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Fix x0 and a dynamical equation

dx

dt
= f(x).
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Fix x0 and a dynamical equation

dx

dt
= f(x).

Then you quote an Existence and Uniqueness theorem.
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Then you quote an Existence and Uniqueness theorem.

Lo and behold, a trajectory!

x(t) = g(t, x0)
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Then you quote an Existence and Uniqueness theorem.

Lo and behold, a trajectory!

x(t) = g(t, x0)

Underlying it all is calculus, with
■ The Leibniz Rule.
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Underlying it all is calculus, with
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The Tao of ODEs

You get told:
x ∈ R

n,

Fix x0 and a dynamical equation

dx

dt
= f(x).

Then you quote an Existence and Uniqueness theorem.

Lo and behold, a trajectory!

x(t) = g(t, x0)

Underlying it all is calculus, with
■ The Leibniz Rule.
■ The Chain rule.
■ The Fundamental Theorem of Calculus.



Poisson Processes

● The Tao of ODEs

● The Tao of Stochastic

Processes
● The Basic Object: Poisson

Counter
● The Poisson Counter

● The Poisson Counter

● Statistics of the Poisson

Counter
● Statistics of the Poisson

Counter
● Statistics of the Poisson

Counter
● Another representation

● Poisson Processes

● Calculus for Poisson

Processes
● Calculus for Poisson

Processes
● Calculus for Poisson

Processes
● Using Ito Calculus

● FSCTJPs

● Poisson Counters and

FSCTJPs
● A PDE for the Distribution

● A PDE for the Distribution

● A PDE for the Distribution

● Where to go from here?

Wiener Processes and

Brownian Motions

- p. 4/50

The Tao of Stochastic Processes

It’s all very deterministic.



Poisson Processes

● The Tao of ODEs

● The Tao of Stochastic

Processes
● The Basic Object: Poisson

Counter
● The Poisson Counter

● The Poisson Counter

● Statistics of the Poisson

Counter
● Statistics of the Poisson

Counter
● Statistics of the Poisson

Counter
● Another representation

● Poisson Processes

● Calculus for Poisson

Processes
● Calculus for Poisson

Processes
● Calculus for Poisson

Processes
● Using Ito Calculus

● FSCTJPs

● Poisson Counters and

FSCTJPs
● A PDE for the Distribution

● A PDE for the Distribution

● A PDE for the Distribution

● Where to go from here?

Wiener Processes and

Brownian Motions

- p. 4/50

The Tao of Stochastic Processes

It’s all very deterministic. How do we put noise in?



Poisson Processes

● The Tao of ODEs

● The Tao of Stochastic

Processes
● The Basic Object: Poisson

Counter
● The Poisson Counter

● The Poisson Counter

● Statistics of the Poisson

Counter
● Statistics of the Poisson

Counter
● Statistics of the Poisson

Counter
● Another representation

● Poisson Processes

● Calculus for Poisson

Processes
● Calculus for Poisson

Processes
● Calculus for Poisson

Processes
● Using Ito Calculus

● FSCTJPs

● Poisson Counters and

FSCTJPs
● A PDE for the Distribution

● A PDE for the Distribution

● A PDE for the Distribution

● Where to go from here?

Wiener Processes and

Brownian Motions

- p. 4/50

The Tao of Stochastic Processes

It’s all very deterministic. How do we put noise in?

Can we do something like:

dx = f(x)dt+Noise (1)
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dx = f(x)dt+Noise (1)

And then follow the procedure from before?
No. We will have to:
■ Make a careful definition of noise and its statistics.
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Can we do something like:

dx = f(x)dt+Noise (1)

And then follow the procedure from before?
No. We will have to:
■ Make a careful definition of noise and its statistics.
■ Redo the basic notions of calculus – now stochastically.
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■ Use it to tranform statistical information into deterministic.
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Can we do something like:

dx = f(x)dt+Noise (1)

And then follow the procedure from before?
No. We will have to:
■ Make a careful definition of noise and its statistics.
■ Redo the basic notions of calculus – now stochastically.
■ Use it to tranform statistical information into deterministic.

The GRAND PRINCIPLE: non-deterministic trajectories
generated by statistical differential equations should be
governed by a deterministic differential equation on the
probability density of states.
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The Tao of Stochastic Processes

It’s all very deterministic. How do we put noise in?

Can we do something like:

dx = f(x)dt+Noise (1)

And then follow the procedure from before?
No. We will have to:
■ Make a careful definition of noise and its statistics.
■ Redo the basic notions of calculus – now stochastically.
■ Use it to tranform statistical information into deterministic.

∂ρ

∂t
= F (x, t, noise coefficients) (2)
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probability density of states.



Poisson Processes

● The Tao of ODEs

● The Tao of Stochastic

Processes
● The Basic Object: Poisson

Counter
● The Poisson Counter

● The Poisson Counter

● Statistics of the Poisson

Counter
● Statistics of the Poisson

Counter
● Statistics of the Poisson

Counter
● Another representation

● Poisson Processes

● Calculus for Poisson

Processes
● Calculus for Poisson

Processes
● Calculus for Poisson

Processes
● Using Ito Calculus

● FSCTJPs

● Poisson Counters and

FSCTJPs
● A PDE for the Distribution

● A PDE for the Distribution

● A PDE for the Distribution

● Where to go from here?

Wiener Processes and

Brownian Motions

- p. 5/50

The Basic Object: Poisson Counter

We will approach the definition of noisy differential equations
through two limiting procedures, one in space and one in time.
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The Basic Object: Poisson Counter

We will approach the definition of noisy differential equations
through two limiting procedures, one in space and one in time.

N : N → N given by

N1(m) = N1(m− 1) +

{

1 with probability λ
0 with probability 1 − λ

with N(0) = 0.
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The Basic Object: Poisson Counter

We will approach the definition of noisy differential equations
through two limiting procedures, one in space and one in time.

N : N → N given by

N1(m) = N1(m− 1) +

{

1 with probability λ
0 with probability 1 − λ

with N(0) = 0.

1−λ

t

λ
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The Basic Object: Poisson Counter

We will approach the definition of noisy differential equations
through two limiting procedures, one in space and one in time.

N : N → N given by

N1(m) = N1(m− 1) +

{

1 with probability λ
0 with probability 1 − λ

with N(0) = 0.

It’s a “Pascal process" (I think) because:

ρ(m,n) =

(

m

n

)

λn(1 − λ)m−n
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The Poisson Counter

Define for each k

Nk

(m

k

)

= Nk

(

m− 1

k

)

+

{

1 with probability λ/k
0 with probability 1 − λ/k

with N(0) = 0.
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The Poisson Counter

Define for each k

Nk

(m

k

)

= Nk

(

m− 1

k

)

+

{

1 with probability λ/k
0 with probability 1 − λ/k

with N(0) = 0.

Definition 1 Nλ : R → N

Nλ
d
= lim

k→∞
Nk
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+

{

1 with probability λ/k
0 with probability 1 − λ/k

with N(0) = 0.

Definition 1 Nλ : R → N

Nλ
d
= lim

k→∞
Nk

Nλ has a well-defined rate.
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The Poisson Counter

Define for each k

Nk

(m

k

)

= Nk

(

m− 1

k

)

+

{

1 with probability λ/k
0 with probability 1 − λ/k

with N(0) = 0.

Definition 1 Nλ : R → N

Nλ
d
= lim

k→∞
Nk

Nλ has a well-defined rate. That is,

lim
∆→0

[

Prob[Nλ(t+ ∆) = Nλ(t) + 1]

∆

]

is a constant function of time.
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The Poisson Counter

Define for each k

Nk

(m

k

)

= Nk

(

m− 1

k

)

+

{

1 with probability λ/k
0 with probability 1 − λ/k

with N(0) = 0.

Definition 1 Nλ : R → N

Nλ
d
= lim

k→∞
Nk

In particular:

lim
∆→0

[

Prob[Nλ(t+ ∆) = Nλ(t) + 1]

∆

]

= λ

This is why Nλ is called a poisson counter with rate λ.
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The Poisson Counter

time

N
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Statistics of the Poisson Counter

We can derive the statistics of this process. Let

Pi(t) = Prob[Nλ(t) = i].



Poisson Processes

● The Tao of ODEs

● The Tao of Stochastic

Processes
● The Basic Object: Poisson

Counter
● The Poisson Counter

● The Poisson Counter

● Statistics of the Poisson

Counter
● Statistics of the Poisson

Counter
● Statistics of the Poisson

Counter
● Another representation

● Poisson Processes

● Calculus for Poisson

Processes
● Calculus for Poisson

Processes
● Calculus for Poisson

Processes
● Using Ito Calculus

● FSCTJPs

● Poisson Counters and

FSCTJPs
● A PDE for the Distribution

● A PDE for the Distribution

● A PDE for the Distribution

● Where to go from here?

Wiener Processes and

Brownian Motions

- p. 8/50

Statistics of the Poisson Counter

We can derive the statistics of this process. Let

Pi(t) = Prob[Nλ(t) = i].

What is P0(1)?
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Statistics of the Poisson Counter

We can derive the statistics of this process. Let

Pi(t) = Prob[Nλ(t) = i].

It is

P0(1) = lim
n→∞

(

1 − λ

n

)n
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Statistics of the Poisson Counter

We can derive the statistics of this process. Let

Pi(t) = Prob[Nλ(t) = i].

But recall

lim
n→∞

(

1 +
x

n

)n

= ex



Poisson Processes

● The Tao of ODEs

● The Tao of Stochastic

Processes
● The Basic Object: Poisson

Counter
● The Poisson Counter

● The Poisson Counter

● Statistics of the Poisson

Counter
● Statistics of the Poisson

Counter
● Statistics of the Poisson

Counter
● Another representation

● Poisson Processes

● Calculus for Poisson

Processes
● Calculus for Poisson

Processes
● Calculus for Poisson

Processes
● Using Ito Calculus

● FSCTJPs

● Poisson Counters and

FSCTJPs
● A PDE for the Distribution

● A PDE for the Distribution

● A PDE for the Distribution

● Where to go from here?

Wiener Processes and

Brownian Motions

- p. 8/50

Statistics of the Poisson Counter

We can derive the statistics of this process. Let

Pi(t) = Prob[Nλ(t) = i].

So

P0(1) = lim
n→∞

(

1 − λ

n

)n

= e−λ
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Statistics of the Poisson Counter

We can derive the statistics of this process. Let

Pi(t) = Prob[Nλ(t) = i].

So

P0(1) = lim
n→∞

(

1 − λ

n

)n

= e−λ

In general,
P0(t) = e−λt

and

Pn(t) =
(λt)n

n!
e−λt.
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Statistics of the Poisson Counter

We can derive the statistics of this process. Let

Pi(t) = Prob[Nλ(t) = i].

So

P0(1) = lim
n→∞

(

1 − λ

n

)n

= e−λ

In general,
P0(t) = e−λt

and

Pn(t) =
(λt)n

n!
e−λt.

Of course,

∑

n

Pn(t) = e−λt
∑

n

(λt)n

n!
= e−λteλt = 1
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Statistics of the Poisson Counter

E[Nλ](t) =
∑

n

nPn(t) = λe−λt
∑

n

(λt)n

n!
= λt
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Statistics of the Poisson Counter

E[Nλ](t) =
∑

n

nPn(t) = λe−λt
∑

n

(λt)n

n!
= λt

Moreover, we can calculate higher moments as well:

E[Nm
λ ](t) = e−λt

∑

n

nm(λt)n/n! (2)
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Statistics of the Poisson Counter

E[Nλ](t) =
∑

n

nPn(t) = λe−λt
∑

n

(λt)n

n!
= λt

Moreover, we can calculate higher moments as well:

E[Nm
λ ](t) = e−λt

∑

n

nm(λt)n/n!

= λte−λt
∑

j

(j + 1)m−1(λt)j/j!
(2)
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Statistics of the Poisson Counter

E[Nλ](t) =
∑

n

nPn(t) = λe−λt
∑

n

(λt)n

n!
= λt

Moreover, we can calculate higher moments as well:

E[Nm
λ ](t) = e−λt

∑

n

nm(λt)n/n!

= λte−λt
∑

j

(j + 1)m−1(λt)j/j!

= λte−λt
∑

j

∑

k

(

m− 1

k

)

jk(λt)k/j!

(2)
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Statistics of the Poisson Counter

E[Nλ](t) =
∑

n

nPn(t) = λe−λt
∑

n

(λt)n

n!
= λt

Moreover, we can calculate higher moments as well:

E[Nm
λ ](t) = e−λt

∑

n

nm(λt)n/n!

= λte−λt
∑

j

(j + 1)m−1(λt)j/j!

= λte−λt
∑

j

m−1
∑

k=0

(

m− 1

k

)

jk(λt)k/j!

= λt
m−1
∑

k=0

(

m− 1

k

)

E[Nk
λ ](t).

(2)
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Statistics of the Poisson Counter

E[Nλ](t) =
∑

n

nPn(t) = λe−λt
∑

n

(λt)n

n!
= λt

Moreover, we can calculate higher moments as well:

E[Nm
λ ](t) = e−λt

∑

n

nm(λt)n/n!

= λte−λt
∑

j

(j + 1)m−1(λt)j/j!

= λte−λt
∑

j

m−1
∑

k=0

(

m− 1

k

)

jk(λt)k/j!

= λt
m−1
∑

k=0

(

m− 1

k

)

E[Nk
λ ](t).

(2)

This recursive calculation of moments is a hallmark of
stochastic processes.
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Statistics of the Poisson Counter

The mathematically inclined among you will be wondering: Is it
OK to do what I did?
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Statistics of the Poisson Counter

The mathematically inclined among you will be wondering: Is it
OK to do what I did?
Well, yes:

Theorem 1 SupposeXn : N[1/n] → N is a sequence of time-invariant
random variables such that

X = lim
n→∞

Xn : R → N

exists and satisfies

lim
τ→0

[

Prob[X(t+ τ) = X(t) + 1]

τ

]

= λ

and

lim
τ→0

[

Prob[X(t+ τ) = X(t)]

τ

]

= 1 − λ.

Then X
d
= Nλ.
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Statistics of the Poisson Counter

The mathematically inclined among you will be wondering: Is it
OK to do what I did?
Well, yes:

Theorem 1 SupposeXn : N[1/n] → N is a sequence of time-invariant
random variables such that

X = lim
n→∞

Xn : R → N

exists and satisfies

lim
τ→0

[

Prob[X(t+ τ) = X(t) + 1]

τ

]

= λ

and

lim
τ→0

[

Prob[X(t+ τ) = X(t)]

τ

]

= 1 − λ.

Then X
d
= Nλ.

Hence, Nλ is “the" poisson limit process with rate λ.
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Another representation

Another way to think about Nλ is as that process which
satisfies:
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Another representation

Another way to think about Nλ is as that process which
satisfies:

dPi(t)

dt
= −λPi(t) + λPi−1(t).
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Another representation

Another way to think about Nλ is as that process which
satisfies:

dPi(t)

dt
= −λPi(t) + λPi−1(t).

That is, the transition matrix is:

Ṗ(t) =













−λ 0 0 0 0 . . .

λ −λ 0 0 0 . . .

0 λ −λ 0 0 . . .
...

...













P(t)

where P(t) = (P1(t), P2(t), . . .)
T .



Poisson Processes

● The Tao of ODEs

● The Tao of Stochastic

Processes
● The Basic Object: Poisson

Counter
● The Poisson Counter

● The Poisson Counter

● Statistics of the Poisson

Counter
● Statistics of the Poisson

Counter
● Statistics of the Poisson

Counter
● Another representation

● Poisson Processes

● Calculus for Poisson

Processes
● Calculus for Poisson

Processes
● Calculus for Poisson

Processes
● Using Ito Calculus

● FSCTJPs

● Poisson Counters and

FSCTJPs
● A PDE for the Distribution

● A PDE for the Distribution

● A PDE for the Distribution

● Where to go from here?

Wiener Processes and

Brownian Motions

- p. 11/50

Another representation

Another way to think about Nλ is as that process which
satisfies:

dPi(t)

dt
= −λPi(t) + λPi−1(t).

That is, the transition matrix is:

Ṗ(t) =













−λ 0 0 0 0 . . .

λ −λ 0 0 0 . . .

0 λ −λ 0 0 . . .
...

...













P(t)

where P(t) = (P1(t), P2(t), . . .)
T .

This transition-matrix representation points to how poisson
counters like Nλ can be really useful in representing
probabilistic processes.
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Poisson Processes

Let us write the equation

dx = f(x, t)dt+ g(x, t)dNλ. (3)
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Poisson Processes

Let us write the equation

dx = f(x, t)dt+ g(x, t)dNλ. (3)

This is a noisy (stochastic) analog of regular differential
equations. But what does it mean?
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Poisson Processes

Let us write the equation

dx = f(x, t)dt+ g(x, t)dNλ. (3)

This is a noisy (stochastic) analog of regular differential
equations. But what does it mean?

Definition 2 A trajectory x(t) is an Ito solution to the above equation if:
■ When Nλ is constant on [a, b], x satisfies dx = f(x, t)dt

■ When Nλ jumps at t1, x satisfies:

lim
t→t+

1

x(t) = g

(

lim
t→t−

1

x(t), t1

)

+ lim
t→t−

1

x(t)

in a neighborhood of t1
■ x is continuous from the left.
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Poisson Processes

Let us write the equation

dx = f(x, t)dt+ g(x, t)dNλ. (3)

This is a noisy (stochastic) analog of regular differential
equations. But what does it mean?

Definition 2 A trajectory x(t) is an Ito solution to the above equation if:
■ When Nλ is constant on [a, b], x satisfies dx = f(x, t)dt

■ When Nλ jumps at t1, x satisfies:

lim
t→t+

1

x(t) = g

(

lim
t→t−

1

x(t), t1

)

+ lim
t→t−

1

x(t)

in a neighborhood of t1
■ x is continuous from the left.

This does not define a single trajectory – instead, it defines a
set, which possess a statistical distribution inherited from the
distribution on the Poisson counters.
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Calculus for Poisson Processes

So, given

dx = f(x, t)dt+
∑

i

gi(x, t)dNi

what are the statistical properties of the solutions?
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Calculus for Poisson Processes

So, given

dx = f(x, t)dt+
∑

i

gi(x, t)dNi

what are the statistical properties of the solutions?

In other words, what are E[x](t), higher moments, &c?
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Calculus for Poisson Processes

So, given

dx = f(x, t)dt+
∑

i

gi(x, t)dNi

what are the statistical properties of the solutions?

In other words, what are E[x](t), higher moments, &c?

The basic principle: first use calculus to get

d(xm) = something × dt+ something × dN
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Calculus for Poisson Processes

So, given

dx = f(x, t)dt+
∑

i

gi(x, t)dNi

what are the statistical properties of the solutions?

In other words, what are E[x](t), higher moments, &c?

The basic principle: first use calculus to get

d(xm) = something × dt+ something × dN

Then take expectations:

E[d(xm)] = dE[xm] = E[f1(x, t)]dt+E[g2(x, t)]dE[N ].
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Calculus for Poisson Processes

So, given

dx = f(x, t)dt+
∑

i

gi(x, t)dNi

what are the statistical properties of the solutions?

In other words, what are E[x](t), higher moments, &c?

The basic principle: first use calculus to get

d(xm) = something × dt+ something × dN

Then take expectations:

E[d(xm)] = dE[xm] = E[f1(x, t)]dt+E[g2(x, t)]dE[N ].

Using E[Nλ](t) = λt, we get

dE[xm](t) = E[f1(x, t) + λg2(x, t)]dt
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Calculus for Poisson Processes

So, given

dx = f(x, t)dt+
∑

i

gi(x, t)dNi

what are the statistical properties of the solutions?

In other words, what are E[x](t), higher moments, &c?

The basic principle: first use calculus to get

d(xm) = something × dt+ something × dN

Then take expectations:

E[d(xm)] = dE[xm] = E[f1(x, t)]dt+E[g2(x, t)]dE[N ].

Using E[Nλ](t) = λt, we get

dE[xm](t) = E[f1(x, t) + λg2(x, t)]dt

But this is a regular ODE!!
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Calculus for Poisson Processes

In fact, if φ : Rn → R is any (nice) function, then φ(x) is itself a
poisson process; same method gives us satistical info about
φ(x).
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Calculus for Poisson Processes

In fact, if φ : Rn → R is any (nice) function, then φ(x) is itself a
poisson process; same method gives us satistical info about
φ(x). But what process is φ(x), in terms of dt and dNs?



Poisson Processes

● The Tao of ODEs

● The Tao of Stochastic

Processes
● The Basic Object: Poisson

Counter
● The Poisson Counter

● The Poisson Counter

● Statistics of the Poisson

Counter
● Statistics of the Poisson

Counter
● Statistics of the Poisson

Counter
● Another representation

● Poisson Processes

● Calculus for Poisson

Processes
● Calculus for Poisson

Processes
● Calculus for Poisson

Processes
● Using Ito Calculus

● FSCTJPs

● Poisson Counters and

FSCTJPs
● A PDE for the Distribution

● A PDE for the Distribution

● A PDE for the Distribution

● Where to go from here?

Wiener Processes and

Brownian Motions

- p. 14/50

Calculus for Poisson Processes

In fact, if φ : Rn → R is any (nice) function, then φ(x) is itself a
poisson process; same method gives us satistical info about
φ(x). But what process is φ(x), in terms of dt and dNs? What
is d(x2)?
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Calculus for Poisson Processes

In fact, if φ : Rn → R is any (nice) function, then φ(x) is itself a
poisson process; same method gives us satistical info about
φ(x). But what process is φ(x), in terms of dt and dNs? What
is d(x2)?

Regular calculus would tell us that

d(x2) = 2xdx.
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Calculus for Poisson Processes

In fact, if φ : Rn → R is any (nice) function, then φ(x) is itself a
poisson process; same method gives us satistical info about
φ(x). But what process is φ(x), in terms of dt and dNs? What
is d(x2)?

Regular calculus would tell us that

d(x2) = 2xdx.

That is wrong here!!
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Calculus for Poisson Processes

In fact, if φ : Rn → R is any (nice) function, then φ(x) is itself a
poisson process; same method gives us satistical info about
φ(x). But what process is φ(x), in terms of dt and dNs? What
is d(x2)?

Regular calculus would tell us that

d(x2) = 2xdx.

That is wrong here!! The standard Leibniz rule and Chain rule
an FTC NO LONGER WORK. Newtonian calculus is not
accurate for statistical properties.
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Calculus for Poisson Processes

In fact, if φ : Rn → R is any (nice) function, then φ(x) is itself a
poisson process; same method gives us satistical info about
φ(x). But what process is φ(x), in terms of dt and dNs? What
is d(x2)?

Regular calculus would tell us that

d(x2) = 2xdx.

That is wrong here!! The standard Leibniz rule and Chain rule
an FTC NO LONGER WORK. Newtonian calculus is not
accurate for statistical properties. Similarly, one CANNOT
rearrange:

dx = xdt+ xdN to get
dx

x
= dt+ dN.
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Calculus for Poisson Processes

In fact, if φ : Rn → R is any (nice) function, then φ(x) is itself a
poisson process; same method gives us satistical info about
φ(x). But what process is φ(x), in terms of dt and dNs? What
is d(x2)?

Regular calculus would tell us that

d(x2) = 2xdx.

That is wrong here!! The standard Leibniz rule and Chain rule
an FTC NO LONGER WORK. Newtonian calculus is not
accurate for statistical properties. Similarly, one CANNOT
rearrange:

dx = xdt+ xdN to get
dx

x
= dt+ dN.

DO NOT FAIL TO UNDERSTAND THESE POINTS!!
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Calculus for Poisson Processes

However, it’s (almost) trivial to see what the answer is.
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Calculus for Poisson Processes

However, it’s (almost) trivial to see what the answer is.

Recall, a trajectory x(t) is a solution if:
■ When Nλ is constant on [a, b], x satisfies dx = f(x, t)dt

■ When Nλ jumps at t1, x satisfies:

lim
t→t+

1

x(t) = g

(

lim
t→t−

1

x(t), t1

)

+ lim
t→t−

1

x(t)

in a neighborhood of t1
■ x is continuous from the left.
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Calculus for Poisson Processes

However, it’s (almost) trivial to see what the answer is.

On an interval where Ni doesn’t change, standard calculus
tells us:

dφ =

〈

dφ

dx
, f(x)

〉

dt.
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Calculus for Poisson Processes

However, it’s (almost) trivial to see what the answer is.

On an interval where Ni doesn’t change, standard calculus
tells us:

dφ =

〈

dφ

dx
, f(x)

〉

dt.

If Ni does change at t, then we have to add the discrete quantity:

φ(x+ gi(x)) − φ(x).
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Calculus for Poisson Processes

However, it’s (almost) trivial to see what the answer is.

On an interval where Ni doesn’t change, standard calculus
tells us:

dφ =

〈

dφ

dx
, f(x)

〉

dt.

If Ni does change at t, then we have to add the discrete quantity:

φ(x+ gi(x)) − φ(x).

Hence, just from the definition of “solution":

dφ(x, t) =

〈

dφ

dx
, f(x)

〉

dt+
n
∑

i=1

[φ(x+ gi(x)) − φ(x)]dNi.



Poisson Processes

● The Tao of ODEs

● The Tao of Stochastic

Processes
● The Basic Object: Poisson

Counter
● The Poisson Counter

● The Poisson Counter

● Statistics of the Poisson

Counter
● Statistics of the Poisson

Counter
● Statistics of the Poisson

Counter
● Another representation

● Poisson Processes

● Calculus for Poisson

Processes
● Calculus for Poisson

Processes
● Calculus for Poisson

Processes
● Using Ito Calculus

● FSCTJPs

● Poisson Counters and

FSCTJPs
● A PDE for the Distribution

● A PDE for the Distribution

● A PDE for the Distribution

● Where to go from here?

Wiener Processes and

Brownian Motions

- p. 15/50

Calculus for Poisson Processes

However, it’s (almost) trivial to see what the answer is.

On an interval where Ni doesn’t change, standard calculus
tells us:

dφ =

〈

dφ

dx
, f(x)

〉

dt.

If Ni does change at t, then we have to add the discrete quantity:

φ(x+ gi(x)) − φ(x).

Hence, just from the definition of “solution":

dφ(x, t) =

〈

dφ

dx
, f(x)

〉

dt+
n
∑

i=1

[φ(x+ gi(x)) − φ(x)]dNi.

This is the “Ito Rule"; it is a combination of modified Leibniz
and Chain-rule for stochastic calculus.
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Using Ito Calculus

Example 1 Suppose

dx(t) = −kx(t)dt+ dN1(t) − dN2(t)
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Using Ito Calculus

Example 1 Suppose

dx(t) = −kx(t)dt+ dN1(t) − dN2(t)

Then



Poisson Processes

● The Tao of ODEs

● The Tao of Stochastic

Processes
● The Basic Object: Poisson

Counter
● The Poisson Counter

● The Poisson Counter

● Statistics of the Poisson

Counter
● Statistics of the Poisson

Counter
● Statistics of the Poisson

Counter
● Another representation

● Poisson Processes

● Calculus for Poisson

Processes
● Calculus for Poisson

Processes
● Calculus for Poisson

Processes
● Using Ito Calculus

● FSCTJPs

● Poisson Counters and

FSCTJPs
● A PDE for the Distribution

● A PDE for the Distribution

● A PDE for the Distribution

● Where to go from here?

Wiener Processes and

Brownian Motions

- p. 16/50

Using Ito Calculus

Example 1 Suppose

dx(t) = −kx(t)dt+ dN1(t) − dN2(t)

Then
dE[x](t) = −kE[x](t)dt+ λ1dt− λ2dt
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Using Ito Calculus

Example 1 Suppose

dx(t) = −kx(t)dt+ dN1(t) − dN2(t)

Then
dE[x](t) = −kE[x](t)dt+ λ1dt− λ2dt

So using variation of constants:
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Using Ito Calculus

Example 1 Suppose

dx(t) = −kx(t)dt+ dN1(t) − dN2(t)

Then
dE[x](t) = −kE[x](t)dt+ λ1dt− λ2dt

So using variation of constants:

E[x](t) =
E[x](0)

k
((k − λ1 + λ2)e

−kt + λ1 − λ2).
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Using Ito Calculus

Example 1 Suppose

dx(t) = −kx(t)dt+ dN1(t) − dN2(t)

Then
dE[x](t) = −kE[x](t)dt+ λ1dt− λ2dt

So using variation of constants:

E[x](t) =
E[x](0)

k
((k − λ1 + λ2)e

−kt + λ1 − λ2).

Furthermore, as for x2:
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Using Ito Calculus

Example 1 Suppose

dx(t) = −kx(t)dt+ dN1(t) − dN2(t)

Then
dE[x](t) = −kE[x](t)dt+ λ1dt− λ2dt

So using variation of constants:

E[x](t) =
E[x](0)

k
((k − λ1 + λ2)e

−kt + λ1 − λ2).

Furthermore, as for x2:

dx2 = −2kx2(t)dt+[(x(t)+1)2−x2(t)]dN1+[(x(t)−1)2−x2(t)]dN2

(4)
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Using Ito Calculus

Example 1 Suppose

dx(t) = −kx(t)dt+ dN1(t) − dN2(t)

Then
dE[x](t) = −kE[x](t)dt+ λ1dt− λ2dt

So using variation of constants:

E[x](t) =
E[x](0)

k
((k − λ1 + λ2)e

−kt + λ1 − λ2).

Furthermore, as for x2:

dx2 = −2kx2(t)dt+ [1 + 2x(t)]dN1 + [1 − 2x(t)]dN2. (4)
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Using Ito Calculus

Example 1 Suppose

dx(t) = −kx(t)dt+ dN1(t) − dN2(t)

Then
dE[x](t) = −kE[x](t)dt+ λ1dt− λ2dt

So using variation of constants:

E[x](t) =
E[x](0)

k
((k − λ1 + λ2)e

−kt + λ1 − λ2).

Furthermore, as for x2:

dx2 = −2kx2(t)dt+ [1 + 2x(t)]dN1 + [1 − 2x(t)]dN2. (4)

So



Poisson Processes

● The Tao of ODEs

● The Tao of Stochastic

Processes
● The Basic Object: Poisson

Counter
● The Poisson Counter

● The Poisson Counter

● Statistics of the Poisson

Counter
● Statistics of the Poisson

Counter
● Statistics of the Poisson

Counter
● Another representation

● Poisson Processes

● Calculus for Poisson

Processes
● Calculus for Poisson

Processes
● Calculus for Poisson

Processes
● Using Ito Calculus

● FSCTJPs

● Poisson Counters and

FSCTJPs
● A PDE for the Distribution

● A PDE for the Distribution

● A PDE for the Distribution

● Where to go from here?

Wiener Processes and

Brownian Motions

- p. 16/50

Using Ito Calculus

Example 1 Suppose

dx(t) = −kx(t)dt+ dN1(t) − dN2(t)

Then
dE[x](t) = −kE[x](t)dt+ λ1dt− λ2dt

So using variation of constants:

E[x](t) =
E[x](0)

k
((k − λ1 + λ2)e

−kt + λ1 − λ2).

Furthermore, as for x2:

dx2 = −2kx2(t)dt+ [1 + 2x(t)]dN1 + [1 − 2x(t)]dN2. (4)

So
dE[x2]

dt = −2kE[x2] + 2(λ1 − λ2)E[x](t) + λ1 + λ2
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Using Ito Calculus

Example 1 Suppose

dx(t) = −kx(t)dt+ dN1(t) − dN2(t)

Then
dE[x](t) = −kE[x](t)dt+ λ1dt− λ2dt

So using variation of constants:

E[x](t) =
E[x](0)

k
((k − λ1 + λ2)e

−kt + λ1 − λ2).

Furthermore, as for x2:

dx2 = −2kx2(t)dt+ [1 + 2x(t)]dN1 + [1 − 2x(t)]dN2. (4)

So
dE[x2]

dt = −2kE[x2] + 2(λ1 − λ2)E[x](t) + λ1 + λ2

Again, recursive calculuation of moments.
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Using Ito Calculus

Example 1 Suppose

dx(t) = −kx(t)dt+ dN1(t) − dN2(t)

Then
dE[x](t) = −kE[x](t)dt+ λ1dt− λ2dt

So using variation of constants:

E[x](t) =
E[x](0)

k
((k − λ1 + λ2)e

−kt + λ1 − λ2).

Furthermore, as for x2:

dx2 = −2kx2(t)dt+ [1 + 2x(t)]dN1 + [1 − 2x(t)]dN2. (4)

So
dE[x2]

dt = −2kE[x2] + 2(λ1 − λ2)E[x](t) + λ1 + λ2

Again, recursive calculuation of moments. (You stick in from
above and use Variation of Constants formula.)
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FSCTJPs

Suppose you’re given a finite-state transition scheme:
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FSCTJPs

Suppose you’re given a finite-state transition scheme:
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FSCTJPs

Suppose you’re given a finite-state transition scheme:
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0.4

0.6

Definition 3 A state-transition equation

Ṗ(t) = AP(t)

is called a finite-state continuous time jump process (FSCTJP), when A is a
stochastic matrix, i.e. columns sum to 0 and (off-diagonal) entries are
non-negative.
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FSCTJPs

Suppose you’re given a finite-state transition scheme:

0.5

1

2 3 4

0.1

0.9

0.3 0.7

0.4

0.6

Definition 3 A state-transition equation

Ṗ(t) = AP(t)

is called a finite-state continuous time jump process (FSCTJP), when A is a
stochastic matrix, i.e. columns sum to 0 and (off-diagonal) entries are
non-negative.

Such systems have obvious potential for being useful
representations of scientific phenonmena.
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Poisson Counters and FSCTJPs

Theorem 2 [Basis Theorem] Any FSCTJP is equivalent, in distribution, to

dx =
m
∑

i=1

fi(x)dNi

for some (nice) functions fi and poisson countersNi with rates λi > 0.
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Poisson Counters and FSCTJPs

Theorem 2 [Basis Theorem] Any FSCTJP is equivalent, in distribution, to

dx =
m
∑

i=1

fi(x)dNi

for some (nice) functions fi and poisson countersNi with rates λi > 0.

Example 2






ṗ1(t)

ṗ2(t)

ṗ3(t)






=







−3 0 8

3 −2 0

0 2 −8













p1(t)

p2(t)

p3(t)







with x(0) ∈ {3, 7, 9}.
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Poisson Counters and FSCTJPs

Theorem 2 [Basis Theorem] Any FSCTJP is equivalent, in distribution, to

dx =
m
∑

i=1

fi(x)dNi

for some (nice) functions fi and poisson countersNi with rates λi > 0.

Example 2






ṗ1(t)

ṗ2(t)

ṗ3(t)






=







−3 0 8

3 −2 0

0 2 −8













p1(t)

p2(t)

p3(t)







with x(0) ∈ {3, 7, 9}.

Then
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Poisson Counters and FSCTJPs

Theorem 2 [Basis Theorem] Any FSCTJP is equivalent, in distribution, to

dx =
m
∑

i=1

fi(x)dNi

for some (nice) functions fi and poisson countersNi with rates λi > 0.

Example 2






ṗ1(t)

ṗ2(t)

ṗ3(t)






=







−3 0 8

3 −2 0

0 2 −8













p1(t)

p2(t)

p3(t)







with x(0) ∈ {3, 7, 9}.

Then

dx =
(x− 9)(x− 7)

6
dN3+

(x− 3)(x− 9)

4
dN2+

(3 − x)(x− 7)

2
dN8



Poisson Processes

● The Tao of ODEs

● The Tao of Stochastic

Processes
● The Basic Object: Poisson

Counter
● The Poisson Counter

● The Poisson Counter

● Statistics of the Poisson

Counter
● Statistics of the Poisson

Counter
● Statistics of the Poisson

Counter
● Another representation

● Poisson Processes

● Calculus for Poisson

Processes
● Calculus for Poisson

Processes
● Calculus for Poisson

Processes
● Using Ito Calculus

● FSCTJPs

● Poisson Counters and

FSCTJPs
● A PDE for the Distribution

● A PDE for the Distribution

● A PDE for the Distribution

● Where to go from here?

Wiener Processes and

Brownian Motions

- p. 19/50

A PDE for the Distribution

Let ψ be any smooth function with ψ = 0 for large |x|. Then of
course

dψ =

〈

dφ

dx
, f(x)

〉

dt+
n
∑

i=1

[ψ(x+ gi(x)) − ψ(x)]dNi.
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A PDE for the Distribution

Let ψ be any smooth function with ψ = 0 for large |x|. Then of
course

dψ =

〈

dφ

dx
, f(x)

〉

dt+
n
∑

i=1

[ψ(x+ gi(x)) − ψ(x)]dNi.

So

d

dt
E[ψ(x)](t) = E

[〈

dφ

dx
, f(x)

〉]

+
n
∑

i=1

λiE[ψ(x+ gi(x))−ψ(x)].
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A PDE for the Distribution

Let ψ be any smooth function with ψ = 0 for large |x|. Then of
course

dψ =

〈

dφ

dx
, f(x)

〉

dt+
n
∑

i=1

[ψ(x+ gi(x)) − ψ(x)]dNi.

If ρ(x, t) exists and is smooth then:

d

dt
E[ψ(x)](t) =

∫
〈

dφ

dx
, f(x)

〉

ρ(x, t)dx+
n
∑

i=1

λi

∫

(ψ(x+gi(x))−ψ(x))ρ(
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A PDE for the Distribution

Let ψ be any smooth function with ψ = 0 for large |x|. Then of
course

dψ =

〈

dφ

dx
, f(x)

〉

dt+
n
∑

i=1

[ψ(x+ gi(x)) − ψ(x)]dNi.

If ρ(x, t) exists and is smooth then:

d

dt
E[ψ(x)](t) =

∫
〈

dφ

dx
, f(x)

〉

ρ(x, t)dx+
n
∑

i=1

λi

∫

(ψ(x+gi(x))−ψ(x))ρ(

And

E[ψ(x)](t) =

∫

ψ(x)ρ(x, t)dx

just by definition.
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A PDE for the Distribution

Let ψ be any smooth function with ψ = 0 for large |x|. Then of
course

dψ =

〈

dφ

dx
, f(x)

〉

dt+
n
∑

i=1

[ψ(x+ gi(x)) − ψ(x)]dNi.

If ρ(x, t) exists and is smooth then:

d

dt
E[ψ(x)](t) =

∫
〈

dφ

dx
, f(x)

〉

ρ(x, t)dx+
n
∑

i=1

λi

∫

(ψ(x+gi(x))−ψ(x))ρ(

Now, differentiating w.r.t t and comparing gives:

∫

ψ(x)
dρ(x, t)

dt
=

∫

[

dψ

dx
+
∑

i

λi(ψ(x+ gi(x)) − ψ(x)

]

ρ(x, t)dx
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A PDE for the Distribution

Let ψ be any smooth function with ψ = 0 for large |x|. Then of
course

dψ =

〈

dφ

dx
, f(x)

〉

dt+
n
∑

i=1

[ψ(x+ gi(x)) − ψ(x)]dNi.

If ρ(x, t) exists and is smooth then:

d

dt
E[ψ(x)](t) =

∫
〈

dφ

dx
, f(x)

〉

ρ(x, t)dx+
n
∑

i=1

λi

∫

(ψ(x+gi(x))−ψ(x))ρ(

Now, differentiating w.r.t t and comparing gives:

∫

ψ(x)
dρ(x, t)

dt
=

∫

[

dψ

dx
+
∑

i

λi(ψ(x+ gi(x)) − ψ(x)

]

ρ(x, t)dx

∫

(

−ψ(x)∂(fρ)
∂x −∑i λiψρ

)

dx+
∑

i λi

∫

ψ(x+ gi(x))ρ(t, x)dx
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A PDE for the Distribution

Let hi(x) = x+ gi(x). Assume that hi is finite-to-one. Change
variables x→ z so that dz = |det(I + dg)|dx.
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A PDE for the Distribution

Let hi(x) = x+ gi(x). Assume that hi is finite-to-one. Change
variables x→ z so that dz = |det(I + dg)|dx.
Then by the chain rule:
∫

ψ(x+ gi(x))ρ(x, t)dx =

∫

ψ(z)ρ(h−1
i (z), t)|det(I + dgi)|−1dz.
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A PDE for the Distribution

Let hi(x) = x+ gi(x). Assume that hi is finite-to-one. Change
variables x→ z so that dz = |det(I + dg)|dx.
Then by the chain rule:
∫

ψ(x+ gi(x))ρ(x, t)dx =

∫

ψ(z)ρ(h−1
i (z), t)|det(I + dgi)|−1dz.

Hence
∫

ψ(x)
∂ρ

∂t
dx =

∫

(

−ψ∂(fρ)

dx
−
∑

i

λiψρ

)

dx

+
∑

i

λi

∫

ψ(z)ρ(h−1
i (z), t)|det(I + dg)|−1dz.

(5)
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Let hi(x) = x+ gi(x). Assume that hi is finite-to-one. Change
variables x→ z so that dz = |det(I + dg)|dx.
Then by the chain rule:
∫

ψ(x+ gi(x))ρ(x, t)dx =

∫

ψ(z)ρ(h−1
i (z), t)|det(I + dgi)|−1dz.

Hence
∫

ψ(x)
∂ρ

∂t
dx =

∫

(

−ψ∂(fρ)

dx
−
∑

i

λiψρ

)

dx

+
∑

i

λi

∫

ψ(z)ρ(h−1
i (z), t)|det(I + dg)|−1dz.

(5)

This can be collected as
∫

ψ(x)[stuff] = 0.
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A PDE for the Distribution

Let hi(x) = x+ gi(x). Assume that hi is finite-to-one. Change
variables x→ z so that dz = |det(I + dg)|dx.
Then by the chain rule:
∫

ψ(x+ gi(x))ρ(x, t)dx =

∫

ψ(z)ρ(h−1
i (z), t)|det(I + dgi)|−1dz.

Hence
∫

ψ(x)
∂ρ

∂t
dx =

∫

(

−ψ∂(fρ)

dx
−
∑

i

λiψρ

)

dx

+
∑

i

λi

∫

ψ(z)ρ(h−1
i (z), t)|det(I + dg)|−1dz.

(5)

This can be collected as
∫

ψ(x)[stuff] = 0. But ψ(x) was
chosen arbitrarily!
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A PDE for the Distribution

Hence, stuff = 0.



Poisson Processes

● The Tao of ODEs

● The Tao of Stochastic

Processes
● The Basic Object: Poisson

Counter
● The Poisson Counter

● The Poisson Counter

● Statistics of the Poisson

Counter
● Statistics of the Poisson

Counter
● Statistics of the Poisson

Counter
● Another representation

● Poisson Processes

● Calculus for Poisson

Processes
● Calculus for Poisson

Processes
● Calculus for Poisson

Processes
● Using Ito Calculus

● FSCTJPs

● Poisson Counters and

FSCTJPs
● A PDE for the Distribution

● A PDE for the Distribution

● A PDE for the Distribution

● Where to go from here?

Wiener Processes and

Brownian Motions

- p. 21/50

A PDE for the Distribution

Hence, stuff = 0.

This yields

∂ρ

∂t
= − ∂

∂x
(fρ) +

∑

i

λi[ρ(h
−1
i (x), t)|det(I + dg)|−1 − ρ(x, t)].
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A PDE for the Distribution

Hence, stuff = 0.

This yields

∂ρ

∂t
= − ∂

∂x
(fρ) +

∑

i

λi[ρ(h
−1
i (x), t)|det(I + dg)|−1 − ρ(x, t)].

This is a deterministic PDE for the distribution. We’ve achieved
the Grand Principle.
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A PDE for the Distribution

Hence, stuff = 0.

This yields

∂ρ

∂t
= − ∂

∂x
(fρ) +

∑

i

λi[ρ(h
−1
i (x), t)|det(I + dg)|−1 − ρ(x, t)].

This is a deterministic PDE for the distribution. We’ve achieved
the Grand Principle.

It’s very hard to solve. But: things can be done (including solve
for steady states).
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Where to go from here?

Various things can now be done:
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Where to go from here?

Various things can now be done:

■ Construct non-constant-rate poisson counters, i.e. let
λ = λ(t). And then, generalize results.
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Where to go from here?

Various things can now be done:

■ Construct non-constant-rate poisson counters, i.e. let
λ = λ(t). And then, generalize results.

■ Construct non-deterministic-rate poisson counters, i.e. given
λ(t) by distribution. And generalize results.
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Where to go from here?

Various things can now be done:

■ Construct non-constant-rate poisson counters, i.e. let
λ = λ(t). And then, generalize results.

■ Construct non-deterministic-rate poisson counters, i.e. given
λ(t) by distribution. And generalize results.

■ Take away discretization in space, going from jump
processes to continuous processes.
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Where to go from here?

Various things can now be done:

■ Construct non-constant-rate poisson counters, i.e. let
λ = λ(t). And then, generalize results.

■ Construct non-deterministic-rate poisson counters, i.e. given
λ(t) by distribution. And generalize results.

■ Take away discretization in space, going from jump
processes to continuous processes.

The first two can be done, and are interesting, but the third is
really where it’s at.
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Wiener Processes and Brownian
Motions
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Spatial Continuization

How should we continu-ize in space, as a limit of poisson
counters?
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Spatial Continuization

How should we continu-ize in space, as a limit of poisson
counters? Take a limit in which the rate λ→ 0.
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Spatial Continuization

How should we continu-ize in space, as a limit of poisson
counters? Take a limit in which the rate λ→ 0.

Let wλ be given by dwλ = 1√
λ
(dN+

λ/2 − dN−
λ/2) where

N+
λ/2, N

−
λ/2 are independent poisson counters of rate λ/2,

wλ(0) = 0.
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Spatial Continuization

How should we continu-ize in space, as a limit of poisson
counters? Take a limit in which the rate λ→ 0.

Let wλ be given by dwλ = 1√
λ
(dN+

λ/2 − dN−
λ/2) where

N+
λ/2, N

−
λ/2 are independent poisson counters of rate λ/2,

wλ(0) = 0.

1/2

w

t

λ
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Spatial Continuization

dwλ is:
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Spatial Continuization

dwλ is:
■ Zero-mean.
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Spatial Continuization

dwλ is:
■ Zero-mean.
■ Memoryless.
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Spatial Continuization

dwλ is:
■ Zero-mean.
■ Memoryless.
■ More continuous as λ→ 0.
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Spatial Continuization

dwλ is:
■ Zero-mean.
■ Memoryless.
■ More continuous as λ→ 0.
What are its statistics?
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Spatial Continuization

dwλ is:
■ Zero-mean.
■ Memoryless.
■ More continuous as λ→ 0.
What are its statistics? Ito’s rule says:

dwm
λ =

((

wλ +
1√
λ

)m

− wm
λ

)

dN++

((

wλ − 1√
λ

)m

− wm
λ

)

dN−.
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Spatial Continuization

dwλ is:
■ Zero-mean.
■ Memoryless.
■ More continuous as λ→ 0.
What are its statistics? Ito’s rule says:

dwm
λ =

((

wλ +
1√
λ

)m

− wm
λ

)

dN++

((

wλ − 1√
λ

)m

− wm
λ

)

dN−.

Thus (using the binomial expansion)
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Spatial Continuization

dwλ is:
■ Zero-mean.
■ Memoryless.
■ More continuous as λ→ 0.
What are its statistics? Ito’s rule says:

dwm
λ =

((

wλ +
1√
λ

)m

− wm
λ

)

dN++

((

wλ − 1√
λ

)m

− wm
λ

)

dN−.

Thus (using the binomial expansion)

d

dt
E[wm

λ ] =

{

0 if m is odd
∑m/2−1

i=1
1

λi−1

(

m
2i

)

E[wm−2i
λ ] if m if even
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Spatial Continuization

dwλ is:
■ Zero-mean.
■ Memoryless.
■ More continuous as λ→ 0.
What are its statistics? Ito’s rule says:

dwm
λ =

((

wλ +
1√
λ

)m

− wm
λ

)

dN++

((

wλ − 1√
λ

)m

− wm
λ

)

dN−.

Thus (using the binomial expansion)

d

dt
E[wm

λ ] =

{

0 if m is odd
∑m/2−1

i=1
1

λi−1

(

m
2i

)

E[wm−2i
λ ] if m if even

.

Again, notice the recursive calculation of moments.
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Spatial Continuization

But now let’s consider the limit λ→ ∞. Taking the limit and
solving the recursion for m even gives
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Spatial Continuization

But now let’s consider the limit λ→ ∞. Taking the limit and
solving the recursion for m even gives

lim
λ→∞

E[wm
λ ](t) = (m− 1)(m− 3) . . . · 3( t

2
)m/2
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Spatial Continuization

But now let’s consider the limit λ→ ∞. Taking the limit and
solving the recursion for m even gives

lim
λ→∞

E[wm
λ ](t) = (m− 1)(m− 3) . . . · 3( t

2
)m/2

These are the moments of a Gaussian.
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Spatial Continuization

But now let’s consider the limit λ→ ∞. Taking the limit and
solving the recursion for m even gives

lim
λ→∞

E[wm
λ ](t) = (m− 1)(m− 3) . . . · 3( t

2
)m/2

These are the moments of a Gaussian.

Hence, we’re (roughly) justifed in making the following
definition:

Definition 4

dw = lim
λ→∞

dwλ
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Spatial Continuization

But now let’s consider the limit λ→ ∞. Taking the limit and
solving the recursion for m even gives

lim
λ→∞

E[wm
λ ](t) = (m− 1)(m− 3) . . . · 3( t

2
)m/2

These are the moments of a Gaussian.

Hence, we’re (roughly) justifed in making the following
definition:

Definition 4

dw = lim
λ→∞

dwλ

dw defines a continuous process w : R → R with Gaussian
statistics.
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Spatial Continuization

But now let’s consider the limit λ→ ∞. Taking the limit and
solving the recursion for m even gives

lim
λ→∞

E[wm
λ ](t) = (m− 1)(m− 3) . . . · 3( t

2
)m/2

These are the moments of a Gaussian.

Hence, we’re (roughly) justifed in making the following
definition:

Definition 4

dw = lim
λ→∞

dwλ

dw defines a continuous process w : R → R with Gaussian
statistics.
dw is called a Brownian motion (if the limit exists, which it does).
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Properties Of Brownian Motion

Some properties of Brownian motion are:
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Properties Of Brownian Motion

Some properties of Brownian motion are:
■ w(0) = 0.
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Properties Of Brownian Motion

Some properties of Brownian motion are:
■ w(0) = 0.
■ The statistics of r(t, τ) = w(t) − w(τ) depend only on |t− τ |
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Properties Of Brownian Motion

Some properties of Brownian motion are:
■ w(0) = 0.
■ The statistics of r(t, τ) = w(t) − w(τ) depend only on |t− τ |
■ In fact, E[r2](t) = |t− τ | (it’s again a Gaussian).
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Properties Of Brownian Motion

Some properties of Brownian motion are:
■ w(0) = 0.
■ The statistics of r(t, τ) = w(t) − w(τ) depend only on |t− τ |
■ In fact, E[r2](t) = |t− τ | (it’s again a Gaussian).
■ Two-dimensional thermodynamic motion is modeled by

[

dx

dy

]

= k

[

dw1

dw2

]

where w1, w2 are independent brownian motions.
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Properties Of Brownian Motion

Some properties of Brownian motion are:
■ w(0) = 0.
■ The statistics of r(t, τ) = w(t) − w(τ) depend only on |t− τ |
■ In fact, E[r2](t) = |t− τ | (it’s again a Gaussian).
■ Two-dimensional thermodynamic motion is modeled by

[

dx

dy

]

= k

[

dw1

dw2

]

where w1, w2 are independent brownian motions.
■ Einstein, Smoluchowski, etc, figured this out (three

dimensions), and also how to find k as a phyical constant.
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Properties Of Brownian Motion

Some properties of Brownian motion are:
■ w(0) = 0.
■ The statistics of r(t, τ) = w(t) − w(τ) depend only on |t− τ |
■ In fact, E[r2](t) = |t− τ | (it’s again a Gaussian).
■ Two-dimensional thermodynamic motion is modeled by

[

dx

dy

]

= k

[

dw1

dw2

]

where w1, w2 are independent brownian motions.
■ Einstein, Smoluchowski, etc, figured this out (three

dimensions), and also how to find k as a phyical constant.
■ dw is self-similar. That is, given a > 0, ∃ b, such that

w(at)
d
= bw(t) ∀t.

In fact b = a1/2.
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Stochastic Differential Equations

Definition 5 Let

dx = f(x)dt+
∑

i

gi(x)dwi

be interpreted using the limit procedure from above; that is, its solutions are
limits of Ito solutions to

dxλ = f(x)dt+
∑

i
gi(x)
√

λ
(dN+

λ/2 − dN−

λ/2)
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Stochastic Differential Equations

Definition 5 Let

dx = f(x)dt+
∑

i

gi(x)dwi

be interpreted using the limit procedure from above; that is, its solutions are
limits of Ito solutions to

dxλ = f(x)dt+
∑

i
gi(x)
√

λ
(dN+

λ/2 − dN−

λ/2)

Such an equation is a Stochastic Differential Equation (SDE).
Solutions are Wiener Processes.
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Stochastic Differential Equations

Definition 5 Let

dx = f(x)dt+
∑

i

gi(x)dwi

be interpreted using the limit procedure from above; that is, its solutions are
limits of Ito solutions to

dxλ = f(x)dt+
∑

i
gi(x)
√

λ
(dN+

λ/2 − dN−

λ/2)

Such an equation is a Stochastic Differential Equation (SDE).
Solutions are Wiener Processes.

Example 3 [Ornstein-Uhlenbeck Process]

dx = vdt; dv = −α(γ − v)dt+ σdw
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Stochastic Differential Equations

Definition 5 Let

dx = f(x)dt+
∑

i

gi(x)dwi

be interpreted using the limit procedure from above; that is, its solutions are
limits of Ito solutions to

dxλ = f(x)dt+
∑

i
gi(x)
√

λ
(dN+

λ/2 − dN−

λ/2)

Such an equation is a Stochastic Differential Equation (SDE).
Solutions are Wiener Processes.

Example 3 [Ornstein-Uhlenbeck Process]

dx = vdt; dv = −α(γ − v)dt+ σdw

It has a zillion applications. Finance:
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Stochastic Differential Equations

Definition 5 Let

dx = f(x)dt+
∑

i

gi(x)dwi

be interpreted using the limit procedure from above; that is, its solutions are
limits of Ito solutions to

dxλ = f(x)dt+
∑

i
gi(x)
√

λ
(dN+

λ/2 − dN−

λ/2)

Such an equation is a Stochastic Differential Equation (SDE).
Solutions are Wiener Processes.

Example 3 [Ornstein-Uhlenbeck Process]

dx = vdt; dv = −α(γ − v)dt+ σdw

It has a zillion applications. Finance:
■ v is the spot interest rate.
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Stochastic Differential Equations

Definition 5 Let

dx = f(x)dt+
∑

i

gi(x)dwi

be interpreted using the limit procedure from above; that is, its solutions are
limits of Ito solutions to

dxλ = f(x)dt+
∑

i
gi(x)
√

λ
(dN+

λ/2 − dN−

λ/2)

Such an equation is a Stochastic Differential Equation (SDE).
Solutions are Wiener Processes.

Example 3 [Ornstein-Uhlenbeck Process]

dx = vdt; dv = −α(γ − v)dt+ σdw

It has a zillion applications. Finance:
■ v is the spot interest rate.
■ γ is the long-term mean interest rate.
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Stochastic Differential Equations
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limits of Ito solutions to
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λ/2)

Such an equation is a Stochastic Differential Equation (SDE).
Solutions are Wiener Processes.

Example 3 [Ornstein-Uhlenbeck Process]

dx = vdt; dv = −α(γ − v)dt+ σdw

It has a zillion applications. Finance:
■ v is the spot interest rate.
■ γ is the long-term mean interest rate.
■ α is the “pressure to revert to the mean"



Poisson Processes

Wiener Processes and

Brownian Motions

● Spatial Continuization

● Spatial Continuization

● Spatial Continuization

● Brownian Motion

● Properties Of Brownian

Motion
● Stochastic Differential

Equations

● Ito Calculus for Wiener

Processes
● Ito Calculus for Wiener

Processes
● Ito Calculus for Wiener

Processes
● Ito Calculus for Wiener

Processes
● Calculating Moments

● The Langevin Equation

● The Langevin Equation

● Nyquist-Johnson Circuits

● Nyquist-Johnson Circuits

● Equipartition of Energy

● Equipartition of Energy

● Equipartition of Energy

● Equipartition of Energy

● Equipartition of Energy

● A Distributional PDE

● A Distributional PDE

● A Distributional PDE

● Diffusion

● Diffusion

● Exit Times

● Stratanovich Calculus
- p. 29/50

Stochastic Differential Equations

Definition 5 Let

dx = f(x)dt+
∑
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be interpreted using the limit procedure from above; that is, its solutions are
limits of Ito solutions to

dxλ = f(x)dt+
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i
gi(x)
√

λ
(dN+

λ/2 − dN−

λ/2)

Such an equation is a Stochastic Differential Equation (SDE).
Solutions are Wiener Processes.

Example 3 [Ornstein-Uhlenbeck Process]

dx = vdt; dv = −α(γ − v)dt+ σdw

It has a zillion applications. Finance:
■ v is the spot interest rate.
■ γ is the long-term mean interest rate.
■ α is the “pressure to revert to the mean"
■ σ is the financial volatility.
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Ito Calculus for Wiener Processes

Let φ be a function Rn → R, and suppose x is governed by a
Wiener process SDE as above. φ(x) is itself a Winer process,
but what is its SDE?
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Ito Calculus for Wiener Processes

Let φ be a function Rn → R, and suppose x is governed by a
Wiener process SDE as above. φ(x) is itself a Winer process,
but what is its SDE?
In other words, what is the Ito calculus for Wiener processes?
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Ito Calculus for Wiener Processes

Let φ be a function Rn → R, and suppose x is governed by a
Wiener process SDE as above. φ(x) is itself a Winer process,
but what is its SDE?
It’s easy to derive as a limiting version of Poisson version.
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Ito Calculus for Wiener Processes

Let φ be a function Rn → R, and suppose x is governed by a
Wiener process SDE as above. φ(x) is itself a Winer process,
but what is its SDE?
Let’s start by introducing the process yλ given by:

dyλ =
1

λ
(dN+

λ/2 + dN−
λ/2).
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Ito Calculus for Wiener Processes

Let φ be a function Rn → R, and suppose x is governed by a
Wiener process SDE as above. φ(x) is itself a Winer process,
but what is its SDE?
Let’s start by introducing the process yλ given by:

dyλ =
1

λ
(dN+

λ/2 + dN−
λ/2).

This is a useful process, like dwλ defined above.
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Ito Calculus for Wiener Processes

Let φ be a function Rn → R, and suppose x is governed by a
Wiener process SDE as above. φ(x) is itself a Winer process,
but what is its SDE?
Let’s start by introducing the process yλ given by:

dyλ =
1

λ
(dN+

λ/2 + dN−
λ/2).

This is a useful process, like dwλ defined above.
Using Ito calculus, one finds E[yλ](t) = t+E[yλ](0) and
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Ito Calculus for Wiener Processes

Let φ be a function Rn → R, and suppose x is governed by a
Wiener process SDE as above. φ(x) is itself a Winer process,
but what is its SDE?
Let’s start by introducing the process yλ given by:

dyλ =
1

λ
(dN+

λ/2 + dN−
λ/2).

This is a useful process, like dwλ defined above.
Using Ito calculus, one finds E[yλ](t) = t+E[yλ](0) and
E[y2

λ](t) = t2 + t/λ.
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Ito Calculus for Wiener Processes

Let φ be a function Rn → R, and suppose x is governed by a
Wiener process SDE as above. φ(x) is itself a Winer process,
but what is its SDE?
Let’s start by introducing the process yλ given by:

dyλ =
1

λ
(dN+

λ/2 + dN−
λ/2).

This is a useful process, like dwλ defined above.
Using Ito calculus, one finds E[yλ](t) = t+E[yλ](0) and
E[y2

λ](t) = t2 + t/λ. Hence
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Ito Calculus for Wiener Processes

Let φ be a function Rn → R, and suppose x is governed by a
Wiener process SDE as above. φ(x) is itself a Winer process,
but what is its SDE?
Let’s start by introducing the process yλ given by:

dyλ =
1

λ
(dN+

λ/2 + dN−
λ/2).

This is a useful process, like dwλ defined above.
Using Ito calculus, one finds E[yλ](t) = t+E[yλ](0) and
E[y2

λ](t) = t2 + t/λ. Hence

V ar[yλ](t) = E[(yλ(t) − E[yλ](t))2] = t/λ.
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Ito Calculus for Wiener Processes

Let φ be a function Rn → R, and suppose x is governed by a
Wiener process SDE as above. φ(x) is itself a Winer process,
but what is its SDE?
Let’s start by introducing the process yλ given by:

dyλ =
1

λ
(dN+

λ/2 + dN−
λ/2).

This is a useful process, like dwλ defined above.
Using Ito calculus, one finds E[yλ](t) = t+E[yλ](0) and
E[y2

λ](t) = t2 + t/λ. Hence

V ar[yλ](t) = E[(yλ(t) − E[yλ](t))2] = t/λ.

But thus:
y(t)

d
= lim

λ→∞
yλ = t,

a simple deterministic process!
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Ito Calculus for Wiener Processes

So let φ be a twice-differential function Rn → R, and suppose x
is governed by a Wiener process SDE as above.
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Ito Calculus for Wiener Processes

So let φ be a twice-differential function Rn → R, and suppose x
is governed by a Wiener process SDE as above.

Using the Ito Rule for φ on the process

dxλ = f(x)dt+
∑

i

gi(x)√
λ

(dN+
λ/2 − dN−

λ/2),

we get
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Ito Calculus for Wiener Processes

So let φ be a twice-differential function Rn → R, and suppose x
is governed by a Wiener process SDE as above.

dφ =

〈

dφ

dx
, f(x)

〉

dt+
∑

i

[

φ(x+
gi(x)√
λ

) − φ(x)

]

dN+
λ,i

+
∑

i

[

φ(x− gi(x)√
λ

) − φ(x)

]

dN−
λ,i

(6)
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Ito Calculus for Wiener Processes

So let φ be a twice-differential function Rn → R, and suppose x
is governed by a Wiener process SDE as above.

dφ =

〈

dφ

dx
, f(x)

〉

dt+
∑

i

[

φ(x+
gi(x)√
λ

) − φ(x)

]

dN+
λ,i

+
∑

i

[

φ(x− gi(x)√
λ

) − φ(x)

]

dN−
λ,i

(6)

Now, let’s expand φ in a Taylor series in x, which gives us
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Ito Calculus for Wiener Processes

So let φ be a twice-differential function Rn → R, and suppose x
is governed by a Wiener process SDE as above.

dφ =

〈

dφ

dx
, f(x)

〉

dt+
∑

i

[

φ(x+
gi(x)√
λ

) − φ(x)

]

dN+
λ,i

+
∑

i

[

φ(x− gi(x)√
λ

) − φ(x)

]

dN−
λ,i

(6)

dφ =

〈

dφ

dx
, f(x)

〉

dt+
∑

i

〈

dφ

dx
, gi(x)

〉

dN+
i − dN−

i√
λ

+
1

2

∑

i

〈

gi(x), gi(x)
∂2φ

∂x2

〉

dN+
i + dN−

i

λ
+O(λ−3/2)

(7)
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Ito Calculus for Wiener Processes

So let’s stare at:
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Ito Calculus for Wiener Processes

So let’s stare at:

dφ =

〈

dφ

dx
, f(x)

〉

dt+
∑

i

〈

dφ

dx
, gi(x)

〉

dN+
i − dN−

i√
λ

+
1

2

∑

i

〈

gi(x), gi(x)
∂2φ

∂x2

〉

dN+
i + dN−

i

λ
+O(λ−3/2)

(8)
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Ito Calculus for Wiener Processes

So let’s stare at:
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, gi(x)

〉
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dN+
i + dN−

i

λ
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So let’s stare at:
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+
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(8)

This is just

dφ =

〈

dφ

dx
, f(x)

〉

dt+
∑

i

〈

dφ
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, gi(x)

〉

dwλ

+
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〈

gi(x), gi(x)
∂2φ

∂x2
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dyλ +O(λ−3/2)

(9)

So now let’s take the limit λ→ ∞, replacing dwλ with dw, dyλ

with dt, and higher terms vanish.
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Ito Calculus for Wiener Processes

This gives us:
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Ito Calculus for Wiener Processes

This gives us:
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Ito Calculus for Wiener Processes

This gives us:

dφ =

〈

dφ

dx
, f(x)

〉

dt+
∑

i

〈

dφ
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, gi(x)

〉
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∂2φ

∂x2

〉

dt

This is the Ito rule for SDEs.
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Ito Calculus for Wiener Processes

This gives us:

dφ =

〈

dφ

dx
, f(x)

〉

dt+
∑

i

〈

dφ

dx
, gi(x)

〉

dwi+
1

2

∑

i

〈

gi(x), gi(x)
∂2φ

∂x2

〉

dt

This is the Ito rule for SDEs.

It is the centerpiece of what’s usually known as Ito calculus.
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Ito Calculus for Wiener Processes

This gives us:

dφ =

〈

dφ

dx
, f(x)

〉

dt+
∑

i

〈

dφ

dx
, gi(x)

〉

dwi+
1

2

∑

i

〈

gi(x), gi(x)
∂2φ

∂x2

〉

dt

This is the Ito rule for SDEs.

It is the centerpiece of what’s usually known as Ito calculus.

It can used to do all sorts of things, even just changing
variables.
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Ito Calculus for Wiener Processes

This gives us:

dφ =

〈

dφ

dx
, f(x)

〉

dt+
∑

i

〈

dφ

dx
, gi(x)

〉

dwi+
1

2

∑

i

〈

gi(x), gi(x)
∂2φ

∂x2

〉

dt

This is the Ito rule for SDEs.

It is the centerpiece of what’s usually known as Ito calculus.

It can used to do all sorts of things, even just changing
variables.

Now, we have to look into taking expectations.
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Ito Calculus for Wiener Processes

This gives us:

dφ =

〈

dφ

dx
, f(x)

〉

dt+
∑

i

〈

dφ

dx
, gi(x)

〉

dwi+
1

2

∑

i

〈

gi(x), gi(x)
∂2φ

∂x2

〉

dt

This is the Ito rule for SDEs.

It is the centerpiece of what’s usually known as Ito calculus.

It can used to do all sorts of things, even just changing
variables.

Now, we have to look into taking expectations.

But recall that E[dw] = 0.
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Calculating Moments

Hence
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Calculating Moments

Hence

dE[φ] = E

[〈

dφ

dx
, f(x)

〉]

dt+
1

2

∑

i

E

[〈

gi(x), gi(x)
∂2φ

∂x2

〉]

dt,

a deterministic ODE, just like before.
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Calculating Moments

Hence

dE[φ] = E

[〈

dφ

dx
, f(x)

〉]

dt+
1

2

∑

i

E

[〈

gi(x), gi(x)
∂2φ

∂x2

〉]

dt,

a deterministic ODE, just like before.

Example 4 Suppose x is given by

dx = −xdt+ xdw.

What is the second moment of this process?
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Calculating Moments

Hence

dE[φ] = E

[〈

dφ

dx
, f(x)

〉]

dt+
1

2

∑

i

E

[〈

gi(x), gi(x)
∂2φ

∂x2

〉]

dt,

a deterministic ODE, just like before.

Example 4 Suppose x is given by

dx = −xdt+ xdw.

What is the second moment of this process?

Applying the rule above, we get

dE[x2](t) = E[2x(−xdt+xdw)]dt+E[x2]dt = E[−x2dt+2x2dw] = −E[x
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Calculating Moments

Hence

dE[φ] = E

[〈

dφ

dx
, f(x)

〉]

dt+
1

2

∑

i

E

[〈

gi(x), gi(x)
∂2φ

∂x2

〉]

dt,

a deterministic ODE, just like before.

Example 4 Suppose x is given by

dx = −xdt+ xdw.

What is the second moment of this process?

Applying the rule above, we get

dE[x2](t) = E[2x(−xdt+xdw)]dt+E[x2]dt = E[−x2dt+2x2dw] = −E[x

Hence
E[x2](t) = e−tE[x2](0).
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The Langevin Equation

The Langevin equation – simplest stochastic version of
Newton’s equations:
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The Langevin Equation

The Langevin equation – simplest stochastic version of
Newton’s equations:

d~r

dt
= ~v;

d~v

dt
= −ζ~v + Cdw

where ζ is the hydrodynamic friction and C is a constant to be
determined.
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The Langevin Equation

The Langevin equation – simplest stochastic version of
Newton’s equations:

d~r

dt
= ~v;

d~v

dt
= −ζ~v + Cdw

where ζ is the hydrodynamic friction and C is a constant to be
determined. Hydrodynamics says:

ζ = 6πηa/m

where η is viscosity, a is particle radius, and m mass.
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The Langevin Equation

The Langevin equation – simplest stochastic version of
Newton’s equations:

d~r

dt
= ~v;

d~v

dt
= −ζ~v + Cdw

where ζ is the hydrodynamic friction and C is a constant to be
determined. Hydrodynamics says:

ζ = 6πηa/m

where η is viscosity, a is particle radius, and m mass.
Can use Ito’s equation to get that

E[v2](t) = v2
0e

−2ζt +
C

2ζ
(1 − e−2ζt).
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The Langevin Equation

The Langevin equation – simplest stochastic version of
Newton’s equations:

d~r

dt
= ~v;

d~v

dt
= −ζ~v + Cdw

where ζ is the hydrodynamic friction and C is a constant to be
determined. Hydrodynamics says:

ζ = 6πηa/m

where η is viscosity, a is particle radius, and m mass.
Can use Ito’s equation to get that

E[v2](t) = v2
0e

−2ζt +
C

2ζ
(1 − e−2ζt).

But stat. mech. tells us that in equilibrium

E[v2] =
3kT

m
.
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The Langevin Equation

Hence C = 6kTζ/m.
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The Langevin Equation

Hence C = 6kTζ/m.

Now, we can also use Ito rule to find V ar[r](t) – the “mean
square displacement":

E[(r(t)−E[r](t))2] =
E[v2](0)

ζ
(1−e−ζt)2+

3kT

mζ2
(2ζt−3+4e−ζt−e−2ζt)
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The Langevin Equation

Hence C = 6kTζ/m.

Now, we can also use Ito rule to find V ar[r](t) – the “mean
square displacement":

E[(r(t)−E[r](t))2] =
E[v2](0)

ζ
(1−e−ζt)2+

3kT

mζ2
(2ζt−3+4e−ζt−e−2ζt)

At equilibrium this becomes

V ar[r](t) =
6kT

mζ
t
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The Langevin Equation

Hence C = 6kTζ/m.

Now, we can also use Ito rule to find V ar[r](t) – the “mean
square displacement":

E[(r(t)−E[r](t))2] =
E[v2](0)

ζ
(1−e−ζt)2+

3kT

mζ2
(2ζt−3+4e−ζt−e−2ζt)

At equilibrium this becomes

V ar[r](t) =
6kT

mζ
t

But this is Einstein’s result:

D =
kT

mζ
=

kT

6πηa
.
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Nyquist-Johnson Circuits

Consider the resistor-inductor:

L

v

R
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Nyquist-Johnson Circuits

Consider the resistor-inductor:

L

v

R

What is the expected energy at steady state?
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Nyquist-Johnson Circuits

Consider the resistor-inductor:

L

v

R

What is the expected energy at steady state?

Well, energy in a circuit is 1
2Li

2
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Nyquist-Johnson Circuits

Consider the resistor-inductor:

L

v

R

What is the expected energy at steady state?

Well, energy in a circuit is 1
2Li

2

The Nyquist-Johnson model of current flow is

Ldi = −Ridt+
√

2kRTdw
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Nyquist-Johnson Circuits

Let’s apply the Ito rule.
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Nyquist-Johnson Circuits

Let’s apply the Ito rule.

We find
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Nyquist-Johnson Circuits

Let’s apply the Ito rule.

We find

di2(t) = −2R

L
i2dt+ 2

√
2kRT

L
idw +

2kRT

L2
dt.
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Nyquist-Johnson Circuits

Let’s apply the Ito rule.

We find

di2(t) = −2R

L
i2dt+ 2

√
2kRT

L
idw +

2kRT

L2
dt.

Hence
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Nyquist-Johnson Circuits

Let’s apply the Ito rule.

We find

di2(t) = −2R

L
i2dt+ 2

√
2kRT

L
idw +

2kRT

L2
dt.

Hence

dE[i2](t) = −2R

L
E[i2](t) +

2kRT

L2
dt
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Nyquist-Johnson Circuits

Let’s apply the Ito rule.

We find

di2(t) = −2R

L
i2dt+ 2

√
2kRT

L
idw +

2kRT

L2
dt.

Hence

dE[i2](t) = −2R

L
E[i2](t) +

2kRT

L2
dt

So at steady state

E[i2] =
kT

L
.

Thus
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Nyquist-Johnson Circuits

Let’s apply the Ito rule.

We find

di2(t) = −2R

L
i2dt+ 2

√
2kRT

L
idw +

2kRT

L2
dt.

Hence

dE[i2](t) = −2R

L
E[i2](t) +

2kRT

L2
dt

So at steady state

E[i2] =
kT

L
.

Thus

e =
1

2
LE[i2] =

kT

2
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Equipartition of Energy

Consider the system:

dx = (S −GGT )xdt+
√
εGdw

where S = −ST and

rank(G|SG| . . . |Sn−1G) = n.
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Equipartition of Energy

Consider the system:

dx = (S −GGT )xdt+
√
εGdw

where S = −ST and

rank(G|SG| . . . |Sn−1G) = n.

This is a model for a statistical system with n modes, with
thermal noise coupling into each mode.
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Equipartition of Energy

Consider the system:

dx = (S −GGT )xdt+
√
εGdw

where S = −ST and

rank(G|SG| . . . |Sn−1G) = n.

This is a model for a statistical system with n modes, with
thermal noise coupling into each mode.

The condition on rank means that each mode is correctly
couple; S being antisymmetric means the system isn’t losing
energy; and dw is standard n-dim brownian motion. ε is the
strength of the coupling.
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Equipartition of Energy
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Equipartition of Energy

The system again:

dx = (S − εGGT )xdt+
√
εGdw

where S = −ST and

rank(G|SG| . . . |Sn−1G) = n.
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Equipartition of Energy

The system again:

dx = (S − εGGT )xdt+
√
εGdw

where S = −ST and

rank(G|SG| . . . |Sn−1G) = n.

Theorem 3 [Equipartition Thm.] At thermal equilibrium, every mode
possesses the same amount of energy.
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Equipartition of Energy

The system again:

dx = (S − εGGT )xdt+
√
εGdw

where S = −ST and

rank(G|SG| . . . |Sn−1G) = n.

Theorem 3 [Equipartition Thm.] At thermal equilibrium, every mode
possesses the same amount of energy.

This is a simple result of stochastic calculus.
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Equipartition of Energy

The system again:

dx = (S − εGGT )xdt+
√
εGdw

where S = −ST and

rank(G|SG| . . . |Sn−1G) = n.

Theorem 3 [Equipartition Thm.] At thermal equilibrium, every mode
possesses the same amount of energy.

This is a simple result of stochastic calculus.

Let’s write the Ito equation for E[xxT ].
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Equipartition of Energy

For the system
dx = Axdt+Bdw
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Equipartition of Energy

For the system
dx = Axdt+Bdw

the Ito equation for φ(x) = xxT is

d(xxT ) = [AxxT + xxTAT ]dt+ stuffdw +BBTdt.
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Equipartition of Energy

For the system
dx = Axdt+Bdw

the Ito equation for φ(x) = xxT is

d(xxT ) = [AxxT + xxTAT ]dt+ stuffdw +BBTdt.

On taking expectations,

dE[xxT ] = AE[xxT ]dt+E[xxT ]ATdt+BBTdt.
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Equipartition of Energy

For the system
dx = Axdt+Bdw

the Ito equation for φ(x) = xxT is

d(xxT ) = [AxxT + xxTAT ]dt+ stuffdw +BBTdt.

On taking expectations,

dE[xxT ] = AE[xxT ]dt+E[xxT ]ATdt+BBTdt.

With A = S −GGT and B =
√
εG:

dE[Σ]

dt
= (S − εGGT )E[Σ] +E[Σ](S − εGGT )T + εGGT .
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For the system
dx = Axdt+Bdw

the Ito equation for φ(x) = xxT is

d(xxT ) = [AxxT + xxTAT ]dt+ stuffdw +BBTdt.

On taking expectations,

dE[xxT ] = AE[xxT ]dt+E[xxT ]ATdt+BBTdt.

With A = S −GGT and B =
√
εG:

dE[Σ]

dt
= (S − εGGT )E[Σ] +E[Σ](S − εGGT )T + εGGT .

At equilibrium, using S = −ST ,
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Equipartition of Energy

For the system
dx = Axdt+Bdw

the Ito equation for φ(x) = xxT is

d(xxT ) = [AxxT + xxTAT ]dt+ stuffdw +BBTdt.

On taking expectations,

dE[xxT ] = AE[xxT ]dt+E[xxT ]ATdt+BBTdt.

With A = S −GGT and B =
√
εG:

dE[Σ]

dt
= (S − εGGT )E[Σ] +E[Σ](S − εGGT )T + εGGT .

At equilibrium, using S = −ST ,

(S − εGGT )E[Σ∞] − E[Σ∞](S + εGGT ) = −εGGT
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Equipartition of Energy

Let’s stare at it:

(S − εGGT )E[Σ∞] − E[Σ∞](S + εGGT ) = −εGGT
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Equipartition of Energy

Let’s stare at it:

(S − εGGT )E[Σ∞] − E[Σ∞](S + εGGT ) = −εGGT

This is a simple linear algebraic equation!
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Equipartition of Energy

Let’s stare at it:

(S − εGGT )E[Σ∞] − E[Σ∞](S + εGGT ) = −εGGT

This is a simple linear algebraic equation!

Hm, let’s try E[Σ∞] = I/2 ...



Poisson Processes

Wiener Processes and

Brownian Motions

● Spatial Continuization

● Spatial Continuization

● Spatial Continuization

● Brownian Motion

● Properties Of Brownian

Motion
● Stochastic Differential

Equations

● Ito Calculus for Wiener

Processes
● Ito Calculus for Wiener

Processes
● Ito Calculus for Wiener

Processes
● Ito Calculus for Wiener

Processes
● Calculating Moments

● The Langevin Equation

● The Langevin Equation

● Nyquist-Johnson Circuits

● Nyquist-Johnson Circuits

● Equipartition of Energy

● Equipartition of Energy

● Equipartition of Energy

● Equipartition of Energy

● Equipartition of Energy

● A Distributional PDE

● A Distributional PDE

● A Distributional PDE

● Diffusion

● Diffusion

● Exit Times

● Stratanovich Calculus
- p. 43/50

Equipartition of Energy

Let’s stare at it:

(S − εGGT )E[Σ∞] − E[Σ∞](S + εGGT ) = −εGGT

This is a simple linear algebraic equation!

Hm, let’s try E[Σ∞] = I/2 ...

Lo and behold!
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Equipartition of Energy

Let’s stare at it:

(S − εGGT )E[Σ∞] − E[Σ∞](S + εGGT ) = −εGGT

This is a simple linear algebraic equation!

Hm, let’s try E[Σ∞] = I/2 ...

Lo and behold!

1

2
(S − εGGT ) − 1

2
(S + εGGT ) + εGGT = 0
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Equipartition of Energy

Let’s stare at it:

(S − εGGT )E[Σ∞] − E[Σ∞](S + εGGT ) = −εGGT

This is a simple linear algebraic equation!

Hm, let’s try E[Σ∞] = I/2 ...

Lo and behold!

1

2
(S − εGGT ) − 1

2
(S + εGGT ) + εGGT = 0

Aside from uniqueness, this is it!
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Equipartition of Energy

Let’s stare at it:

(S − εGGT )E[Σ∞] − E[Σ∞](S + εGGT ) = −εGGT

This is a simple linear algebraic equation!

Hm, let’s try E[Σ∞] = I/2 ...

Lo and behold!

1

2
(S − εGGT ) − 1

2
(S + εGGT ) + εGGT = 0

Aside from uniqueness, this is it!

We’ve shown that all modes get precisely I/2 fraction of total
enegy;
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Equipartition of Energy

Let’s stare at it:

(S − εGGT )E[Σ∞] − E[Σ∞](S + εGGT ) = −εGGT

This is a simple linear algebraic equation!

Hm, let’s try E[Σ∞] = I/2 ...

Lo and behold!

1

2
(S − εGGT ) − 1

2
(S + εGGT ) + εGGT = 0

Aside from uniqueness, this is it!

We’ve shown that all modes get precisely I/2 fraction of total
enegy; Of course, usually there’ s kT factor.
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A Distributional PDE

Recall the GRAND PRINCIPLE: non-deterministic trajectories
generated by statistical differential equations should be
governed by a deterministic PDE on the probability density of
states.
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A Distributional PDE

Recall the GRAND PRINCIPLE: non-deterministic trajectories
generated by statistical differential equations should be
governed by a deterministic PDE on the probability density of
states.

dx = f(x)dt+
∑

i gi(x)dwi
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A Distributional PDE

Recall the GRAND PRINCIPLE: non-deterministic trajectories
generated by statistical differential equations should be
governed by a deterministic PDE on the probability density of
states.

dx = f(x)dt+
∑

i gi(x)dwi

Now, let’s let ρ(x, t) be the PDF of x at time t.
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A Distributional PDE

Recall the GRAND PRINCIPLE: non-deterministic trajectories
generated by statistical differential equations should be
governed by a deterministic PDE on the probability density of
states.

dx = f(x)dt+
∑

i gi(x)dwi

Now, let’s let ρ(x, t) be the PDF of x at time t.

ASSUME: twice differentiable.
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A Distributional PDE

Recall the GRAND PRINCIPLE: non-deterministic trajectories
generated by statistical differential equations should be
governed by a deterministic PDE on the probability density of
states.

dx = f(x)dt+
∑

i gi(x)dwi

Now, let’s let ρ(x, t) be the PDF of x at time t.

ASSUME: twice differentiable. ERGODICITY UNDERLIES
THIS ASSUMPTION.
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A Distributional PDE

Recall the GRAND PRINCIPLE: non-deterministic trajectories
generated by statistical differential equations should be
governed by a deterministic PDE on the probability density of
states.

dx = f(x)dt+
∑

i gi(x)dwi

Now, let’s let ρ(x, t) be the PDF of x at time t.

ASSUME: twice differentiable. ERGODICITY UNDERLIES
THIS ASSUMPTION.

Do the test-function trick: φ smooth and with φ(x) = 0 for large
|x|.
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A Distributional PDE

So, if

dx = f(x)dt+
∑

i

gi(x)dwi,
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A Distributional PDE

So, if

dx = f(x)dt+
∑

i

gi(x)dwi,

then
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A Distributional PDE

So, if

dx = f(x)dt+
∑

i

gi(x)dwi,

then

dφ =

〈

dφ

dx
, f(x)dt+

∑

i

gi(x)dwi

〉

+
1

2

∑

i

〈

gi(x)
d2φ

dx2
, gi(x)

〉

dt.
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A Distributional PDE
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Integrate by parts, and use φ(x) = 0 for large |x| so that the
RHS is
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This is the so-called “Fokker-Planck" Equation.
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Diffusion

Example 5 Suppose dx = dw.
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Example 5 Suppose dx = dw.

Then
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ρ(x, t).



Poisson Processes

Wiener Processes and

Brownian Motions

● Spatial Continuization

● Spatial Continuization

● Spatial Continuization

● Brownian Motion

● Properties Of Brownian

Motion
● Stochastic Differential

Equations

● Ito Calculus for Wiener

Processes
● Ito Calculus for Wiener

Processes
● Ito Calculus for Wiener

Processes
● Ito Calculus for Wiener

Processes
● Calculating Moments

● The Langevin Equation

● The Langevin Equation

● Nyquist-Johnson Circuits

● Nyquist-Johnson Circuits

● Equipartition of Energy

● Equipartition of Energy

● Equipartition of Energy

● Equipartition of Energy

● Equipartition of Energy

● A Distributional PDE

● A Distributional PDE

● A Distributional PDE

● Diffusion

● Diffusion

● Exit Times

● Stratanovich Calculus
- p. 47/50

Diffusion

Example 5 Suppose dx = dw.

Then
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This is the diffusion equation!
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Diffusion

Example 5 Suppose dx = dw.

Then
∂ρ

∂t
=
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∂2

∂x2
ρ(x, t).

This is the diffusion equation!
It is just as we should expect, since dw is Brownian motion.
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Diffusion

Example 5 Suppose dx = dw.

Then
∂ρ

∂t
=

1

2

∂2

∂x2
ρ(x, t).

This is the diffusion equation!
It is just as we should expect, since dw is Brownian motion.
Evidently,

ρ(x, t) =
1√
2πt

∫

e−(x−z)2/2tρ(z, 0)dz

where ρ(x, 0) is the initial distribution – if it is twice
differentiable.
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Diffusion

Example 6 Suppose dx = −xdt+ dw, i.e there’s a drift term.
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Diffusion

Example 6 Suppose dx = −xdt+ dw, i.e there’s a drift term.

In this case,
∂ρ(x, t)

∂t
=
∂(xρ)

∂x
+

1

2

∂2ρ

∂x2
.
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In this case,
∂ρ(x, t)

∂t
=
∂(xρ)

∂x
+

1

2

∂2ρ

∂x2
.

This has the solution

ρ(x, t) =

∫

1
√

2πs(t)
e−(x−e−tz)2/2s(t)ρ(z, 0)dz
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Example 6 Suppose dx = −xdt+ dw, i.e there’s a drift term.

In this case,
∂ρ(x, t)

∂t
=
∂(xρ)

∂x
+

1

2

∂2ρ

∂x2
.

This has the solution

ρ(x, t) =

∫

1
√

2πs(t)
e−(x−e−tz)2/2s(t)ρ(z, 0)dz

where s(t) = 1
2 (1 − e−2t).
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Exit Times

Suppose we have the process

dx = −xdt+ dw;x(0) = 0.
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Exit Times

Suppose we have the process

dx = −xdt+ dw;x(0) = 0.

We want prob. x ∈ [−π, π] for t < 1.
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Exit Times

Suppose we have the process

dx = −xdt+ dw;x(0) = 0.

We want prob. x ∈ [−π, π] for t < 1. Modify the process dx so
that the original equation holds but has dx = 0 outside of
[−π, π].
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Exit Times

Suppose we have the process

dx = −xdt+ dw;x(0) = 0.

We want prob. x ∈ [−π, π] for t < 1. Modify the process dx so
that the original equation holds but has dx = 0 outside of
[−π, π]. FP says

∂ρ

∂t
=

∂

∂x
(xρ) +

1

2

∂2ρ

∂x2
; ρ(−π, t) = ρ(π, t) = 0.
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Exit Times

Suppose we have the process

dx = −xdt+ dw;x(0) = 0.

We want prob. x ∈ [−π, π] for t < 1. Modify the process dx so
that the original equation holds but has dx = 0 outside of
[−π, π]. FP says

∂ρ

∂t
=

∂

∂x
(xρ) +

1

2

∂2ρ

∂x2
; ρ(−π, t) = ρ(π, t) = 0.

But this is solvable (using trig fns) to get

ρ(x, t) =
∑

n

pn(t)cos(nx)

where ṗn = (1 − n2 − 1/n)pn.
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Exit Times

Suppose we have the process

dx = −xdt+ dw;x(0) = 0.

We want prob. x ∈ [−π, π] for t < 1. Modify the process dx so
that the original equation holds but has dx = 0 outside of
[−π, π]. FP says

∂ρ

∂t
=

∂

∂x
(xρ) +

1

2

∂2ρ

∂x2
; ρ(−π, t) = ρ(π, t) = 0.

But this is solvable (using trig fns) to get

ρ(x, t) =
∑

n

pn(t)cos(nx)

where ṗn = (1 − n2 − 1/n)pn. NOTICE: prob = p0(t) = e−t.
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Stratanovich Calculus

If
ðx = f(x)dt+ g(x)ðw
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If
ðx = f(x)dt+ g(x)ðw

then
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Stratanovich Calculus

If
ðx = f(x)dt+ g(x)ðw

then

ðφ =

〈

dφ

dx
, f(x)dt+ g(x)ðw

〉
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Stratanovich Calculus

If
ðx = f(x)dt+ g(x)ðw

then

ðφ =

〈

dφ

dx
, f(x)dt+ g(x)ðw

〉

.

But this means the calculus is much easier, in that Leibniz
form applies.
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Stratanovich Calculus

If
ðx = f(x)dt+ g(x)ðw

then

ðφ =

〈

dφ

dx
, f(x)dt+ g(x)ðw

〉

.

But this means the calculus is much easier, in that Leibniz
form applies. But

d

dt
E[x] = E[f(x) +

1

2

dg

dx
g(x)]

so expectations are more complicated. ðw and dw are the
same.
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