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The Poisson Counter

Define for each k

m
N (?) = N

m — 1 N 1 with probability \/k
k 0 with probability 1 — A\ /k

with N (0) = 0.
Definiton1 Ny :R — N

k— o0

In particular:

L [ProbNa(t+A) = N +1]] _
A—0 A

This is why N, Is called a poisson counter with rate .
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We can derive the statistics of this process. Let

So

In general,

and

Of course,

Pi(t) = Prob[Ny(t) = d.

Py(1)

= lim [1— — = e
n— 00 n

AN\,
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Statistics of the Poisson Counter

=Xe M) QO _ i

E[Ny](t
n!

= S
n
Moreover, we can calculate higher moments as well:

e Zn (A)™ /n!

E[NY|(t) =

(2)
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n!

EINA(t) =) nPy(t) =Xe ™) A" _

n

Moreover, we can calculate higher moments as well:

EIN{|(t) = e ) " n™(At)" /n!

= Me MY (G + 1) () /5!

J

(2)
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n!

E[N,](t) = ann(t) — e M Z ()™

n

Moreover, we can calculate higher moments as well:

EIN{|(t) = e ) " n™(A)" /n!

Ate Y (5 4+ 1) (A /5!

J

— Ae MY (m N 1);”6(»5)’6/;1
7 k

(2)
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(2)
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n!

E[N,](t) = ann(t) — e M Z ()™

n

Moreover, we can calculate higher moments as well:

EIN{(t) = e ) " n™(At)" /n!

= Me MY (G + 1) () /5!

J

= e M Zmz_:l (mk_ 1)jk()\t)k/j!
_ Atﬁf (mk_ 1)E[N§](t).

This recursive calculation of moments is a hallmark of
stochastic processes.

(2)
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Statistics of the Poisson Counter

The mathematically inclined among you will be wondering: Is it
OK to do what | did?
Well, yes:

Theorem 1 Suppose X, : N[1/n| — Nis a sequence of time-invariant
random variables such that

X=1I1m X,,:R—N

n—aoo

exists and satisfies

lim Prob[ X (t+ 1) = X(t) + 1]

T—0 T

and
Prob| X (t = X(t
im rob| X (t + ) (t)] Y
T 7'

Then X 4 N
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Then X 4 N

Hence, N, is “the" poisson limit process with rate . - 10/50
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Another representation

Another way to think about NV, is as that process which

satisfies:
dP;(t)

dt
That is, the transition matrix is:

= —AP;(t) + AP,_1(1).

P(t) = | P@)

where P(t) = (Pyi(t), Pa(t),...)7%.

This transition-matrix representation points to how poisson
counters like N, can be really useful in representing
probabilistic processes.
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Poisson Processes

Let us write the equation
dr = f(x,t)dt + g(x,t)dNy.

This Is a noisy (stochastic) analog of regular differential
equations. But what does it mean?

(3)
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Poisson Processes

Let us write the equation
dr = f(x,t)dt + g(x,t)dNy. (3)

This Is a noisy (stochastic) analog of regular differential
equations. But what does it mean?

Definition 2 A trajectory x(t) IS an Ito solution to the above equation if:
= When V), is constant on [a, b|, x satisfies dx = f(x,t)dt

= When V) jumps at t1, x satisfies:

lim CE(t), t1

t—t,

+ lim x(t)

t—t,

lim z(t) =g

t—t

in a neighborhood of ¢4

B 1 is continuous from the left.
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Poisson Processes

Let us write the equation
dr = f(x,t)dt + g(x,t)dNy. (3)

This Is a noisy (stochastic) analog of regular differential
equations. But what does it mean?

Definition 2 A trajectory :c(t) IS an Ito solution to the above equation if:
= When V), is constant on [a, b|, x satisfies dx = f(x,t)dt

= When V) jumps at t1, x satisfies:

lim x(t) =g | lim x(¢),t; | + lim z(t)
t—t t—t t—t
in a neighborhood of ¢4

B 1 is continuous from the left.

This does not define a single trajectory — instead, it defines a
set, which possess a statistical distribution inherited from the
distribution on the Poisson counters. P20
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So, given
dr = f(xa t)dt + Zgz(xa t)sz

what are the statistical properties of the solutions?

In other words, what are E[x|(t), higher moments, &c?
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Calculus for Poisson Processes

In fact, if ¢ : R™ — R is any (nice) function, then ¢(x) is itself a
poisson process; same method gives us satistical info about
¢(xz). But what process is ¢(x), in terms of dt and dNs? What
is d(x?)?

Regular calculus would tell us that
d(z?) = 2zdzx.

That is wrong here!! The standard Leibniz rule and Chain rule
an FTC NO LONGER WORK. Newtonian calculus is not
accurate for statistical properties.
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poisson process; same method gives us satistical info about
¢(xz). But what process is ¢(x), in terms of dt and dNs? What
is d(x?)?

Regular calculus would tell us that
d(z?) = 2zdzx.

That is wrong here!! The standard Leibniz rule and Chain rule
an FTC NO LONGER WORK. Newtonian calculus is not
accurate for statistical properties. Similarly, one CANNOT
rearrange:

d
de = zdt + zdN to get — — dt + dN.
i
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In fact, if ¢ : R™ — R is any (nice) function, then ¢(x) is itself a
poisson process; same method gives us satistical info about
¢(x). Butwhat process is ¢(x), in terms of dt and dNs? What
is d(x?)?
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=~ Calculus for Poisson Processes

However, it's (almost) trivial to see what the answer is.

Recall, a trajectory z(¢) is a solution if:
= When N, is constant on [a, b], x satisfies dz = f(x,t)dt

= \When N, jumps at ¢;, x satisfies:

lim x(t) =g | lim x(¢),t; | + lim x(¢)

t—t t—t t—t

In a neighborhood of ¢,
m ¢ IS continuous from the left.
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Calculus for Poisson Processes

However, it's (almost) trivial to see what the answer is.

On an interval where N; doesn’t change, standard calculus

tells us:
d
dp = <d—;’f,f<x>> dt.

If N; does change at ¢, then we have to add the discrete quantity:

¢z + gi()) — d(x).

Hence, just from the definition of “solution":

Ao, 1) = <% f(fc)> i+ Y [0+ g:(2) — G AN

This is the “lIto Rule": it is a combination of modified Leibniz
and Chain-rule for stochastic calculus.
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Example 1 Suppose
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Furthermore, as for z2:
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dx(t) = —kx(t)dt + dN1(t) — dNy(t)
Then
dE|x|(t) = —kFE|x|(t)dt + A\ dt — \odt
So using variation of constants:
Elz](0)
k

Furthermore, as for z2:

Elz](t) = (k= A1 4+ X2)e M+ X1 — X\o).

dz* = —2kx?(t)dt + [1 + 22(t)]dNy + [1 — 22(t)]dNo.

So

BT _9kE[2?] + 2(M — M) E[2](£) + A1 + Ao

(4)
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Example 1 Suppose
dx(t) = —kx(t)dt + dN1(t) — dNy(t)
Then
dE|x|(t) = —kFE|x|(t)dt + A\ dt — \odt
So using variation of constants:
Elz](0)
k

Furthermore, as for z2:

Elz](t) = (k= A1 4+ X2)e M+ X1 — X\o).

dz* = —2kx?(t)dt + [1 + 22(t)]dNy + [1 — 22(t)]dNo.

So

BT _9kE[2?] + 2(M — M) E[2](£) + A1 + Ao

Again, recursive calculuation of moments.

(4)
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Example 1 Suppose
dx(t) = —kx(t)dt + dN1(t) — dNy(t)
Then
dE|x|(t) = —kFE|x|(t)dt + A\ dt — \odt
So using variation of constants:
Elz](0)
k

Furthermore, as for z2:

E[m](t) = ((k—)\l +)\2)€_kt—|—)\1 —)\2).

dr? = —2kz?(t)dt + [1 + 2x(t)]dNy + [1 — 2z(1)]dN>.  (4)

So

BT _9kE[2?] + 2(M — M) E[2](£) + A1 + Ao

Again, recursive calculuation of moments. (You stick in from
above and use Variation of Constants formula.)
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p T
L= FSCTJPs

Suppose you're given a finite-state transition scheme:

01

0.3 0.7

05
~N_ ¥ ~N_ ¥
0.9 0.6

Definition 3 A state-transition equation

is called a finite-state continuous time jump process (FSCTJP), when A is a
stochastic matrix, i.e. columns sum to O and (off-diagonal) entries are

non-negative.

P(t) = AP(t)
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« A PDE for the Distribution is called a finite-state continuous time jump process (FSCTJP), when A is a
e A PDE for the Distribution . . . . .

i e i 8 stochastic matrix, i.e. columns sum to O and (off-diagonal) entries are

Wiener Processes and nOn'negatlve

Brownian Motions

Such systems have obvious potential for being useful
representations of scientific phenonmena.
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Poisson Counters and FSCTJPs

Theorem 2 [Basis Theorem] Any FSCTJP is equivalent, in distribution, to
™m
i=1

for some (nice) functions f; and poisson counters IV, with rates A\; > 0.

Example 2

p1(1) -3 0 8| [pu(?)
ppt)| =13 =2 0] [p2t)
p3(1) 0 2 =8| |ps3(t)

with z(0) € {3,7,9}.

e N

Then

dr — (z —9)(z —7) dN3+(x—3)(a:—9) dN2+(3_g;)(a;_7)

6 4 2

dNg
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Hence, stuff = 0.

This yields
(i) + A0 @), et +dg) = pla )

This is a deterministic PDE for the distribution. We've achieved
the Grand Principle.

It's very hard to solve. But: things can be done (including solve
for steady states).
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~ Where to go from here?

Various things can now be done:

= Construct non-constant-rate poisson counters, i.e. let
A = A(t). And then, generalize results.

= Construct non-deterministic-rate poisson counters, i.e. given
A(t) by distribution. And generalize results.

= Take away discretization in space, going from jump
processes to continuous processes.

The first two can be done, and are interesting, but the third is
really where it's at.
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+ —
Nyjar Ny

w>\(0> = 0.

N5 A A/2
are independent poisson counters of rate \/2,
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Spatial Continuization

dw IS:
= Zero-mean.

= Memoryless.

= More continuous as A — 0.
What are its statistics?
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= Spatial Continuization

dw IS:
= Zero-mean.

= Memoryless.

= More continuous as A — 0.

What are its statistics? Ito’s rule says:
" IN™ ) s

dwy’ = wy + —F= —wy | ANT+

VA

w

1

VA

m

_wg\n

dN".

- p. 25/50




Poisson Processes

Wiener Processes and
Brownian Motions

dw, IS:
= Zero-mean.

e Spatial Continuization

= Memoryless.

e Spatial Continuization
e Brownian Motion
e Properties Of Brownian

Motion
e Stochastic Differential

Equations
e Ito Calculus for Wiener

Processes
e |to Calculus for Wiener

Processes
e |to Calculus for Wiener

Processes
e Ito Calculus for Wiener

Processes
e Calculating Moments

e The Langevin Equation
e The Langevin Equation
e Nyquist-Johnson Circuits
e Nyquist-Johnson Circuits
e Equipartition of Energy
e Equipartition of Energy
e Equipartition of Energy
e Equipartition of Energy
e Equipartition of Energy
e A Distributional PDE

e A Distributional PDE

e A Distributional PDE

= More continuous as A — 0.
What are its statistics? Ito’s rule says:

1 m
dwil = [ (wy+ —=] —wy ) dNT+

VA

Thus (using the binomial expansion)

w

1

VA

m

_wg\n

dN".

- p. 25/50




Poisson Processes

Wiener Processes and
Brownian Motions

e Spatial Continuization
e Spatial Continuization
e Brownian Motion

e Properties Of Brownian

Motion
e Stochastic Differential

Equations
e Ito Calculus for Wiener

Processes
e |to Calculus for Wiener

Processes
e |to Calculus for Wiener

Processes
e Ito Calculus for Wiener

Processes
e Calculating Moments

e The Langevin Equation
e The Langevin Equation
e Nyquist-Johnson Circuits
e Nyquist-Johnson Circuits
e Equipartition of Energy
e Equipartition of Energy
e Equipartition of Energy
e Equipartition of Energy
e Equipartition of Energy
e A Distributional PDE

e A Distributional PDE

e A Distributional PDE

-qﬁ;
-

Spatial Continuization

dw, IS:
= Zero-mean.

= Memoryless.
= More continuous as \ — 0.

What are its statistics? Ito’s rule says:

= (o 5w () o) o

Thus (using the binomial expansion)

d . 0
%E[wﬂ =

Z?i/f_l % (727:) Elwy

If m is odd
| ifmifeven
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= Memoryless.
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if m is odd
if m if even

d . 0
— Elw)'] =

dt ST S () Blwy ]

Again, notice the recursive calculation of moments.
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(m—1)(m—-3)...- 3(%)77@/2
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. m o t m/2
)\11_>rroloE[w/\ [(t) = (m —1)(m — 3)3(5) /

These are the moments of a Gaussian.

Hence, we're (roughly) justifed in making the following
definition:

Definition 4

dw = lim dw)
A— 00

dw defines a continuous process w : R — R with Gaussian
statistics.

- p. 26/50




_“___1,&

Poisson Processes

Wiener Processes and
Brownian Motions

e Spatial Continuization
e Spatial Continuization
e Brownian Motion

e Properties Of Brownian

Motion
e Stochastic Differential

Equations
e Ito Calculus for Wiener

Processes
e |to Calculus for Wiener

Processes
e |to Calculus for Wiener

Processes
e Ito Calculus for Wiener

Processes
e Calculating Moments

e The Langevin Equation
e The Langevin Equation
e Nyquist-Johnson Circuits
e Nyquist-Johnson Circuits
e Equipartition of Energy
e Equipartition of Energy
e Equipartition of Energy
e Equipartition of Energy
e Equipartition of Energy
e A Distributional PDE

e A Distributional PDE

e A Distributional PDE

= | Spatial Continuization

But now let’s consider the limit A — oc. Taking the limit and
solving the recursion for m even gives

lim E[w}](t) = (m —1)(m —3)...- 3(%)7%/2

A— 00

These are the moments of a Gaussian.

Hence, we're (roughly) justifed in making the following
definition:

Definition 4
dw = lim dw)
A— 00

dw defines a continuous process w : R — R with Gaussian
statistics.

dw Is called a Brownian motion (if the limit exists, which it does).

- p. 26/50




=

= Brownian Motion

Poisson Processes

Wiener Processes and
Brownian Motions

70 T T T T T

e Spatial Continuization

e Spatial Continuization

e Spatial Continuization

60
e Properties Of Brownian

Motion
Stochastic Differential

Equations
Ito Calculus for Wiener

Processes
Ito Calculus for Wiener

Processes
Ito Calculus for Wiener

Processes
Ito Calculus for Wiener

Processes
e Calculating Moments

e The Langevin Equation

50

40

30

e The Langevin Equation 20

Nyquist-Johnson Circuits
Nyquist-Johnson Circuits
e Equipartition of Energy
Equipartition of Energy
e Equipartition of Energy
Equipartition of Energy P

Equipartition of Energy oF il R
e A Distributional PDE
e A Distributional PDE
e A Distributional PDE

10

_10 | | | | |
-10 0 10 20 30 40 50

- p. 27/50




Poisson Processes

Wiener Processes and
Brownian Motions

e Spatial Continuization
e Spatial Continuization
e Spatial Continuization
e Brownian Motion

e Properties Of Brownian
Motion

e Stochastic Differential
Equations
Ito Calculus for Wiener

Processes
Ito Calculus for Wiener

Processes
Ito Calculus for Wiener

Processes
Ito Calculus for Wiener

Processes
e Calculating Moments

e The Langevin Equation
e The Langevin Equation

Nyquist-Johnson Circuits
Nyquist-Johnson Circuits
e Equipartition of Energy
Equipartition of Energy
e Equipartition of Energy
Equipartition of Energy
Equipartition of Energy
e A Distributional PDE

e A Distributional PDE

e A Distributional PDE

~ Properties Of Brownian Motion

Some properties of Brownian motion are:
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. Properties Of Brownian Motion

Some properties of Brownian motion are:

= w(0) =0.

= The statistics of »(¢,7) = w(t) — w(7) depend only on |t — |
» Infact, E[r?](t) = |t — 7] (it's again a Gaussian).

- p. 28/50




mq!:&

Poisson Processes

Wiener Processes and
Brownian Motions

e Spatial Continuization
e Spatial Continuization
e Spatial Continuization
e Brownian Motion

e Properties Of Brownian
Motion

e Stochastic Differential
Equations
e Ito Calculus for Wiener

Processes
e |to Calculus for Wiener

Processes
e |to Calculus for Wiener

Processes
e Ito Calculus for Wiener

Processes
e Calculating Moments

e The Langevin Equation
e The Langevin Equation
e Nyquist-Johnson Circuits
e Nyquist-Johnson Circuits
e Equipartition of Energy
e Equipartition of Energy
e Equipartition of Energy
e Equipartition of Energy
e Equipartition of Energy
e A Distributional PDE

e A Distributional PDE

e A Distributional PDE

+ Properties Of Brownian Motion

Some properties of Brownian motion are:

= w(0) =0.

= The statistics of »(¢,7) = w(t) — w(7) depend only on |t — |
» Infact, E[r?](t) = |t — 7] (it's again a Gaussian).

= Two-dimensional thermodynamic motion is modeled by

dx . dw1
dy| | dws

where wy, wy are independent brownian motions.

- p. 28/50




Properties Of Brownian Motion

Polsson Processes Some properties of Brownian motion are:
Wiener Processes and m w(0> — O

Brownian Motions

R = The statistics of (¢, 7) = w(t) — w(r) depend only on |t — 7|
e Spatial Continuization

« Brourian ojion = In fact, E[r?](t) = |t — 7| (it's again a Gaussian).
e Properties Of Brownian
= Two-dimensional thermodynamic motion is modeled by

Equations
e Ito Calculus for Wiener

Processes daj dw 1

e Ito Calculus for Wiener _ k

Processes

e Ito Calculus for Wiener dy dw2
Processes

e Ito Calculus for Wiener

Processes

G where wy, wo are independent brownian motions.

e The Langevin Equation

» The Langevin Equation = Einstein, Smoluchowski, etc, figured this out (three

e Nyquist-Johnson Circuits . . . .

« Nyquist-Johnson Circuis dimensions), and also how to find k£ as a phyical constant.
e Equipartition of Energy

e Equipartition of Energy

e Equipartition of Energy

e Equipartition of Energy

e Equipartition of Energy

e A Distributional PDE

e A Distributional PDE

e A Distributional PDE

- p. 28/50




Properties Of Brownian Motion

Polsson Processes Some properties of Brownian motion are:
Wiener Processes and m w(0> — O

Brownian Motions

R = The statistics of (¢, 7) = w(t) — w(r) depend only on |t — 7|
e Spatial Continuization

« Brourian ojion = In fact, E[r?](t) = |t — 7| (it's again a Gaussian).
e Properties Of Brownian
= Two-dimensional thermodynamic motion is modeled by

Equations
e Ito Calculus for Wiener

Processes daj dw 1

e Ito Calculus for Wiener _ k

Processes

e Ito Calculus for Wiener dy dw2
Processes

e Ito Calculus for Wiener

Processes

G where wy, wo are independent brownian motions.

e The Langevin Equation

» The Langevin Equation = Einstein, Smoluchowski, etc, figured this out (three

e Nyquist-Johnson Circuits

« Nyaist-Johnson Circuts dimensions), and also how to find k£ as a phyical constant.

e Equipartition of Energy . . . . .
> B ) = dw IS self-similar. That is, given a > 0, 3 b, such that
e Equipartition of Energy

e Equipartition of Energy

e Equipartition of Energy d

e A Distributional PDE w (&t) — b’LU (t) \V/t

e A Distributional PDE
e A Distributional PDE

In fact b = al/2,

- p. 28/50




ﬁ,

- Stochastic Differential Equations

Poisson Processes Def|n|‘t|0n 5 Let
Wi P d
Sl dr = f(x)dt +E gi () dw;

e Spatial Continuization
e Spatial Continuization

S s be interpreted using the limit procedure from above; that is, its solutions are

e Brownian Motion

* Properties Of Brownian limits of Ito solutions to

Motion

ey = J( + 5, BN, — N )

e Ito Calculus for Wiener

Processes
e |to Calculus for Wiener

Processes
e |to Calculus for Wiener

Processes
e Ito Calculus for Wiener

Processes
e Calculating Moments

e The Langevin Equation
e The Langevin Equation

e Nyquist-Johnson Circuits
e Nyquist-Johnson Circuits
e Equipartition of Energy
e Equipartition of Energy
e Equipartition of Energy
e Equipartition of Energy
e Equipartition of Energy
e A Distributional PDE

e A Distributional PDE

e A Distributional PDE

- p. 29/50




Poisson Processes

Wiener Processes and
Brownian Motions

e Spatial Continuization
e Spatial Continuization
e Spatial Continuization
e Brownian Motion

e Properties Of Brownian

Motion
e Stochastic Differential

Equations
e Ito Calculus for Wiener

Processes
e |to Calculus for Wiener

Processes
e |to Calculus for Wiener

Processes
e Ito Calculus for Wiener

Processes
e Calculating Moments

e The Langevin Equation
e The Langevin Equation
e Nyquist-Johnson Circuits
e Nyquist-Johnson Circuits
e Equipartition of Energy
e Equipartition of Energy
e Equipartition of Energy
e Equipartition of Energy
e Equipartition of Energy
e A Distributional PDE

e A Distributional PDE

e A Distributional PDE

Stochastic Differential Equations

Definition 5 Let

dz = f(z)dt + ) _ gi(w)dw;

be interpreted using the limit procedure from above; that is, its solutions are
limits of Ito solutions to

doy = f(e)dt + 3, 22 (AN, — AN )

Such an equation is a Stochastic Differential Equation (SDE).
Solutions are Wiener Processes.
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Example 3 [Ornstein-Uhlenbeck Process]

dr = vdt; dv=—a(y —v)dt + odw
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Definition 5 Let
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be interpreted using the limit procedure from above; that is, its solutions are
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Such an equation is a Stochastic Differential Equation (SDE).
Solutions are Wiener Processes.

Example 3 [Ornstein-Uhlenbeck Process]
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It has a zillion applications. Finance:
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Ilto Calculus for Wiener Processes

Let ¢ be a function R” — R, and suppose x is governed by a
Wiener process SDE as above. ¢(z) is itself a Winer process,
but what is its SDE?

Let’s start by introducing the process vy, given by:

1 _

This is a useful process, like dw, defined above.
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This is a useful process, like dw, defined above.

Using Ito calculus, one finds E[y,|(t) =t + E[y,](0) and
Ely3](t) = t* +t/\.
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This is a useful process, like dw, defined above.
Using Ito calculus, one finds E[y,|(t) =t + E[y,](0) and
E[y3](t) = t* + t/\. Hence

Var[y\l(t) = E[(yx(t) — E[ya](1)*] = t/A.
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Ilto Calculus for Wiener Processes

Let ¢ be a function R” — R, and suppose x is governed by a
Wiener process SDE as above. ¢(z) is itself a Winer process,
but what is its SDE?

Let’s start by introducing the process vy, given by:

1 _
This is a useful process, like dw, defined above.
Using Ito calculus, one finds E[y,|(t) =t + E[y,](0) and
E[y3](t) = t* + t/\. Hence

Var[y\l(t) = E[(yx(t) — E[ya](1)*] = t/A.

But thus:

d .
= lim y) =t,
A— 00

y(t)

a simple deterministic process!
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Example 4 Suppose x is given by
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The Langevin Equation

The Langevin equation — simplest stochastic version of
Newton’s equations:

dr _ dv -
o = U a-—(fu—l—de

where ( is the hydrodynamic friction and C' is a constant to be
determined. Hydrodynamics says:

¢ = 6mna/m

where 7 is viscosity, a is particle radius, and m mass.
Can use Ito’s equation to get that

E[v?](t) = vie 2t + g(1 —
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o BT
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m
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For the system
dr = Azdt + Bdw

the Ito equation for ¢(z) = z2! is

d(zz?) = [Aza? + za’ ATdt + stuffdw + BB dt.
On taking expectations,

dE[xx’] = AE[zal]dt + E[za’) AT dt + BB dt.
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Then

Example 5 Suppose dx = dw.

dp 107

ot 202

This Is the diffusion equation!

It is just as we should expect, since dw IS Brownian motion.

p(z,1).
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differentiable.

1
V2t
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/6_(33_’2)2/%,0(2, 0)dz
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In this case,
Op(z,t) _ O(xp)  19%

Ot Ox 2 0x2’
This has the solution

(x—e™ "2) /28(75)10(2, O)dZ

1 _
p(:l?,t) :/ \/me
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dr = —xdt + dw; x(0) = 0.

We want prob. = € [—x, 7| for t < 1. Modify the process dx so
that the original equation holds but has dx = 0 outside of
|—m, 7).
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We want prob. = € [—x, 7| for t < 1. Modify the process dx so

that the original equation holds but has dx = 0 outside of
|—m, 7]. FP says

op 0
o = o) T 50

But this is solvable (using trig fns) to get

p(x,t) = an(t)cos(na:)

1 62
. p(—m,t) = plm, 1) = 0.

where p,, = (1 —n? — 1/n)p,.
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d
36 = (% t(2)dt + gla)ou
dx
But this means the calculus is much easier, in that Leibniz

form applies.
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But this means the calculus is much easier, in that Leibniz
form applies. But

d 1 dg
EE[CU] = E[f(z) + 3 7 ()]
S0 expectations are more complicated. 0w and dw are the
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