of Energy
- Equipartition of Energy
- Equipartition of Energy - Equipartition of Energy
- A Distributional PDE
- A Distributional PDE
- A Distributional PDE

Let's apply the Ito rule.

We find

$$
d i^{2}(t)=-\frac{2 R}{L} i^{2} d t+2 \frac{\sqrt{2 k R T}}{L} i d w+\frac{2 k R T}{L^{2}} d t .
$$

Hence

$$
d E\left[i^{2}\right](t)=-\frac{2 R}{L} E\left[i^{2}\right](t)+\frac{2 k R T}{L^{2}} d t
$$

So at steady state

$$
E\left[i^{2}\right]=\frac{k T}{L} .
$$

Thus

$$
e=\frac{1}{2} L E\left[i^{2}\right]=\frac{k T}{2}
$$

Equipartition of Energy

Wiener Processes and Brownian Motions

- Spatial Continuization
- Spatial Continuization
- Spatial Continuization
- Brownian Motion
- Properties Of Brownian Motion
- Stochastic Differential

Equations

- Ito Calculus for Wiener Processes
- Calculating Moments
- The Langevin Equation
- The Langevin Equation
- Nyquist-Johnson Circuits
- Nyquist-Johnson Circuits
- Equipartition of Energy
- A Distributional PDE
- A Distributional PDE
- A Distributional PDE

Consider the system:

$$
d x=\left(S-G G^{T}\right) x d t+\sqrt{\epsilon} G d w
$$

where $S=-S^{T}$ and

$$
\operatorname{rank}\left(G|S G| \ldots \mid S^{n-1} G\right)=n
$$

Equipartition of Energy

Consider the system:

$$
d x=\left(S-G G^{T}\right) x d t+\sqrt{\epsilon} G d w
$$

where $S=-S^{T}$ and

$$
\operatorname{rank}\left(G|S G| \ldots \mid S^{n-1} G\right)=n
$$

This is a model for a statistical system with n modes, with thermal noise coupling into each mode.

Equipartition of Energy

Wiener Processes and

- Spatial Continuization
- Spatial Continuization
- Spatial Continuization
- Brownian Motion
- Properties Of Brownian

Motion

- Stochastic Differential

Equations

- Ito Calculus for Wiener Processes
- Ito Calculus for Wiener Processes
- Ito Calculus for Wiener Processes
- Ito Calculus for Wiener

Processes

- Calculating Moments
- The Langevin Equation
- The Langevin Equation
- Nyquist-Johnson Circuits
- Nyquist-Johnson Circuits
- Equipartition of Energy
- Equipartition of Energy
- Equipartition of Energy
- A Distributional PDE
- A Distributional PDE
- A Distributional PDE

Consider the system:

$$
d x=\left(S-G G^{T}\right) x d t+\sqrt{\epsilon} G d w
$$

where $S=-S^{T}$ and

$$
\operatorname{rank}\left(G|S G| \ldots \mid S^{n-1} G\right)=n
$$

This is a model for a statistical system with n modes, with thermal noise coupling into each mode.

The condition on rank means that each mode is correctly couple; S being antisymmetric means the system isn't losing energy; and $d w$ is standard n-dim brownian motion. ϵ is the strength of the coupling.

Equipartition of Energy

Poisson Processe

Wiener Processes and

Brownian Motions

- Spatial Continuization
- Spatial Continuization
- Spatial Continuization
- Brownian Motion
- Properties Of Brownian

Motion

- Stochastic Differential

Equations

- Ito Calculus for Wiener Processes
- Calculating Moments
- The Langevin Equation
- The Langevin Equation
- Nyquist-Johnson Circuits
- Nyquist-Johnson Circuits
- Equipartition of Energy - Equipartition of Energy - Equipartition of Energy
- Equipartition of Energy
- Equipartition of Energy
- A Distributional PDE
- A Distributional PDE
- A Distributional PDE

Equipartition of Energy

Wiener Processes and

 Brownian Motions- Spatial Continuization
- Spatial Continuization
- Spatial Continuization
- Brownian Motion
- Properties Of Brownian Motion
- Stochastic Differential

Equations

- Ito Calculus for Wiener Processes
- Ito Calculus for Wiener Processes
- Ito Calculus for Wiener Processes
Ito Calculus for Wiener Processes
- Calculating Moments
- The Langevin Equation
- The Langevin Equation
- Nyquist-Johnson Circuits
- Nyquist-Johnson Circuits
- Equipartition of Energy
- Equipartition of Energy
- A Distributional PDE
- A Distributional PDE
- A Distributional PDE

The system again:

$$
d x=\left(S-\epsilon G G^{T}\right) x d t+\sqrt{\epsilon} G d w
$$

where $S=-S^{T}$ and

$$
\operatorname{rank}\left(G|S G| \ldots \mid S^{n-1} G\right)=n .
$$

Equipartition of Energy

The system again:

$$
d x=\left(S-\epsilon G G^{T}\right) x d t+\sqrt{\epsilon} G d w
$$

where $S=-S^{T}$ and

$$
\operatorname{rank}\left(G|S G| \ldots \mid S^{n-1} G\right)=n .
$$

Theorem 3 [Equipartition Thm.] At thermal equilibrium, every mode possesses the same amount of energy.

Equipartition of Energy

The system again:

$$
d x=\left(S-\epsilon G G^{T}\right) x d t+\sqrt{\epsilon} G d w
$$

where $S=-S^{T}$ and

$$
\operatorname{rank}\left(G|S G| \ldots \mid S^{n-1} G\right)=n .
$$

Theorem 3 [Equipartition Thm.] At thermal equilibrium, every mode possesses the same amount of energy.

This is a simple result of stochastic calculus.

Equipartition of Energy

The system again:

$$
d x=\left(S-\epsilon G G^{T}\right) x d t+\sqrt{\epsilon} G d w
$$

where $S=-S^{T}$ and

$$
\operatorname{rank}\left(G|S G| \ldots \mid S^{n-1} G\right)=n .
$$

Theorem 3 [Equipartition Thm.] At thermal equilibrium, every mode possesses the same amount of energy.

This is a simple result of stochastic calculus.
Let's write the Ito equation for $E\left[x x^{T}\right]$.

Equipartition of Energy

Wiener Processes and

Brownian Motions

- Spatial Continuization
- Spatial Continuization
- Spatial Continuization
- Brownian Motion
- Properties Of Brownian Motion
- Stochastic Differential

Equations

- Ito Calculus for Wiener Processes
- Calculating Moments
- The Langevin Equation
- The Langevin Equation
- Nyquist-Johnson Circuits
- Nyquist-Johnson Circuits
- Equipartition of Energy
- A Distributional PDE
- A Distributional PDE
- A Distributional PDE

For the system

$$
d x=A x d t+B d w
$$

Equipartition of Energy

Wiener Processes and

Brownian Motions

- Spatial Continuization
- Spatial Continuization
- Spatial Continuization
- Brownian Motion
- Properties Of Brownian Motion
- Stochastic Differential

Equations

- Ito Calculus for Wiener Processes
- Calculating Moments
- The Langevin Equation
- The Langevin Equation
- Nyquist-Johnson Circuits
- Nyquist-Johnson Circuits
- Equipartition of Energy
- A Distributional PDE
- A Distributional PDE
- A Distributional PDE

For the system

$$
d x=A x d t+B d w
$$

the Ito equation for $\phi(x)=x x^{T}$ is

Equipartition of Energy

Wiener Processes and

Brownian Motions

- Spatial Continuization
- Spatial Continuization
- Spatial Continuization
- Brownian Motion
- Properties Of Brownian Motion
- Stochastic Differential Equations
- Ito Calculus for Wiener Processes
- Calculating Moments
- The Langevin Equation
- The Langevin Equation
- Nyquist-Johnson Circuits
- Nyquist-Johnson Circuits
- Equipartition of Energy
- A Distributional PDE
- A Distributional PDE
- A Distributional PDE

For the system

$$
d x=A x d t+B d w
$$

the Ito equation for $\phi(x)=x x^{T}$ is

$$
d\left(x x^{T}\right)=\left[A x x^{T}+x x^{T} A^{T}\right] d t+\text { stuff } d w+B B^{T} d t .
$$

Equipartition of Energy

Wiener Processes and

Brownian Motions

- Spatial Continuization
- Spatial Continuization
- Spatial Continuization
- Brownian Motion
- Properties Of Brownian Motion
- Stochastic Differential Equations
- Ito Calculus for Wiener Processes
- Calculating Moments
- The Langevin Equation
- The Langevin Equation
- Nyquist-Johnson Circuits
- Nyquist-Johnson Circuits
- Equipartition of Energy
- Equipartition of Energy
- Equipartition of Energy
- Equipartition of Energy
- A Distributional PDE
- A Distributional PDE
- A Distributional PDE

For the system

$$
d x=A x d t+B d w
$$

the Ito equation for $\phi(x)=x x^{T}$ is

$$
d\left(x x^{T}\right)=\left[A x x^{T}+x x^{T} A^{T}\right] d t+\operatorname{stuff} d w+B B^{T} d t .
$$

On taking expectations,

$$
d E\left[x x^{T}\right]=A E\left[x x^{T}\right] d t+E\left[x x^{T}\right] A^{T} d t+B B^{T} d t .
$$

Equipartition of Energy

Poisson Processes

Wiener Processes and

- Spatial Continuization
- Spatial Continuization
- Spatial Continuization
- Brownian Motion
- Properties Of Brownian

Motion

- Stochastic Differential

Equations

- Ito Calculus for Wiener Processes
- Calculating Moments
- The Langevin Equation
- The Langevin Equation
- Nyquist-Johnson Circuits
- Nyquist-Johnson Circuits
- Equipartition of Energy
- Equipartition of Energy
- Equipartition of Energy
- Equipartition of Energy
- A Distributional PDE
- A Distributional PDE
- A Distributional PDE

For the system

$$
d x=A x d t+B d w
$$

the Ito equation for $\phi(x)=x x^{T}$ is

$$
d\left(x x^{T}\right)=\left[A x x^{T}+x x^{T} A^{T}\right] d t+\text { stuff } d w+B B^{T} d t
$$

On taking expectations,

$$
d E\left[x x^{T}\right]=A E\left[x x^{T}\right] d t+E\left[x x^{T}\right] A^{T} d t+B B^{T} d t
$$

With $A=S-G G^{T}$ and $B=\sqrt{\epsilon} G$:

$$
\frac{d E[\Sigma]}{d t}=\left(S-\epsilon G G^{T}\right) E[\Sigma]+E[\Sigma]\left(S-\epsilon G G^{T}\right)^{T}+\epsilon G G^{T}
$$

Equipartition of Energy

Poisson Processes

Wiener Processes and

- Spatial Continuization
- Spatial Continuization
- Spatial Continuization
- Brownian Motion
- Properties Of Brownian

Motion

- Stochastic Differential

Equations

- Ito Calculus for Wiener Processes
- Ito Calculus for Wiener Processes
- Ito Calculus for Wiener Processes
- Ito Calculus for Wiener

Processes

- Calculating Moments
- The Langevin Equation
- The Langevin Equation
- Nyquist-Johnson Circuits
- Nyquist-Johnson Circuits
- Equipartition of Energy
- Equipartition of Energy
- Equipartition of Energy
- Equipartition of Energy
- A Distributional PDE
- A Distributional PDE
- A Distributional PDE

For the system

$$
d x=A x d t+B d w
$$

the Ito equation for $\phi(x)=x x^{T}$ is

$$
d\left(x x^{T}\right)=\left[A x x^{T}+x x^{T} A^{T}\right] d t+\text { stuff } d w+B B^{T} d t
$$

On taking expectations,

$$
d E\left[x x^{T}\right]=A E\left[x x^{T}\right] d t+E\left[x x^{T}\right] A^{T} d t+B B^{T} d t
$$

With $A=S-G G^{T}$ and $B=\sqrt{\epsilon} G$:

$$
\frac{d E[\Sigma]}{d t}=\left(S-\epsilon G G^{T}\right) E[\Sigma]+E[\Sigma]\left(S-\epsilon G G^{T}\right)^{T}+\epsilon G G^{T}
$$

At equilibrium, using $S=-S^{T}$,

Equipartition of Energy

Poisson Processes

Wiener Processes and

- Spatial Continuization
- Spatial Continuization
- Spatial Continuization
- Brownian Motion
- Properties Of Brownian

Motion

- Stochastic Differential

Equations

- Ito Calculus for Wiener Processes
- Ito Calculus for Wiener Processes
- Ito Calculus for Wiener Processes
- Ito Calculus for Wiener

Processes

- Calculating Moments
- The Langevin Equation
- The Langevin Equation
- Nyquist-Johnson Circuits
- Nyquist-Johnson Circuits
- Equipartition of Energy
- Equipartition of Energy
- Equipartition of Energy

For the system

$$
d x=A x d t+B d w
$$

the Ito equation for $\phi(x)=x x^{T}$ is

$$
d\left(x x^{T}\right)=\left[A x x^{T}+x x^{T} A^{T}\right] d t+\text { stuff } d w+B B^{T} d t
$$

On taking expectations,

$$
d E\left[x x^{T}\right]=A E\left[x x^{T}\right] d t+E\left[x x^{T}\right] A^{T} d t+B B^{T} d t
$$

With $A=S-G G^{T}$ and $B=\sqrt{\epsilon} G$:

$$
\frac{d E[\Sigma]}{d t}=\left(S-\epsilon G G^{T}\right) E[\Sigma]+E[\Sigma]\left(S-\epsilon G G^{T}\right)^{T}+\epsilon G G^{T}
$$

At equilibrium, using $S=-S^{T}$,

$$
\left(S-\epsilon G G^{T}\right) E\left[\Sigma_{\infty}\right]-E\left[\Sigma_{\infty}\right]\left(S+\epsilon G G^{T}\right)=-\epsilon G G^{T}
$$

Equipartition of Energy

Poisson Processes

Wiener Processes and Brownian Motions

- Spatial Continuization
- Spatial Continuization
- Spatial Continuization
- Brownian Motion
- Properties Of Brownian Motion
- Stochastic Differential

Equations

- Ito Calculus for Wiener Processes
- Calculating Moments
- The Langevin Equation
- The Langevin Equation
- Nyquist-Johnson Circuits
- Nyquist-Johnson Circuits
- Equipartition of Energy
- Equipartition of Energy
- Equipartition of Energy
- Equipartition of Energy
- A Distributional PDE
- A Distributional PDE
- A Distributional PDE

Let's stare at it:

$$
\left(S-\epsilon G G^{T}\right) E\left[\sum_{\infty}\right]-E\left[\sum_{\infty}\right]\left(S+\epsilon G G^{T}\right)=-\epsilon G G^{T}
$$

Equipartition of Energy

Poisson Processes

Wiener Processes and Brownian Motions

- Spatial Continuization
- Spatial Continuization
- Spatial Continuization
- Brownian Motion
- Properties Of Brownian Motion
- Stochastic Differential

Equations

- Ito Calculus for Wiener Processes
- Ito Calculus for Wiener Processes
- Ito Calculus for Wiener Processes
- Ito Calculus for Wiener Processes - Calculating Moments
- The Langevin Equation
- The Langevin Equation
- Nyquist-Johnson Circuits
- Nyquist-Johnson Circuits
- Equipartition of Energy - Equipartition of Energy - Equipartition of Energy - Equipartition of Energy

Let's stare at it:

$$
\left(S-\epsilon G G^{T}\right) E\left[\Sigma_{\infty}\right]-E\left[\Sigma_{\infty}\right]\left(S+\epsilon G G^{T}\right)=-\epsilon G G^{T}
$$

This is a simple linear algebraic equation!

Equipartition of Energy

Poisson Processes

Wiener Processes and Brownian Motions

- Spatial Continuization
- Spatial Continuization
- Spatial Continuization
- Brownian Motion
- Properties Of Brownian Motion
- Stochastic Differential

Equations

- Ito Calculus for Wiener Processes
- Ito Calculus for Wiener Processes
- Ito Calculus for Wiener Processes
- Ito Calculus for Wiener Processes - Calculating Moments
- The Langevin Equation
- The Langevin Equation
- Nyquist-Johnson Circuits
- Nyquist-Johnson Circuits
- Equipartition of Energy - Equipartition of Energy - Equipartition of Energy - Equipartition of Energy

Let's stare at it:

$$
\left(S-\epsilon G G^{T}\right) E\left[\Sigma_{\infty}\right]-E\left[\Sigma_{\infty}\right]\left(S+\epsilon G G^{T}\right)=-\epsilon G G^{T}
$$

This is a simple linear algebraic equation!
Hm , let's try $E\left[\Sigma_{\infty}\right]=I / 2 \ldots$

Equipartition of Energy

Wiener Processes and Brownian Motions

- Spatial Continuization
- Spatial Continuization
- Spatial Continuization
- Brownian Motion
- Properties Of Brownian

Motion

- Stochastic Differential

Equations

- Ito Calculus for Wiener Processes
- Ito Calculus for Wiener Processes
- Ito Calculus for Wiener Processes
- Ito Calculus for Wiener Processes - Calculating Moments
- The Langevin Equation
- The Langevin Equation
- Nyquist-Johnson Circuits
- Nyquist-Johnson Circuits
- Equipartition of Energy - Equipartition of Energy - Equipartition of Energy - Equipartition of Energy

Let's stare at it:

$$
\left(S-\epsilon G G^{T}\right) E\left[\Sigma_{\infty}\right]-E\left[\Sigma_{\infty}\right]\left(S+\epsilon G G^{T}\right)=-\epsilon G G^{T}
$$

This is a simple linear algebraic equation!
Hm , let's try $E\left[\Sigma_{\infty}\right]=I / 2 \ldots$
Lo and behold!

Equipartition of Energy

Wiener Processes and Brownian Motions

- Spatial Continuization
- Spatial Continuization
- Spatial Continuization
- Brownian Motion
- Properties Of Brownian

Motion

- Stochastic Differential

Equations

- Ito Calculus for Wiener Processes
- Ito Calculus for Wiener Processes
- Ito Calculus for Wiener Processes
- Ito Calculus for Wiener Processes - Calculating Moments
- The Langevin Equation
- The Langevin Equation
- Nyquist-Johnson Circuits
- Nyquist-Johnson Circuits
- Equipartition of Energy
- Equipartition of Energy
- Equipartition of Energy
- Equipartition of Energy

Let's stare at it:

$$
\left(S-\epsilon G G^{T}\right) E\left[\Sigma_{\infty}\right]-E\left[\Sigma_{\infty}\right]\left(S+\epsilon G G^{T}\right)=-\epsilon G G^{T}
$$

This is a simple linear algebraic equation!
Hm , let's try $E\left[\Sigma_{\infty}\right]=I / 2 \ldots$
Lo and behold!

$$
\frac{1}{2}\left(S-\epsilon G G^{T}\right)-\frac{1}{2}\left(S+\epsilon G G^{T}\right)+\epsilon G G^{T}=0
$$

Equipartition of Energy

Wiener Processes and Brownian Motions

- Spatial Continuization
- Spatial Continuization
- Spatial Continuization
- Brownian Motion
- Properties Of Brownian

Motion

- Stochastic Differential

Equations

- Ito Calculus for Wiener Processes
- Ito Calculus for Wiener Processes
- Ito Calculus for Wiener Processes
- Ito Calculus for Wiener Processes - Calculating Moments - The Langevin Equation - The Langevin Equation - Nyquist-Johnson Circuits - Nyquist-Johnson Circuits
- Equipartition of Energy - Equipartition of Energy - Equipartition of Energy - Equipartition of Energy

Let's stare at it:

$$
\left(S-\epsilon G G^{T}\right) E\left[\Sigma_{\infty}\right]-E\left[\Sigma_{\infty}\right]\left(S+\epsilon G G^{T}\right)=-\epsilon G G^{T}
$$

This is a simple linear algebraic equation!
Hm , let's try $E\left[\Sigma_{\infty}\right]=I / 2 \ldots$
Lo and behold!

$$
\frac{1}{2}\left(S-\epsilon G G^{T}\right)-\frac{1}{2}\left(S+\epsilon G G^{T}\right)+\epsilon G G^{T}=0
$$

Aside from uniqueness, this is it!

Equipartition of Energy

Poisson Processes

Wiener Processes and Brownian Motions

- Spatial Continuization
- Spatial Continuization
- Spatial Continuization
- Brownian Motion
- Properties Of Brownian

Motion

- Stochastic Differential

Equations

- Ito Calculus for Wiener Processes
- Ito Calculus for Wiener Processes
- Ito Calculus for Wiener Processes
- Ito Calculus for Wiener Processes - Calculating Moments - The Langevin Equation - The Langevin Equation - Nyquist-Johnson Circuits - Nyquist-Johnson Circuits
- Equipartition of Energy - A Distributional PDE - A Distributional PDE - A Distributional PDE

Let's stare at it:

$$
\left(S-\epsilon G G^{T}\right) E\left[\Sigma_{\infty}\right]-E\left[\Sigma_{\infty}\right]\left(S+\epsilon G G^{T}\right)=-\epsilon G G^{T}
$$

This is a simple linear algebraic equation!
Hm , let's try $E\left[\Sigma_{\infty}\right]=I / 2 \ldots$
Lo and behold!

$$
\frac{1}{2}\left(S-\epsilon G G^{T}\right)-\frac{1}{2}\left(S+\epsilon G G^{T}\right)+\epsilon G G^{T}=0
$$

Aside from uniqueness, this is it!
We've shown that all modes get precisely $I / 2$ fraction of total enegy;

Equipartition of Energy

Let's stare at it:

$$
\left(S-\epsilon G G^{T}\right) E\left[\Sigma_{\infty}\right]-E\left[\Sigma_{\infty}\right]\left(S+\epsilon G G^{T}\right)=-\epsilon G G^{T}
$$

This is a simple linear algebraic equation!
Hm , let's try $E\left[\Sigma_{\infty}\right]=I / 2 \ldots$
Lo and behold!

$$
\frac{1}{2}\left(S-\epsilon G G^{T}\right)-\frac{1}{2}\left(S+\epsilon G G^{T}\right)+\epsilon G G^{T}=0
$$

Aside from uniqueness, this is it!
We've shown that all modes get precisely $I / 2$ fraction of total enegy; Of course, usually there's $k T$ factor.

A Distributional PDE

Recall the GRAND PRINCIPLE: non-deterministic trajectories generated by statistical differential equations should be governed by a deterministic PDE on the probability density of states.

A Distributional PDE

Recall the GRAND PRINCIPLE: non-deterministic trajectories generated by statistical differential equations should be governed by a deterministic PDE on the probability density of states.
$d x=f(x) d t+\sum_{i} g_{i}(x) d w_{i}$

A Distributional PDE

Recall the GRAND PRINCIPLE: non-deterministic trajectories generated by statistical differential equations should be governed by a deterministic PDE on the probability density of states.
$d x=f(x) d t+\sum_{i} g_{i}(x) d w_{i}$
Now, let's let $\rho(x, t)$ be the PDF of x at time t.

A Distributional PDE

Recall the GRAND PRINCIPLE: non-deterministic trajectories generated by statistical differential equations should be governed by a deterministic PDE on the probability density of states.
$d x=f(x) d t+\sum_{i} g_{i}(x) d w_{i}$
Now, let's let $\rho(x, t)$ be the PDF of x at time t.
ASSUME: twice differentiable.

A Distributional PDE

Recall the GRAND PRINCIPLE: non-deterministic trajectories generated by statistical differential equations should be governed by a deterministic PDE on the probability density of states.
$d x=f(x) d t+\sum_{i} g_{i}(x) d w_{i}$
Now, let's let $\rho(x, t)$ be the PDF of x at time t.
ASSUME: twice differentiable. ERGODICITY UNDERLIES THIS ASSUMPTION.

A Distributional PDE

Recall the GRAND PRINCIPLE: non-deterministic trajectories generated by statistical differential equations should be governed by a deterministic PDE on the probability density of states.
$d x=f(x) d t+\sum_{i} g_{i}(x) d w_{i}$
Now, let's let $\rho(x, t)$ be the PDF of x at time t.
ASSUME: twice differentiable. ERGODICITY UNDERLIES THIS ASSUMPTION.

Do the test-function trick: ϕ smooth and with $\phi(x)=0$ for large $|x|$.

A Distributional PDE

Wiener Processes and Brownian Motions

- Spatial Continuization
- Spatial Continuization
- Spatial Continuization
- Brownian Motion
- Properties Of Brownian Motion
- Stochastic Differential

Equations

- Ito Calculus for Wiener

Processes

- Ito Calculus for Wiener Processes
- Ito Calculus for Wiener

Processes

- Ito Calculus for Wiener Processes
- Calculating Moments
- The Langevin Equation
- The Langevin Equation
- Nyquist-Johnson Circuits
- Nyquist-Johnson Circuits
- Equipartition of Energy
- A Distributional PDE

So, if

$$
d x=f(x) d t+\sum_{i} g_{i}(x) d w_{i}
$$

A Distributional PDE

Wiener Processes and Brownian Motions

- Spatial Continuization
- Spatial Continuization
- Spatial Continuization
- Brownian Motion
- Properties Of Brownian Motion
- Stochastic Differential

Equations

- Ito Calculus for Wiener Processes
- Calculating Moments
- The Langevin Equation
- The Langevin Equation
- Nyquist-Johnson Circuits
- Nyquist-Johnson Circuits
- Equipartition of Energy
- A Distributional PDE

So, if

$$
d x=f(x) d t+\sum_{i} g_{i}(x) d w_{i}
$$

then

A Distributional PDE

Poisson Processes

Wiener Processes and

Brownian Motions

- Spatial Continuization
- Spatial Continuization
- Spatial Continuization
- Brownian Motion
- Properties Of Brownian Motion
- Stochastic Differential

Equations

- Ito Calculus for Wiener Processes
- Calculating Moments
- The Langevin Equation
- The Langevin Equation
- Nyquist-Johnson Circuits
- Nyquist-Johnson Circuits
- Equipartition of Energy
- A Distributional PDE

So, if

$$
d x=f(x) d t+\sum_{i} g_{i}(x) d w_{i}
$$

then

$$
d \phi=\left\langle\frac{d \phi}{d x}, f(x) d t+\sum_{i} g_{i}(x) d w_{i}\right\rangle+\frac{1}{2} \sum_{i}\left\langle g_{i}(x) \frac{d^{2} \phi}{d x^{2}}, g_{i}(x)\right\rangle d t
$$

A Distributional PDE

Poisson Processes

Wiener Processes and

Brownian Motions

- Spatial Continuization
- Spatial Continuization
- Spatial Continuization
- Brownian Motion
- Properties Of Brownian Motion
- Stochastic Differential

Equations

- Ito Calculus for Wiener Processes
- Calculating Moments
- The Langevin Equation
- The Langevin Equation
- Nyquist-Johnson Circuits
- Nyquist-Johnson Circuits
- Equipartition of Energy
- A Distributional PDE

So, if

$$
d x=f(x) d t+\sum_{i} g_{i}(x) d w_{i}
$$

then
$d \phi=\left\langle\frac{d \phi}{d x}, f(x) d t+\sum_{i} g_{i}(x) d w_{i}\right\rangle+\frac{1}{2} \sum_{i}\left\langle g_{i}(x) \frac{d^{2} \phi}{d x^{2}}, g_{i}(x)\right\rangle d t$.
Thus,

A Distributional PDE

Poisson Processes

Wiener Processes and Brownian Motions

- Spatial Continuization
- Spatial Continuization
- Spatial Continuization
- Brownian Motion
- Properties Of Brownian Motion
- Stochastic Differential Equations
- Ito Calculus for Wiener Processes
- Calculating Moments
- The Langevin Equation
- The Langevin Equation
- Nyquist-Johnson Circuits
- Nyquist-Johnson Circuits
- Equipartition of Energy - A Distributional PDE

So, if

$$
d x=f(x) d t+\sum_{i} g_{i}(x) d w_{i}
$$

then
$d \phi=\left\langle\frac{d \phi}{d x}, f(x) d t+\sum_{i} g_{i}(x) d w_{i}\right\rangle+\frac{1}{2} \sum_{i}\left\langle g_{i}(x) \frac{d^{2} \phi}{d x^{2}}, g_{i}(x)\right\rangle d t$.

Thus,

$$
d E[\phi]=E\left[\left\langle\frac{d \phi}{d x}, f(x)\right\rangle\right]+\frac{1}{2} \sum_{i} E\left[\left\langle g_{i}(x) \frac{d^{2} \phi}{d x^{2}}, g_{i}(x)\right\rangle\right] .
$$

A Distributional PDE

Poisson Processes

Wiener Processes and Brownian Motions

- Spatial Continuization
- Spatial Continuization - Spatial Continuization
- Brownian Motion
- Properties Of Brownian Motion
- Stochastic Differentia Equations
- Ito Calculus for Wiener Processes
- Calculating Moments
- The Langevin Equation
- The Langevin Equation
- Nyquist-Johnson Circuits
- Nyquist-Johnson Circuits
- Equipartition of Energy
- A Distributional PDE

So, if

$$
d x=f(x) d t+\sum_{i} g_{i}(x) d w_{i}
$$

then

$$
d \phi=\left\langle\frac{d \phi}{d x}, f(x) d t+\sum_{i} g_{i}(x) d w_{i}\right\rangle+\frac{1}{2} \sum_{i}\left\langle g_{i}(x) \frac{d^{2} \phi}{d x^{2}}, g_{i}(x)\right\rangle d t
$$

Thus,

$$
d E[\phi]=E\left[\left\langle\frac{d \phi}{d x}, f(x)\right\rangle\right]+\frac{1}{2} \sum_{i} E\left[\left\langle g_{i}(x) \frac{d^{2} \phi}{d x^{2}}, g_{i}(x)\right\rangle\right] .
$$

But this is

A Distributional PDE

Poisson Processes

Wiener Processes and

Brownian Motions

- Spatial Continuization
- Spatial Continuization
- Spatial Continuization
- Brownian Motion
- Properties Of Brownian

Motion

- Stochastic Differential

Equations

- Ito Calculus for Wiener Processes
- Calculating Moments
- The Langevin Equation
- The Langevin Equation
- Nyquist-Johnson Circuits
- Nyquist-Johnson Circuits
- Equipartition of Energy
- A Distributional PDE

So, if

$$
d x=f(x) d t+\sum_{i} g_{i}(x) d w_{i}
$$

then

$$
d \phi=\left\langle\frac{d \phi}{d x}, f(x) d t+\sum_{i} g_{i}(x) d w_{i}\right\rangle+\frac{1}{2} \sum_{i}\left\langle g_{i}(x) \frac{d^{2} \phi}{d x^{2}}, g_{i}(x)\right\rangle d t .
$$

Thus,

$$
d E[\phi]=E\left[\left\langle\frac{d \phi}{d x}, f(x)\right\rangle\right]+\frac{1}{2} \sum_{i} E\left[\left\langle g_{i}(x) \frac{d^{2} \phi}{d x^{2}}, g_{i}(x)\right\rangle\right] .
$$

But this is

$$
\frac{d}{d t} E[\phi]=\int\left(\left\langle\frac{d \phi}{d x}, f(x)\right\rangle+\frac{1}{2} \sum_{i}\left\langle g_{i}(x) \frac{d^{2} \phi}{d x^{2}}, g_{i}(x)\right\rangle\right) \rho(x, t) d x
$$

A Distributional PDE

Poisson Processes

Wiener Processes and

Brownian Motions

- Spatial Continuization
- Spatial Continuization
- Spatial Continuization
- Brownian Motion
- Properties Of Brownian Motion
- Stochastic Differential

Equations

- Ito Calculus for Wiener Processes
- Ito Calculus for Wiener Processes
- Ito Calculus for Wiener Processes
Ito Calculus for Wiener Processes
- Calculating Moments
- The Langevin Equation
- The Langevin Equation
- Nyquist-Johnson Circuits
- Nyquist-Johnson Circuits
- Equipartition of Energy
- A Distributional PDE
- A Distributional PDE

$$
\frac{d}{d t} E[\phi]=\int\left(\left\langle\frac{d \phi}{d x}, f(x)\right\rangle+\frac{1}{2} \sum_{i}\left\langle g_{i}(x) \frac{d^{2} \phi}{d x^{2}}, g_{i}(x)\right\rangle\right) \rho(x, t) d x
$$

A Distributional PDE

Poisson Processe

Wiener Processes and

Brownian Motions

- Spatial Continuization
- Spatial Continuization
- Spatial Continuization
- Brownian Motion
- Properties Of Brownian Motion
- Stochastic Differential

Equations

- Ito Calculus for Wiener Processes
- Calculating Moments
- The Langevin Equation
- The Langevin Equation
- Nyquist-Johnson Circuits
- Nyquist-Johnson Circuits
- Equipartition of Energy
- Equipartition of Energy
- Equipartition of Energy
- Equipartition of Energy - Equipartition of Energy
- A Distributional PDE
- A Distributional PDE
$\frac{d}{d t} E[\phi]=\int\left(\left\langle\frac{d \phi}{d x}, f(x)\right\rangle+\frac{1}{2} \sum_{i}\left\langle g_{i}(x) \frac{d^{2} \phi}{d x^{2}}, g_{i}(x)\right\rangle\right) \rho(x, t) d x$
Integrate by parts, and use $\phi(x)=0$ for large $|x|$ so that the RHS is

A Distributional PDE

Poisson Processe

Wiener Processes and

Brownian Motions

- Spatial Continuization
- Spatial Continuization
- Spatial Continuization
- Brownian Motion
- Properties Of Brownian Motion
- Stochastic Differential Equations
- Ito Calculus for Wiener Processes
- Calculating Moments
- The Langevin Equation
- The Langevin Equation
- Nyquist-Johnson Circuits
- Nyquist-Johnson Circuits
- Equipartition of Energy
- A Distributional PDE
- A Distributional PDE
$\frac{d}{d t} E[\phi]=\int\left(\left\langle\frac{d \phi}{d x}, f(x)\right\rangle+\frac{1}{2} \sum_{i}\left\langle g_{i}(x) \frac{d^{2} \phi}{d x^{2}}, g_{i}(x)\right\rangle\right) \rho(x, t) d x$
Integrate by parts, and use $\phi(x)=0$ for large $|x|$ so that the RHS is

$$
\int d x\left(-\phi \frac{\partial}{\partial x}(\rho(x, t) f(x))+\phi(x) \frac{1}{2} \sum \frac{\partial^{2}}{\partial x_{i} \partial x_{j}} g_{i}(x) g_{j}(x) \rho(x, t)\right) .
$$

A Distributional PDE

$\frac{d}{d t} E[\phi]=\int\left(\left\langle\frac{d \phi}{d x}, f(x)\right\rangle+\frac{1}{2} \sum_{i}\left\langle g_{i}(x) \frac{d^{2} \phi}{d x^{2}}, g_{i}(x)\right\rangle\right) \rho(x, t) d x$
Integrate by parts, and use $\phi(x)=0$ for large $|x|$ so that the RHS is

$$
\int d x\left(-\phi \frac{\partial}{\partial x}(\rho(x, t) f(x))+\phi(x) \frac{1}{2} \sum \frac{\partial^{2}}{\partial x_{i} \partial x_{j}} g_{i}(x) g_{j}(x) \rho(x, t)\right) .
$$

On the other hand, of course,

A Distributional PDE

Poisson Processes

Wiener Processes and

Brownian Motions

- Spatial Continuization
- Spatial Continuization - Spatial Continuization
$\frac{d}{d t} E[\phi]=\int\left(\left\langle\frac{d \phi}{d x}, f(x)\right\rangle+\frac{1}{2} \sum_{i}\left\langle g_{i}(x) \frac{d^{2} \phi}{d x^{2}}, g_{i}(x)\right\rangle\right) \rho(x, t) d x$
Integrate by parts, and use $\phi(x)=0$ for large $|x|$ so that the RHS is

$$
\int d x\left(-\phi \frac{\partial}{\partial x}(\rho(x, t) f(x))+\phi(x) \frac{1}{2} \sum \frac{\partial^{2}}{\partial x_{i} \partial x_{j}} g_{i}(x) g_{j}(x) \rho(x, t)\right) .
$$

On the other hand, of course,

$$
\frac{d}{d t} E[\phi]=\frac{d}{d t} \int \phi(x) \rho(t, x) d x=\int \phi \frac{\partial}{\partial t} \rho(x, t) d x .
$$

A Distributional PDE

$\frac{d}{d t} E[\phi]=\int\left(\left\langle\frac{d \phi}{d x}, f(x)\right\rangle+\frac{1}{2} \sum_{i}\left\langle g_{i}(x) \frac{d^{2} \phi}{d x^{2}}, g_{i}(x)\right\rangle\right) \rho(x, t) d x$
Integrate by parts, and use $\phi(x)=0$ for large $|x|$ so that the RHS is

$$
\int d x\left(-\phi \frac{\partial}{\partial x}(\rho(x, t) f(x))+\phi(x) \frac{1}{2} \sum \frac{\partial^{2}}{\partial x_{i} \partial x_{j}} g_{i}(x) g_{j}(x) \rho(x, t)\right) .
$$

On the other hand, of course,

$$
\frac{d}{d t} E[\phi]=\frac{d}{d t} \int \phi(x) \rho(t, x) d x=\int \phi \frac{\partial}{\partial t} \rho(x, t) d x .
$$

So since ϕ is arbitrary,

A Distributional PDE

$\frac{d}{d t} E[\phi]=\int\left(\left\langle\frac{d \phi}{d x}, f(x)\right\rangle+\frac{1}{2} \sum_{i}\left\langle g_{i}(x) \frac{d^{2} \phi}{d x^{2}}, g_{i}(x)\right\rangle\right) \rho(x, t) d x$
Integrate by parts, and use $\phi(x)=0$ for large $|x|$ so that the RHS is

$$
\int d x\left(-\phi \frac{\partial}{\partial x}(\rho(x, t) f(x))+\phi(x) \frac{1}{2} \sum \frac{\partial^{2}}{\partial x_{i} \partial x_{j}} g_{i}(x) g_{j}(x) \rho(x, t)\right) .
$$

On the other hand, of course,

$$
\frac{d}{d t} E[\phi]=\frac{d}{d t} \int \phi(x) \rho(t, x) d x=\int \phi \frac{\partial}{\partial t} \rho(x, t) d x .
$$

So since ϕ is arbitrary,

$$
\frac{\partial \rho(x, t)}{\partial t}=-\frac{\partial}{\partial x}(\rho(x, t) f(x))+\frac{1}{2} \sum_{i j k} \frac{\partial}{\partial x_{j} x_{k}}\left(g_{i}^{j} g_{i}^{k} \rho(x, t)\right) .
$$

A Distributional PDE

$\frac{d}{d t} E[\phi]=\int\left(\left\langle\frac{d \phi}{d x}, f(x)\right\rangle+\frac{1}{2} \sum_{i}\left\langle g_{i}(x) \frac{d^{2} \phi}{d x^{2}}, g_{i}(x)\right\rangle\right) \rho(x, t) d x$
Integrate by parts, and use $\phi(x)=0$ for large $|x|$ so that the RHS is

$$
\int d x\left(-\phi \frac{\partial}{\partial x}(\rho(x, t) f(x))+\phi(x) \frac{1}{2} \sum \frac{\partial^{2}}{\partial x_{i} \partial x_{j}} g_{i}(x) g_{j}(x) \rho(x, t)\right) .
$$

On the other hand, of course,

$$
\frac{d}{d t} E[\phi]=\frac{d}{d t} \int \phi(x) \rho(t, x) d x=\int \phi \frac{\partial}{\partial t} \rho(x, t) d x .
$$

So since ϕ is arbitrary,

$$
\frac{\partial \rho(x, t)}{\partial t}=-\frac{\partial}{\partial x}(\rho(x, t) f(x))+\frac{1}{2} \sum_{i j k} \frac{\partial}{\partial x_{j} x_{k}}\left(g_{i}^{j} g_{i}^{k} \rho(x, t)\right) .
$$

Diffusion

Wiener Processes and Brownian Motions

- Spatial Continuization
- Spatial Continuization
- Spatial Continuization
- Brownian Motion
- Properties Of Brownian Motion
- Stochastic Differential

Equations

- Ito Calculus for Wiener Processes
- Ito Calculus for Wiener Processes
- Ito Calculus for Wiener

Processes

- Ito Calculus for Wiener

Processes
Calculating Moments

- The Langevin Equation
- The Langevin Equation
- Nyquist-Johnson Circuits
- Nyquist-Johnson Circuits
- Equipartition of Energy
- A Distributional PDE
- A Distributional PDE
- A Distributional PDE

Example 5 Suppose $d x=d w$.

Diffusion

Wiener Processes and Brownian Motions

- Spatial Continuization
- Spatial Continuization
- Spatial Continuization
- Brownian Motion
- Properties Of Brownian

Motion

- Stochastic Differential

Equations

- Ito Calculus for Wiener

Processes

- Ito Calculus for Wiener Processes
- Ito Calculus for Wiener Processes
- Ito Calculus for Wiener Processes
- Calculating Moments
- The Langevin Equation
- The Langevin Equation
- Nyquist-Johnson Circuits
- Nyquist-Johnson Circuits
- Equipartition of Energy
- A Distributional PDE
- A Distributional PDE
- A Distributional PDE

Example 5 Suppose $d x=d w$.
Then

$$
\frac{\partial \rho}{\partial t}=\frac{1}{2} \frac{\partial^{2}}{\partial x^{2}} \rho(x, t) .
$$

Diffusion

Wiener Processes and
Brownian Motions

- Spatial Continuization
- Spatial Continuization
- Spatial Continuization
- Brownian Motion
- Properties Of Brownian Motion
- Stochastic Differential

Equations

- Ito Calculus for Wiener Processes
- Calculating Moments
- The Langevin Equation
- The Langevin Equation
- Nyquist-Johnson Circuits
- Nyquist-Johnson Circuits
- Equipartition of Energy
- A Distributional PDE
- A Distributional PDE
- A Distributional PDE

Example 5 Suppose $d x=d w$.
Then

$$
\frac{\partial \rho}{\partial t}=\frac{1}{2} \frac{\partial^{2}}{\partial x^{2}} \rho(x, t) .
$$

This is the diffusion equation!

Diffusion

Example 5 Suppose $d x=d w$.

Then

$$
\frac{\partial \rho}{\partial t}=\frac{1}{2} \frac{\partial^{2}}{\partial x^{2}} \rho(x, t) .
$$

This is the diffusion equation!
It is just as we should expect, since $d w$ is Brownian motion.

Diffusion

Example 5 Suppose $d x=d w$.
Then

$$
\frac{\partial \rho}{\partial t}=\frac{1}{2} \frac{\partial^{2}}{\partial x^{2}} \rho(x, t) .
$$

This is the diffusion equation!
It is just as we should expect, since $d w$ is Brownian motion. Evidently,

$$
\rho(x, t)=\frac{1}{\sqrt{2 \pi t}} \int e^{-(x-z)^{2} / 2 t} \rho(z, 0) d z
$$

where $\rho(x, 0)$ is the initial distribution - if it is twice differentiable.

Diffusion

Wiener Processes and Brownian Motions

- Spatial Continuization
- Spatial Continuization
- Spatial Continuization
- Brownian Motion
- Properties Of Brownian Motion
- Stochastic Differential

Equations

- Ito Calculus for Wiener Processes
- Ito Calculus for Wiener Processes
- Ito Calculus for Wiener

Processes

- Ito Calculus for Wiener

Processes

- Calculating Moments
- The Langevin Equation
- The Langevin Equation
- Nyquist-Johnson Circuits
- Nyquist-Johnson Circuits
- Equipartition of Energy
- A Distributional PDE
- A Distributional PDE
- A Distributional PDE

Example 6 Suppose $d x=-x d t+d w$, i.e there's a drift term.

Diffusion

- Spatial Continuization
- Spatial Continuization
- Spatial Continuization
- Brownian Motion
- Properties Of Brownian Motion
- Stochastic Differential

Equations

- Ito Calculus for Wiener Processes
- Calculating Moments
- The Langevin Equation
- The Langevin Equation
- Nyquist-Johnson Circuits
- Nyquist-Johnson Circuits
- Equipartition of Energy
- A Distributional PDE
- A Distributional PDE
- A Distributional PDE

Example 6 Suppose $d x=-x d t+d w$, i.e there's a drift term.
In this case,

$$
\frac{\partial \rho(x, t)}{\partial t}=\frac{\partial(x \rho)}{\partial x}+\frac{1}{2} \frac{\partial^{2} \rho}{\partial x^{2}} .
$$

Diffusion

Wiener Processes and

Brownian Motions

- Spatial Continuization
- Spatial Continuization
- Spatial Continuization
- Brownian Motion
- Properties Of Brownian

Motion

- Stochastic Differential

Equations

- Ito Calculus for Wiener Processes
- Calculating Moments
- The Langevin Equation
- The Langevin Equation
- Nyquist-Johnson Circuits
- Nyquist-Johnson Circuits
- Equipartition of Energy
- A Distributional PDE
- A Distributional PDE
- A Distributional PDE

Example 6 Suppose $d x=-x d t+d w$, i.e there's a drift term.
In this case,

$$
\frac{\partial \rho(x, t)}{\partial t}=\frac{\partial(x \rho)}{\partial x}+\frac{1}{2} \frac{\partial^{2} \rho}{\partial x^{2}} .
$$

This has the solution

$$
\rho(x, t)=\int \frac{1}{\sqrt{2 \pi s(t)}} e^{-\left(x-e^{-t} z\right)^{2} / 2 s(t)} \rho(z, 0) d z
$$

Diffusion

- Spatial Continuization
- Spatial Continuization
- Spatial Continuization
- Brownian Motion
- Properties Of Brownian Motion
- Stochastic Differential

Equations

- Ito Calculus for Wiener Processes
- Calculating Moments
- The Langevin Equation
- The Langevin Equation
- Nyquist-Johnson Circuits
- Nyquist-Johnson Circuits
- Equipartition of Energy
- A Distributional PDE
- A Distributional PDE
- A Distributional PDE

Example 6 Suppose $d x=-x d t+d w$, i.e there's a drift term.
In this case,

$$
\frac{\partial \rho(x, t)}{\partial t}=\frac{\partial(x \rho)}{\partial x}+\frac{1}{2} \frac{\partial^{2} \rho}{\partial x^{2}} .
$$

This has the solution

$$
\rho(x, t)=\int \frac{1}{\sqrt{2 \pi s(t)}} e^{-\left(x-e^{-t} z\right)^{2} / 2 s(t)} \rho(z, 0) d z
$$

where $s(t)=\frac{1}{2}\left(1-e^{-2 t}\right)$.

Exit Times

Wiener Processes and Brownian Motions

- Spatial Continuization
- Spatial Continuization
- Spatial Continuization
- Brownian Motion
- Properties Of Brownian Motion
- Stochastic Differential

Equations

- Ito Calculus for Wiener Processes
- Calculating Moments
- The Langevin Equation
- The Langevin Equation
- Nyquist-Johnson Circuits
- Nyquist-Johnson Circuits
- Equipartition of Energy
- A Distributional PDE
- A Distributional PDE
- A Distributional PDE

Suppose we have the process

$$
d x=-x d t+d w ; x(0)=0
$$

Exit Times

Wiener Processes and

 Brownian Motions- Spatial Continuization
- Spatial Continuization
- Spatial Continuization
- Brownian Motion
- Properties Of Brownian Motion
- Stochastic Differential

Equations

- Ito Calculus for Wiener Processes
- Calculating Moments
- The Langevin Equation
- The Langevin Equation
- Nyquist-Johnson Circuits
- Nyquist-Johnson Circuits
- Equipartition of Energy
- A Distributional PDE
- A Distributional PDE
- A Distributional PDE

Suppose we have the process

$$
d x=-x d t+d w ; x(0)=0 .
$$

We want prob. $x \in[-\pi, \pi]$ for $t<1$.

Exit Times

Wiener Processes and

 Brownian Motions- Spatial Continuization
- Spatial Continuization
- Spatial Continuization
- Brownian Motion
- Properties Of Brownian Motion
- Stochastic Differential

Equations

- Ito Calculus for Wiener Processes
- Ito Calculus for Wiener Processes
- Ito Calculus for Wiener Processes
- Ito Calculus for Wiener Processes - Calculating Moments
- The Langevin Equation
- The Langevin Equation
- Nyquist-Johnson Circuits
- Nyquist-Johnson Circuits
- Equipartition of Energy
- A Distributional PDE
- A Distributional PDE
- A Distributional PDE

Suppose we have the process

$$
d x=-x d t+d w ; x(0)=0 .
$$

We want prob. $x \in[-\pi, \pi]$ for $t<1$. Modify the process $d x$ so that the original equation holds but has $d x=0$ outside of $[-\pi, \pi]$.

Exit Times

Wiener Processes and

 Brownian Motions- Spatial Continuization
- Spatial Continuization
- Spatial Continuization
- Brownian Motion
- Properties Of Brownian Motion
- Stochastic Differential Equations
- Ito Calculus for Wiener Processes
- Calculating Moments
- The Langevin Equation
- The Langevin Equation
- Nyquist-Johnson Circuits
- Nyquist-Johnson Circuits
- Equipartition of Energy
- A Distributional PDE
- A Distributional PDE
- A Distributional PDE

Suppose we have the process

$$
d x=-x d t+d w ; x(0)=0
$$

We want prob. $x \in[-\pi, \pi]$ for $t<1$. Modify the process $d x$ so that the original equation holds but has $d x=0$ outside of $[-\pi, \pi]$. FP says

$$
\frac{\partial \rho}{\partial t}=\frac{\partial}{\partial x}(x \rho)+\frac{1}{2} \frac{\partial^{2} \rho}{\partial x^{2}} ; \rho(-\pi, t)=\rho(\pi, t)=0 .
$$

Exit Times

Wiener Processes and

- Spatial Continuization
- Spatial Continuization
- Spatial Continuization
- Brownian Motion
- Properties Of Brownian

Motion

- Stochastic Differential

Equations

- Ito Calculus for Wiener Processes
- Ito Calculus for Wiener Processes
- Ito Calculus for Wiener Processes
- Ito Calculus for Wiener

Processes

- Calculating Moments
- The Langevin Equation
- The Langevin Equation
- Nyquist-Johnson Circuits
- Nyquist-Johnson Circuits
- Equipartition of Energy
- A Distributional PDE
- A Distributional PDE
- A Distributional PDE

Suppose we have the process

$$
d x=-x d t+d w ; x(0)=0
$$

We want prob. $x \in[-\pi, \pi]$ for $t<1$. Modify the process $d x$ so that the original equation holds but has $d x=0$ outside of $[-\pi, \pi]$. FP says

$$
\frac{\partial \rho}{\partial t}=\frac{\partial}{\partial x}(x \rho)+\frac{1}{2} \frac{\partial^{2} \rho}{\partial x^{2}} ; \rho(-\pi, t)=\rho(\pi, t)=0
$$

But this is solvable (using trig fns) to get

$$
\rho(x, t)=\sum_{n} p_{n}(t) \cos (n x)
$$

where $\dot{p}_{n}=\left(1-n^{2}-1 / n\right) p_{n}$.

Exit Times

Wiener Processes and

- Spatial Continuization
- Spatial Continuization
- Spatial Continuization
- Brownian Motion
- Properties Of Brownian

Motion

- Stochastic Differential

Equations

- Ito Calculus for Wiener Processes
- Ito Calculus for Wiener Processes
- Ito Calculus for Wiener Processes
- Ito Calculus for Wiener

Processes

- Calculating Moments
- The Langevin Equation
- The Langevin Equation
- Nyquist-Johnson Circuits
- Nyquist-Johnson Circuits
- Equipartition of Energy
- A Distributional PDE
- A Distributional PDE
- A Distributional PDE

Suppose we have the process

$$
d x=-x d t+d w ; x(0)=0
$$

We want prob. $x \in[-\pi, \pi]$ for $t<1$. Modify the process $d x$ so that the original equation holds but has $d x=0$ outside of $[-\pi, \pi]$. FP says

$$
\frac{\partial \rho}{\partial t}=\frac{\partial}{\partial x}(x \rho)+\frac{1}{2} \frac{\partial^{2} \rho}{\partial x^{2}} ; \rho(-\pi, t)=\rho(\pi, t)=0
$$

But this is solvable (using trig fns) to get

$$
\rho(x, t)=\sum_{n} p_{n}(t) \cos (n x)
$$

where $\dot{p}_{n}=\left(1-n^{2}-1 / n\right) p_{n}$. NOTICE: $\operatorname{prob}=p_{0}(t)=e^{-t}$.

Stratanovich Calculus

Wiener Processes and

 Brownian Motions- Spatial Continuization
- Spatial Continuization
- Spatial Continuization
- Brownian Motion
- Properties Of Brownian Motion
- Stochastic Differential Equations
- Ito Calculus for Wiener Processes
- Calculating Moments
- The Langevin Equation
- The Langevin Equation
- Nyquist-Johnson Circuits
- Nyquist-Johnson Circuits
- Equipartition of Energy
- A Distributional PDE
- A Distributional PDE
- A Distributional PDE

$$
\rtimes x=f(x) d t+g(x) \circlearrowleft(w
$$

Stratanovich Calculus

Poisson Processes

Wiener Processes and

Brownian Motions

- Spatial Continuization
- Spatial Continuization
- Spatial Continuization
- Brownian Motion
- Properties Of Brownian Motion
- Stochastic Differential Equations
- Ito Calculus for Wiener Processes
- Calculating Moments
- The Langevin Equation
- The Langevin Equation
- Nyquist-Johnson Circuits
- Nyquist-Johnson Circuits
- Equipartition of Energy
- A Distributional PDE
- A Distributional PDE
- A Distributional PDE

If

$$
\check{\partial} x=f(x) d t+g(x) \check{\partial} w
$$

Stratanovich Calculus

Wiener Processes and

Brownian Motions

- Spatial Continuization
- Spatial Continuization
- Spatial Continuization
- Brownian Motion
- Properties Of Brownian Motion
- Stochastic Differential Equations
- Ito Calculus for Wiener Processes
- Calculating Moments
- The Langevin Equation
- The Langevin Equation
- Nyquist-Johnson Circuits
- Nyquist-Johnson Circuits
- Equipartition of Energy
- A Distributional PDE
- A Distributional PDE
- A Distributional PDE

If

$$
\partial x=f(x) d t+g(x) \check{\partial} w
$$

then

$$
\check{\partial} \phi=\left\langle\frac{d \phi}{d x}, f(x) d t+g(x) \check{ } w\right\rangle .
$$

Stratanovich Calculus

Wiener Processes and

Brownian Motions

- Spatial Continuization
- Spatial Continuization
- Spatial Continuization
- Brownian Motion
- Properties Of Brownian Motion
- Stochastic Differential Equations
- Ito Calculus for Wiener Processes
- Calculating Moments
- The Langevin Equation
- The Langevin Equation
- Nyquist-Johnson Circuits
- Nyquist-Johnson Circuits
- Equipartition of Energy
- Equipartition of Energy
- Equipartition of Energy
- Equipartition of Energy - Equipartition of Energy
- A Distributional PDE
- A Distributional PDE
- A Distributional PDE

If

$$
\check{\partial} x=f(x) d t+g(x) \check{\mathrm{\partial}} w
$$

then

$$
\check{\partial} \phi=\left\langle\frac{d \phi}{d x}, f(x) d t+g(x) \check{ } w\right\rangle .
$$

But this means the calculus is much easier, in that Leibniz form applies.

Stratanovich Calculus

Wiener Processes and

Brownian Motions

- Spatial Continuization
- Spatial Continuization
- Spatial Continuization
- Brownian Motion
- Properties Of Brownian Motion
- Stochastic Differential Equations
- Ito Calculus for Wiener Processes
- Calculating Moments
- The Langevin Equation
- The Langevin Equation
- Nyquist-Johnson Circuits
- Nyquist-Johnson Circuits
- Equipartition of Energy - Equipartition of Energy
- Equipartition of Energy
- Equipartition of Energy - Equipartition of Energy
- A Distributional PDE
- A Distributional PDE
- A Distributional PDE

If

$$
\check{\partial} x=f(x) d t+g(x) \check{\mathrm{\partial}} w
$$

then

$$
\check{\delta} \phi=\left\langle\frac{d \phi}{d x}, f(x) d t+g(x) \widetilde{ } w\right\rangle .
$$

But this means the calculus is much easier, in that Leibniz form applies. But

Stratanovich Calculus

Wiener Processes and

- Spatial Continuization
- Spatial Continuization
- Spatial Continuization
- Brownian Motion
- Properties Of Brownian

Motion

- Stochastic Differential

Equations

- Ito Calculus for Wiener Processes
- Ito Calculus for Wiener Processes
- Ito Calculus for Wiener Processes
- Ito Calculus for Wiener Processes - Calculating Moments
- The Langevin Equation
- The Langevin Equation
- Nyquist-Johnson Circuits
- Nyquist-Johnson Circuits
- Equipartition of Energy
- A Distributional PDE
- A Distributional PDE
- A Distributional PDE

If

$$
\check{\partial} x=f(x) d t+g(x) \check{\partial} w
$$

then

$$
\check{\partial} \phi=\left\langle\frac{d \phi}{d x}, f(x) d t+g(x) \check{ } w\right\rangle .
$$

But this means the calculus is much easier, in that Leibniz form applies. But

$$
\frac{d}{d t} E[x]=E\left[f(x)+\frac{1}{2} \frac{d g}{d x} g(x)\right]
$$

so expectations are more complicated. $\nearrow w$ and $d w$ are the same.

Stratanovich Calculus

Wiener Processes and

- Spatial Continuization
- Spatial Continuization
- Spatial Continuization
- Brownian Motion
- Properties Of Brownian

Motion

- Stochastic Differential

Equations

- Ito Calculus for Wiener Processes
- Ito Calculus for Wiener Processes
- Ito Calculus for Wiener Processes
- Ito Calculus for Wiener Processes - Calculating Moments
- The Langevin Equation
- The Langevin Equation
- Nyquist-Johnson Circuits
- Nyquist-Johnson Circuits
- Equipartition of Energy
- A Distributional PDE
- A Distributional PDE
- A Distributional PDE

If

$$
\check{\partial} x=f(x) d t+g(x) \check{\partial} w
$$

then

$$
\check{\partial} \phi=\left\langle\frac{d \phi}{d x}, f(x) d t+g(x) \check{ } w\right\rangle .
$$

But this means the calculus is much easier, in that Leibniz form applies. But

$$
\frac{d}{d t} E[x]=E\left[f(x)+\frac{1}{2} \frac{d g}{d x} g(x)\right]
$$

so expectations are more complicated. $\nearrow w$ and $d w$ are the same.

