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PREFACE

Teaching stochastic processes to students whose primary interests are in applications has long
been a problem. On one hand, the subject can quickly become highly technical and if mathe-
matical concerns are allowed to dominate there may be no time available for exploring the many
interesting areas of applications. On the other hand, the treatment of stochastic calculus in a
cavalier fashion leaves the student with a feeling of great uncertainty when it comes to exploring
new material. Moreover, the problem has become more acute as the power of the differential
equation point of view has become more widely appreciated. In these notes, an attempt is made
to resolve this dilemma with the needs of those interested in building models and designing al-
gorithms for estimation and control in mind. The approach is to start with Poisson counters
and to identity the Wiener process with a certain limiting form. We do not attempt to define
the Wiener process per se. Instead, everything is done in terms of limits of jump processes.
The Poisson counter and differential equations whose right-hand sides include the differential of
Poisson counters are developed first. This leads to the construction of a sample path representa-
tions of a continuous time jump process using Poisson counters. This point of view leads to an
efficient problem solving technique and permits a unified treatment of time varying and nonlinear
problems. More importantly, it provides sound intuition for stochastic differential equations and
their uses without allowing the technicalities to dominate. In treating estimation theory, the
conditional density equation is given a central role. In addition to the standard additive white
noise observation models, a number of other models are developed as well. For example, the wide
spread interest in problems arising in speech recognition and computer vision has influenced the
choice of topics in several places.
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Chapter 1

Probability Spaces

We recall a few basic ideas from probability theory and, in the process, establish some of the
notation and language we will use.

1.1 Sets and Probability Spaces

A set consisting of a finite collection of elements is said to be finite. In this case the cardinality
of the set is the number of elements in the set. If a set is finite, or if its elements can be put into
one-to-one correspondence with the positive integers, it is said to be countable. Sets that are not
countable, such as the set of real numbers between zero and one, are said to be non-denumerably
infinite. If A and B are subsets of a set S we use A ∪ B and A ∩ B to denote the union and
intersection of A and B, respectively. We denote the empty set by φ. We use the notation {0, 1}S
to indicate the set of all subsets of S with φ and S included. This is sometimes called the power
set. It is easy to see that if S is a finite set with cardinality s then the cardinality of {0, 1}S
is 2s and hence {0, 1}S is also finite. On the other hand, if S is countably infinite then, as was
discussed by Cantor, {0, 1}S is non-denumerably infinite. This is a strong suggestion that one
must exercise care in attempting to reason about the set of all subsets of S when S is infinite.

In 1933 the mathematician A. N. Kolmogorov described a precise mathematical model for
the subject of probability. This model has come to be widely used because it is both elegant and
self contained. It is not, however, necessarily easy to relate the Kolmogorov axioms to real world
phenomena, nor are the axioms he used the only ones that deserve consideration. For example,
the use of probability amplitudes in quantum mechanics calls for a rather different set of ideas.
Although we will not give the arguments in detail, everything in these notes is consistent with
the Kolmogorov point of view. The idea behind the Kolmogorov formalism is that one associates
to the set S a collection of subsets P, called the events, such that each P ∈ P has a well defined
probability, µ(P ). Our intuitive ideas about probability are mostly based on the analysis of
simple situations for which S is a finite set and P is the set of all subsets of S. In this case we
ask that µ(S) = 1, µ(φ) = 0 and that µ be additive on disjoint sets. This amounts to asking that

µ(P1 ∪ P2) = µ(P1) + µ(P2)− µ(P1 ∩ P2)

Sometimes such µ’s are called additive set functions.

If the cardinality of S is infinite, and this is the situation that occurs most frequently is our
applications, then it is usually impossible to develop a satisfactory theory in which P is the set
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2 CHAPTER 1. PROBABILITY SPACES

of all subsets of S. The problem stems from the fact that although the set of all subsets of a
finite set is finite, the cardinality of the set of all subsets of an infinite set is not only infinite but
is essentially larger than that of the original set in the sense that the elements of S cannot be
placed in one-to-one correspondence with those of {0, 1}S . One needs to be content with a more
restricted theory. In this case one asks that µ be additive on countable disjoint unions i.e., that

µ

( ∞⋃
i=1

Pi

)
=
∞∑

i=1

µ(Pi)

if the Pi are pair-wise disjoint but makes no claim about more general unions.

Collections of subsets, finite or infinite, that are closed under finite unions and intersections
are said to form a field of sets. A collection P of subsets of a set S is said to be a σ-field if it
is closed under countably infinite unions and intersections. The natural setting for probability
theory is (S,P, µ) with P being a σ-field and µ being additive on countable disjoint unions.

The basic construct in the Kolmogorov system is a triple (S,P, µ), called a probability space.
The elements have the following properties:

1. S = set

2. P = a collection of subsets of S that includes S and the empty set and is closed under
complementation, countable unions and countable intersections.

3. µ = a map of P into [0, 1] such that if {Ai} is a disjoint collection then

µ

( ∞⋃
i=1

Ai

)
=
∞∑

i=1

µ(Ai)

In order to describe a specific probability space it is necessary to specify S,P and µ. If S is
a finite set then we can take P to be the set of all subsets of S and can specify µ by giving its
value on each element of S with the understanding that its value on arbitrary subsets is just the
sum of its values on the constituents of the subset.

Example: Let S be the set of n-tuples, S = {(a1, a2, . . . , an)}, with the ai taking on the
value zero or the value one. This set has cardinality 2n. We take P to be the set of all subsets of
S, a set with cardinality 22n

. Let α be a real number between zero and one and let the probability
of the occurrence of (a1, a2, . . . , an) be

p
(
(a1, a2, . . . , an)

)
= αΣai(1− α)n−Σai

In view of the identity 1 = (α + (1 − α))n we see that
∑n

k=0

(
n
k

)
αk(1 − α)n−k = 1. We extend

the definition of p from S to P using p(A ∪ B) = p(A) + p(B) for A ∩ B = φ. Thus p defines a
probability measure on the set of all binary n-tuples.

1.2 Probability Distributions on Vector Spaces

We often base our models of real world phenomena on variables whose measured value can be any
real number or on vectors whose components are real numbers. This works well for phenomena
described by differential equations, linear algebra, etc. It is, however, the source of some technical
problems in probability theory because of the necessity of defining a suitable collection of subsets
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of R. More specifically, one needs to define a collection that is big enough to be useful but not
so big as to cause logical difficulties. It may be of some comfort to consider the fact that the
rational numbers, like the integers, are countable and the set of n-tuples with rational entries are
countable as well.

The standard topology on R can be explained this way. We say that a subset P ⊂ R is open
if for each x0 ∈ P there exists an ε > 0 such that {x

∣∣|x − x0| < ε} ⊂ P . It is not hard to show
that finite unions and finite intersections of open sets are open. The countably infinite cases are
different. The infinite union of open sets is open, but it can happen that an infinite intersection
of open sets is closed. For example

∞⋂
n=1

{x
∣∣(−1/n ≤ x ≤ 1 + 1/n)} = [0, 1]

Thus the smallest σ-field that contains all the open intervals (a/b, c/d) with a, b, c, d being integers
(a countable family) contains all the closed intervals as well.

There is a rich collection of subsets of Rn called the Borel sets which are generated from the
open subsets of Rn by taking countable intersections and countable unions, countable intersec-
tions of countable unions, etc. The development of measure theory, which we do not undertake
here, focuses on Borel sets and, in some cases, a certain larger collection called Lebesgue mea-
surable sets. For our purposes the Borel sets are adequate. It is often useful to consider the
probability triple (S,P, µ) where S is Rn, P is the Borel sets and µ is the measure one gets by
extending the ordinary idea of length to the Borel sets.

If S = (−∞,∞) and if P is the Borel σ-field then we can specify µ by giving a nondecreasing
function φ which maps (−∞,∞) onto [0, 1] with

φ(x̂) = probabilityx ≤ x̂

In this case φ is said to be the probability distribution function. We see immediately that

µ
(
(a, b]

)
= φ(b)− φ(a)

and, using the axioms, we can extend the definition of µ to countable unions and countable
intersections. If it happens that φ is a differentiable function of x then dφ/dx is called the
probability density associated with (S,P, µ).

Example 1: One-dimensional gaussian densities. The integral I =
∫∞
−∞ e−x2

dx can be

evaluated by noticing that I2 =
∫∞
−∞

∫∞
−∞ e−(x2+y2)dxdy and then transferring to polar coordi-

nates to get I2 =
∫∞
0

∫ 2π

0
re−r2

dθdr = π. By rescaling x we see that∫ ∞
−∞

e−x2/2σdx =
√

2πσ

thus (1/
√

2πσ)e−x2/2σ is a probability density on (−∞,∞). Karl Fredrich Gauss (1777-1855),
in addition to his many other claims to fame, made an extensive study of this density and for
this reason it is usually named after him. Generalizing slightly so as to include a possible shift
of origin the gaussians take the form

ρ(x) =
1√
2πσ

e−(x−m)2/2σ

with m being the mean and σ the variance. An integration by parts is all that is required to
show that the moments of a zero mean Gaussian random variable satisfy
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Exp = (2πσ)−1/2

∫ ∞
−∞

xpe−x2/2σ = σ(p− 1)Exp−2

and so, while for p odd E(x−m)p = 0, for p even we have

E(x−m)p = σp/2(p− 1)(p− 3) · · · (3)(1)

thus
E(x−m)p = (σ/2)p/2p!/(p/2)!

The Gaussian density is the only probability density with these moments.

Example 2: n-dimensional gaussian densities. Now let x be an n-vector. Because the
integral over all space of e−x2

1/2σ1e−x2
2/2σ2 · · · e−x2

n/2σn is just the product of the integrals of the
factors we see that∫ ∞
−∞

∫ ∞
−∞
· · ·

∫ ∞
−∞

e−x2
1/2σ1e−x2

2/2σ2 · · · e−x2
n/2σndx1dx2 · · · dxn

=
√

(2π)nσ1σ2 · · ·σn

We may say, therefore, that if D is diagonal and positive definite with eigenvalues {di}, then∫ ∞
−∞

∫ ∞
−∞
· · ·

∫ ∞
−∞

e−xT (2D)−1xdx1dx2 · · · dxn =
√

(2π)nd1d2 · · · dn

Given any n by n matrix Q which is symmetric and positive definite one can find an orthogonal
matrix Θ such that ΘT QΘ is diagonal. Thus by letting z = ΘT x we see that the density

ρ(x) =
1√

(2π)n detQ
e−xT (2Q)−1x

becomes

ρ(z) =
1√

(2π)n detQ
e−zT ΘT (2Q)−1Θz

which is a nonnegative function such that∫
Rn

ρ(x)dx = 1

That is, ρ(x) is a probability density. If we make the further change of variables, w = x + m we
get the still normalized, but more general, form

ρ(w) =
1√

(2π)n det Q
e−(w−m)T (2Q)−1(w−m)

called the multidimensional Gaussian density of variance Q and mean m. That is to say, we have
the identities

m =
1√

(2π)n det Q

∫
Rn

xe−(x−m)T (2Q)−1(x−m)dx

and

Q =
1√

(2π)n detQ

∫
Rn

(x−m)(x−m)T e−(x−m)T (2Q)−1(x−m)dx
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valid for all Q = QT > 0. The latter of these equations can be verified by computing the
derivative with respect to α of√

(2π)n detαQ =
∫

Rn

e−xT (2αQ)−1x dx

and then evaluating the result at α = 1 to get

−n

2
√

(2π)n det Q
=

∫
Rn

−1
2
xT Q−1xexT (2Q)−1x dx

1.3 Independence and Conditional Probability

Given a probability space (S,P, µ) with P1 and P2 in P, Consider the difference

d(P1, P2) = µ(P1 ∩ P2)− µ(P1) · µ(P2)

In general, this need not be zero. However, if it is we will say that P1 and P2 are independent.
Assuming independence often simplifies the analysis. On the other hand, when making measure-
ments one hopes that the results of the measurements will reveal something about the state of the
system being measured, i.e., that the measurements are not independent of the other variables
present. This leads to the study of conditional probabilities. We use the notation µ(P1|P2) to
denote the probability of P1 given P2.

Because estimation theory involves estimating a random variable on the basis of observations,
we are often in the situation of computing conditional probabilities. A basic tool will be the rule
of Bayes which expresses the conditional probability of A given B in terms of the conditional
probability of B given A and the probabilities of A and B alone. This rule is

p(A|B) = p(B|A) · p(A)/p(B)

The demonstration of this fact is completely elementary being based on the fact that one of the
four possibilities, A and B, A and not B, not A and B, not A and not B, must occur. If they
occur with probabilities p1, p2, p3 and p4 respectively, then

p(A|B) =
p1

p1 + p3

and

p(B|A) · p(A)/p(B) =
p1

p1 + p2
· p1 + p2

p1 + p3

These are equal and nothing more is to be said.

If we are dealing with continuous random variables which have probability densities, then
there is an infinitesimal version of the rule in which the probability p is replaced by the density
ρ, i.e.,

ρ(a|b) = ρ(b|a) · ρ(a)/ρ(b)

To see this, let a and b be real valued random variables with a joint probability density ψ,
then the conditional probability of a given b is clearly

ρ(a|b) = ψ(a, b)/
∫ ∞
−∞

ψ(ξ, b)dξ
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A similar formula holds for ρ(b|a), the probability density of a is just

ρ̄(a) =
∫ ∞
−∞

ψ(a, ξ)dξ

Thus we have a probability density version of Bayes’ rule which is identical in form to the non-
infinitesimal version with the probabilities being replaced by probability densities.

Example 1: If we observe x + n = y and if we know that x, n and y are real valued random
variables with densities ρ1, ρ2 and ρ3, respectively, then, assuming that n and x are independent,
the probability density for x, conditioned on the fact that x + n = y, is

ρ(x|y) = ρ(y|x) · ρ1(x)
/
ρ3(y)

= ρ2(y − x) · ρ1(x)
/∫ ∞
−∞

ρ2(y − η) · ρ1(η)dη

Notice that we used a convolution formula to express the density of y = x + n in terms of the
densities of x and n

ρ3(y) =
∫ ∞
−∞

ρ2(y − η)ρ1(η)dη

Example 2: If in the previous example x and n have Gaussian distributions with means x̄
and 0, respectively, and variances σx and σn, respectively, then having observed that x + n = y
the conditional density for x changes from its a priori form

ρ1(x) =
1√

2πσx
e−(x−x̄)2/2σx

to

ρ(x|y) = c · e−(y−x)2/2σn e−(x−x̄)2/2σx

=
1√

2πσ3
e−(x−α)2/2σ3

with σ3 = σxσn/(σx + σn) and α being (σxy + σnx̄)/(σx + σn).

1.4 Statistical Measures

If x is a real valued random variable distributed with density ρ and if ψ : R → R is a map then
one can investigate the existence of

Eψ(x) =
∫ ∞
−∞

ψ(x)ρ(x)dx

Of course such integrals can fail to exist in a variety of ways. If

Ex =
∫ ∞
−∞

xρ(x)dx

exists then we say that the density ρ has finite expectation. If

Ex2 =
∫ ∞
−∞

x2ρ(x)dx

exists we will say that the density ρ has finite variance.
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1.5 Transformation of Densities

If y is a random variable that takes on values in Rn and if φ : Rn → Rm is a differentiable map,
then x = φ(y) is also a random variable. Many problems involve making computations that
characterize the way x is distributed, given the distribution of y. In the situation where y has a
smooth density and φ : R1 → R1 the matter can be dealt with rather easily. Let S ⊂ R1 denote
the set S = {x|x = φ(y) has a solution}. If x has a probability density p̃ it follows that p̃ is zero
for any x not in S. On the other hand, at a point x0 in S there is an inverse image y0 such that
x0 = φ(y0). If we linearize φ near y0 then

φ(y0 + δ) = x0 +
∂φ

∂y

∣∣∣∣
y0

δ + higher order terms

and the measure of the set of points T = {y| |y − y0| ≤ ε} is approximately p(y0) · ε. Thus the
measure of the set that T maps into is p(y0) · ε. However, the length of this interval in x-space

is the absolute value of ∂φ
∂y

∣∣∣∣
y0

ε. Thus, we see that p̃(x) = 1
|∂φ/∂y|p

(
φ−1(x)

)
. However a given x

may have several inverse images. In such cases we need to express matters as

p̃(x) =
∑

{y|φ(y)=x}

1
|∂φ/∂y|p(φ−1(x))

with the understanding that ∂φ/∂y is to be evaluated at the appropriate inverse image of x.
Suppose now that m = n > 1. If ρ1(·) and ρ(·) are the probability densities of the random
variables x and y with x and y taking on values in Rn and Rm, respectively, then the appropriate
formula involves the determinant of the Jacobian

ρ1(x) =
∑

{y|φ(y)=x}

1
|det(∂φ/∂y)|ρ(φ−1(y))

where the sum is to be taken over all inverse images of the given value of y. Of course this only
works if x = φ(y) has a finite number of solutions.

Example 1: Suppose that y has gaussian density ρ(y) = 1√
2πσ

e−y2/2σ and that r = y2. Thus
dr = 2ydy. Let ρ̃ denote the density with respect to r. Then ρ̃ is zero for negative arguments.
There are two inverse images for r > 0 and the above formula yields

ρ̃(r) =
1√
2πσ

(
1

2
√

r
e−r/2σ +

1
2
√

r
e−r/2σ

)
=

1√
2πσ

1√
r
e−r/2σ

Example 2: Let x1 and x2 be gaussian with density

ρ(x1, x2) =
1

2πσ
e−(x2

1+x2
2)/2σ

with r =
√

x2
1 + x2

2 and let θ = tan−1(x2/x1). Find the density with respect to (r, θ). In this
case r is non negative and each r > 0 has a circle of inverse images. The Jacobian of the map
from (x1, x2) to (r, θ) is given by

∂r

∂x1

∂r

∂x2
∂θ

∂x1

∂θ

∂x2

 =


x1√

x2
1 + x2

2

x2√
x2

1 + x2
2−x2

x2
1 + y2

2

x1

x2
1 + x2

2


The determinant of the Jacobian is simply r−1, and so

ρ̃(r, θ) =
r

2πσ
e−r2/2σ
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Remark: If x and y take on values in Rn and Rm, respectively, then the map (x, y) 7→ x
gives rise to the change of density formula

ρ1(x) =
∫

Rm

ρ0(x, y)dy

Example 3: Suppose that (x, y) is a gaussian random vector in R2, with zero mean and
variance

Σ =
[

a b
b a

]

Show that the probability that the product xy is positive is given by

p =
2
π

tan−1

√
a + b

a− b

We begin by observing the identity[
1√
2

1√
2

−1√
2

1√
2

] [
a b
b a

][
1√
2

−1√
2

1√
2

1√
2

]
=

[
a + b 0

0 a− b

]
This shows that the change of variables[

u
v

]
=

[
1√
a+b

0
0 1√

a−b

] [
1√
2

1√
2

−1√
2

1√
2

] [
x
y

]
results in a pair of variables that are gaussian with zero mean and unity variance. Thus, key to
the solution of the problem is determining which values of (u, v) correspond to a positive value of
xy. To this end, observe that xy changes sign if and only if either x or y changes sign. However,

√
2
√

a + bu = x + y

√
2
√

a− bv = −x + y

Thus x = 0 implies that √
2
√

a + bu =
√

2
√

a− bv

and y = 0 implies that √
2
√

a + bu = −
√

2
√

a− bv

The straight lines defined by these equations pass through the origin and define an angle

θ = tan−1

√
a + b√
a− b

Because the denisty is circularly symmetric in this coordinate system, this angle, divided by π is
the value of the integral of the density over the region where xy is positive.

Example 4: Suppose that x is a real valued random variable taking on values in the interval
[0,∞). Suppose that the probability density for x is ρ(x) = λe−λx. If y = bxc, i.e., if y is the
largest integer less than or equal to x then what is the probability density for y and what is the
expected value of yp? Direct analysis shows that the probability pn that y = n is given by

pn =
∫ n+1

n

λe−λxdx = e−λn(1− e−λ)
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To evaluate the expected value of yp we need to evaluate

Eyp =
∞∑

n=0

npe−λn(1− e−λ)

However, if we observe that this is expressible as

Eyp = (−1)p(1− e−λ)
dp

dλp

∞∑
n=0

e−λn

then, summing the geometric series, we see that

Eyp = (−1)p(1− e−λ)
dp

dλp

1
eλ − 1

and, in particular, that Ey = 1/(eλ − 1)

Example 5: Let H = HT be an n by n matrix. We denote its ijth entry by hij and of course
hij = hji. We assume that the hij are random and are distributed according to a zero mean
gaussian distributions. The hij are independent except for the requirement that hij = hji. Given
this distribution on the entries of H we want to use the change of coordinates formula to find the
distribution law for the eigenvalues. To begin with, we recall that it is possible to represent an
arbitrary symmetric matrix H as ΘT ΛΘ with Λ being diagonal and Θ being orthogonal. In this
case the diagonal entries of Λ are the eigenvalues. Given H, there is more than one orthogonal
matrix such that ΘHΘT is diagonal. However, if the eigenvalues of H are distinct then Θ is
unique to within multiplication on the left by a diagonal matrix D whose diagonal entries are
±1 and a further multiplication on the left by a permutation matrix P . Taking the derivative of
ΘT ΛΘ = H we get dΩH −HdΩ = dH with dΩ being skew symmetric. Adding in the change of
Λ we get

HdΩ− dΩH + ΘT (dΛ)Θ = dH

where dΩ is skew-symmetric and equal to dΘΘT Write adH(dΩ) = [H, dΩ]. We see that the
inverse image in H space associated with the set of eigenvalues

|λ1 − λa| ≤ ε, |λ2 − λb| ≤ ε . . . , |λn − λc| ≤ ε

is just ad−1
H (dH). We can use this to show that the eigenvalues of H are distributed according

to the law
ρ(λ1, λ2, . . . , λn) = Ne−Σλ2

1
∏
i,j

(λi − λj)

where N is the normalization factor needed to make the area under the function one.

1.6 Sampling

Given a random variable x whose density is unknown one can attempt to find the density by
sampling x repeatedly and then determining ρ from various “averages” of the samples. For
example, one can form the sample mean

x̄ =
1
n

n∑
k=1

xk

and the sample variance

E(x− x̄)2 =
1
n

n∑
l=1

(
xl −

1
n

n∑
k=1

xk

)2

and show that under reasonable assumptions on the underlying distribution these sample statis-
tics will approach the true mean and variance, as k approaches infinity.
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1.7 Exercises 1

1. Consider a coin which comes up heads with probability p and tails with probability q = 1−p.
If the coin is tossed n times and the tosses are independent show that the probability that
the n tosses will yield exactly k heads is

Ck,n =
(

n

k

)
=

n!
k!(n− k)!

pk(1− p)n−k

2. Show that

lim
ε→∞

(
1− t

ε

)ε

= e−t

Give this a probabilistic interpretation, restricting ε to integer values.

3. If ln denotes the natural logarithm then

ln n! =
n∑

k=2

ln k ≈
∫ n

2

ln x dx = x ln x
∣∣n
2
−

∫ n

2

1 dx = n ln(n)− 2 ln(2)− (n− 2)

and so
n! ≈ nne−n

Refine this idea to obtain the better approximation

n! ≈ e
√

nnne−n

If you are more ambitious you can try to get the still better Stirling’s approximation

n! ≈
√

2πnnne−n

Hint: For the latter analysis you may wish to consider the gamma function

Γ(x) =
∫ ∞

0

tx−1e−tdt

which, as can be verified by repeated integration-by-parts, for positive integer values of x
satisfies Γ(x) = (x− 1)!.

4. If x1 and x2 are scalar Gaussian random variables with zero mean and variance σ and if
y1 = max{x1, x2}, and y2 = min{x1, x2}, show that the probability density for y1 is

ρ(y1) =
1√
2πσ

∫ y

−∞
e−η2/2σdy

5. Let H be an n by n symmetric matrix with real entries. Suppose that the entries are
independent and identically distributed random variables, distributed according to a gaus-
sian distribution with zero mean and variance σ. Show that the sum of the squares of the
eigenvalues of H is distributed according to the Poisson density for β = Σλ2

ρ(β) = Ne−β/nσ

6. Let ρ1 : (−∞,∞)→ [0,∞) and ρ2 : (−∞,∞)→ [0,∞) be such that∫ ∞
−∞

ρi(x)dx = 1; i = 1, 2
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Show that if ρ3 is defined by

ρ3(x) =
∫ ∞
−∞

ρ1(x− η)ρ2(η)dη

then ∫ ∞
−∞

ρ3(x)dx = 1

7. Let ρ1 and ρ2 in problem 6 be equal and suppose that∫ ∞
−∞

xρ1(x)dx = 0 ;
∫ ∞
−∞

xρ2(x)dx = 0

and ∫ ∞
−∞

x2ρ1(x)dx = a ;
∫ ∞
−∞

x2ρ2(x)dx = a

Show that ∫ ∞
−∞

x2ρ3(x)dx = 4a

8. If µ1 : P → [0, 1] and µ2 : P → [0, 1] are two different probability measures corresponding
to the same choice of S and P then we can define the distance between µ1 and µ2 as

d(µ1, µ2) = max
P∈P
|µ1(P )− µ2(P )|

If S is a finite set and P is the set of all subsets of S then show that

d(µ1, µ2) =
∑
si∈S

|µ1(si)− µ2(si)|

show that d(µ1, µ2) + d(µ2, µ3) ≥ d(µ1, µ3).

9. Let S be a finite set and let P be the set of all subsets of S. Find the probability measure
µ : P → [0, 1] that maximizes the sum

H =
∑
si∈S

µ(si) ln(µ(si))

10. If S = (−∞,∞) and P is set of all Borel subsets of (−∞,∞) find the probability density
function µ that maximizes

H =
∫ ∞
−∞

µ(x) lnµ(x) dx

subject to Ex = 0 and Ex2 = σ.

11. Suppose that a1, a2, . . . , an are independent gaussian random variables with mean 0 and
variance σ. Consider

xn(t) = a0 +
√

2
n∑

k=1

ak cos kt

(i) Show that E xn(t) = 0

(ii) Show that E x2
n(t) ≤ n

(iii) Compute the probability density for x(t)
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If we integrate this sum from t = 0 we get

yn(t) = a0t +
√

2
n∑

k=1

ak

k
sin kt

Repeat the above calculations for yn(t). What about taking the limit as n goes to infinity?

12. Let Q = QT be positive definite and let x be a vector-valued Gaussian random variable
with zero mean and variance Q Assume R = RT . Show that

EexT (2R)−1x

exists if Q−1 −R−1 is positive definite and that in this case

EexT (2R)−1x =

√
det(Q−1 −R−1)−1

√
detQ

13. If x is a random variable that takes on values in a finite set x = {x1, x2, . . . , xn} then the
possible ways to assign probabilities to this set can be identified with the set

S = {(p1, p2, . . . , pn)|pi ≥ 0; Σpi = 1}

S is a closed bounded subset of Rn called the standard simplex. (a) Show that if T is a
linear transformation of Rn into Rn then T maps the standard simplex into itself if and
only if the matrix representation of T = (tij) has nonnegative entries and

n∑
j=1

tij = 1

14. consider a random vector in R2 with a gaussian distribution having mean 0 and variance
Σ. Suppose that

Σ =
[

a b
b c

]
Show that if a = c then the probability that x1x2 is positive is

p =
1
π

tan−1 a + b

a− b

Hint: The change of variables y1 = (x1 + x2)/
√

2, y2 = (x1 − x2)/
√

2, followed by the
change of variables z1 =

√
(a + b)y1, z2 =

√
(a− b)y2 makes the equiprobable contours

circles. The positive quadrant is mapped into a cone defined by a pair of lines passing
through the origin and separated by an angle

θ = tan−1 a + b

a− b

1.8 Notes and References

The basic elements of set theory are covered in many books introducing topology, measure theory,
etc. In the last century Cantor showed that the treatment of infinite sets leads to nontrivial
problems. With the formalization of various aspects of combinatorics it is now widely appreciated
that there are decidedly nontrivial questions about finite sets as well. A standard reference is
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1. F. Hausdorff, Set Theory, Chelsea, New York, 1962. (Translation of the original German
edition)

Basic works on probability include:

1. A. N. Kolmogorov, Foundations of Probability Theory, Chelsea, New York, 1950. (Trans-
lation of the 1933 German edition)

2. W. Feller, An Introduction to Probability Theory and Its Applications, J. Wiley, New York,
1956.



14 CHAPTER 1. PROBABILITY SPACES



Chapter 2

Poisson Counters and Differential
Equations

A stochastic process is, from one point of view, just a random variable whose events are collections
of functions of one or more independent variables. We are mostly interested in the cases where
there is just one independent variable and we think of it as being time. It is not our intention to
give a precise, general definition at this point. We prefer to discuss some specific cases instead.
Indeed, we begin our discussion of a very flexible and interesting family of Markov processes
based on a simple counting model of the type which describes a great many natural phenomena.
We introduce stochastic differential equations, discuss statistical properties of their solutions,
and derive characterizations of the corresponding probability laws.

2.1 Poisson Counters

By a continuous time, countable state Markov process we understand an ensemble of sample
paths {x(·)} that are functions of time with the functions taking on values in a countable set X,
subject to the condition that probability that x(t + τ) = xi given the values of x(σ) for all σ ≤ t
is the same as the probability that x(t + τ) = xi given only x(t).

We let Z denote the integers {0,±1,±2, . . . } and let Z+ denote the positive integers {1, 2, . . . }.
Let xt be a stochastic process which takes on values in the nonnegative integers Z+ ∪ {0}, and
let it be characterized by the transition rule.

ṗn(t) = −λpn(t) + λpn−1(t) ; p0(0) = 1 ; pi(0) = 0 for i > 0

where λ is a constant called the counting rate and pi(t) is the probability that xt = i. We call
this the Poisson counter of rate λ. We can write these equations as an infinite system


ṗ0

ṗ1

ṗ2
...

 =


−λ 0 0 · · ·

λ −λ 0 · · ·
0 λ −λ · · ·
· · · · · · · · · · · ·




p0

p1

p2
...

 ; p(0) =


1
0
0
...


15
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and solve them one at a time, starting with the equation for p0. This yields

p0(t) = e−λt

p1(t) = λte−λt

p2(t) = (λ2t2/2!)e−λt

· · · = · · ·
pn(t) = (λntn/n!)e−λt

Notice that the sum p0(t)+ p1(t)+ p2(t)+ · · · is one as it should be. If x is a real valued random
variable we let Ex denote its expected value. We justify our use of the term “counting rate” with
the calculation

Ext =
∞∑

n=0

npn(t) =
∞∑

n=0

(n(λt)n/n!)e−λt

= e−λt(λteλt)
= λt

Thus the expected value of xt increases by one every 1/λ units of time. More generally, we can
use this same method of computation to evaluate Exp

t in terms of the lower order moments. That
is,

Exp
t = e−λt

∞∑
n=0

np(λt)n/n!

= e−λtλt
∞∑

n=0

(n)p(λt)n−1/(n)!

= e−λtλt
∞∑

n=0

(n)p−1(λt)n−1/(n− 1)!

= e−λtλt
∞∑

r=0

(r + 1)p−1(λt)r/(r)!

= e−λtλt

∞∑
r=0

p−1∑
k=0

(
p− 1

k

)
rk(λt)r/r!

= λt

p−1∑
r=0

(
p− 1

r

)
Exr

t

Thus, for example, Ex3
t = (λt)(Ex0

t + 2Ex1
t + Ex2

t )

x(t)

t

Figure 2.1. A sample path for a Poisson counter

We will also have occasion to use a bidirectional Poisson counter of rate λ. This is a process
can be defined as the difference between two independent poisson counters of rate λ. It takes on
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values in Z and starts at zero at t = 0. It’s probability law is defined implicitly by the family of
ordinary differential equations.

ṗi = +λpi−1 − 2λpi + λpi+1 ; i = 0,±1,±2, . . .

subject to the initial conditions p0(0) = 1 and pi(0) = 0 for i 6= 0. One sees easily that the sum
of the p’s is always one. In order to develop the properties of the bidirectional counter it is useful
to introduce the generating function

g(t, z) =
∞∑

i=−∞
zipi(t)

Because the pi are nonnegative and sum to one, this series converges uniformly for z on the unit
circle, i.e., for z = eiθ and θ real. Clearly ∂g(t, z)/∂t = λ(z − 2 + z−1)g(t, z) and so

g(t, z) = e−2λte(z+z−1)λt

In terms of z = eiθ we have
g(t, eiθ) = e(2cosθ−2)λt

Using the binomial formula to expand e(z+z−1)λt we see that g(t, z) can be expressed as

g(t, z) = e−2λt
∞∑

n=0

n∑
k=0

(
n

k

)
zn−2k(λt)n/n!

= e−2λt
∞∑

n=0

n∑
k=0

n!
(n− k)!k!

zn−2k(λt)n/n!

or

pn(t) = e−2λt
∞∑

m=0

t2m

22mm!(n + m)!

It is well known that this implies that pn can be expressed in terms of the Bessel functions of the
second kind and of integral order. (These are ordinary Bessel functions with purely imaginary
argument.) In fact

In(t) =
∞∑

m=0

t2m

22mm!(n + m)!

is the series definition of the nth Bessel function of the second kind. Thus

pn(t) = e−2λtIn(λt)

It may also be shown that

Ïn(t) +
1
t
İn(t) +

(
1 +

n2

t2

)
In(t) = 0

with I0(0) = 1, İ0(0) = −1 and In(0) = 0;n 6= 0.

0 0.5 1 1.5 2

0.2

0.4

0.6

0.8

1
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Figure 2.1. The plots of p1, p2 and p3 for the bidirectional counter.

The utility of counters is greatly extended by combining them with some ideas from differential
equations. Consider a differential equation in Rn written as

ẋ(t) = f(x(t), t)

or as

x(t) = x(0) +
∫ t

0

f(x(σ), σ) dσ

Suppose that f(·, ·) is continuous in both arguments and suppose that

||f(x, σ)− f(y, σ)|| ≤ k||x− y||

for some k and all σ, x and y. It is known that such an equation has a unique solution correspond-
ing to a given x(0). We are interested in a stochastic version of this, i.e., stochastic differential
equations. Consider

x(t) = x(0) +
∫ t

0

f
(
x(σ), σ

)
dσ +

∫ t

0

g
(
x(σ), σ

)
dNσ (2.1)

where N is a Poisson counter. How can we give meaning to such an object?

Definition: A function x(·) is a solution of (2.1) in the Itô sense if, on an interval where
N is constant, x satisfies ẋ = f(x, t) and if, N jumps at t1, x behaves in a neighborhood of t
according to the rule

lim
t→t1
t>t1

x(t) = g( lim
t→t1
t<t1

x(t), t1) + lim
t→t1
t<t1

x(t)

and x(·) is taken to be continuous from the left.

Notation: When this definition is in force it is common to rewrite equation (2.1) as

dx = f(x, t)dt + g(x, t)dN

x(t)

t

.
.

Figure 2.1. Showing a sample path of a solution.

Example: Consider

dx = xdt + xdN ; x(0) = 1
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where N is a Poisson counter of rate λ. Then x(t) will be of the form

x(t) =


et 0 ≤ t ≤ t1

2et t1 < t ≤ t2
4et t2 < t ≤ t3
· · ·

if t1, t2, . . . are the times at which the jumps of N occur.

Beware: An important part of the definition of the solution of an Itô equation is that the
equation must be solved for dx. You cannot manipulate an Itô equation with dN ’s on the right-
hand side before solving it. For example, one cannot replace the equation dx = xdt + xdN by
the equation

dx

x
= dt + dN

and then integrate as one would do in the classical situation to get

x(t) = MeN(t)+t

This is not the solution we defined above for the equation dx = xdt + xdN . DO NOT FAIL
TO GRASP THIS POINT.

How can one simulate such a differential equation on a computer? Most implementations of
the better known computer languages allow the program to call a random number generator that
returns a “random” number that is, to the accuracy of the real numbers being used, uniformly
distributed between zero and one. If ri for i = 0, 1, 2, . . . are random variables that are indepen-
dent and uniformly distributed on the interval [0,1] and if we chose a small constant h as a step
size, we can simulate a Poisson counter via a difference equation approximation corresponding
to step size h? Let

a((n + 1)h) = a(nh) + m(n) ; n = 0, 1, 2, . . .

with m(n) being one if rn is smaller than hλ and zero otherwise. This means that in h units of
time the probability of jump is hλ. A more accurate version would equate this probability to
1− e−λh; this could be achieved by equating m(n) to one if rn is smaller than 1− e−λh and zero
otherwise.

2.2 Finite-State, Continuous-Time Jump Processes

Consider a finite set X = {x1, x2, . . . , xn} and consider a stochastic process xt which takes on
values in X. Let pi(t) be the probability that xt = xi and suppose that

ṗi(t) =
n∑

j=1

aijpj(t)

The matrix

A =


a11 a12 · · · a1n

a21 a22 · · · a2n

. . . . . . . . . . . .
an1 an2 · · · ann


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is called the intensity matrix of the process. Conservation of probability, (i.e., the condition
ṗ1 + ṗ2 + · · ·+ ṗn = 0) requires that the entries in the columns of A sum to zero, i.e.,

n∑
i=1

aij = 0 ; j = 1, 2, . . . , n

Non-negativity of the pi requires that we impose the condition

aij ≥ 0 ; i 6= j

for otherwise we would get negative value for pi(t) if pj(0) = 1 and aij were negative for some
i 6= j. These two conditions and no others are required for A to be an intensity matrix. Of course
these imply aii ≤ 0. Because the columns sum to zero the set of all n by n intensity matrices is
parameterized by n(n− 1) parameters which we may take to be the (aij) for i 6= j.

Example: Consider a continuous time jump process taking on values in the set {4, 2,−5}.
Let p1 be the probability that x = 4, p2 be the probability that x = 2 and p3 be the probability
that x = −5. Let the probabilities evolve according to

d

dt

 p1

p2

p3

 =

 −1 1 0
0 −1 1
1 0 −1

 p1

p2

p3


find the steady state probability distribution. Find the steady state mean of x. Find the steady
state value of E(x − x̄)2. Make a quanitative statement about how fast p aproaches its steady
state value.

Solution: If the steady state eigenvector has components [a, b, c] then from the first compo-
nent we see a = b and from the second b = c and so the steady state is [1/3, 1/3, 1/3]. Thus
the expectation of x is 4/3+2/3-5/3=1/3. Similarly, E(x − x̄)2 = 1/3(121/9 + 25/9 + 196/9) =
402/27 = 134/9. The real parts of the two nonzero eigenvalues are −1.5 and the rate of approach
is eλt.

We can give a sample path realization of such a process in terms of Poisson counters. Suppose
we consider

dx = −2xdN ; x(0) = 1 (2.2)

then x jumps first to -1, then back to +1, etc., so we have defined a finite state process. (If
x(0) = a then x(t) takes on the values a and −a.) If we let p1 be the probability that x(t) = 1
and let p2 be the probability that x(t) = −1, then the corresponding description in terms of an
intensity matrix is expressible in terms of the rate of the counter N as[

ṗ1

ṗ2

]
=

[
−λ λ

λ −λ

] [
p1

p2

]
(2.3)

To see this notice that the probability that there will be a jump in ∆t seconds is λ∆t+ higher
order terms in ∆t. The following language will be used. We speak of (2.2) as being a sample-path
description of the process and speak of (2.3) as being a probabilistic description.

Given a probabilistic description of an arbitrary finite state continuous-time jump process we
can carry out an analogous construction to get a sample path description corresponding to it. One
way to do this goes as follows. Code the states {x1, x2, . . . , xn} of the finite-state, continuous-
time jump process as distinct real numbers, say z1, z2, . . . , zn. Let φij for i, j = 1, 2, . . . , n and
i 6= j be such that

φij(z) =
{

0 if z 6= zj

zi − zj if z = zj
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Let Nij be a Poisson counter with rate λij . Consider

dz =
n∑

i 6=j=1

φij(z)dNij ; z(0) ∈ {z1, z2, . . . , zn}

(a) If this process starts in the set {z1, z2, . . . , zn} it remains in the set {z1, z2, . . . , zn}
(b) If pi(t) is the probability that x(t) = zi, then

ṗi =
n∑

j=1

λijpj −

 n∑
j=1

λij

 pi

(Notice there is no dependence on λii because the terms cancel.) That is, if we wish to obtain a
realization of ṗ = Ap we may do so by choosing the rates λij = aij for i 6= j. This gives a sample
path description of the continuous-time jump process. In this sense we may think of Poisson
counters as having a certain “universal” property insofar as continuous time jump processes are
concerned.

Example: Find functions φ1(x), φ2(x) and φ3(x) and counting rates λ1, λ2, λ3 such that if
x(0) ∈ {3, 7, 9} then for

dx(t) = φ1

(
x(t)

)
dN1 + φ2

(
x(t)

)
dN2 + φ3

(
x(t)

)
dN3

it happens that x(t) belongs to {3,7,9} for all future time and

 ṗ1(t)
ṗ2(t)
ṗ3(t)

 =

 −3 0 8
3 −2 0
0 2 −8

 p1(t)
p2(t)
p3(t)



with p1(t) being the probability that x(t) is 3, p2(t) being the probability that x(t) = 7 and p3(t)
being the probability that x(t) is 9.

To get the appropriate φ’s we see that

φ1(x) = (x− 9)(x− 7)/6

takes on the value 4 at x = 3 and is zero if x = 7 or x = 9. Thus it can be used with a counter
of rate 3 to generate the transaction from 3 to 7. Likewise, we use

φ2(x) = (x− 3)(x− 9)/4

and
φ3(x) = −(x− 3)(x− 7)/2

taking the rates of N1, N2 and N3 to be 3,2 and 8 completes the specification.



22 CHAPTER 2. POISSON COUNTERS AND DIFFERENTIAL EQUATIONS

2.3 The Itô Rule for Jump Processes

If we have a stochastic differential equation

dx = f(x)dt +
m∑

i=1

gi(x)dNi ; x ∈ Rn

and if ψ : Rn → R is a given function, then of course ψ
(
x(t)

)
is a stochastic process and using

the given definition we see that

dψ(t, x) =
∂ψ

∂t
dt +

〈
∂ψ

∂x
, f(x)

〉
dt +

n∑
i=1

[ψ
(
t, x + gi(x)

)
− ψ(t, x)]dNi

This is the so-called Itô rule for jump processes. In writing it down we have used the fact that the
probability that two counters will jump at the same time is zero and therefore such a possibility
can be ignored. Notice that in this context the Itô rule is a completely trivial consequence of the
definition of the solution of the differential equation.

Example: Given that

dx(t) = −x(t)dt + dN1(t)− dN2(t)

where N1 and N2 are Poisson counters of rates λ1 and λ2, respectively, find an equation for x2.

Solution:

dx2(t) = −2x2(t)dt + ((x(t) + 1)2 − x2)dN1 + ((x(t)− 1)2 − x2(t))dN2

= −2x2(t)dt + (2x(t) + 1)dN1 + (1− 2x(t))dN2

2.4 Computing Expectations

If x satisfies the differential equation

dx = f(x, t)dt +
m∑

i=1

gi(x, t)dNi

how can we get an equation for the expectation of x? The key observations here are that

(a) (EN(t)− λt) = 0 (This was established in section 2.1) and

(b) the probability that N(t) will jump in the interval [t, t + ∆] is independent of the value of
x(t).

Thus

E
(
x(t + ∆)− x(t)

)
= E

∫ t+∆

t

f
(
x(σ), σ

)
dσ +

m∑
i=1

E
∫ t+∆

t

gi

(
x(σ), σ

)
dNi(σ)

Expanding in a Taylor series and taking the limit as ∆ goes to zero we get

d

dt
Ex(t) = Ef

(
x(t), t

)
+

m∑
i=1

(
Egi

(
x(t), t

))
λi
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Thus the general rule for computing expectations is to replace dNi by λidt, divide by dt and take
expectations.

Example 1: Given
dx = −x(t)dt + dN1 − dN2

the above rule implies that
d

dt
Ex = −Ex + λ1 − λ2

Using the Itô rule for x2 and the calculating the expectation we get

d

dt
Ex2 = −2Ex2 + E(2x + 1)λ1 + E(1− 2x)λ2

etc.

Example 2: Let n be a Poisson counter of rate λ and let x and z satisfy z(t) ∈ {−1, 1}

dx = −xdt + zdt

dz = −2zdN

We wish to find an equation for the variance of x. We begin by using the differentiation rule to
write

dx2 = −2x2dt + 2xzdt

d(xz) = (−xz + z2)dt− 2xzdN

Taking expectations we get
d

dt
Ex2 = −2Ex2 + 2Exz

d

dt
Exz = −(1 + 2λ)Exz + 1

These linear equations can then be solved by standard means. Notice that steady-state value is

Ex2 = 1/(1 + 2λ)

2.5 The Equation for the Density

In order to gain a more complete understanding of the class of problems introduced in 1.3 we
will develop an equation for the probability law associated with the state. In general this is
complicated because the solution of stochastic differential equations involving Poisson counters
need not visit all points in the space. However, when it does, and does so often enough, there is
a nice theory.

Let A denote the set of all subsets of Rn which are parallelpipeds; i.e., sets that are the
intersections of n slices of the form {x|ai ≤ x ≤ bi}. Given an equation

dx = f
(
x(t)

)
dt +

m∑
i=1

gi

(
x(t)

)
dNi

suppose that there exists a differentiable function ρ such that for all sets A ⊂ A

p(x(t) ∈ A) =
∫

A

ρ(t, x)dx
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In this case it is of interest to find an equation for the evolution of ρ. The device to be used here
will be used several times in these notes. First of all introduce a smooth “test function” ψ, a
map of Rn into R. Use the Itô rule to get

dψ =
∂ψ

∂x
fdt +

m∑
i=1

(
ψ

(
x + gi(x)

)
− ψ(x)

)
dNi

Next we compute the expected value of ψ using the results of section 1.4. This gives

d

dt
Eψ

(
x(t)

)
= E ∂ψ

∂x
f + E

m∑
i=1

(
ψ

(
x(t) + gi(x(t))

)
− ψ

(
x(t)

))
λi

Now notice that if ρ exists then we can also compute the expectation of ψ by integrating against
ρ. That is, Eψ =

∫
ψ(x)ρ(x)dx. Differentiating this expression with respect to time gives

∂

∂t

∫
ψ(x)ρ(t, x)dx =

∫ [
∂ψ(x)

∂x
f(x) +

∑ (
ψ

(
x + gi(x)

)
− ψ(x))λi

)]
ρ(t, x)dx

If ρ is smooth we may use integration-by-parts to get∫
ψ(x)

∂ρ(t, x)
∂t

dx =
∫
−ψ

∂

∂x
(fρ)−

∑
λiψρdx +

∑ ∫
λiψ(x + gi(x))ρ(t, x)dx

provided ψ(x) = 0 for |x| sufficiently large.

In order to go further it is necessary to make some assumptions about the function defined
by

g̃i(x) = x + gi(x)

If, for example, x takes on values in R1 and g̃ defines a map of R1 onto R1 which is one to one,
then letting

dz = |det(I +
∂gi

∂x
)| dx

allows us to change variables in the last integral in the following way.∫
ψ(x + gi(x))ρ(t, x)dx =

∫
ψ(z)ρ

(
t, g̃−1

i (z)
)∣∣∣∣ det

(
I +

∂gi

∂x

)∣∣∣∣−1

dz

In this case we can argue that because ψ is arbitrary this integral equation can be replaced by
the differential difference equation.

∂ρ(t, x)
∂t

= − ∂

∂x
[f(x)ρ(t, x)] +

m∑
i=1

λi

(
ρ
(
t, g̃−1

i (x)
)∣∣∣(det

(
I +

∂gi

∂x

))∣∣∣∣−1

x+gi(x)

− ρ(t, x)
)

This is, then, an evolution equation for the density, provided a smooth density exists. If g̃ is not
one to one but yet has a finite number of solutions for each point in the range, this argument
can be modified to yield a density equation.

Example 1: Consider the linear equation

dx = −xdt + dN1 − dN2

with N1 and N2 being standard Poisson counters of rate λ. It can be thought of as a stabilized
version of the bidirectional counter. If a smooth density exists it satisfies

∂ρ

∂t
=

∂

∂x
xρ + λρ(t, x− 1)− 2λρ(t, x) + λρ(t, x + 1)
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This is an example of a functional differential equation. Explicit solutions of this type of equation
are virtually nonexistent in spite of their simple appearance. On the other hand, qualitative
information about the solution can often be obtained. In this case there is a steady state solution
satisfying

0 =
∂

∂x
xρ + λρ(t, x− 1)− 2λρ(t, x) + λρ(t, x + 1)

It can be solved using Fourier transforms.

Example 2: Consider a model for a queueing problem in which customers arrive for service
and service is provided as long as there is a customer to be served. Assume that the arrival of
customers is modeled by a Poisson process of rate λ and that each customer requires µ amount
of time to be served. (We could also let µ be random at the expense of some extra work.) Let
fp(x) denote the function whose value is 1 if x is positive and zero if x is non positive. The
variable x in the differential equation

dx = − 1
µ

fp(x)dt + dN

then describes the total effort that the server must provide to meet the demands of those presently
in the queue, including the customer currently being served. The probability density satisfies

∂ρ(t, x)
∂t

=
∂fp(x)ρ(t, x)

µ∂x
+ λρ(t, x− 1)− λρ(t, x)

We expect that there will be a steady state condition if the arrival rate is smaller than the
service rate, i.e. if λ/µ < 1. Of course there is a nonzero probability that the queue will be
empty. Taking expectations of both sides of the sample path equation we see that in steady
state Efp(x) = λµ. Thus in steady state the probability that the queue is empty is just 1− λµ.
There is a steady state solution of the density equation having the form of a delta function plus
a density

ρss(x) = (1− λµ)δ(x) + ψ(x)

We can solve for ψ only by dividing the positive half-line in to unit length segments. In the
segment (0, 1] the ρ(x− 1) term is zero and thus we need only solve the homogenous equation

1
µ

dρ

dx
− λρ = 0

and so ρ(x) = βλµx. We observe that the drift term adds probability to the set {x|x = 0} at the
rate ρ(0+)/µ = β/µ and the counter removes probability at the rate (1 − λµ)λ. These must be
equal in equilubrium and so β = (1− λµ)λµ. On the interval (1, 2] we have

1
µ

dρ

dx
− λρ = (1− λµ)λµeλµ(x−1)

This is a linear differential equation with a confluence between the forcing term and the homo-
geneous response so the solution on (1, 2] takes the form

ρ(x) = (ax + b)eλµx

With a and b being determined by the boundry condition at x = 1 and the differential equation
itself. Continuing on, for the interval (2, 3] we have the differential equation

1
µ

dρ

dx
− λρ = (a(x− 1) + b)eλµ(x−1)

which has a double confluence and hence a solution of the form of an exponential times a cubic
polynomial, etc. It is of interest to note that while the exponential involved grows with x, the
polynomials are such that ρ decays to zero.
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Example 3. Consider the coupled equations of example 2 of the previous section. In this
case it is convenient to write the equation for the density as a pair of coupled equations. Let
ρ+(t, x) be the probability density associated with x, given that z = +1 and let ρ−(t, x) be the
probability density associated with x given that z = −1. In terms of this notation we have

∂ρ+(t, x)
∂t

=
∂

∂x
(x− 1)ρ+(t, x) + λ(ρ−(t, x)− ρ+(t, x))

∂ρ−(t, x)
∂t

=
∂

∂x
(x + 1)ρ−(t, x) + λ(ρ+(t, x)− ρ−(t, x))

2.6 The Backwards Evolution Equation

Although there are many problems in which the forward evolution of the density, as described in
the previous section, is the most natural evolution to focus on, there are other problems for which
an evolution in a negative direction is important. For example, if it is known that x(1) = x1 we
may wish to know the probability density at t = 0. More generally, given ρ(1, x) what governs
the evolution of ρ backwards in time? Because the definition of what one means by a solution of
the differential equation does not treat t and −t symmetrically, it is not to be expected that one
can get the evolution of ρ backwards in time simply by changing the sign of the right-hand side
of the equation.

To gain some intuition about this question it is useful to consider a finite state discrete-time
process whose transition probabilities are such that

p(i + 1) = Ap(i)

Given that x(1) = xk, we see that the probability vector at time 0 is determined by the kth row
of A. In fact, if the entries in the kth row of A sum to sk then

p(0) =
1
sk

Ak ; Ak = kth row of A

We can, therefore, express the backwards equation as

p(i− 1) = AT Dp(i)

with T denoting the transpose of A and D being a diagonal matrix that normalizes the columns
of AT so that the sum of their entries is one.

The corresponding equation situation in continuous time relates the forward equation ṗ = Ap
to the backwards equation

ṗ = (AT + D)p

with D being a diagonal matrix chosen so as to make the sum of the entries in a column of
AT + D equal to zero.

Example: Consider a continuous-time jump process whose probability law satisfies ṗ1

ṗ2

ṗ3

 =

 −1 1 2
1 −1 1
0 0 −3

 p1

p2

p3


Given that p1(1) = 1, p2(1) = 0, p3(1) = 0, find p(0). To get the backward propagation equation
we observe that

A =

 −1 1 2
1 −1 1
0 0 −3

 , AT =

 −1 1 0
1 −1 0
2 1 −3


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 ṗ1

ṗ2

ṗ3

 = (AT + D)p =

 −3 1 0
1 −2 0
2 1 0

 p = Bp

D =

 −2
−1

3



p(0) = eBp(1)

Example: Consider a continuous-time jump process whose probability law satisfies ṗ1

ṗ2

ṗ3

 =

 −1 1 1
1 −1 1
0 0 −2

 p1

p2

p3


Given that p1(1) = 1, p2(1) = 0, p3(1) = 0, find p(0). (You will need to solve a system of three
linear equations for a particular initial condition; the eigenvalues are 0, -1, -3.)

Solution: The relevant backwards time matrix, B = AT −D is

B =

 −2 1 0
1 −2 0
1 1 0



The eigenvalues of B are λ = 0,−1,−3. Some work shows that

eBt =

 e−2t cosh t e−2t sinh t 0
e−2t sinh t e−2t cosh t 0
1− e−t b(t) 1


The value of the probability at t = 0 is simply thie first column of this matrix evaluated at t=1.

2.7 Computing Temporal Correlations

Let xt be a finite-state, continuous-time jump process which takes on values in the set {x1, x2, . . . , xn} ⊂
R. To compute the expected value of E(xtxt+τ ) we let ψij(t, τ) denote the probability that
x(t) = xi and x(t + τ) = xj and use the formula

Extxt+τ =
∑
i,j

ψij(t, τ) xixj

Now the probability that xt = xi is just pi(t). The probability that xt+τ = xj given that xt = xi

is just the jith element of eAτ , provided τ ≥ 0. Thus we see that for τ ≥ 0.

E(xtxt+τ ) =
∑
i,j

pi(t)φji(τ)xixj
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where φij(τ) is the ijth entry in eAτ . Of course if we are given pi(0), then this is

Extxt+τ =
∑
i,j,k

φik(t)pk(0)φji(τ)xixj

If we want to write this in matrix notation, it is

Ex(t)x(t + τ) = [x1(t), x2(t), . . . , xn(t)]eAτ

 p1(t) 0 0
0 p2(t) 0

0 0
. . .




x1(t)
x2(t)

...
xn(t)


An application of the same methodology yields formulas for more complicated statistical prop-
erties such as

φ(t1, t2, · · · , tn) = Ext1xt2 . . . xtn

There is a second approach which is sometimes more convenient if we have a sample path
description. Consider

dxt = f(xt)dt +
∑

gi(xt)dNit

and

d

dt
Extxτ = Extf(xτ ) +

∑
Extgi(xτ )λi

Now suppose that f is linear and g is constant. Then

d

dt
Extxτ = Eαxtxτ + Extβiλi

and we can obtain Extxτ from Ex2
t and Ext. Again the sample path approach is very effective.

Example: Consider the stochastic process y defined by

y(t) =
{

α if x(t) = 1
β if x(t) = −1

where the transition probabilities for the x process are such that[
ṗ1

ṗ−1

]
=

[
−a b
a −b

] [
p1

p−1

]
(p1 = probability x = 1; p−1 = probability x = -1).

(a) Find conditions such that

lim
t→∞

Ey(t) = 0

(b) Find conditions such that (a) holds and

lim
t→∞

Ey(t)y(t + τ) = e−|τ |
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Begin by finding a sample-path description for y(t); i.e., by finding appropriate φij as in
section 2.2. Consider the specification

φαβ(y) =
{

0 if y 6= β
α− β if y = β

for which φαβ(y) = α − y is suitable. By the same token, we may choose φβα(y) = β − y. Now
consider the process whose sample-path description is

dy = (α− y)dNαβ + (β − y)dNβα,

with counters of rates λαβ , λβα respectively; if y = α this reduces to dy = (β − α)dNβα, so that
ṗβ = λβα and hence ṗα = −λβα. Repeating this argument assuming y = β and combining, we
get

ṗα = −λβαpα + λαβpβ

ṗβ = λβαpα − λαβpβ .

Now if we set λαβ = b and λβα = a we recover the probabilistic description given in the
problem and hence a sample- path description of y(t):

dy = (α− y)dNb + (β − y)dNa,

where the subscripts denote the counting rates.

a) Using the sample-path description we see immediately that

d

dt
Ey(t) = aβ + bα− (a + b)Ey(t),

so that limt→∞Ey(t) = aβ+bα
a+b . Thus the required condition is aβ + bα = 0.

b) To find the correlation Ey(t)y(t + τ) we first need to find Ey2(t). The Itô formula gives

dy2(t) =
((

y + (α− y)
)2 − y2

)
dNb +

((
y + (β − y)

)2 − y2
)
dNa

d
dtE [y2(t)] = b(α2 − E [y2(t)]) + a(β2 − E [y2(t)])

= aβ2 + bα2 − (a + b)E [y2(t)]

thus

E [y2(t)] = aβ2+bα2

a+b + ke−(a+b)t

To compute the correlation we rewrite the original Itô equation using τ as the independent
variable:
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dτy(τ) =
(
α− y(τ)

)
dNb(τ) +

(
β − y(τ)

)
dNa(τ)

dτy(t)y(τ) =
(
α− y(τ)

)
y(t)dNb(τ) +

(
β − y(τ)

)
y(t)dNa(τ).

Assuming τ > t we take the expectation, e.g., E [y(t)dNa(τ)] = aE [y(t)]

d
dτ E [y(t)y(τ)] = −(a + b)E [y(t)y(τ)]

or

E [y(t)y(τ)] = E [y2(t)]e−(a+b)(τ−t)

for τ ≥ t. Using symmetry arguments, changing from τ to t+τ and substituting for the variance,

E [y(t)y(t + τ)] =
aβ2 + bα2

a + b
e−(a+b)|τ | + ke−(a+b)(t+|τ |).

In the limit as t→∞ the second term vanishes; in order to have the first term be the desired
quantity we must have a + b = 1 and aβ2 + bα2 = 1. We can make this a little simpler by noting
that aβ2 + bα2 = (aβ + bα)(α + β)− (a + b)αβ = 1.

2.8 Linear Systems with Jump Process Coefficients

Recall one fact from the Lagrange interpolation. We may find a polynomial function φ : R→ R
such that φ(zi) = ai for a given set of pairs (z1, a1), (z2, a2) . . . (zn, an) (no z’s repeated) and φ
may be taken to be of degree n. In fact

φ(z) = a1
(z − z2)(z − z3) . . . (z − zn)

(z1 − z2)(z1 − z3) . . . (z1 − zn)
+ · · ·+ an

(z − z1)(z − z2) . . . (z − zn−1)
(zn − z1)(zn − z2) . . . (zn − zn−1)

Thus if we wish to find a sample path description of a finite state continuous time jump process
we may take it to be of the form

dz =
∑
i,j

φij(z)dNij

with φij being polynomials of degree n where n is the number of states.

Now consider the linear stochastic differential equation

ẋ = A(z)x + b(z)

where z is a finite state continuous time jump process. We can use the elementary device of
appending 1 to x to rewrite this as

d

dt

[
1
x

]
=

[
0 0

b(z) A(z)

] [
1
x

]
thus bringing it to a form in which there is no inhomogeneous term

d

dt
x̃ = Ã(z)x̃
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(The reason for wanting to do this will appear shortly.)

If z is a FSCT jump process, then model it as above with the φij polynomial. Then A(z) can
be expressed as

A(z) = A0 + zA1 + . . . znAn

In fact, the Lagrange formula does the job for us again

A(z) = A(z1) ·
(z − z2)(z − z3) . . . (z − zn)

(z1 − z2)(z1 − z3) . . . (z1 − zn)
+ · · ·+ A(zn)

(z − z1)(z − z2) . . . (z − zn−1)
(zn − z1)(zn − z2) . . . (zn − zn−1)

Thus we can write, dropping the ˜ over x,

dz =
∑

φij(z)dNij

ẋ = (A0 + zA1 + · · ·+ zn−1An−1)x

We now take the major step which allows us to put these into a form which permits us to
compute the statistical properties of the solutions. It goes like this. Consider, along with the
given x equation, an equation for zx, z2x, . . . , zn−1x. Since z takes on the values of z1, z2, . . . , zn

and no others, we see that

p(z) = (z − z1)(z − z2) . . . (z − zn) = 0

and thus zn can be expressed as zn = p0 + p1z + · · ·+ pn−1z
n−1 for some choice of pi. Using the

Itô rule we then obtain (with A’s above)

d


x
zx
...

zn−1x

 =

 A0 A1 · · · An−1

Ãn−1 Ã0 · · · Ãn−2

. . . · · · · · · · · ·




x
zx
...

zn−1x

 dt

+
∑ 

0 0 0
φ21

ij I φ22
ij I . . . φ2n

ij I
· · · · · · · · · · · ·

φn1
ij I φn2

ij I . . . φnn
ij I




x
zx
...

zn−1x

 dNij

where φkl
ij are such that

dzk−1 =
∑
l,j,i

zl−1φkl
ijdNij

What we have accomplished with this device is the reduction of the original problem to one of
the form (new notation)

dx = Axdt +
∑

BixdNi

The advantage of this is that we can compute statistical properties of this equation using the
calculus developed earlier.

Example: Consider the linear equation with an additive jump process term

dx = Axdt + bz dt

where

dz = −2zdN ; z(0) ∈ {−1, 1}
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This set of equations is linear as it stands.

d

[
x
z

]
=

[
A b
0 0

] [
x
z

]
dt +

[
0 0
0 −2

] [
x
z

]
dN

d

dt
E

[
x(t)
z(t)

]
=

[
A b
0 −2λ

]
E

[
x
z

]
d

dt
Ex(t) = AEx + bEz

d

dt
Ez(t) = −2λEz(t)

To compute the variance notice that x is continuous so that the Itô rule in this case simplifies to

dxxT = (AxxT + xxT AT )dt + (bxT + xbT )zdt

dzx = zdx + xdz

= (Axz + bz2)dt− 2zxdN

dz2 = 0

Solving the second of these we get (note Ez2 = 1)

d

dt
Ezx = A(Ezx) + b− 2Eλzx

so

Ezx = e(A−2λI)ta
d

dt
E(xxT ) = A(ExxT ) + (ExxT )AT + baT e(A−2λI)t

+ e(A−2λI)T tabT

2.9 Exercises 2

1. Suppose that x satisfies the linear differential equation

ẋ = Ax + bu ; x(0) = 0

with u being a finite state continuous time jump process taking on the values 1, 0, and −1
with transition probabilities

d

dt

 p+1

p0

p−1

 =

 −1 1 0
1 −2 1
0 1 −1

 p+1

p0

p−1


Find a differential equation for the expected value of xxT .

2. Consider the stochastic differential equation

dx = − 1
2x(1− x)dN1 − 1

2x(x + 1)dN2 + (x2 − 1)dN3 − (x2 − 1)dN4

Suppose that x(0) ∈ {1, 0,−1}. Suppose that the Ni are Poisson counters with

ENi = λit

If p1(t) is the probability that x(t) = 1, p2(t) is the probability that x(t) = 0 and p3(t) is
the probability that x(t) = −1, find A such that

d

dt

 p1

p2

p3

 =

 a11 a21 a31

a12 a22 a32

a13 a23 a33

 p1

p2

p3





2.9. EXERCISES 2 33

3. In a certain mixture of radioactive isotopes there are two main reactants which decay
according to the stochastic equations

dx = −100xdN1

dy = xdN1 − ydN2

where N1 and N2 are Poisson counters of rate 1. If x(0) = 10 and y(0) = 2 how long will
it be before we can assert that for all future time

Ey(t) ≤ 1

4. Consider the Itô equation
dx = adN1 − bdN2

with N1 and N2 being Poisson counting process of rate λ and µ, respectively.

(a) Compute Ex(t) in terms of a, b, λ and µ. Suppose that we chose a, b, λ and µ so that
Ex(t) ≡ 0.

(b) Under this hypothesis compute Ex2(t).
(c) Under this hypothesis and under certain further conditions it will happen that we can

let the rates λ and µ go to infinity and the amplitudes a and b go to zero and get
a limiting value for Ex2(t). What is the most general condition under which this is
true?

5. An n by n matrix A is said to be a circulant matrix if aij = bj−imodn. For example, three
by three matrices are of the circulant if they take the form

A =

 b0 b1 b2

b2 b0 b1

b1 b2 b0


(a) Show that the sum of the two circulant matrices is circulant and that the product of

two circulant matrices is circulant.
(b) If A and F are circulant show that AF = FA.
(c) Show that there exists a unitary matrix U that diagonalizes circulant matrices.
(d) If A is circulant we can associate with it a polynomial

Â(z) =
n−1∑
i=1

biz
i

which can be thought of as being a finite z-transform of A.
(e) Show that if A and F are circulant with T = AF then T̂ (z) = Â(z)F̂ (z) if we agree

to interpret eÂ(z)mod(zdim A − 1).

6. Show that there exists n by n infinitesimally stochastic matrices whose eigenvalues are
{(−1 + ei)}ni=1 where {ei}ni=1 are the nth roots of 1.

7. Consider the unidirectional Poisson counter N of rate λ. As we have seen, the expected
value of N(t) is λt and

E(N(t)− λt)2 = λt

Thus if we fix t, say t = 1 then the process (N(t)/λ− t) has a variance 1/λ and an expected
value of zero. Show that

lim
λ→∞

prob
{
N(t)/λ > 1

}
=

{ 1 t > 1
0 t < 1

This implies that we can use Poisson counters to model events that are arbitrarily close to
certain events.
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8. This is a continuation of the previous problem. Consider the function f : [0,∞] → [0, 1]
defined by

f(x) =
{

1 ; 0 ≤ x < 1
0 ; 1 ≤ x <∞

If we would like to find a state transition associated with a finite state continuous time
jump process that has this function as the distribution of its transition time we need to
find an approximation in terms of real exponentials. The function g : [0,∞)→ [0, 1] defined
by

g(x) = 1− e−x

is a candidate. Find a better approximation by making use of n by n transition matrices
of the circulant form

An =


−1 1 0 0 · · ·
0 −1 1 0 · · ·
0 0 −1 1 · · ·
. . . . . . . . . . . . . . . . . . . . .
1 0 0 0 · · ·


Hint: The eigenvalues of An are −1 + rn with rn being an nth root of unity.

9. Consider an Itô equation that evolves in the finite set S

dx = Σφi(x) dNi ; x(0) ∈ S

Suppose that ψ : S → {0, 1} and suppose that ṗ = Ap governs the probability that x(t) = xi.
Show that the probability that ψ = 1 is

∑
ι∈I pi(t) where I is the set of states that ψ maps

into 1.

10. A matrix is said to be doubly stochastic if it is stochastic and its rows sum to one.

(a) Show that every permutation matrix is doubly stochastic.

(b) Show that the set of all doubly stochastic matrices is a convex set characterized by
(n− 1)2 parameters.

(c) Show that if Θ is a real n by n orthogonal matrix then the matrix Ψ whose ijth entry
is ψij = (θij)2 is doubly stochastic. Such matrices are said to be orthostochastic.

(d) Show that not every doubly stochastic matrix is orthostochastic.

(e) Show that every permutation matrix is orthostochastic.

11. Suppose that x(t) is Markovian continuous time jump process taking values in the set
X = (x1, x2, . . . , xn). Suppose Y = {y1, y2, . . . , ym} with m < n is a second finite set and
let f : X → Y be any mapping. In this case y(t) = f

(
x(t)

)
is called a hidden Markov

model. Compute the probability distributions for the time that the y processes spends in
state j before jumping to state i. Show that it is a sum of exponentials

q(i, j, t) =
r∑

k=1

pijke−λk t

12. Let {T1, T2, . . . , Tk} be a sequence of transition times associated with a two state continuous
time jump process with intensity matrix

A =
[
−p q
p −q

]
Suppose that ε1, ε2, . . . , εk are small and sum to zero. Compute to first order in ε the
probability that the process will have transition times T̃1, T̃2, . . . , T̃n with T1 − ε ≤ T̃1 ≤
T1 + ε, T2 − ε ≤ T̃2 ≤ T2 + ε, . . . , Tk − ε ≤ T̃k ≤ Tk + ε?
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13. In the notes we have taken the counting rates to be constant. If the counting rates are
state dependent everything is more or less the same. Consider

ẋ = −x + z

dz = −2z dN

with the rate of dN being equal to |x|. Show that the Itô rule is still valid with λ’s being
state dependent and that

d

dt
E x = −E x + E |x|

Suppose that x(0) is positive with probability one. What is the probability that x stays
positive forever.

14. Let N be a Poisson Counter of rate λ. Derive the Fokker-Planck equation for

dx = −2x dt− .5xdN

Construct a set of ordinary (deterministic) differential equations (some in t and some in τ)
whose solution will determine Ex(t)x(t + τ).

15. Let N be a Poisson counter with rate λ. Compute the steady state covariance for

dx1 = −2x1dN ; x1(0) = 1
dx2 = −x2dt + x1dt ; x2(0) = 0

i.e., compute

M(τ) = lim
t→∞

E
[

x1(t)x1(t + τ) x1(t)x2(t + τ)
x2(t)x1(t + τ) x2(t)x2(t + τ)

]
16. Let N1 and N2 be Poisson counters of rate λ. For

dx = −xdt + dN1 − dN2

the probability density, if it exists, satisfies

∂ρ

∂t
(t, x) =

∂

∂x
xρ(t, x) +

(
ρ(t, x + 1) + ρ(t, x− 1)− 2ρ(t, x)

)
λ

(a) When will ρ(t, x) be continuous? (Discuss at an intuitive level.)
(b) Describe the qualitative behavior of ρ(t, x) as t becomes large - make a sketch.
(c) Back up your analysis by computing the differential equation for

Exn(t)

and using it to solve for limt→∞ Ex2(t).

17. A Markov renewal process is a generalization of the continuous time jump processes consid-
ered here. In this case one has a finite or countable state space X and the process jumps
from one state to another as in the continuous time jump process but in this case there
is a distribution q(i, j, t) which is the probability distribution for the time spent in state j
before jumping to state i. Clearly

lim
t→∞

q(i, j, t) = pij

must define a matrix with nonnegative entries whose columns sum to one. Show that if
q(i, j, t) takes the special form

q(i, j, t) = pij(1− e−λijt)

with pij constant then the Markov renewal process is a continuous time jump process.
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18. Consider a two dimensional situation in which x(t, τ) takes on the values {0,1,2, . . . } with
x(0, 0) = 0 and x being a Poisson process of rate λ in t along lines of constant τ and a
Poisson process of rate µ in τ along lines of constant t. Does it follow that

x(t, τ) = φ(t) · ψ(τ)

19. Let α, β, γ, δ be four real numbers with 0 < α < β < γ < δ. Let N be a standard Poisson
counter of rate λ. Show that the probability that N(α) = 0, N(β) = 1, N(γ) = 1, N(δ) = 2
is given by

p = λ2(β − α)(δ − γ)e−λδ

20. The discrete time markov process whose transition law is p1(k + 1)
p2(k + 1)
p3(k + 1)

 =

 0 1 0
0 0 1
1 0 0

 p1(k)
p2(k)
p3(k)


is actually deterministic in the sense that a knowledge of the state of process at any one
moment in time determines the state (not just its probability distribution) at any other
point in time. The only continuous time analog of such “non-mixing” processes is the trivial
process x(t) = constant. If p(t) is a 3-vector, and if

ṗ(t) = Ap(t)

with A being infintessimally stochastic, and if p(0) = e1, the standard basis vector, show
that

min
t>0
‖eAte1 − e2‖+ min

t>0
‖eAte1 − e3‖ ≥

√
2

where ‖p‖ =
√

p2
1 + p2

2 + p2
3. (This describes a sense in which a continuous time finite state

jump process can not be too close to a deterministic process.)

NOTES AND REFERENCES

1. Poisson Counters are discussed in most introductory books on probability. One classic is

(a) W. Feller, Probability Theory, Vol. I, John Wiley, New York, 1957 and Volume II,
1966

Because we will make heavy use of systems of ordinary (deterministic) differential equations,
the reader may want a reference. Everything we need and much more can be found in:

(a) E. A. Coddington and N. Levinson, Theory of Ordinary Differential Equations, Mc-
Graw Hill, New York, 1955

2. Continuous time jump process are discussed in many books. An introductory treatment
can be found in

(a) M. Rosenblatt, Random Processes, Oxford University Press, New York, 1968.

3. This is an almost trivial special case of the general form of Itô’s rule. The origin of the
idea is Itô’s much cited paper

(a) K. Itô, “Stochastic Integral”, Proc. Imperial Acad. Tokyo, Vol. 20, 1944, pp. 519-524.



2.9. EXERCISES 2 37

4. Computing an expectation is often the key step in getting a practical result. We have
arranged the presentation so that the reader quickly arrives at a point where some inter-
esting calculations can be done. One advantage of the differential equations approach to
stochastic process is that such computations are usually rather transparent.

5. The computation of two point statistics will play an important role in the stochastic real-
ization work to be discussed in chapter V.

6. Jump processes and linear systems are sometimes used as models for systems with failure
modes.

7. These equations are of theoretical interest but they are very seldom soluble in closed form.
In some cases the steady state value can be computed even though the time dependent
solution is not known. In the case of finite state continuous time jump process the Peron-
Frobenius theory applies and in the non finite state cases these are conditions under which
one can guarantee the existence of an invariant measure as well.
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Chapter 3

Wiener Processes and Differential
Equations

In this chapter we introduce a second basic stochastic process, the Wiener process. The Itô
calculus will be extended to include stochastic equations involving Wiener processes and the
computation of expectations, the equation for the probability law, etc. will be developed.

3.1 Gaussian Distributions

From one point of view, the special significance of the Gaussian density derives, in part, from
its role in solving a very basic differential equation variously called the diffusion equation or the
heat equation. In one dimension, this is the partial differential equation of evolutionary type

∂ρ(t, x)
∂t

=
1
2

∂2ρ(t, x)
∂x2

which governs diffusion. A short calculation shows that the function ρ(t, x) = 1√
2πt

e−x2/2t

satisfies this equation for all t > 0. In fact, the general solution of this equation for twice
differentiable initial data ρ(0, x) is, for t > 0, given by

ρ(t, x) =
∫

Rn

1√
2πt

e−(x−y)2/2tρ(0, y)dy

For this reason 1√
2πt

e−x2/2t is often called the heat kernel.

There is a simple n-dimensional generalization. If Q = QT is positive definite, and if we let
qij denote the ijth entry of Q then the partial differential equation

∂ρ(t, x)
∂t

=
1
2

n∑
i,j=1

qij
∂

∂xi

∂

∂xj
ρ(t, x)

can be thought of as an n-dimensional generalization of the one-dimensional equation given above.
It has the fundamental solution

ρ(t, x) =
1√

detQ(2πt)n
e−xT (2Qt)−1x

39
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The solution for smooth initial data ρ(0, x) is

ρ(t, x) =
∫

Rn

1√
detQ(2πt)n

e−(x−y)T (2Qt)−1(x−y)ρ(0, y)dy

The Gaussian distribution arises as a limiting form of the binominal distribution in the fol-
lowing way. Notice that

lim
n→∞

(
1− α2

n

)n

= lim
n→∞

en ln(1−α2/n)

= e−α2

3.2 Brownian Motion

Robert Brown (1773–1858) was a Scottish botanist who became interested in stochastic processes
after looking under a microscope at grains of pollen suspended in water. He published influential
papers on this subject in 1827. Norbert Wiener undertook the mathematical study of stochastic
processes in the 1920’s after important work earlier in the century by Bachelier, Einstein, Smolu-
chowski, et al. There are several ways of approaching the mathematics of this subject. We chose
one that continues from our work on jump processes.

Let y(t) be a bidirectional Poisson counter of rate λ/2 and let xλ(t) = y(t)/
√

λ. We may
realize this process as

dxλ =
1√
λ

(dN1 − dN2) ; x(0) = 0

where N1 and N2 are ordinary Poisson counters of rate λ/2. A quick calculation based on the
Itô rule of chapter 2 shows that

dxp
λ =

(
(xλ +

1√
λ

)p − xp
λ

)
dN1 +

(
(xλ −

1√
λ

)p − xp
λ

)
dN2

For reasons of symmetry, if p is an odd positive integer Exp
λ = 0. If p is an even positive integer

then the expectation rule of chapter 2 yields

d

dt
Exp

λ =
1
2
E
((

xλ +
1√
λ

)p +
(
xλ −

1√
λ

)p−2xp
λ

)

=
(

p

2

)
Ex(p−2)

λ +
1
λ

(
p

4

)
Ex(p−4)

λ + · · ·

where the terms not written involve powers of λ−1 greater than one. Because of this, for t fixed
there exists a high counting rate limit for the expected value of each moment

lim
λ→∞

Exp
λ(t) =

1
2

∫ t

0

p(p− 1) lim
λ→∞

Exp−2
λ (σ)dσ

Solving this set of equations beginning at p = 2 and continuing to larger, even values of p we see
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that the limiting values of the moments are

lim
λ→∞

Ex2
λ(t) = t

lim
λ→∞

Ex4
λ(t) = 3t2

lim
λ→∞

Ex6
λ(t) = 5 · 3 · t3

· · · = · · ·
lim

λ→∞
Exp(t) = (p− 1)(p− 3) . . . tp/2

=
p!

(p/2)!
· · ·

(
t

2

)p/2

Thus in the limit as λ goes to infinity we get the moments associated with a Gaussian density
having zero mean and variance t. Likewise, we see that for τ ≥ t we have the differential equation

d

dτ
Ex(t)x(τ) = Ex(t)

1√
λ

(dN1(τ)− dN2(τ))

= 0

and so Ex(t)x(t + τ) = Ex2(t) for τ ≥ t.

We remark that xλ(t) has three properties which are more or less obvious

1. xλ(0) = 0.

2. xλ(t) − xλ(τ) is a random variable whose distribution is dependent only on |t − τ | and if
[t, τ ]∩[s, σ] is empty, the random variables xλ(t)−xλ(τ) and xλ(s)−xλ(σ) are independent.
(Because N on the interval [s, σ] is independent of N on the interval [t, τ ])

3. The limit as λ → ∞ of E
(
xλ(t) − xλ(τ)

)2 = Ex2
λ(t) − 2Exλ(t)xλ(τ) + x2

λ(τ) exists and is
just |t− τ |.

From the results of section 2.5 we see that if there exists a probability density for xλ then it
is given by

∂ρ(t, x)
∂t

=
λ

2

(
ρ
(
t, x +

1√
λ

)
− 2ρ(t, x) + ρ

(
t, x− 1√

λ

))
Notice that in the limit as λ goes to infinity, we get (formally) the diffusion equation

∂ρ(t, x)
∂t

=
1
2

∂2ρ(t, x)
∂x2

This analysis shows that if we use the Itô rule for jump processes, then certain limits as
λ goes to infinity exist. There is, in fact, a stochastic process known as a standard Wiener
process, which has the properties we have derived for the above limiting forms and, in addition,
is continuous with probability one. Continuity is, of course, not surprising in view of the fact
that E(x(t)−x(τ))2 = |t−τ |. The analysis of limits given here does not, in and of itself, establish
the existence of a stochastic process having the limiting properties. We will not, in these notes,
prove its existence. We will, instead, appeal to limiting processes of the above type whenever
we need to explore its properties. For convenience we will refer to the limiting form as being
Brownian motion.
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3.3 Stochastic Differential Equations

This same limiting process can be applied to give meaning to a general class of equations which
we write as

dx = f(x)dt +
n∑

i=1

gi(x)dwi

By a solution of this equation we understand the limit as λ goes to infinity of the solution of

dx = f(x)dt +
n∑

i=1

gi(x)(dNi − dN−i)/
√

λ

where Ni and N−i are independent Poisson counters with rate λ/2.

Example 1: (The Ornstein-Uhlenbeck Process) Consider the process

dx = vdt

dv = −αvdt + dw

The process x is obtained by integrating the v process. The v process would be Brownian motion
if α were zero. If α positive, and this is the situation which is of interest in applications, we will
show that the probability distribution of v approaches a steady-state value as t goes to infinity.
We will give more details in later sections.

3.4 The Itô Rule

Let ψ be a twice differentiable function of x. Consider the evaluation of dψ for

dx = f(x)dt +
n∑

i=1

gi(x)(dNi − dN−i)/
√

λ

where Ni are Poisson counters of rate λ/2. Using the Itô rule of chapter 2 we get

dψ =
〈

∂ψ

∂x
, f(x)

〉
dt +

n∑
i=1

[
ψ

(
x +

1√
λ

gi(x)
)
− ψ(x)

]
dNi

+
n∑

i=1

[
ψ

(
x− 1√

λ
gi(x)

)
− ψ(x)

]
dN−i

In order to explore the limit as λ goes to infinity, we expand ψ in a Taylor series about x. The
result is

dψ =
〈

∂ψ

∂x
, f(x)

〉
dt +

n∑
i=1

〈
∂ψ

∂x
, gi(x)

〉
(dNi − dN−i)/

√
λ

+
n∑

i=1

1
2
〈gi(x) ,

∂2ψ

∂x2
gi(x)〉(dNi + dN−i)/λ + O(1/λ3/2)dNi

Consider now

dzλ = (dN1 + dN−1)/λ
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where N1 and N−1 are independent Poisson counters of rate λ/2. Using the formula for expec-
tation from chapter 2, we see that

Ezλ(t) = t + Ez(0)

Let mλ = z2
λ(t). Then from the Itô rule for jump processes we see that

dmλ =
((

zλ +
1
λ

)2

− z2
λ

)
(dN1 + dN2) =

2zλ

λ
(dN1 + dN2) +

1
λ2

(dN1 + dN2)

A short calculation, using EdNi = (λ/2) dt, yields

d

dt
Emλ(t) = E(2zλ +

1
λ

Thus if Ez(0) = 0 we have

Emλ(t) = t2 + t/λ

It is remarkable that the variance of the process defined by z, namely

σ(t) = E
(
zλ(t)− Ezλ(t)

)2

which goes along with the initial condition z(0) = 0 is just

σ(t) = t2 + t/λ− 2t2 + t2

= t/λ

and hence goes to zero as λ goes to infinity. As λ becomes larger the uncertainty associated with
z decreases and, in a sense, z tends to the deterministic process defined by z(t) = t. As a result,
the limiting form of the Itô rule takes a simple form. We may make the replacement, as λ goes
to infinity, (dNi + dN−i)/λ = dt. Thus for

dx = f(x)dt +
m∑

i=1

gi(x)dwi

we have

dψ =
〈

∂ψ

∂x
, f(x)

〉
dt +

m∑
i=1

〈
∂ψ

∂x
, gi(x)

〉
dwi +

1
2

m∑
i=1

〈
gi(x) ,

∂2ψ

∂x2
gi(x)

〉
dt

where we have abbreviated (dNi−dN−i)/
√

λ as dwi. This is known as the Itô rule for Brownian
motion.

Example 1: Consider

dx = −xdt + xdw

Suppose we want to find an equation for z = x2. Using the Itô rule we have

dx2 = 2x(−xdt + xdw) + x2dt

The last term results from an evaluation of 1/2(∂2ψ/∂x2) · (g(x))2dt. The net result is

dz = −2zdt + 2zdw + zdt

= −zdt + 2zdw
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Example 2: Consider the pair of Itô equations

dx = dw ; dy = dν

with w and ν being independent Wiener processes. If we describe matters in polar coordinates,
x = r cos θ, y = r sin θ, then of course r =

√
x2 + y2 and θ = tan−1(y/x). To obtain the

differential equations for r and θ we can use the Itô rule as follows. First of all,

∂r

∂x
=

x√
x2 + y2

;
∂r

∂y
=

y√
x2 + y2

;
∂θ

∂x
=

−y

x2 + y2
;

∂θ

∂y
=

x

x2 + y2

The matrix of second partial derivatives is


∂2r

∂x2

∂2r

∂x∂y
∂2r

∂x∂y

∂2r

∂y2

 =


y2√

x2 + y2
3

−xy√
x2 + y2

3

−xy√
x2 + y2

3

x2√
x2 + y2

3

 ;


∂2θ

∂x2

∂2θ

∂x∂y
∂2θ

∂x∂y

∂2θ

∂y2

 =


xy

(x2 + y2)2
−1

x2 + y2

−1
x2 + y2

xy

(x2 + y2)2



Using this in the Itô rule we have

dr =
xdw + ydν√

x2 + y2
+

dt

2
√

x2 + y2

A similar calculation shows that θ satisfies

dθ =
xdν − ydw

x2 + y2
+

xydt

(x2 + y2)2

Expressing the right-hand sides of these equations in terms of r and θ we get

dr =
1
2r

dt + sin θdν + cos θdw

dθ =
cos θdν − sin θdw

r
+

sin θ cos θdt

r2

3.5 Expectations

Adopting the notation of the previous section we now consider stochastic equations of the form

dx = f(x)dt +
m∑

i=1

gi(x)dwi

with wi being a Wiener process. What is the rule for computing expectations for such an
equation? If we replace dwi by

dwiλ =
1√
λ

(dNi − dN−i)

where Ni and N−i are Poisson counters of rate λ/2, then it is clear that in the limit as λ goes to
infinity we get simply

d

dt
Ex = Ef(x)
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Thus the rule for computing expectation is simply that Eg(x)dw = 0. This is a consequence of
the fact that we defined the solutions of our jump-process equations to be continuous from the
left and have defined the solution after the jump in terms of the left limit.

The result of this method of defining solutions is to destroy the usual time reversal symmetry
of the time axis in a way that has no analogy in the study of ordinary differential equations.

Example: To illustrate, consider the model

dx = xdt + αxdw

This might represent, for example, the growth of capital when the interest rate is a random
process. We see that

Ex(t) = etEx(0)

The expectation of x2(t) can be computed by first using the Itô rule to get

dx2 = 2x2dt + 2αx2dw + α2x2dt

and then taking expectations to get

d

dt
Ex2(t) = (2 + α2)E [x2(t)]

Example 2: Consider system

dx = vdt ; x(0) = 0

dv = adt ; v(0) = 0

da = dw ; a(0) = 0

To compute the covariance of (x(t), v(t), a(t)) we write this in matrix notation

d

 x
v
a

 =

 0 1 0
0 0 1
0 0 0

 x
v
a

 +

 0
0
1

 dw

and take the expectation to get we get

d

dt
E

 x
v
a

 =

 0 1 0
0 0 1
0 0 0

 E
 x

v
a


In terms of the notation

A =

 0 1 0
0 0 1
0 0 0

 ; B =

 0
0
1


we have

E

 x(t)
v(t)
a(t)

 = eAtE

 x(0)
v(0)
a(0)

 = 0
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If we let Σ denote the covariance then

Σ̇ = AΣ + ΣAT + BBT

Σ(t) =
∫ t

0

eAσBBT eAT σdσ

eAt = I + At +
1
2
A2t2 =

 1 t t2

2
0 1 t
0 0 1



This yields

∫ T

0

 1 t t2

2
0 1 t
0 0 1

 0 0 0
0 0 0
0 0 1

 1 0 0
t 1 0
t2

2 t 1

 dt

=
∫ T

0

 0 0 t2

2
0 0 t
0 0 1

 1 0 0
t 1 0
t2

2 t 1

 dt

=
∫ T

0

 t4

4
t3

2
t2

2
t3

2 t2 t
t2

2 t 1

 dt

=

 1
20T 5 1

8T 4 1
6T 3

1
8T 4 1

3T 3 1
2T 2

1
6T 3 1

2T 2 T



3.6 A Digression on Stratonovic Calculus

An important aspect of the Wiener process is the formula for the quadratic variation

lim
∆i→0

∑
|w(ti+1)− w(ti)|2 = |a− b|

where ∆i = ti+1 − ti and the sum is over subdivisions of the interval [a, b]. This fact underlies
the useful calculation rule, dw · dw = dt. In order to define what is meant by the stochastic
differential equation

dx = f(x)dt + g(x)dw

one integrates to get

x(t)− x(0) =
∫ t

0

f(x(σ))dσ +
∫ t

0

g(x(σ))dw
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and transfers the difficulty to that of interpreting the integral. In the figure below we illustrate
part of the construction of the (non anticipatory) Itô integral∫ b

a

g(x(t))dw(t) = lim
∆i→0

∑
g(x(ti))(w(ti + ∆i)− w(ti))

On the other hand, in the (partially anticipatory) Stratonovic calculus one uses a different defi-
nition of the integral∫ b

a

g(x(t))d−w(t) = lim
∆i→0

∑
g(x(ti + ∆i/2))(w(ti + ∆i)− w(ti))

Using the notation and setup of the figure shown below, we explore the relationship between the
Itô and Stratonovic integrals.

The Itô integral is based on the interpretation of

I =
∫ b

a

g(x(t)) dwt

in which g(x(t)) is evaluated at the left end point of each subdivision of [a, b] and dwt is treated
as occurring “in advance” of any change in x(t). That is to say, we define the integral as the
limit of sums of the type

I =
∑

i

g(x(ti))(w(ti + ∆)− w(ti))

On the other hand, we could have used instead

I =
∑

g (x(ti + ∆/2)) (w(ti + ∆)− w(ti))

evaluating g in the middle of the subdivision. Unlike the situation one has in Riemannian
integration where such a change makes no difference, in this case one gets a different integral.
Since this “central difference” interpretation will be useful later, we will now discuss the precise
way in which it differs from the Itô interpretation. These remarks lead to a different, but for our
purposes equally expressive, version of the stochastic calculus. It is also widely used. The key
observation is that from Taylor series we get

g(x(t + ∆/2)) = g(x(t)) +
∂g

∂x

∣∣∣∣
x(t)

∆x/2

If we evaluate ∆x as
∆x = f(x + ∆x/2)∆t + g(x + ∆x/2)∆w

we see that

g(x(t) + ∆x/2) ≈ g(x(t)) + (∂g/∂x)g(x)∆w + terms of order ∆t, (∆w)2 and higher

Recall that when we introduced the Wiener process as the limit of a certain construction
involving Poisson counters, we found that

E(w(t)− w(τ))2 = |t− τ |

and that as a consequence of this it was necessary to treat the differential calculus with additional
care. In particular, it happened that (dw)2 is, in a certain sense, first order and equal to the
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deterministic differential dt. The change of variables and expectation formula associated with
the Itô calculus is summarized by

dx = f(x) dt + g(x) dw

dψ =
〈

∂ψ

∂x
, f(x) dt + g(x) dw

〉
+

1
2
gT (x)

∂2ψ

∂x2
g(x)dt

dEψ/dt =
〈

∂ψ

∂x
, f(x)

〉
+

1
2
gT (x)

∂2ψ

∂x2
g(x)

When we switch and represent dynamics by differential equations which are to be interpreted
as central differences, these equations change. The change can be best appreciated by noting
that a Taylor series expansion yields

g(x(t +4/2)) = g(x(t)) +
1
2

∂g

∂x
(x(t))4+

1
2
(4/2)2

∂2g

∂x2
(x)

But ∆x is f(x)∆t + g(x)∆w and since (∆w)(∆t), but not (∆w)2, is of order higher than ∆t,
we see that ∫

Itô

g(x(t)) dw =
∫

central

g(xt) dw − 1
2

∫
(∂g/∂x)g dt

Thus we have a different calculus; different from, but equally expressive as, the Itô calculus.
Using barred d’s to indicate differentials in the Stratonovic sense, we can summarize via

d−x = f(x) dt + g(x) d−w

d−ψ =
〈

∂ψ

∂x
, f(x) dt + g(x) d−w

〉
d(Ex)/dt = E

(
f(x) +

1
2

(
∂g

∂x

)
g(x)

)
If x satisfies the Itô equation

dx = f(x)dt +
m∑

i=1

gi(x)dwi

then it satisfies the Stratonovic equation

d−x = (f(x)− 1
2

m∑
i=1

∂g

∂x
gi)dt +

m∑
i=1

gi(x)d−wi

w(t)

t t+∆t

g(x(t))

t t+∆t

Figure 3.1. Illustrating the increment w(t + ∆t)− w(t) and g(x(t)).
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3.7 The Fokker-Planck Equation

Hand in hand with the Itô differentiation formula goes the evolution equation for the probability
density. Consider in Rn the Itô equation

dx = f(x)dt +
m∑

i=1

gi(x)dwi

and let ψ be a smooth function having compact support. Then

dψ =
〈

∂ψ

∂x
, f(x)dt +

m∑
i

g(x)dwi

〉
+

1
2

m∑
i=1

〈
∂2ψ

∂x2
gi(x) , gi(x)

〉
dt

If we are interested in d
dtEψ, we have on one hand

d

dt
Eψ =

d

dt

∫
Rn

ψ(x)ρ(t, x)dx

=
∫

Rn

ψ(x)
∂ρ(t, x)

∂t
dx

On the other hand,

d

dt
Eψ = E

〈
∂ψ

∂x
, f(x)

〉
+

1
2

m∑
i=1

E
〈

∂2ψ

∂x2
gi(x) , gi(x)

〉

=
∫

Rm

(〈
∂ψ

∂x
, f(x)

〉
+

1
2

n∑
i=1

〈
∂2ψ

∂x2
gi(x) , gi(x)

〉)
ρ(t, x)dx

Integrating this by parts we get

d

dt
Eψ =

∫
Rn

−ψ

〈
∂

∂x
, ρ(t, x)f(x)

〉
+ ψ

1
2

m∑
i=1

n∑
j=1

n∑
k=1

(
∂

∂xj

∂

∂xk
gi

j(x)gi
k(x))ρ(t, x)dx

Putting these two formulas for d
dtEψ together we have

0 =
∫

Rn

ψ

∂ρ

∂t
+

〈
∂

∂x
, ρ(t, x)f(x)

〉
− 1

2

m∑
i=1

n∑
j=1

n∑
k=1

∂2

∂xj∂xk
gi

j(x)gi
k(x)ρ(t, x)

 dx

The only way this can hold true for all ψ is if

∂ρ(t, x)
∂t

= −
〈

∂

∂x
, ρ(t, x)f(x)

〉
+

1
2

∑ ∂2

∂xi∂xj
gi(x)gj(x)ρ(t, x)

This is the Fokker-Planck equation; the evolution equation for the probability law.

Example 1: Consider the Itô equation

dx = −xdt + dw

The corresponding Fokker-Planck equation is

∂ρ(t, x)
∂t

=
∂xρ(t, x)

∂x
+ 1

2

∂2

∂x
ρ(t, x)
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If ρ(0, x) is given then one can verify that

ρ(t, x) =
∫ ∞
−∞

1√
2πσ(t)

e−(x−e−tη)2/2σ(t)ρ(0, η)dη

with σ(t) = 1
2 (1− e−2t)

Example 2: Seeking an interesting topic for a term paper, a novice in finance asks the
following question. If I can solve for the joint probability distribution for the pair of Itô equations

dx = −axdt + bxdw1

dy = −cydt + fydw2

with w1 and w2 independent, can I also solve for the joint probability density when[
dx
dy

]
=

[
−a 0
0 −c

] [
x
y

]
dt +

[
−b h
g −f

] [
x
y

]
dw1 +

[
−b′ h′

g′ −f ′

] [
x
y

]
dw2

Assuming suitable initial conditions, write down a joint density ρ(t, x, y) in the first case using
the fact that the logrthims of x and y are Gaussian for all time if they are at t = 0. (Do not
forget that we are dealing with Itô equations here.) Should the student expect to be successful
in the more general situation? Explain your answer carefully, including the role of a term of the
form AB −BA.

Solution: If we have dx = −axdt+bxdw then we can apply the Itô rule to get the differential
of ψ(x) = lnx as

dψ(x) = −adt + bdw − 1
2

b2x2

x2
dt = (−a− 1

2
b2)dt + bdw

This can be solved for a Gaussian density of mean (c1 − a − b2/2)t and variance c2 + tb2. The
same remarks apply to the second equation. The matrix system can not be solved in closed form
because the linear system is time varying and does not decouple.

Example 3: Consider the stochastic equations

dx = −(10 + z)xdt + dw

dz = −2zdN

with z(0) ∈ {−1, 1} and N a Poisson counter of rate λ. Instead of writing ρ(t, x, z) we write
ρ(t, x, 1) = ρ+(t, x) and ρ(t, x,−1) = ρ−(t, x). In this notation one has the following pair of
equations for the density

∂ρ+(t, x)
∂t

= λ(ρ−(t, x)− ρ+(t, x)) +
∂

∂x
11xρ+(t, x) +

1
2

∂2

∂x2
ρ+(t, x)

∂ρ−(t, x)
∂t

= λ(ρ+(t, x)− ρ−(t, x)) +
∂

∂x
9xρ−(t, x) +

1
2

∂2

∂x2
ρ−(t, x)

Example 4: Consider the equation[
dx
dy

]
=

[
−1 0
0 −1

] [
x
y

]
dt +

[
dw
dν

]
+

[
cos θ sin θ
− sin θ cos θ

] [
x
y

]
(dN1 − dN2)

with N1 and N2 being Poisson counters of rate λ and w and ν being standard Wiener processes.
Find a differential equation for the mean and the variance of (x, y). Find the Fokker-Planck



3.7. THE FOKKER-PLANCK EQUATION 51

equation for ρ(t, x, y). Discuss the influence of the size of λ on the existence of a steady-state
solution. (Assume throughout that w, ν, N1, and N2 are all independent, and that θ is constant)
Working in terms of matrices, and using Σ to denote the expectation of xxT , we have

Σ̇ = −2Σ + I + E((x + Θx)(x + Θx)T − xxT )λ + ((x−Θx)(x−Θx)T − xxT )λ

This, in turn, simplifies to
Σ̇ = −2Σ + I + 2ΘΣΘT λ

Clearly, we see that if |λ| is larger than 1 this system might be unstable, depending on the
eigenvalues of the operator L(·) = Θ(·)ΘT .

In terms of components everything is much more messy.

dE
[

x
y

]
=

[
−1 0
0 −1

]
E

[
x
y

]
dt +

[
cos θ sin θ
− sin θ cos θ

]
E

[
x
y

]
(λdt− λdt)

and

E
[

x
y

]
= e

 −1 0
0 −1

t

E
[

x(0)
y(0)

]

lim
t→0
E

[
x
y

]
= 0

dx2 = 2x(−x)dt+2xdw+dt+[(x+x cos θ+y sin θ)2−x2]dN1 +[(x−x cos θ−y sin θ)2−x)2]dN2

From this we can take expectations to get

d

dt
Ex2 = −2Ex2 + (E(x cos θ + y sin θ)2)λ + 1

d

dt
Ex2 = −2Ex2 + 2λ sin 2θExy + λEx2 + λEy2 + 1

We omit further details.

For the Fokker-Planck equation we have

∂ρ(t, x, y)
∂t

= 2(
∂

∂x
x+

∂

∂y
y)ρ(t, x, y)+

1
2
(

∂2

∂x2
+

∂2

∂y2
)ρ(t, x, y)+fλ(ρ(t, x−, y−)−2ρ(t, x, y)+ρ(t, x+, y+))

where
x± = x∓ (x cos θ + y sin θ)

y± = x∓ (y cos θ − x sin θ)

and

f−1 = det
[

1 + cos θ sin θ
− sin θ 1 + cos θ

]

Example 5: Consider the piecewise linear stochastic equation of the Itô type

dx = f(x)dt +
√

adw
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where

f(x) =

 −x + 2 x ≥ 1
x |x| < 1

−x− 2 x ≤ −1

Write down the Fokker-Planck equation. Find a steady state solution of the Fokker Planck
equation by piecing together, in a continuous way, three Gaussian solutions and normalizing
appropriately. (It will happen that one of “Gaussians ” has a positive quadratic term in the
exponent. This should not cause you difficulty however.) Show that as a approaches zero the
steady state density tends, in a weak sense, to the sum of two delta functions and determine
where the delta functions are centered.

Solution: The solution of the variance equation in the central region |x| ≤ 1 is

ρ = bex2/a

In the side regions for which |x| ≥ 1 we have

ρ = ce−(x−2)2/a

and
ρ = de−(x+2)2/a

By symmetry, c = d. Continuity at ±1 gives an overall solution of the form

ρss(x) =


ce−(x−2)2/a x ≥ 1
ce−2/aex2/a |x| < 1
ce−(x+2)2/a x ≤ −1

We must chose c so that the area under ρss is one and so

c−1 =
∫ −1

−∞
e−(x−2)2/adx +

∫ 1

−1

e−2/aex2/adx +
∫ ∞

1

e−(x+2)2/adx

Example 6: Suppose that x and y satisfy the Itô equation[
dx
dy

]
=

[
−adt dw
−dw −adt

] [
x
y

]
+

[
b 0
0 b

] [
x
y

]
dN

with a = 1/2 and

b = −1± 1
2

√
4 +

1
x2 + y2

Assuming that x2(0) + y2(0) = 1, describe the set of points that sample trajectories will visit.
Hint: Use the Itô rule to compute d(x2 + y2).

Solution: Applying the Itô rule to the function ψ(x, y) = x2 + y2 we get

dψ(x, y) = 0dt + 0dw + [(x + bx)2 − x2 + (y + by)2 − y2]dN

which evaluates to
dψ(x, y) = (x2(2b + b2) + y2(2b + b2))dN = dN

For the given definition of b this is of the form dψ = dN . The solutions will only visit those
circles centered at the origin that have radii which are positive integers.
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3.8 Stochastic Approximation

There are various senses in which a sequence of real-valued random variables might be said to
converge. It is useful to keep in mind that if {x1, x2, ...xk, ...} is a sequence of random variables
then there is associated with each element of the sequence a different probability distribution, say
P1, P2, ...Pk, .... Suppose, that these distributiojns have densities, p1, p2, ...pk, .... The densities
are L1 functions mapping the real line into the positive half-line. If the sequence of random
variables is to converge then the sequence of densities must in some, as yet to be described sense,
“converge” to a delta function. Such an analysis requires a creful choice of topologies. On the
otherhand, if we are content to consider convergence in the sense that

lim
k→∞

∫
R

(x− x0)2pk(x)dx = 0

then convergence is much easier to deal with. The literature on stochastic approximation is
usually concerned with discrete time models. there is usually a more or less obvious way to
pass from a discrete-time description to a continuous-time discription. Here we only consider the
latter.

Consider the following result on the asymptotic properties of the determninistic equation.

Lemma: Let a and b be integrable functions with b nonnegative. The solutions of

ẋ(t) = a(t)x(t) + b(t)

go to zero as t goes to infinity if

lim
t→∞

∫ t

0

a(σ)dσ → −∞

and

lim
t→∞

∫ t

0

b(σ)dσ <∞

Proof: The solution of this equation is given by

x(t) = e
∫ t
0 a(τ)dτx(0) +

∫ t

0

e
∫ t

η
a(τ)dτ b(η)dη

The asymptotic properties of a imply that the first term goes to zero. Because of the convergence
of the integral of b, given any ε > 0 there exists a time T such that∫ ∞

T

b(τ)dτ ≤ ε

Fot t ≥ T we have

x(t) = e
∫ t
0 a(τ)dτx(0) +

∫ T

0

e
∫ t

η
a(τ)dτ b(η)dη +

∫ t

T

e
∫ t

η
a(τ)dτ b(η)dη

The first two terms on the right go to zero and the third can be made arbitrarly small by choice
of T .

Now consider the scalar stochastic equation

dw = a(t)x(t)dt + dw
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It has an associated variance equation

σ̇(t) = −2a(t)σ(t) + a2(t)

Applying the lemma we see that if

lim
t→∞

∫ t

0

2a(σ)dσ → −∞

and

lim
t→∞

∫ t

0

a2(σ)dσ <∞

then the variance goes to zero and we can assert that the random variable x(t) converges to zero
as t goes to infinity in mean square sense.

The main fact here is that a must go to zero at just the right rate if x is to go to zero. This
sam analysis can be used much is different if x is replaced by f(x) in the right-hand side of this
equation, as long as f(·) is a first and third quadrent, monotone increasing function.

3.9 Exit Times

Consider the problem of determining the probability that the solution of

dx = f(x)dt + g(x)dw;x(0) ∈ S1

leaves an open connected set S ⊃ S1 before time t. Such problems arise in the analysis life
expectancy of a machine, the time to finicancial ruin, etc. One way to formulate this is to
consider a modified process which satisfies the given equation as long as x ∈ S and satisfies
dx = 0 once x reaches the boundary of S. The corresponding Fokker-Planck equation in the set
S is

∂ρ(t, x)
∂t

= −
n∑

i=1

∂

∂xi
fi(x)ρ(t, x) +

n∑
i=1

n∑
j=1

1
2

∂2

∂xi∂xj
gi(x)gj(x)ρ(t, x)

In terms of a physical picture we can imagine that the boundary of S absorbs the process and
so, insofar as motion inside S is concerned, the appropriate boundary condition is ρ(t, x) = 0
for x on the boundary of S. To answer the original question then, we would need to solve for ρ
subject to this boundary condition. The probability that x does not leave S on the internal [0, t]
is then just

p =
∫

S

ρ(t, x)dx

with the integral extending over the open set S.

Example: Suppose that we have a Gauss-Markov process

dx = −xdt + dw;x(0) = 0

and want to know the probability that x(t) has not left the interval [−π, π] over the period
0 ≤ t ≤ 1. The Fokker-Planck equation is

∂ρ(t, x)
∂t

=
∂

∂x
xρ(t, x) + 1

2

∂2

∂x2
ρ ; ρ(t,−1) = ρ(t, 1) = 0
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The nature of the boundary conditions suggest that we seek an even solution using an expansion
in terms of trigonometric functions.

ρ(t, x) =
∞∑

n=0

pn(t) cos nx

Standard seperation of variable techniques yield an equation for the individual pn,

ṗn = pn − n2pn −
1
n

pn

Because the probability that x has not left [−π, π] in the interval [0, t] is just ρ0(t) we see that

prob = e−t

3.10 Computing Temporal Correlations

We can use the same multivariable method for computing temporal correlations that were dis-
cussed in section 2.7. If x satisfies the Itô equation

dx = −f(x)dt + g(x)dw

then for τ > t, x(t)x(τ) satisfies

dτx(t)xT (τ) = x(t)fT x(τ)dτ + x(t)gT (x(τ))dwτ

Thus we can take expectation to get

d

dτ
Ex(t)xT (τ) = Ex(t)fT (x(τ))

This relationship can often be used with a formula for Ex(t)xT (t) to actually compute correla-
tions.

3.11 Linear Equations

The combination of the Itô rule and the results of 3.5 on computing expectations gives an effective
method for computing the statistical properties of solutions of stochastic equations of the form

dx = Axdt +
m∑

i=1

Bixdwi +
k∑

i=1

bidvi

where wi and vi are independent Wiener processes. The special cases

dx = Axdt +
k∑

i=1

bidvi

which involve only additive white noise terms have been used extensively as models for physical
and economic systems. The observation that in terms of an enlarged vector (1, xT )T we can write

d

[
1
x

]
=

[
0 0
0 A

] [
1
x

]
dt +

∑ [
0 0
0 Bi

] [
1
x

]
dwi +

∑ [
0 0
bi 0

] [
1
x

]
dvi
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means that it is never necessary to display the inhomogeneous term explicitly. For this reason
we begin by developing the basic properties of

dx = Axdt +
m∑

i=1

Bixdwi

Fact 1: If x satisfies a linear sample path equation then

d

dt
Ex(t) = AEx(t)

Proof: Take expectations of both sides of (1). Use the fact that Eg(x)dw = 0.

Fact 2: If x satisfies a linear sample path equation then for each positive integer p the set of
moments of order p satisfy a linear homogeneous differential equation.

Proof: We introduce the notation x[p], where x is an n-vector and p is a positive integer, to
denote the

(
n+p−1

p

)
-component vector whose entries are the independent monomials homogeneous

of degree p. That is,

x =


x1

x2

...
xn

 ; x[p] =


xp

1

xp−1
1 x2

...
xp

n


If ẋ = Ax, then it is easy to see that x[p] also satisfies a linear equation so that we have, for A[p]

suitably defined,

d

dt
x[p] = A[p]x

[p]

We take this as a definition of A[p]. In applying the Itô rule to (3.1) we get

dx[p] = A[p]x
[p]dt +

∑
Bi[p]x

[p]dwi + “Itô term”

the Itô term denoting the contributions due to〈
∂2x[p]

∂xi∂xj
gi , gi

〉
dt

in using the Itô rule. Because the entries of x[p] are homogeneous of degree p, their second
derivatives are homogeneous of degree p−2. Since Bixdwi is linear in x, we see that the Itô term
is homogeneous of degree p in (x1, x2, . . . , xn) or, what is the same, linear in x[p]. Thus after
taking expectation, we get

d

dt
Ex[p] = L[p]Ex[p]

for some L[p]. One can show that L[p] is given by

L[p] =
(
A− 1

2

m∑
i=1

B2
i

)
[p]

+
1
2

m∑
i=1

(Bi[p])2

Fact 3: If x satisfies a linear sample path equation then for τ ≥ 0

Ex(t)xT (t + τ) = Ex(t)xT (t)eAT τ



3.12. ASYMPTOTIC BEHAVIOR 57

Proof: It is easy to see that

d

dτ
Ex(t)xT (t + τ) = Ex(t)xT (t + τ)AT

which is solved with initial condition Ex(t)xT (t).

3.12 Asymptotic Behavior

Under suitable hypothesis the probability density ρ(t, x) associated with an Itô equation will
approach a limit as t goes to infinity. This means that the process is approaching a “steady
state” in the sense that certain statistical properties are approaching constant values. In many
cases it is only this steady state which is experimentally observable and a great deal of the study
of statistical physics and classical communication theory is based on steady state analysis.

For a one dimensional linear system the situation is as follows. If we have

dx = axdt + dw

then the 2nd moment equation is

d

dt
Ex2 = 2aEx2 + 1

and so

Ex2(t) = e2atE
(

x2(0) +
1
2a

)
− 1

2a

Thus we see that if a is positive the variance goes to infinity with increasing t whereas if a is
negative it goes to −1/2a with increasing t. In fact, since the response to ρ(0, x) = δ(x− x0) is

ρ(t, x) =
1√

2πσ(t)
e−a(x−x0eat)2/2σ(t)

we see that, regardless of the form of the initial distribution, ρ goes to

ρ(x) =
√
−a/π eax2

as t goes to infinity provided that a is negative. In this case the situation may be summarized as
follows: If the nonrandom part of the stochastic equation is asymptotically stable then the density
approaches a steady state as t goes to infinity.

This same conclusion is valid in many situations. In particular, for linear systems of the form

dx = Axdt +
m∑

i=1

bidwi

we have a differential equation for the second moment Σ(t) = Ex(t)xT (t) taking the form

Σ̇(t) = AΣ(t) + Σ(t)AT + b1b
T

1 + · · ·+ bmbT
m

(To see this, apply the Itô rule taking advantage of the fact that the wi are independent and the
fact that the second derivative ∂2xnxm

∂xi∂xj
takes a simple form) This has a solution which may be

expressed as

Σ(t) =
∫ t

0

eA(t−σ)BBT eAT (t−σ)dσ + eAtΣ(0)eAT t
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where B = (b1, b2, . . . , bn). If the eigenvalues of A have negative real parts, then Σ(t) approaches
a limit as t goes to infinity. The density ρ also approaches a limit in this case

lim
t→∞

ρ(t, x) =
1√

(2π)n det Σ∞
e−

1
2 xT Σ−1

∞ x

where Σ∞ satisfies

AΣ∞ + Σ∞AT + BBT = 0

or

Σ∞ =
∫ ∞

0

eAtBBT eAT tdt

Example: Solve the Fokker-Planck equation for

dx1 = x2dt

dx2 = −x1dt + dw

In this case
Ex(t) = eAtEx(0)

= x̄(t)

and Σ(t) is given by

Σ(t) =
∫ t

o

[
cos(t− σ) sin(t− σ)
− sin(t− σ) cos(t− σ)

] [
0 0
0 1

] [
cos(t− σ) − sin t(t− σ)
sin(t− σ) cos(t− σ)

]
dσ

Σ(t) =
∫ t

o

[
sin2(t− σ) sin(t− σ) cos(t− σ)

sin(t− σ) cos(t− σ) cos2(t− σ)

]
dσ

With these definitions ρ(t, x) = 1√
(2π)2 det Σ(t)

e−
1
2

(
x−x̄(t)

)T
Σ−1(t)(x−x̄(t))

3.13 Finite Difference Approximations

For reasons having to do with numerical simulation as well as theoretical questions we discuss here
the connection between stochastic differential equations and difference equation approximations.

Consider the difference equation

x((k + 1)T ) = x(kT ) + Tf(x(kT )) + Tg(x(kT ))n(kT )

If we think of this as an approximation to a differential equation, the question of refining the
mesh size becomes of interest. We begin by comparing

x(T ) = x(0) + T f
(
x(0)

)
+ T g

(
x(0)

)
n(0)

with the value of x(T ) that results if we replace T by T/2, and iterate. In the latter situation
we get at the first step

x(T/2) = x(0) + (T/2)f
(
x(0)

)
+ (T/2)g

(
x(0)

)
n(0)

and, repeating this,

x(T ) = x(0) + (T/2)f
(
x(0)

)
+ (T/2)g

(
x(0)

)
n(0)

+ (T/2)f
(
x(T/2)

)
+ (T/2)g

(
x(T/2)

)
n(T/2)
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If we expand f and g in their Taylor series we can express this in terms of x(0)

x(T ) = x(0) + Tf
(
x(0)

)
+ T/2g

(
x(0)

)
n(0) + T/2g

(
x(0)

)
n(T/2)

+(T/2)2g′
(
x(0)

)
g
(
x(0)

)
n(0)n(T/2) + . . .

It is useful to focus on the variance associated with x(T ) in these two cases. Before refinement,
we have

E
(
x(T )− x(0))(x(T )− x(0)

)T = T 2g
(
x(0)

)
gT

(
x(0)

)
En2(0)

and after refinement

E
(
x(T )− x(0))(x(T )− x(0)

)T = T 2/4g
(
x(0)

)
gT

(
x(0)

)
En2(0) + n2

(
T/2)

)
Thus, if we wish the variance of the solution to stay the same when we divide the interval in half,
we must double the variance of the noise. For this reason it is a good idea to adopt the notation

x
(
(k + 1)T

)
= x(kT ) + Tf

(
x(kT )

)
+
√

T g
(
x(kT )

)
n(kT )

In such a notation the variance of the noise term n(kT ) can remain constant as T is reduced.

We remark that if ψ(·) is a twice differentiable function of x, then

ψ

(
x
(
(k + 1)T

))
= ψ

((
x(kT

)
+ Tf

(
x(kT )

)
+
√

T g
(
x(kT )

)
n(kT )

)
which yields

ψ

(
x
(
(k + 1)T

))
= ψ

(
x(kT )

)
+ T

〈
∂ψ

∂x
, f

(
x(kT )

)〉
+
√

T

〈
∂ψ

∂x
, g

(
x(kT )

)〉
n(kT )

+
T

2

〈
∂2ψ

∂x2
g , g

〉
n2(kT ) + h.o.t.

This is fully consistent with the Itô differential rule.

3.14 Exercises 3

1. Consider the scalar Itô equation

dx = −xdt− αxdw + βxdν ; x(0) = 0

where w and ν are independent Brownian motions. Derive an equation for the pth moment
of x and give conditions on α and β for the pth moment to have a finite limit as t goes to
infinity.

2. If x1 and x2 satisfy the Itô equations

dx1 = dw1

dx2 = dw2

and if we make a change of variables θ = tan−1(x2/x1), r =
(
(x1)2 + (x2)2

) 1
2 , then find an

expression for the probability density ρ(t, r, θ) assuming that the initial density is rotation-
ally symmetric. If x1(0) = x2(0) = 0 find the probability that x2

1(t) + x2
2(t) ≤ a.
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3. Consider the stochastic differential equation[
dx1

dx2

]
=

[
− 1

2dt dw
−dw − 1

2dt

] [
x1

x2

]
Show that x2

1(t) + x2
2(t) = constant. Show that if θ = tan−1(x1/x2), then

dθ = dw

Show that in terms of θ the probability density satisfies

∂ρ(t, θ)
∂t

=
α

2
∂2ρ(t, θ)

∂θ2

for a suitable value of α. Solve this equation for ρ on −π ≤ θ ≤ π given that θ(0) = 0.

4. If w is a Wiener process defined for 0 ≤ t ≤ 1 and if dx = dw with x(0) = 0 evaluate

m(t) = Eex2(t)

5. Consider, again, the polar coordinate representation of two-dimensional Wiener process as
developed in example two of section 3.4.

dr =
1
r
dt + sin θdν + cos θdw

dθ =
cos θdν − sin θdw

r
+

sin θ cos θ

r2
dt

The corresponding Fokker-Planck equation makes apparent the rotational symmetry present.

∂ρ(t, r, θ)
∂t

=
1
2
(1
r

∂

∂r
+

∂2

∂r2
+

1
r2

∂2

∂θ2

)
ρ(t, r, θ)

The term in parentheses on the right is just the Laplacian expressed in polar coordinates.
Show that this equation admits the rotationally symmetric solution

ρ(t, r, θ) =
r

2πt
e−r2/2t

6. Consider the Itô equation

dx = dw1

dy = dw2

dz = xdw2 − ydw1

Show that
d

dt
Ez2(t) = E(x2(t) + y2(t)) = 2t

and that
d

dt
Ez2(t)(x2(t) + y2(t)) = E(x2(t) + y2(t))2 + Ez2(t)

7. Consider the Itô equations for x, y, z in the previous problem. Show that the corresponding
Fokker-Planck Equation is

∂ρ(x, t)
∂t

=
1
2
(

∂

∂x
− y

∂

∂z
)2ρ(t, x) +

1
2
(

∂

∂y
− x

∂

∂z
)2ρ(t, x)

Show that for each real value of λ the expression ρ(t, x, y, z) = e−2λte−λ(x2+y2) cos 2λz
satisfies this equation. It does not have a constant integral with respect to the variables
x, y, z. Discuss the possibility of forming a weighted combination of solutions of this type
to obtain a solution which remains normalized with growing values of t.
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8. Consider the Itô equations

dx = xdt + (zx/
√

x2 + y2)dw + zy
√

x2 + y2 dt

dy = −ydt− (zy/
√

x2 + y2)dw − zx
√

x2 + y2 dt

dz = −z
√

x2 + y2 dt

Show that as t goes to infinity
E x2 → 0

E y2 → 0

and
z(t)→ 0

9. In the theory of linear electrical circuits one models a resistor-inductor circuit (following
Nyquist and Johnson) via an Itô equation L di = −Ri dt +

√
kRT dw where T is the

temperature with respect to an absolute scale and k is a suitable constant (Boltzman’s
constant). Determine the expected value of the energy stored in the inductor in steady
state.

v

L

Figure 2.1. An electrical circuit with a Nyquist-Johnson resistor.

10. Consider the Wiener process x

dx = dw ; x(0) = 0

Let t be a positive number and suppose that it is known that x(t) = 0. For 0 ≤ τ ≤ t
find the probability density for x(τ) conditioned on the fact that x(t) = 0. What is the
probability density for

n =
∫ t

0

x(σ)dσ

conditioned on the fact that x(t) = 0?

11. Suppose that x1 and x2 satisfy the differential equations

dx1 = x2dt

dx2 = (−x1 − x2)dt + dw

Suppose that the process has reached steady state. Show that the probability that x(t)x(t+
τ) is positive is

p(τ) =
1
π

tan−1 α

with α being derived from the autocorrelation function.

12. Given that

dx = ydt

dy = αxdt + βydt + dω

for what values of α and β will ρ(t, x, y) have a limiting value as t goes to infinity? Suppose
that β = −3 and α = −2, find

lim
t→∞

Ey(t)y(t + τ)
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13. Compute the probability that the solution of

dx1 = dw1 ; x1(0) = 0
dx2 = dw2 ; x2(0) = 0

lies in the disk {x1, x2|x2
1 + x2

2 ≤ 1} at t = 1. Evaluate the expected value of

m(t) = ex1(t)x2(t)

14. Consider the modified diffusion equation

∂ρ

∂t
= 1

2

∂2ρ

∂x2
− ρ− x

∂ρ

∂x

Find an Itô equation of the form

dx = f(x)dt + g(x)dw

such that the above diffusion equation describes the probability density. Solve for the
density given x(0) = 0

15. Consider the equations

dx = xdt + dw − dt ; x(0) = (0)
dy = xydt ; y(0) = 1

Find the probability density ρ(t, x, y)?

16. Evaluate Ex2(t) for x satisfying

dz = −2zdN

dx = (α + z)xdt + dw

Here N is a Poisson counter of rate λ and w is a standard Wiener process.

17. Consider a system of the form

dx = (−2zx− x)dt + dw

dz = −2zdN ; z(0) ∈ {±1}

with N a Poisson Counter of rate λ. The x equation is “unstable” with growth et when
z = −1 but is stable with decay e−3t when z = +1. of course z = +1 and z = −1 are
equally likely and using the methods of section 3.5 we see that

d

dt
Ex2 = −4Ezx2 − 2Ex2 + 1

d

dt
Ezx2 = −4Ex2 − 2Ezx2 − 2λEzx2 + Ez

Show that the solutions of these equations approach a constant regardless of the initial
conditions.

18. Consider the pair of equations

dx1 = −2x1dN ; x1(0) ∈ {−1, 1}
dx2 = −10x2dt + x1dt + dw

with N being a Poisson counter of rate λ and w being a Weiner process. Compute

φ(t, τ) = Ex2(t)x2(t + τ) ; τ ≥ 0

Does there exist a limiting value for Ex2
1(t) and Ex2

2(t) as t goes to infinity?
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19. Compute the autocorrelation function for the steady state of x(t) where

dx(t) = −x(t)dt + z(t)x(t)dt + dw

dz = −2zdN ; z(0) = 1

with N being a Poisson counter of rate λ.

20. Consider the pair of stochastic differential equations

dx = zxdt + dw

dz = −2z dN ; z(0) ∈ {−1,+1}

where N is a poisson counter of rate λ. The Itô rule gives

dψ(x, z) =
∂ψ

∂x
zx dt + [ψ(x,−z)− ψ(x, z)] dN +

1
2

∂2ψ

∂x2
dt +

∂ψ

∂x
dw

Assume that the initial density of x exists and that a density exists for all positive time,
say ρ : R+ × R× {1,−1} → R.

Writing ρ(t, x, 1) as ρ+(t, x) and ρ(t, x,−1) as ρ−(t, x) show that

∂ρ+(t, x)
∂t

=
1
2

∂2ρ+(t, x)
∂x2

− ∂xρ+(t, x)
∂x

+ λ
(
ρ−(t, x)− ρ+(t, x)

)
∂ρ−(t, x)

∂t
=

1
2

∂2ρ−(t, x)
∂x2

+
∂xρ−(t, x)

∂x
+ λ

(
ρ+(t, x)− ρ−(t, x)

)
21. Consider the pair of Itô equations

dx = z(t)xdt + dw ; x(0) ∈ R1

dz = −2z(t)dN ; z(0) ∈ {±1}

where w is a standard Wiener process and N is a Poisson counter of rate λ. Find the
Fokker-Planck equation for this system and express it in terms of two coupled diffusion
equations. Does there exist a limiting value as t→∞ for Ex2(t)?

22. (Heat baths and equipartition of energy) Let x take on values in Rn, let S be a real skew-
symmetric matrix and let ε be a positive number. Consider the Itô equation

dx = (S − εGGT )xdt +
√

εGdw

Assume that (G, SG, . . . , Sn−1G) has rank n. In steady state the variance satisfies

Σ(S − εGGT )T + (S − εGGT )Σ = −εGGT

Show that Σ = (1/2)I is the unique solution of this equation for all ε > 0. Now consider[
dx
dz

]
=

[
S −GGT B
−BT Ω

] [
x
z

]
dt +

[
Gdw

0

]
Evaluate the steady state variance assuming Ω = −ΩT and rank (B,ΩB, . . . ,ΩkB) = k,
where k =dim x+dim z.



64 CHAPTER 3. WIENER PROCESSES AND DIFFERENTIAL EQUATIONS

NOTES AND REFERENCES

[1] Gaussian distributions are also called normal distributions. Most applied mathematical
treatments of partial differential equations do not solve the heat equations in quite enough
generality for our purposes, but the basic ideas are widely discussed. For example, see

1. I. Stakgold, Partial Differential Equations, Van Nostrand, New York, 1991.

[2–3] This kind of limiting approach starting from Poisson process was worked out by Paul Levy
around 1940. A more recent and highly readable account can be found in:

1. H. P. McKean, Stochastic Integrals, McGraw Hill, New York, 1969.

Alternative points of view are explored in:

1. E. Wong, Stochastic Process in Dynamical Systems and Information Theory, McGraw
Hill, New York, 1969.

[4] Notice that we can keep the same point of view as was used in Chapter 2.

[5] The Fokker-Planck equation plays a fundamental role in many physical problems. It is also
the point of departure for the study of the very important conditional density equations to
be taken up in Chapter 6.

[6] The original papers on stochastic approximations are H. Robbins and S. Monro, “A Stochastic
Approximation Method,”, Annals of Mathematical Statistics, vol. 22, pp. 400-407, 1951.
and J. Kiefer and J. Wolfowitz, “Stochastic Estimation of the Minimum of a Regression
Function,”, Annals of Mathematical Statistics, vol. 23, pp. 462-466, 1952. An early
applicationin control is given in H. J. Kushner, “Hill Climbing Methods for the Optimization
of Multi-Parameter Noise Disturbbed Systems,” 1962 JACC.

A recent reference dealing with the stability of stochastic differential equations is: L. Arnold

[7] A classic text on stationary processes, including material on the expected number of zero-
crossings is: Harald Cramér and M. R. Leadbetter, Stationary and Related Stochastic Pro-
cesses John Wiley, New York, 1966.

[8] The exercises involving coupled diffusion equations are roughly analogous to problems in
quantum mechanics involving spin. See, for example,

1. Gordon Baym, Lectures on Quantum Mechanics, University of Illinois, W. A. Ben-
jamin, Inc., New York, 1969.

2. Eugene Gutts, “Brownian Motion and Indeterminacy Relations”, in Stochastic Pro-
cesses in Chemical Physics, (K.E. Shuker, Ed.), Interscience, New York, 1969.



Chapter 4

Pseudorandom Processes

4.1 Pseudorandom Number Generators

A deterministic process, such as the calculation of the decimal expansion of π, may produce a
sequence of digits that appears to be random if one checks the relative frequency of occurrence of
a particular digit or pair of digits even though there may be sophisticated tests powerful enough
to reveal the deterministic origin of the sequence. Do there exist “universal” tests for randomness
and what tests would one use to attempt to use to discover if a sequence is truly random? Are all
points in the sample space represented with the right frequency? Are there correlations between
successive points? Any finite list of tests could be extended by considering more complex tests.
The sequence of digits of π would fail certain highly nonlinear tests for randomness but in many
applications these tests would be irrelevant.

The generation by computer of “random” numbers and sequences of random numbers is
obviously quite important for simulation and even for some types of computation. Most high
level computer languages make available random number generators that produce an empirical
distribution appearing to be consistent with the uniform distribution on [0,1]. Of course the real
situation is a bit different. The random numbers produced by computer are all rational and, far
from being independent. Successive elements in a sequence are related by a deterministic rule.

Consider the equation

x(k + 1) = (kx(k) + b) mod 1

If k is large, say about 105, then multiplication by k can be thought of as shifting the decimal
point of x five places to the right. The addition of b further rearranges matters and reducing
modulo one serves to make everything to the left of the decimal point irrelevant. Thus successive
terms in the sequence, while deterministically related, are related in such a highly nonlinear way
that insofar as linear correlation is concerned they may appear to be independent, depending on
the exact values of x(0), k and b.

65
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4.2 Uniform versus Gaussian Distributions

According to the central limit theorem, under rather weak hypothesis, the sum of n independent,
identically distributed zero mean, variance σ, random variables has a density which when suitably
scaled tends to a Gaussian with increasing n. That is, the density for the random variable yN

yN =
N∑

i=1

xi

σ
√

n

tends to a gaussian of unity variance as N goes to ∞. Expressed in terms of convolution, we
have for a unity variance distribution

g(y2) = f(x) ∗ f(x)

as the density of

y2 = (x1 + x2)

Thus the density for yn, in the limit as n goes to infinity, is

lim
n→∞

f(
x√
n

) ∗ f(
x√
n

) ∗ · · · ∗ f(
x√
n

)︸ ︷︷ ︸
n factors

=
1√
2π

e
−x2

2

One can investigate how this works using the density f(x) = 1 for |x| ≤ 1
2 and zero otherwise.

(In this case the variance is 1
12 .) The number of terms required to get a good approximation

depends on the circumstances. Naturally the probability that (x1 +x2 + · · ·+xn) exceeds n/2 is
zero. Thus this remains of limited validity even for n large. However, near the origin, say |x| ≤ 3
the match is already quite good for n = 20.

4.3 The Results of Jacobi and Bohl, Sierpinskii and Weyl

In this section we sketch two results on deterministic processes.

Theorem 1: Let x be a scalar, 0 ≤ x < 1, and ω a real number. If f(x) = (x + ω) mod 1
then the orbits of x(k + 1) = f(x(k)) are dense in [0, 1], if and only if ω is irrational.

Proof: If ω = q
p , then x(p) = x(0) + pq

p ) mod (1) = x(0) and so x(p) = x(0). Thus all
motions are periodic. If w is irrational then fn(x) 6= fm(x) for m and n distinct integers; if not

x + nω = x + mω

which means (n − m)ω is an integer. Thus each orbit contains an infinity of points in [0, 1].
There must be at least one limit point. That is, given 1/2 > ε > 0 there exists m 6= n such that
|fn(x)− fm(x)| ≤ ε. This means

|f (n−m)(x)| ≤ ε

because |f(x) − f(y)| = |x − y|. (Recall that 0 and 1 are to be thought of as being the same
point.)
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Let n−m = q. If fq(x)−x is positive, then f2q(x)−x is also. We observe that the sequence
x, fq(x), f2q(x), . . . satisfies

|frq(x)− fsq(x)| > ε

for r and s integers between 0 and 1
ε . The same is true of fq(x)−x negative. But ε is an arbitrary

positive number so the sequence fr(x) is dense in [0, 1].

Vector Version: Suppose x(k+1) = x(k)+ω with x(k) ∈ Rn. In this case x(k) winds densely
if k · ω ∈ Z and k ∈ Zn implies k = 0.

The following theorem is often credited to Bohl, Sierpinskii and Weyl.(See [4].) It shows
that the process described in Theorem 1 generates a uniform distribution if ω is irrational. It is
formulated in terms of a rotation on the circle S1.

Theorem 2: If f : S1 → S1 is a rotation of the circle through an angle ω, if ω is incommen-
surate with 2π, and if ψ is a Riemann integrable function, then

lim
N→∞

1
N

N∑
k=1

ψ(f(x)) =
∫

S1
ψ(x) dx

Proof: (This is only a partial proof.) For the sake of making the steps in the proof more
transparent, we transform the problem to the unit circle. Write z = e2πix and θ = e2πiω. We
study the difference equation z(k + 1) = e2πiωz(k). Now

1
p

∑p−1
k=0 (e2πikz(0))k = 1

p

∑p
k=0 θkz(0)k

=


1 p = 0

1
pzp θnp−1

θp−1

If ψ(z) =
∑k

i=1 aiz
i then we just add up the above. This gives the result when ψ is a polynomial

in e2πix0 . We omit the demonstration that any Riemann integrable function can be approximated
by such polynomials with sufficient precision so as to complete the proof.

4.4 Other Difference Equations

There are completely deterministic procedures for determining the decimal expansion of π. Yet if
we considered a discrete time stochastic process x(t) taking on values in the set {0,1, . . . ,9} with
uniform distribution and independent trials, we would have great difficulty in designing a test
which would distinguish the above expansion from a sample function of the stochastic process.
This is but one of many procedures for generating what we might call pseudorandom processes.
Recently it has become a very popular game to invent deterministic schemes for generating
processes whose behavior looks stochastic. This may be done using difference equations or
differential equations. Because rather less is known about the differential equation case we begin
with a brief discussion of difference equations.

Perhaps the best known pseudorandom difference equation is the so-called “logistic” equation

x(i + 1) = 1− k
(
x(i)− 1

2
)2
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considered on the interval 0 ≤ x ≤ 1 and for 0 ≤ k ≤ 1. In this range of values we may distinguish
between several types of behavior according to

(a) 0 < k < 1
4

(b) 1
4 < k <∼ .91

(c) ∼ .91 < k < 1

In the first case all solutions approach an equilibrium point. In the second region there are many
periodic solutions – more as k gets larger. In the last case the motion appears to be quite chaotic
indeed.

If f : [0, 1]→ [0, 1] is such that for each value of y there is a finite number of values x such that
f(x) = y, and if f is differentiable with a derivative that is nonzero except for a finite number of
points, then we can consider the equation

ρ(x) =
∑

inverse
images

1
|f ′(x)|ρ(f−1(x))

This is the functional equation that a steady state density for x would need to satisfy if it were
to exist.

Example 1: Let f(x) = 4x − 4x2. In this case f(f(. . . f(x) . . . )) is a polynomial of degree
2n where n is the number of compositions. Clearly this has at most 2n distinct periodic solutions
of period n because a polynomial of degree 2n has, at most, 2n real roots. It is easy to see that
if all the roots are real and distinct then there are 2n distinct periodic solutions of period n.
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Figure 4.3.Trajectory of the logistic equation x(k + 1) = 4x(k)− 4x2(k).

The functional equations that the steady state invariant density would need to satisfy can be
found as follows. From

y = 4x− 4x2

we see that
(y − 1) = −(2x− 1)2

or
x = 1

2 (1±
√

1− y)
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thus

ρ(y) =
1√

1− y

(
ρ( 1

2 + 1
2

√
1− y) + ρ( 1

2 − 1
2

√
1− y)

)
Example 2: Let f be defined by

f(x) =
{

2x : 0 ≤ x ≤ 1
2

2− 2x : 1
2 ≤ x ≤ 1

then the difference equation
x(k + 1) = f(x(x))

gives rise to the invariant measure equation

ρ(x) = 1
2ρ(x/2) + 1

2ρ
(
(1− x)/2

)
Clearly this admits the solution ρ(x) ≡ 1. Value x(0) = a gives rise to a periodic solution of
period n if

f(f(. . . f(a)) . . . )) = a

If n = 2 and a < 1/2 this is
2− 4a = a

4.5 Differential Equations

We have seen that simple difference equations of the form x(k + 1) = f(x(k)) can have solutions
that are highly unstable but yet are not unbounded. Differential equations can exhibit the same
type of behavior but unless time enters explicitly they must be of dimension 3 or more.

Consider the third order equation

x(3) + x(2) + 1.25x(1) − 1.8 sin(x) = 0

Figure 4.3 shows a trajectory in (x, ẋ)-space.It is confined to a relatively small region of the space
but yet it does not appear to be periodic.

-4 -2 2 4 6

Figure 4.3.Trajectory of the third order equation.
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4.6 Exercises 4

1. Any given a number in [0, 1) has a binary expansion x = .a1a2a3 · · · . Of course a1 is one
if x ≥ 1/2, a2 is one if x− a1 ≥ 1/4, . . . etc. Describe the process of generating the ai as a
pair of scalar difference equations by introducing bi = x − a1, a2, . . . , ai−1 then finding g1

and g2 so that
ai+1 = g1(ai, bi)

bi+1 = g2(ai, bi)
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Chapter 5

System Concepts

This chapter marks the transition from pure stochastic processes to the subject of stochastic
control. We assemble here a few control and system theoretic tools that will be used in the later
chapters. We are interested in modeling systems that have control terms (inputs), stochastic
terms, and explicitly observable terms (outputs). One of the basic problems we will discuss is
that of finding a stochastic differential equation whose solutions have certain specified statistical
properties. A second basic problem is that of modeling energy flow in systems with inputs and
outputs.

5.1 Deterministic Linear Systems

A deterministic, continuous time, differential equation based, input-output model takes the form

ẋ = f(x, u, t); y = h(x, t)

A stochastic, differential equation based, input-output model takes the form

dx = f(x, u, t)dt +
k∑

i=1

gi(x, u)dwi +
l∑

j=1

g̃i(x, u)dNi ; dy = h(x)dt + i(x)dν

Mathematical models of the form

ẋ = Ax + Bu ; y = Cx

with x, u, and y vector valued are called linear systems. If A, B, and C are constant then it is
said to be a time invariant linear system. If Φ(t, σ) satisfies the equations

d

dt
Φ(t, σ) = A(t)Φ(t, σ) : Φ(σ, σ) = I

then Φ is said to be a fundamental solution of ẋ = Ax. If A is constant then Φ(t, σ) is just
eA(t−σ) = I + A(t− σ) + A2(t− σ)2/2 + · · · . The so-called variation of constants formula gives
y in terms of x(σ) and u

y(t) = C(t)Φ(t, σ)x(σ) +
∫ t

σ

C(t)Φ(t, σ)B(σ)u(σ)dσ

71
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The function T defined by T (t, σ) = C(t)Φ(t, σ)B(σ) is sometimes called the weighting pattern.
If A, B, and C are constant then it takes the form

T (t, σ) = CeA(t−σ)B

with eAt being defined by the (convergent) series

eAt = I + At + A2t2/2! + · · ·

A linear system is said to be controllable if for any given value of x(σ) and any given t > σ
there is a control u(·) defined on [σ, t] such that u(·) drives the system to the state zero at time
t. The matrix

W (σ, t) =
∫ t

σ

Φ(t, σ)B(σ)BT (σ)ΦT (t, σ)dσ

is called the controllability gramian for the interval [σ, t]. Notice that W (σ, t) is automatically
nonnegative definite. An application of the control u(t) = BT (t)ΦT (t, σ)W−1(t, σ)x(σ) shows
that if W−1(t, σ) exists then the system is controllable. If it is positive definite then the system
is controllable. If A and B are constant then W (σ, t) is positive definite if and only if the matrix
(B, AB, . . . , An−1B) (commas denote column partition) has rank equal to n = dimx.

The problem of observability relates to the possibility of determining the value of x(t) from
a knowledge of y(·) = cx(·) over some interval [t0, t1]. The answer to this type of question can
also be reduced to the investigation of the definiteness of a symmetric matrix. Consider the
expression

ΦT (t1, t0)cT (t)y(t) =
∫ t

t0

ΦT (t1, t0)cT (t)c(t)Φ(t1, t0)dtx0 +
∫ t

t0

ΦT (t, σ)cT (t)
∫ t

0

Φ(t, σ)u(σ)dσdt

the matrix

M(t1, t0) =
∫ t1

t0

ΦT (t1, t0)cT (t)c(t)Φ(t1, t0)dt

is called the observability gramian.

If A, B, and C are constant matrices then one can associate to the system

ẋ = Ax + Bu; y = Cx

a matrix of rational functions
G(s) = C(Is−A)−1B

called the transfer function. It has a number of properties that make it useful in doing systems
analysis. In the first place, if we recall that if the real parts of the eigenvalues of A are all less
than σ then x(t)e−σt approaches zero as t goes to infinity and we may define the the Laplace
transform for Re s > σ by the integral

L
(
x(·)

)
(s) =

∫ ∞
0

e−stx(t)dt

It is not too hard to see that the Laplace transform of the matrix exponential eAt is given by∫ ∞
0

e−steAtdt = (Is−A)−1

Thus we see that the transfer function is the Laplace transform of the weighting pattern.

It is of importance to observe that if the real parts of the eigenvalues of A are negative then not
only do all the unforced solutions of ẋ = Ax+Bu go to zero as t goes to infinity, but in addition,
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the solution corresponding to u = u0 cos wt approaches the form x(t) = x1 cos ωt + x2 sinωt and
we can compute vectors x1 and x2 from u0 and the transfer function. In fact, if we write

C(Iiω −A)−1B = ReG(iω) + iImG(iω)

then
x1 = Im(iω)u0;x0 = ReG(iω)u0

This justifies the use of the term “frequency response”.

If a linear model is to describe certain types of physical situations then additional symmetries
and structure maybe present. For example, if

ẋ = Ax + Bu ; y = Cx

describes a passive electrical network with u being a vector of currents associated with a collection
of terminal pairs and y being the corresponding voltages, then 〈u, y〉 is the rate of flow of energy
into the system. If the stored electrical energy is given by xT QT x then of course

d

dt
xT Qx = xT (QA + AT Q)x + xT QBu + uT BT Qx

= xT (QA + AT Q)x + 2〈y, u〉

thus we must have B = CT and QA + AT Q ≤ 0.

A linear stationary system that is controllable and observable and symmetric in the sense
that CAiB for i = 1, 2, . . . is a symmetric matrix is said to be passive if there exists a symmetric
positive definite matrix Σ such that

d

dt
xT (t)Σx(t) ≤ yT (t)u(t)

Example: Consider the linear Itô equation

dx = ydt

dy = zdt + adw

dz = −xdt− 2ydt− zdt + dw

Display the equation for the steady state variance as a function of the parameter a. Is there any
value of a such that the steady state variance is not positive definite? You can answer this by
solving for the variance if you like but there are other ways to get the answer.

Solution: Writing this in vector matrix notation we have dx
dy
dz

 =

 0 1 0
0 0 1
−1 −2 −1

 x
y
z

 dt +

 0
a
1

 dw

The steady state variance equation is 0 1 0
0 0 1
−1 −2 −1

 σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

+

 σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

 0 0 −1
1 0 −2
0 1 −1

+

 0 0 0
0 a2 a
0 a 1

 = 0

It can be solved one component at a time. From the first row, σ12 = 0, σ22 = −σ13 and
σ23 = σ11 +σ13. Turning to the second row, we see that σ23 = −a2/2 and that σ33−σ23−2σ22 =
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−a. Thus σ11 + σ13 = −a2/2 and σ33 − 2σ22 = −a − a2/2. Finally, the last equation is
σ13 + 2σ23 + σ33 = 1/2. Thus, in addition to σ12 = 0 and σ23 = −a2/2 we have

σ11 + σ13 = −a2/2

σ22 = −σ13

σ33 − σ22 = −a2

σ13 + σ33 = a2

This leads to σ33−2σ22 = a+a2, and σ22 +σ33 = 1/2−a2 which implies that σ33 = 1/4+a/2
and σ22 = 1/4− a/2− a2, and

Thus σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

 =

 1/2 + a + a2 0 −1/2− a− 3a2/2
0 1/2 + a + 3a2/2 −a2/2

−1/2− a− 3a2/2 −a2/2 1
2 + a + 5a2/2


The determinant vanishes, signaling a lack of positive definiteness, if 1− a− a2 = 0.

An easier way to do the problem is to observe that the eigenvalues of A have negative real
parts and thus there is a steady state solution. The steady state solution will be positive definite
if the syistem is controllable. The controllability matrix is

[b, Ab, A2b] =

 0 a 1
a 1 −2a− 1
1 −2a− 1 a− 1


and its determinant is −a3 − 3a2 − 2a − 1. The covariance matrix fails to be positive definite
when the system fails to be controllable.

5.2 Covariance and the Power Spectrum

We now turn to a more general situation which illustrates the much broader scope of the previous
somewhat special reasoning. For a more detailed account of the background ideas involved here
see the literature.

A real valued stochastic process is said to be wide-sense stationary if the statistical properties
Ey(t) and Ey(t)y(τ) are, respectively, independent of t and dependent only on |t−τ |. A stationary
process is said to be ergodic if all statistical properties can be computed as time averages. For
example, if y is ergodic, then

Ey(t)y(t + τ) = lim
T→∞

1
2T

∫ T

−T

y(t)y(t + τ)dt

with y, as it appears on the right, being any particular sample path.

In applications one is often interested in processes of this type and usually measures the
power spectrum rather than the autocorrelation function. For a sine wave, y(t) = a sinωt the
power is concentrated at ω and the power density (power per unit bandwidth) at that point is a
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delta function of strength a2. In general, the power spectrum, defined for zero mean, wide-sense
stationary processes by

Φ(ω) = lim
T→∞

1
2T

∣∣∣∣∣
∫ T

−T

e−iωty(t)dt

∣∣∣∣∣
2

is a measure of the “power” at ω in the process y.

For stationary, ergodic processes, the power spectrum and the autocorrelation function are
related by the well known Wiener-Khinchin theorem which states that the power spectrum is
simply the Fourier transform of the autocorrelation function. We sketch how this goes. By
definition

Φ(ω) = lim
T→∞

1
2T

∣∣∣∣∣
∫ T

−T

e−iωtφ(t)dt

∣∣∣∣∣
2

which we can write as

Φ(ω) = lim
T→∞

1
2T

∫ T

−T

∫ T

−T

e−iωty(t)eiωτy(τ)dtdτ

= lim
T→∞

1
2T

∫ T

−T

∫ T

−T

e−iω(t−τ)y(t)y(τ)dtdτ

Let σ = t− τ and use the ergodic property to get

Φ(ω) = lim
T→∞

∫ T

−T

e−iωσEy(t)y(t− σ)dσ

which is the desired result.

Since the power spectrum of a real valued stochastic process is clearly nonnegative at each
frequency, we see that there must be some nontrivial conditions on a function φ in order for it to be
an autocorrelation function. These are best brought out by means of the Parseval relation which
states that for complex valued functions which are square integrable on the interval (−∞,∞)
and related by

Φ(ω) =
1√
2π

∫ ∞
−∞

e−iωty(t)dt

we have ∫ ∞
−∞
|y(t)|2dt =

∫ ∞
−∞
|Φ(ω)|2dω

Example: Let y(t) = e−|t| defined on (−∞,∞). Its Fourier transform is

ỹ(w) =
1√
2π

(∫ ∞
0

e−iwte−tdt +
∫ 0

−∞
e−iwtetdt

)
=

1/
√

2π

1 + w2

If Φ(ω) is nonnegative on the real axis, then of course for any u(·)

0 ≤
∫ ∞
−∞

Φ(ω)|ũ(ω)|2dω

Since multiplication goes over into convolution after Fourier transformation, we have

0 ≤
∫ ∞
−∞

∫ ∞
−∞

φ(t− τ)u(t)u(τ)dtdτ
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Functions φ which satisfy this inequality are said to be positive definite (in the sense of Bochner).
The autocorrelation function of a stationary process is positive definite.

One can gain some appreciation for what it means for a function to be positive definite by
letting u be a zero except for a string of narrow pulses centered at t1, t2, . . . , tn. In this case
define

Φ(u) =
∫ ∞
−∞

∫ ∞
−∞

φ(t− τ)u(t)u(τ) dtdτ

Then the integral is approximated by

[α1, α2, . . . , αn]
φ(t1 − t1) φ(t1 − t2) · · · φ(t1 − tn)
φ(t2 − t1) φ(t2 − t2) · · · φ(t2 − tn)
· · · · · · · · · · · ·

φ(tn − t1) φ(tn − t2) · · · φ(tn − tn)




α1

α2

...
αn


where αi is the area under the ith pulse. Clearly we require that the symmetric matrix on the
right should be positive definite.

5.3 The Zero-Crossings Problem

We consider briefly here a a problem that comes up frequently in applications. We wish to
evaluate the expected number of times a gauss-markov process will cross a given level in a given
period of time. The essential calculation will be given in detail but some of the details of the
argument will only be treated superficially.

Consider the Itô equation

dx = (−x + v)dt ; x(0) = 0

dv = (−v − x)dt + dw ; v(0) = 0

Compute the steady state value of the covariance matrix

Σ(τ) = E
[

x(t)
x(t + τ)

][
x(t) x(t + τ)

]

dx = (−x + v)dt ; x(0) = 0

dv = (−v − x)dt + dw ; v(0) = 0

The steady state value of the covariance matrix

Σ(τ) = E
[

x(t)
x(t + τ)

][
x(t) x(t + τ)

]

can be obtained from the steady state solution of the variance equation associated with (x, v),

0 =
[
−1 1
−1 −1

] [
σ11 σ12

σ21 σ22

]
+

[
σ11 σ12

σ21 σ22

] [
−1 −1
1 −1

]
+

[
0 0
0 1

]
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by solving
Σ(τ) = Σ∞eAT τ

Note that

eAT τ =
[

e−τ cos τ e−τ sin τ
−e−τ sin τ e−τ cos τ

]
The steady state value of Σ is

Σ∞ =
[

1
8

1
8

1
8

3
8

]

5.4 Stochastic Realization Problem

The basic problem in stochastic realization is that of finding a dynamical model, say of the form

dx = f(x)dt + Σgi(x)dwi + Σg̃i(x)dNi

and a map h(·) such that y(t) = h(x(t)) has certain, preassigned, statistical properties. Stated
in this way, the stochastic realization question is a very general one and one for which a general
answer is not likely to be too useful. In control theory and communication theory one is often
interested in specifying just the mean and covariance; most commonly

Ey(t) = 0
Ey(t)y(t + τ) = φ(τ)

and then asking for a linear model of the form

dx = Axdt + Bdω

y = cx

such that y has the desired statistical properties. We will see that this particular version of the
stochastic realization problem has a solution which is essentially unique.

Before discussing the mathematical treatment of the problem of stochastic realizations we
give a few examples.

Blackbody Realization

The most striking example of a stochastic realization problem comes from physics and con-
cerns the so-called “blackbody radiation problem”. In the late 1890’s experimenters in Berlin
were measuring the power spectra of the radiant energy coming from the sun. The existing theo-
ries as developed by Wien and Rayleigh-Jeans did not agree with each other and did not explain
the experimental results in a uniform way. Letting ω denote the frequency of the electromagnetic
radiation, Max Planck noticed that for appropriate values of α and β the function

Φ(ω) =
β|ω|3

eα|ω| − 1

provided an excellent fit to the observed data, and more importantly, suggested his quantum
hypothesis in order to explain this function. Thus it is fair to say that insofar as Planck’s
contributions are concerned, the “old quantum mechanics” grew out of an attempt to solve a
particular stochastic realization problem.

Speech Synthesis
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No two people pronounce a given word the same way. This does not cause much difficulty
for humans but it is the source of great difficulty for researchers trying to build artificial speech
recognition systems. It means that there is not a single acoustical pressure wave that corresponds
to the word “dizziness” but rather, a class of signals. Conversely, it is not appropriate to model
“dizziness” by a single signal but rather it should be thought of as a family of possible realizations.
Consider a finite state process of the form

dx =
∑
i=1

φi(x)dNi

y(t) =
r∑

i=1

φi(x)bi(t)

where the bi(t) are fixed deterministic or stochastic processes. According to this point of view
spoken English corresponds to a set of stochastic models.
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Figure 5.1. A waveform of the author saying the word “spectral” (left) and “factor” (right).

Turbulence

Other problems of this type which are not yet solved include an explanation of the power
spectra of certain fluid mechanics problems. In this area the nature of the underlying model is
still very much up in the air. In the 1940’s Kolmogorov applied physical principles to reason
that the power spectrum associated with turbulence should, for large value of w behave like
π(ω) = kω−5/2. The status of this theory is still uncertain.

5.5 Linear Stationary Realizations

As we have seen in section 2.5, the covariance associated with

dx = Axdt +
m∑

i=1

bidwi ; x(t) ∈ Rn

is given by

Ex(t)xT (t + τ) = Σ(t)eAT τ ; τ ≥ 0
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where Σ satisfies

Σ̇ = AΣ + ΣAT +
m∑

i=1

bib
T
i

This means that in the limit as t goes to infinity, we obtain an autocorrelation function
which depends on τ only provided that the eigenvalues of A have negative real parts. Under this
hypothesis we have a unique solution Σ to

AΣ + ΣAT +
m∑

i=1

bib
T
i = 0

Moreover, this solution is nonnegative definite and can be expressed as

Σ =
m∑

i=1

∫ ∞
0

eAtbib
T
i eAT tdt

It is not too hard to see that Σ is actually positive definite if the system

ẋ = Ax +
m∑

i=1

biui

is controllable. That is to say, Σ is positive definite if the set {Aibj} spans Rn.

In any case, assuming only that Re λ(A) < 0 we have for τ > 0

lim
t→∞

Ex(t)x(t + τ) =

(
m∑

i=1

∫ ∞
0

eAtbib
T
i eAT tdt

)
eAT τ

If y = cx is any linear functional on x, then

lim
t→∞

E
[
y(t)yT (t + τ)

]
= cΣeAT τ cT

where Σ is as above.

5.6 Spectral Factorization

Given a linear stochastic equation of the form

dx = Axdt + Bdw ; x(t) ∈ Rn

with (A, B) a controllable pair ((B, AB, . . . , An−1B) has rank n), we know that if the eigenvalues
of A have negative real parts, then

lim
t→∞

Ex(t)xT (t + τ) = ΣeAT τ ; τ ≥ 0

lim
t→∞

Ex(t)xT (t + τ) = e−AτΣ ; τ ≤ 0

Using the definition of the Fourier transform we obtain

Φ(ω) =
∫ ∞
−∞

e−iωτφ(τ)dτ

=
∫ ∞

0

e−iωτΣeAT τdτ +
∫ 0

−∞
e−iωτe−AτΣdτ

= −Σ(−iωI + AT )−1 − (iωI −A)−1Σ
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We can use the formula ΣAT + AΣ + BBT = 0 to reexpress this. Adding and subtracting iωΣ
we get

(A− Iiω)Σ + Σ(Iiω + AT ) = −BBT

Pre and post multiplication by −(Iiω −A)−1 and (Iiω + AT )−1 yields

Σ(−Iiω −AT )−1 + (Iiω −A)−1Σ = (Iiω −A)−1BBT (−Iiω −AT )−1

Thus

Φ(ω) = (−Iiω −A)−1BBT (Iiω −AT )−1

This shows that the Fourier transform of the autocorrelation function is hermitian and non-
negative. Looking at y = cx we get for the Fourier transform of Ecx(t)cx(t + τ) = φ(τ)

F(φ(·)) = c(−Iiω −A)−1bbT (Iiω −AT )−1cT

The solution of the present version of the stochastic realization problem is based on this
identity and the following lemma. (The spectral factorization lemma.)

Lemma: Given an even function ψ(s) = ψ(−s) which is real, rational, and nonnegative on
s = iω for all ω, there exists r(s), real, rational, and having no poles in the half plane Re s > 0
such that

ψ(s) = r(s)r(−s)

Moreover, r(s) is analytic wherever ψ is.

Proof: See Finite Dimensional Linear Systems.

Suppose we are given a bounded, continuous real valued function φ(·) = φ(−·) which for t ≥ 0
is of the form

φ(t) =
∑

αij ti eλj t ; (λj may be complex)

positive definite in the sense of Bochner. Its Fourier transform Φ is nonnegative and hence can
be expressed as

Φ(ω) = r(iω)r(−iω)

with r(s) a real rational function with its poles in Re s > 0 . (Poles on Re s = 0 are ruled out by
the fact that they lead to infinite total power in the power spectrum.) In view of these remarks
we can express the inverse Fourier transform as

(F−1r)(t) = ceAtb

Tracing backwards the above formulae yield the identity

lim
t→∞

Ey(t)y(t + τ) = φ(τ)

for

dx = Axdt + bdω

y = cx

Thus to solve the problem of realizing a given stationary covariance φ(·) with a Wiener process
model it is enough to
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(i) Transform φ(·)
(ii) Factor the transform using spectral factorization
(iii) Express r(s) as c(Is−A)−1b
(iv) Construct

dx = Axdt + bdω
dy = cx

Example: Let the power spectrum be

Φ(w) =
1

1 + w2
+

1
9 + w2

=
10 + 2w2

(1 + w2)(9 + w2)

=
√

2
(
√

5 + w)
(1 + iw)(3 + iw)

·
√

2
(
√

5− iw)
(1− iw)(3− iw)

A corresponding realization of the covariance is provided by[
dx1

dx2

]
=

[
0 1
−3 −4

] [
x1

x2

]
dt +

[
0
1

]
dw ; dy = [

√
10 ,
√

2]
[

x1

x2

]
dt

5.7 The Gauss-Markov Heat Bath

This section describes an application of the above ideas to a basic problem in statistical mechanics.
The stochastic realization problems which appears here is distinguished from those just considered
by a need to realize jointly a certain “coupling behavior” (e.g., an impedance) together with a
power spectrum. This idea is illustrated very nicely by the Nyquist-Johnson model for a resistor.
In fact the model proposed by them, when used with the theory of linear systems, leads to a
rather nice packaging of a certain circle of ideas in statistical mechanics. The advantage of the
system theory formalization is that it allows one to discuss the interaction between systems in a
very precise way. We will illustrate this with a discussion of heat baths. In the process we will
need to clairfy the following ideas.

1. Linear passive systems and stochastic dynamical systems

2. The fluctuation dissipation equality and temperature.

3. The heat bath as a stochastic dynamical system.

By a linear, finite dimensional, gaussian system (FDLGS) we understand a pair

dx = Axdt + Budt + Gdw

y = Cx + Du

Here dw is a vector valued Wiener process and x, u, y are all vector valued. This system is said
to be minimal if (A, B) is a controllable pair and (A, C) is an observable pair.

We refer to
G(s) = C(Is−A)−1B + D

as the transfer function associated with the system and we call

φ(s) = (D + C(−Is−A)−1G)T (D + C(Is−A)−1G)
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the power spectrum of the system. We say that the system is externally reciprocal if G(s) = GT (s).
The system is said to be deterministically passive if the eigenvalues of A have real parts that are
negative and if G(iω) + GT (−iω) ≥ 0. A deterministically passive system of this form is said to
be monotemperaturic if there exists a proportionality factor β ≥ 0 such that the power spectrum
of y and the frequency response are related by(

C(−Is−A)−1G+D
)T (

C(Is−A)−1G+D
)

= β[C(−Is+A)−1BT +DT +C(Is−A)−1B+D] (∗)

In the language of thermodynamics, this equation expresses a frequency independent fluctuation-
dissipation proportionality. In the language of system theory it expresses a proportionality be-
tween the power spectrum and the parahermetian part of the transfer function. If equality (*)
holds we call β the temperature of the system. Several justifications for this definition can be
given. One is that (*) expresses a property of electrical networks constructed from linear constant
inductors, capacitors and resistors in Nyquist-Johnson form and all of the same temperature. It
is best thought of as the fluctuation-dissipation equality in the context of linear systems excited
by white noise.

One of the beautiful facts about the linear theory of equilibrium thermodynamics is the
equipartition of energy theorem which states that the expected value of the energy of each mode
of a system in equilibrium is the same. For example, a balloon in still air can be expected to
have as much kinetic energy as an O2 molecule. This idea finds its expression here in terms of
the interconnection of lossless systems with monotemperaturic systems.

We will say that a linear stochastic system has the equipartition property if there exists a
positive number β such that whenever it is connected to a conservative system with impedance
Z(s) the resulting system has a unique invariant measure and for this measure

EyyT = βG0 ; G(s) = G0s
−1 + G1s

−2 + . . .

EuuT = βZ0 ; Z(s) = Z0s
−1 + Z1s

−2 + . . .

regardless of the impedance Z(s) of the conservative system.

The explanation of this definition is that if one chooses normal coordinates for the lossless
system then it appears as

ẋ = Ωx + Bu; y = BT x

Equipartition means that ExxT = βI for some β and thus EyyT = βBT B. However Z(s) =
BT Bs−1+BT ABs−2+ . . . . Similar but more involved calculations apply to EuuT . The following
theorem is easily verified.

Theorem 1: A linear stochastic system has the equipartition property if and only if it is
monotemperaturic.

Monotemperaturic linear stochastic systems have the following canonical form, relating to the
Darlington normal form for passive electrical networks [5].

Theorem 2: If S is a minimal, externally reciprocal, monotemperaturic system then we can
make a linear change of coordinates on x such that it takes the form (Ω = −ΩT )

dx = (Ω− 1
2β

GGT )xdt + Budt + Gdw

dy = Bẋdt + Du̇dt +
√

2βDdf

Conversely, any system of this form is monotemperaturic.
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Proof: That systems of this form are monotemperaturic is just a calculation.

Consider the deterministic system

ẋ = (A−GGT )x + Bu1 + Gu2 ; y1 = Bu; y2 = GT x

Adopt the notation [
ŷ1

ŷ2

]
=

[
G11(s) G12(s)
G21(s) G22(s)

] [
û1

û2

]
The characterization of monotemperaturic implies that this system is convervative and hence it
can be realized with A− 1

2β GGT skew symmetric.

The classical equipartition of energy theorem is quite elegantly expressed by saying that a
linear stochastic differential equation of the form

dx = (S −BBT )xdt + Cudt + Bdw; y = Cx

(S = −ST ) has the property that its steady state variance is 1
2 I and if we interconnect it with a

lossless system
z = Ωx + Gu; v = GT z : Ω = ΩT

then the random process (x, z) has variance 1
2 I as well.

We can use these ideas to explain the Rayleigh-Jeans law in the following way. If we have a
one parameter family of monotemperaturic systems of the form

dx = (S − ε2BBT )xdt + εBdw; y = cx; S = −ST

Then in steady state

Ey(t)y(t + τ) =
1
2
ceAT

ε τ cT

where
Aε = S − ε2BBT

There is, of course, a limiting value for Aε as ε goes to zero and the resulting power spectrum is
pure line spectrum. The lines in the line spectrum correspond to the eigenvalues of S. Thus the
number of eigenvalues of S in an interval ω0 < ω < ω0 + δ determine the amount of power in the
interval provided we select the linear functional c in such a way as to weight all modes equally.

One feature of monotemperaturic systems is that they form an “interconnectable set” in that
if we interconnect two systems which satisfy this form of the fluctuation-dissipation equality
then the resulting system does also. Within the realm of linear gaussian systems there is a
generalization of this idea which is significant, namely the fact that if Re g(iω) = χ(ω)ψ(iω) for
a system S1 and if the same is true for a system S2 then it remains true for the interconnection
of S1 and S2. Let us denote by P (χ) the set of passive systems with this property.

Theorem 3: Suppose that

dx = (Ax + bu)dt + Bdw; y = cx

is given with (A, b, c) a minimal triple and (A, B) a controllable pair. Suppose further that the
eigenvalues of A have negative real parts and that Re g(iω) ≥ 0 for all ω. If q and p satisfy

[
q̇
ṗ

]
=

[
0 ω
−ω 0

] [
q
p

]
+

[
ε
0

]
uT ; yT = [ε, 0]

[
q
p

]
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We define an interconnected system by

d

x
q
p

 =

 A bε 0
−c 0 ω
0 −ω 0

x
q
p

 dt +

Bdω
0
0


If G(s) = c(Is−A)−1b and if AQ + QAT = BBT with φ(s) = c(Is−A)−1Q(−Is + AT )cT then

Σ0 =
[

Q 0
0 αI

]
with α =

ψ(iω)
Reg(iω)

is the weak coupling limit of the steady state variance limiting value as ε goes to zero.

Proof: The proof of this theorem involves solving for the limiting value of the solution of a
system equation of the form (A + εB)x = c with A singular. In the first place, for Re G(iω) > 0
we see that the eigenvalues of

Ā =

 A εb Q
−c 0 ω
0 −ω 0


have negative real parts for ε 6= 0. thus for ε 6= 0 there is a unique positive definite variance
Σ(∞) which is the solution of

Ā(ε)Σ(∞) + Σ(∞)ĀT =
[

BBT 0
0 0

]
= M

To solve this we make use of the representation

Σ(∞) =
∫ ∞

0

eĀT (ε)tMeA(ε)tdt

transformed by Parseval’s theorem to

Σ(∞) =
1

2πi

∫ i∞

−i∞
(Is− ĀT (ε))−1M(Is− Ā(ε))−1ds

this formula then readily yields the desired result.

We may then think of any system

dx = Axdt + Budt + dω; y = cx

with c(Is − A)−1b positive real as defining a heat bath in thesense that if we couple it loosely
an oscillator and allow it to come to equilibrium the oscillator will possess a certain expected
energy, independent of the details of the coupling or the oscillator.

Now it is well known in a three dimensional cavity the number of eigenfrequencies for the
wave equation between ω0 and ω0 + δ is approximately δω2

0 for ω0 not too small. Thus if the
coupling of each oscillator to y (as represented by c) is of the same strength, then the power
spectral density is proportional to ω2 as indicated above.

In the classical theory one takes χ(ω) to be independent of the frequency and identifies
its value, via physical reasoning, with 1/2 the temperature times Boltzmann’s constant. In a
quantum theory, in order to be consistent with the black body radiation curve, it would be
necessary to take χ(ω) to be a member of the one-parameter-family

χ(ω) =
hω/T

ekω/kT − 1
We make some additional remarks here. In the first place, for an oscillator with weak coupling
to a heat bath we find that the steady state value of the expected value of the energy depends on
the natural frequency ω of the oscillator and is simply χ(ω). If we connect with weak coupling a
lossless first order system – a capacatance or an inductance – we get χ(0) or χ(∞) respectively.
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5.8 Reducibility

Let A be the infinitesimal generator of a finite state, continuous time Markov process whose state
space is a subset of the real line. If {x1, x2, . . . , xn} are the values taken on by this process, then

y(t) = x(t)

is a real valued stochastic process and its autocorrelation function

Ey(t)y(t + τ) = φ(t, τ)

can be computed. In particular we can ask if there exists a limit

lim
t→∞

Ey(t)y(t + τ)

As might be expected, the existence and uniqueness of such a limit is dependent on the properties
of A.

One says that a finite dimensional generator A is irreducible if there is no permutation matrix
P such that

PAP−1 =
[

A11 0
A12 A22

]
with A11 and A22 both square. It is clear that an infinitesimal generator A is always singular.
If, in fact, there are two distinct probability vectors p1 and p2 such that Ap1 = Ap2 = 0, then of
course

A(αp1 + (1− α)p2) = 0

for some value of α it will happen that αp1 +(1−α)p2 has nonnegative entries with some entries
zero. By a permutation we can arrange these to be at the top. Thus

a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

. . .
...

an1 a2n . . . ann


[

0
xl

]
= 0

Since xl has positive entries and since A is nonnegative off the diagonal, we see that the upper
right-hand block of A must be zero and that A must be reducible. Thus we have shown the
following.

Lemma: If there is not a unique steady state probability distribution for ṗ = Ap, then A is
reducible.

5.9 Covariance Generation with Finite State Processes

We now turn our attention to the question of generating a covariance using a finite state continu-
ous time Markov process. This represents a considerable departure from the usual Gauss-Markov
theory discussed in the previous section. The main question here is this. Given a stationary co-
variance φ(τ) under what circumstances does there exist a finite state continuous time Markov
process x(·) taking on values in a finite set X and a function f : X → R (the real numbers)
such that y(t) = f [x(t)] has a specified mean and covariance?
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Because we have shown that any finite state continuous time Markov process is equivalent to
one which can be expressed as

dx(t) =
δ′∑

i=1

Bix(t)dNi(t) ; x(t) ∈ Rn

with Ni(t) a standard Poisson counting process with rate λi, this work is a natural complement
to the Gauss-Markov covariance generation problem.

We find it convenient to associate with each state of an n state Markov process a point in
Rn. This lets us visualize the process as jumping between points in a vector space and allows
us to use certain familiar formulas from linear system theory. Let ei be the ith standard basic
element in Rn

ei = [0, 0, . . . , 0, 1, 0, . . . , 0]T

ith coordinate

and let x be a process which takes on values in the set {e1, e2, . . . , en}. If pi(t) is the probability
that x(t) = ei, then our assumptions imply that there exists a constant matrix A such that

ṗ1(t)
ṗ2(t)

...
ṗn(t)

 =


a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

. . .
...

an1 a2n . . . ann




p1(t)
p2(t)

...
pn(t)


Notice that because of the way we have embedded the states in Rn we have

p(t) = Ex(t)

As we discussed in chapter 2, the entries of A satisfy the conditions

(i) aij

{
≥ 0 if i 6= j
≤ 0 if i = j

(ii)
∑n

i=1 aij = 0

Such matrices are called infinitesimally stochastic. Of course Peron-Frobenius theory implies
that A has a nontrivial null space. If we ask that the null space be one dimensional, then we are
assured that there is a unique steady state probability distribution. For these reasons we will
assume

(iii) the kernel of A is one dimensional.

Such processes are called irreducible.

As an immediate consequence of the definitions we see that

Ex(t) = eAtx(0)

Because the ith and jth components of x are never simultaneously nonzero and because the
components take on only the values zero and one

Σ(t) = Ex(t)xT (t) =


p1(t) 0 . . . 0

0 p2(t) . . . 0
...

...
. . .

...
0 0 . . . pn(t)


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Moreover an elementary application of Bayes’ rule yields

Ex(t)xT (τ) = Σ(t)eAT (τ−t) ; τ ≥ t

The equations (1) and (2) together with one more remark will yield a restatement of our
question in linear algebraic form. The additional remark is this. Any map of the state space of
the Markov process into R is of the form cT x for some c in Rn. Simply let the ith component of
c be f(ei) where f : X → R. Bringing these remarks together we have the following theorem.

Theorem 1: A stationary covariance φ(t− τ) = φ̂(t, τ) is realizable by a zero mean process
which is a real valued function of a finite state, continuous time irreducible Markov process if
and only if

φ(t) = cT ΣeAtc ; t > 0

for some pair (A, c) where A is an n by n matrix satisfying (i), (ii), (iii); c is an n vector such
that cT x = 0 for all x in the kernel of A, and

Σ =


p1 0 . . . 0
0 p2 . . . 0
...

...
. . .

...
0 0 . . . pn


with (p1, p2, . . . , pn) being the probability vector in the kernel of A.

The determination of what functions can be expressed in the form required by equation (4.3)
is made difficult by the requirement that A be infinitesimally stochastic. To get around the
awkwardness of this constraint we focus attention on a special class of matrices. By a circulant
matrix we understand a square matrix of the form

M =


m0 m1 m2 . . . mn−1

mn−1 m0 m1 . . . mn−2

. . . . . . . . .
m2 m3 m4 . . . m1

m1 m2 m3 . . . m0


Associated with each such M there is a polynomial m̂(z) = m0 + m1z + · · · + mn−1z

n−1. The
eigenvalues of a circulant matrix are simply the values

λk = m̂(eikθ) ; θ =
2π

n
; k = 0, 1, . . . , n− 1

Thus M meets condition (i), (ii), (iii) if and only if

(i′) the coefficients of m̂(z) are all nonnegative except for the
constant term.

(ii′) m̂(1) = 0
(iii′) m̂(z) does not vanish for z an nth root of unity unequal to one.

Under these assumptions one sees easily that the solution of

ṗ = Mp

for p(0) a probability vector, tends to

p∞ =
1
n


1
1
...
1


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Thus using such an M we see that the matrix Σ in equation (4.3) becomes 1
nI and we have

φ̃(t) =
1
n

cT eMtc ; t > 0

The condition that the mean should vanish, cT p∞ = 0, is also easily interpretable. In fact if

cT = (c0, c1, . . . , cn−1)

we introduce

ĉ(z) = c0 + c1z + · · ·+ cn−1z
n−1

In this notation cT p∞ = 0 becomes

ĉ(1) = 0

We can also express φ̃ succinctly in terms of m(z) and c(z) (see [2]).

φ̃(t) =
∑

z:zn=1

ĉ(z)ĉ(z−1)em̂(z)t ; t ≥ 0

The following lemma gives a somewhat more satisfactory form of this.

Lemma 1: The set of finite state continuous time realizable covariances include those ex-
pressible as

φ̃(t) =
n−1∑
k=1

rkem̂(e2πik/n)t ; t ≥ 0

with m satisfying (i′), (ii′) and (iii′) and the rk real and nonnegative. In particular

ψ(t) = re−σt cos ωt ; t ≥ 0

is realizable if r and σ are real and positive and ω is real.

Proof: Of course ĉ(z)ĉ(z−1) is, for z on the unit circle, real and nonnegative. Since ĉ(1) = 0,
we must have ĉ(z)ĉ(z−1) vanishing at z = 1 but otherwise we may pick the coefficients so that
ĉ(z) has arbitrary complex values at the roots of unity consistent with c(z) = c(z). Adding up
the contribution from ρ = e2πik/n we get

φ̃k(t) = 2|c(ρ)|2eRe m̂(ρ)t cos Im m̂(ρ)t

But since ĉ(ρ) is arbitrary, we see that |ĉ(ρ)|2 can be any real nonnegative number. The general
form given in the lemma then follows.

To show that the specific ψ given in the lemma is expressible in this way we make a particular
choice of n and m̂(z). Let

m̂(z) = a(1− αz − (1− α)z2) ; a, α > 0

and let σ > 0 and ω be given. At z = ei2π/n = cos(2π/n) + i sin(2π/n) the ratio of the real to
the imaginary parts of m̂ is

γ =
1− α cos(2π/n)− (1− α) cos(4π/n)
1− α sin(2π/n)− (1− α) sin(4π/n)
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Inspection of this equation shows that for any negative γ we can choose an integer n large enough
so as to have a solution for α. (As γ approaches zero, n(γ) goes to infinity.) Thus we can, with
this choice of m(z) adjust the magnitude and argument of m(exp(2πi/n) as needed to get the
function ψ(·) of the lemma. Of course we pick c in such a way as to vanish on all nth roots of
unity except the two which enter in this discussion.

Lemma 1 makes it clear how to realize nonnegative linear combinations of the basic terms
labeled there ψ; take the direct sum of realizations of the type constructed in its proof. However
these realizations

(a) will not, in general, satisfy the irreducibility condition,
and

(b) give no suggestions as to how to realize covariances such as φ(t) = 10e−|t| − e−5|t| which
are differences of positive definite functions but still positive definite.

We now establish the results necessary to get around these difficulties.

If φ(t) is a continuous, even, positive definite function, then according to the well known
representation theorem of Bochner it can be expressed as

φ(t) =
∫

[0,∞)

cos ωtdµ

for some nonnegative measure µ. Of course if µ is absolutely continuous with respect to Lebesgue
measure, then we can write

φ(t) =
∫ ∞

0

cos(ωt)Φ(ω)dω ; Φ(ω) ≥ 0

displaying the power spectrum explicitly.

However, if we assume that φ is not only positive definite but in addition it is strictly positive
definite in the sense that

φε(t) = φ(t)e2ε|t|

is for, some ε > 0, also square integrable and positive definite, then we can express φ as

φ(t) =
∫ ∞

0

e−ε|t| cos(ωt)Φ(ω)dω

with φ analytic. (This follows from Payley-Wiener theory; the Fourier transform of φ(t)e−ε|t|

analytic in a strip of width 2ε centered on the ω-axis and Φ is its Fourier transform.) Let {ti}ri=1

be any finite set of real numbers. We can approximate simultaneously the integrals φ(ti) by
Riemann sums and thus obtain

ω(t) =
m∑

i=1

e−εt cos ωitφ(ωi)si + ε(t)

with |ε(ti)| less than any preassigned positive number. Both ψ and the approximation go to zero
as |t| → ∞; in view of the continuity of φ we see that it can be uniformly approximated by a
linear combination of ψ-like terms with positive coefficients. The following theorem summarizes.

Theorem 2: Any continuous, strictly positive definite function is the uniform limit of a
sequence φn of the form

φn(t) =
m(n)∑
k=1

αke−εt cos ωk(t) ; αk > 0
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We now address the second problem mentioned at the start of this section.

Lemma 2: Stationary covariances of the form appearing in theorem 2 can be realized by a
pair (A, c) satisfying conditions (i), (ii) and (iii).

Proof: Let (Ak, ck) be a realization of αke−εt/2 cos ωkt of the form given in the proof of
lemma 1; i.e., of the circulant form. (Note we have ε/2 as the decay factor.) Then for

A =


A1 0 . . . 0
0 A2 . . . 0
...

...
. . .

...
0 0 . . . Am

 ; c =


c1

c2

...
cm


it follows that

cT eAtc =
m∑

k=1

αke−εt/2 cos ωkt

Now subtract from A the infinitesimally stochastic matrix

F =
ε

2
I − ε

2n


1 1 . . . 1
1 1 . . . 1
...

...
. . .

...
1 1 . . . 1


where n is the sum of the dimensions of the Ai. Clearly A− F is infinitesimally stochastic and
irreducible. Notice that

cT e(A−I/2)tc =
m∑

k=1

αke−εt cos ωkt

(This time the decay factor agrees with theorem 2.) Finally, because of the null spaces of each
of the Ai we see that

A


1 1 . . . 1
1 1 . . . 1
...

...
. . .

...
1 1 . . . 1

 = 0 ;

and

cT


1 1 . . . 1
1 1 . . . 1
...

...
. . .

...
1 1 . . . 1

 = 0

Together these imply cT e(A−F )tc = cT e(A−εI/2)tc and so (A− F, c) meets all requirements.

5.10 Exercises 5

1. Find a realization for a stationary, zero-mean process with autocorrelation function equal
to 10e−3|τ |.
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2. Under what circumstances is the process

y(t) = (sin t)cT x + (cos t)dT x

second order (wide sense) stationary if

dx = Axdt + Bdw

and the x process is in steady state?

3. Describe all the 2-dimensional Wiener process realizations of the power spectrum

Φ(ω) =
1

1 + ω2
+

4
1 + 4ω2

4. Find a finite state continuous time jump process realization of the power spectrum

Φ(ω) =
1

ω4 + ω2 + 1

5. An n by n matrix P is said to be orthostochastic if pij = θ2
ij with θij being the ijth element

of an orthogonal matrix. Show that under these circumstances p(k + 1) = Pp(k) defines a
Markov chain. Show that an orthostochastic matrix has nonnegative entries whose columns
sum to one. How many parameters are needed to specify an n by n orthostochastic matrix
and how many are needed to specify a stochastic matrix (i.e., -a matrix with nonnegative
entries and columns which sum to one)?

6. Find a constant matrix A and vectors b and c, such that for

dx = Axdt + bdw ; y = cx

the power spectrum of y is given by

φ(w) =
1 + w2

(1− 7w2)2 + 1

Describe the sense in which your answer is unique.

7. Consider an intensity matrix for a four-state continuous time jump process

A =


−a 0 d d
0 −a e e
b b −f 0
c c 0 −f


If pi is the probability that x = xi and if (x1, x2, x3, x4) = (m, n, m, n) then compute the
expectation of x(t)x(t + τ). Hint: Show that the eigenvalues of the matrix A satisfy

(s + a)(s + f)− af = 0

8. Let c be an n dimensional row vector whose entries are chosen from {0, 1}. Let A be an
infintessimal generator of a continuous time jump process and let p(0) be a probability
vector. Consider

Ψ(t) = ceAtp(0)

Show that if A is a circulant matrix corresponding to −1 + z then

Ψ(t) =
n∑

k=0

cke−te2πikt



92 CHAPTER 5. SYSTEM CONCEPTS

9. Find the values of a, b, λ1 and λ2 such that the stochastic differential equations driven by
Poisson counters

dx = −2xdN1 ; x(0) ∈ {−1, 1} ; EN1(t) = λ1t

dy = −2ydN2 ; y(0) ∈ {−1, 1} ; EN2(t) = λ2t

with

z(t) = ax(t) + by(t)

generate an autocorrelation function for z which is, in steady state,

Ez(t) z(t + τ) = 13e−|τ | + 2e−2|τ |
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Chapter 6

Estimation Theory

Given a noisy observation of a stochastic process and given some a priori statistical characteriza-
tion of the process, how can one extract the best estimate of the process from its noisy version?
This type of problem is ubiquitous in science and engineering. In this chapter we develop some
of the basic results.

6.1 Preliminaries

We begin with the following simple situation. Let x be Markov process which evolves in discrete
time, taking on values in a finite set X = {x1, x2, ..., xN}. Let pi(k) be the probability that
x(k) = xi and suppose that p(k + 1) = Ap(k). Let y be a second discrete time stochastic process
taking on values in a finite set Y = {y1, y2, ..., yN}. We postulate that y(k) depends on x(k)
through a probabilistic law. The law is expressed by the conditional probability statement

p
(
y(k) = yi|x(k) = xj

)
= dji(y)

If we are given the values y(0), y(1), . . . , y(k), what can we infer about x(l)? This problem,
modified in various ways, is the subject of this chapter. The application of Bayes’ rule will allow
us to do the calculations we need. In order to see how this will work, consider the following basic
calculation. Given y(1) = yi, the probability that x(1) = xj is given by

p(x = xj |y = yi) = p(y = yi|x = xj) · p(x = xj)/p(y = yj)

In vector notation
p(x|y) = p(y|x)p(x)/N

Where N is a normalization. The power of this approach comes from the fact that this can be
used repeatedly together with the probability law for the evolution of x to solve a much more
general class of problems. Letting D = (dji) as given above, and using p(k + 1) = Ap(k) we get

p(x(k + 1) = x|y(k) = yi) = D(y)Ap(x(k) = x)/N

Now suppose that the values x(k) assumes are real numbers, X = {x1, x2, . . . , xn} ∈ Rn, and
let x be a continuous time Markov process taking on values in X. Let w be a standard Wiener
process. Suppose that p̃i is the probability that x = xi and suppose that

d

dt
p̃(t) = Ap̃(t)

95
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Define y, a noisy observation of x by dy = xdt + dw. In 1965, Wonham [1] gave a derivation of
the equation satisfied by the conditional probability ρ(t, x|Yt) where Yt indicates the y process
on the interval [0, t]. In terms of the notation

D =


x1 0 · · · 0
0 x2 · · · 0
...

...
. . .

...
0 0 · · · xn

 ; b =


x1

x2

...
xn


Wonham’s equation, expressed in Itô form, is

dρ = Aρ + (D − 〈b, ρ〉I)ρ(dy − 〈b, ρ〉dt)

It is a straightforward exercise in the Itô calculus to verify that if Σρi(0) = 1 then Σρi(t) = 1
for all t > 0 and that if p satisfies the related Itô equation

dp = Apdt + Dpdy (6.1)

then the elements of pi remain nonnegative for t > 0 if they are initially nonnegative. Moreover,
the equality

ρ(t) = p(t)/Σpi(t)

holds for all t > 0 if it holds initially. We call (6.1) the unnormalized conditional density equation.
The purpose of this section is to use Bayes’ rule to derive the conditional density equation.

To begin with, we look at a discrete time case. Consider

p(k + 1) = Ap(k)
y(k) = x(k) + n(k)

with the elements of random sequence {n(k)}∞k=0 being independent for distinct values of k but
distributed according to the same density, f(n). According to Bayes’ rule, if the probability
density for x before the observation is p, then after an observation of value y we have (recall that
n = y − x)

p(x|y) = p̄(y|x) · p(x)/p̄(y)
= f(y − x) · p(x)/p̄(y)

with p̄ being the probability density of y. This can be written in vector notation as
p(x1|y)
p(x2|y)

...
p(xn|y)

 = (1/p̄(y))


f(y − x1) 0 · · · 0

0 f(y − x2) · · · 0
...

...
. . .

...
0 0 · · · f(y − xn)




p(x1)
p(x2)

...
p(xn)


If we insert p(x(k)) in place of p(x) and then use p(k) = Ap(x(k− 1)), we see that a propagation
by A followed by an observation gives

p(x|y values up to k) = F (y) A p(x|y values up to k-1)/(1/p̄(y))

with F (y) being the diagonal matrix appearing in the previous equation. This is a key equation.
In terms of an abbreviated notation we can express the evolution for the conditional density as

p̃(k + 1) = (1/p̄(y))F (y(k))Ap̃(k)
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Notice that it is nonlinear in p̃ because p̄(y) is a nonlinear function of p̃. Nonetheless, it is, as we
will see, nonlinear in a trivial way.

Example: If x takes on the values ±1 and if n is a Gaussian random variable with zero mean
and variance σ, this equation takes the form[

p1(k + 1)
p2(k + 1)

]
= r

[
e−(y−1)2/2σ 0

0 e−(y+1)2/2σ

] [
a11 a12

a21 a22

] [
p1(k)
p2(k)

]

with r being the scalar which normalizes the sum of the entries of the vector on the right-hand
side to one.

We now examine what happens when we attempt to capture continuous time phenomena as a
limit of a set of discrete time equations. In the first place, if we allowed ourselves more and more
unbiased independent measurements of a quantity, we would, by the law of large numbers, reduce
the error variance to zero. More precisely, if we have measurements yi = x+ni for i = 1, 2, . . . , m
with the ni being independent, zero mean, Gaussian random variables, each of variance σ, then

E 1
m

m∑
i=1

yi = x

and

E
(

1
m

m∑
i=1

yi − x

)2

=
1
m

m∑
i=1

(ni)2

=
σ

m

On the other hand, if every time we double the number of measurements we multiply the variance
by 2, then we do not change the variance of the error. The former model, according to which, we
simply make more measurements, is therefore unsuitable as a way to model a noisy continuous
time observation process whereas the latter could be appropriate.

h

3h
4h

2h

Figure 6.1. Illustrating the effect of dense sampling.

Consider observing y = x + n with n being zero mean, Gaussian, and with variance σ. We
have, as derived previously,

p1(nh + h)
p2(nh + h)

...
pn(nh + h)

 = r


e−(y−x1)

2/2σ 0 · · · 0
0 e−(y−x2)

2/2σ · · · 0
...

...
. . .

...
0 0 · · · e−(y−xn)2/2σ

 A


p1(nh)
p2(nh)

...
pn(nh)


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Consider replacing h by h/2 and σ by 2σ. In fact, consider doing it q times. After subtracting
p(nh) from both sides, we have as an approximation

h

2q

d

dt
p(t) =


(y − x1)2/σ(q) 0 · · · 0

0 (y − x2)2/σ(q) · · · 0
...

...
. . .

...
0 0 · · · (y − xn)2/σ(q)

 A1/2q p(t)

with σ(q) = σ2q. A suitable limiting process, letting hσ = 1, yields

ṗ = (Ã + yD − 1
2D2)p

where Ã is the logarithm of A.

6.2 The Conditional Density Equation - I

Let us now consider the problem

ṗ(t) = Ap(t)
pi(t) = the probability that x(t) = xi

dy = x dt + dν

where ν is a standard Wiener process. From above we see that by using a central difference
approximation for the time derivative we get for the conditional density (in unnormalized form)

d−ρ = (A− 1
2D2)ρ(t)dt + Dρd−y

with A being as above and D being the diagonal matrix

D =


x1 0 · · · 0
0 x2 · · · 0
...

...
...

...
0 0 · · · xn



Example: Consider the estimation of the values of a random telegraph wave

dx = −2xdN ; x(0) = +1
dy = x dt + dν

The conditional density equation in unnormalized form is[
dp1

dp2

]
=

[
−λdt− 1/2dt + dy λdt

λdt −λdt− 1/2dt− dy

] [
p1

p2

]

6.3 The Conditional Density Equation - II

Now consider the model

dx = f(x)dt + g(x)dw

dy = h(x)dt + dν
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What is the corresponding conditional density equation? Without becoming too involved in
the details, we note that in the previous section it was seen that the unnormalized conditional
density equation involves two operators; A, which governs the evolution of the probability of
the unobserved process, and D, which is a diagonal operator which multiplies the probability
associated with x by the value that the observation takes on at x.

Reasoning via this analogy we take A to be the Fokker-Planck operator

A = − ∂

∂x
f(x) +

1
2

∑ ∂

∂xi

∂

∂xj
gi(x)gj(x)

and let D be

D = multiplication by h(x)

Putting these ideas together we see that if we denote the Fokker-Planck operator by L then

∂ρ(t, x)
∂t

= (L− 1
2h2(x))ρ +

dy

dt
h(x)ρ

is the central difference (Stratonovic) version of the conditional density equation for a diffusion
process.

Example: Consider the simplest problem

dx = dw

dy = x dt + dν

The conditional density equation in unnormalized form is

∂ρ

∂t
=

(
1
2

∂2

∂x2
− 1

2
x2

)
ρ(t, x) +

d−y

dt
xρ(t, x)

If we assume a solution of the form

ρ(t, x) = ea(t)x2+b(t)x+c(t)

we can derive equations for a, b, and c.

6.4 An Exponential Representation

There exist representations of solutions of differential equations that will let us establish a con-
nection between the unnormalized conditional density equation and a certain Lie algebra. This
material is most explicit in Wei-Norman, an earlier paper by Chen covers similar ground, and
the basic ideas could probably be traced back at least to Lie and Cartan.

To begin with, consider the finite dimensional linear equation:

ẋ = (uA + vB)x

with u and v functions from R1 to R1 and A and B constant n× n matrices. Naively one might
expect to find that the fundamental solution Φ(·) is

Φ(t) = e(
∫ t
0 u(σ)dσ)A+(

∫ t
0 v(σ)dσ)B =
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I +
(∫ t

0

u(σ)dσ

)
A +

(∫ t

0

v(σ)dσ

)
B +

1
2

((∫ t

0

u(σ)dσ

)
A +

(∫ t

0

v(σ)dσ

)
B

)2

+ . . .

However,

Φ̇(t) = (uA + vB) +
1
2
(uA + vB) ·

∫ t

0

(uA + vB)dσ +
1
2

(∫ t

0

(uA + vB)dσ

)
(uA + vB)dτ + . . .

and in general it is not possible to factor out (uA + uB) from this expression because A and B
do not necessarily commute. Thus the above expression for Φ does not work. However, we can
use the matrix identity

e−ABeA = (1 + A + 1
2!A

2 + . . . )B(1−A + 1
2A2 . . . )

= B + AB −BA + 1
2 (A2B − 2ABA + BA2) + . . .

= B + [A, B] + 1
2 [A, [A, B]] + . . .

This is sometimes called the Baker-Cambell-Hausdorff formula. Introduce the notation

adk
AB = [A, [A, [A, . . . [A, B]] . . . ]; k ≥ 1

k times
ad0

AB = B

For each choice of A, adk
A(B) is a linear operator acting on B. It is common to express the above

relationship as
exp adAB = ad0

AB + ad1
AB + 1

2!ad2
AB + . . .

= B + [A, B] + 1
2! [A, [A, B]] + . . .

and write
eABe−A = exp adAB

Wei and Norman investigated the differential equation

ẋ = (
k∑

i=1

uiBi)x

by looking for a solution Φ(t)x0 which can be represented as a product of exponentials

Φ(t)x0 = eg1A1eg2A2 . . . egmAmx0

in which g1, g2, . . . , gm are real valued functions of time and the Ai are somehow generated by
the Bi. Without being specific about the latter process, we may differentiate to get

d

dt
(eg1A1 . . . egmAm) = ġ1A1e

g1A1 . . . + egmAm + eg1A1 ġ2A2e
g2A2 . . . egmAm + . . .

eg1A1 . . . egm−1Am−1 ġmAmegmAm

Inserting exponentials and their inverses we can transform this into an expression in which all
terms have a common factor eg1A1 . . . egmAm on the right. That is,

d

dt
(eg1A1 . . . egmAm) =

(
ġ1A1 + eg1A1 ġ2a2e

−g1A1 + . . .
) (

eg1A1 . . . egmAm
)

Applying the Baker-Campbell-Hausdorff-formula this can be written as:

ġ1A1 + ġ2(A2 + g1[A1, A2] +
1
2
g2
1 [A1, [A1, A2]] + . . . ) + . . . + ġmψ
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with ψ being an expression containing the matrices A1, A2, ...Ak and various products. This
results in a set of differential equations for the gi provided that the Ai are chosen so that any Bi

is a linear combination of the Ai, any [Bi, Bj ] is a linear combination of the Ai, any [Bi, [Bj , Bk]]
is a linear combination of the Ai, etc. The smallest set of A’s with this property forms a basis
for a matrix Lie algebra and will be referred to as the Lie algebra generated by the Ai.

If the Bi are, themselves, linearly independent as elements of the vector space consisting of
all real matrices of a certain size, then we may take A1 = B1, A2 = B2 etc for the first k elements
of set Ai. Matters being so, and assuming that the Ai are a basis for the Lie algebra generated
by the Bi, we have

[Ai, Aj ] =
∑

k

γijkAk

with certain coefficients γijk. These are the so-called structure constants of the Lie algebra.
If Φ(t)x0 satisfies the differential equation we must have

ġ1A1 + ġ2(A2 + g1[A1, A2] +
1
2
g2
1 [A1, [A1, A2]] + . . . ) + . . .

+ . . . + ġm(. . . ) = u1A1 + . . . umAm

and because the Ai are independent as vectors in Rn×n we get, on equating coefficients a set of
equations of the form

ġ1 = f1(g1, . . . , gm, ġ2, . . . , ġm) + u1

ġ2 = f2(g1, . . . gm, ġ2, . . . , gm) + u2

...
ġm = fm(g1, . . . , gm, ġ2, . . . , gm) + um

We will refer to these as the Wei-Norman equations. They depend on the choice of a particular
ordering of the exponential factors. Because Φ(0) = I we have initial conditions g1(0) = g2(0) =
. . . = gm(0). An analysis shows that the Wei-Norman equations can always be solved on some
interval |t| ≤ ε however in most cases the solution cannot be continued for all time. A significant
point is that the functions f1, . . . , fm only depend on the structure constants Upsilonijk. That
is, regardless of the representation of the Lie algebra we get the same Wei-Norman equations.
We have here a situation such that by solving one set of nonlinear differential equations we
simultaneously solve a whole family of linear evolution equations.

Example:[
ẋ1

ẋ2

]
=

[
a(t) c(t)
0 b(t)

] [
x1

x2

]
=

[
a(t)

[
1 0
0 0

]
+ b(t)

[
0 0
0 1

]
+ c(t)

[
0 1
0 0

]] [
x1

x2

]
Let L be the Lie algebra generated by[

1 0
0 0

]
,

[
0 0
0 1

]
and

[
0 1
0 0

]
We choose an ordered basis for L:

A1 =
[

1 0
0 0

]
, A2 =

[
0 1
0 0

]
and A3 =

[
1 0
0 1

]
The differential equations can now be written[

ẋ1

ẋ2

]
= (A1η1 + A2η2 + A3η3)

[
x1

x2

]
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with η1 = a− b, η2 = c, η3 = b. If we look for a fundamental solution having the form

Φ(t) = eA1g1eA2g2eIg3

Then

Φ̇ = (A1ġ1 + eA1g1A2ġ2e
−A1g1 + ġ3I)eA1g1eA2g2eIg3

Because we have a basis with A3 = I the expression for Φ̇ contains the term ġ3Φ instead of a
term

eA1g1eA2g2 ġ3A3e
−g2A2e−g1A1

that is

Φ̇ = (A1ġ1 + ġ2(A2 + g1[A1, A2] +
1
2
g2
1 [A1, [A1, A2]] + . . . ) + ġ3I)eA1g1eA2g2eIg3

Now [A1, A2] = A2 so that

Φ̇ = (A1ġ1 + ġ2(A2 + g1A2 + 1
2g2

1A2 + . . . ) + ġ3I)eg1A1eg2A2eg3I

= (A1ġ1 + ġ2e
g1A2 + ġ3I)eg1A1eg2A2eg3I

So
A1ġ1 + ġ2e

g1A2 + ġ3I = η1A + η2A2 + η3I

The Wei-Norman equations become

ġ1 = η1 = a− b
ġ2 = e−g1η2 = ce−g1

ġ3 = η3 = b

The differential equations can be solved directly. By solving them we do not only find a fun-
damental solution of the particular set of equations but also a fundamental solution associated
with any family of operators that commute according to the same commutation relations.

6.5 Conditional Jump Processes

Let x be a stochastic process taking on values in the set X = {x1, x2, ..., xn} and let

ṗ = Ap

describe the evolution of the probability law for x. That is, pi(t) is the probability that the
process x(t) is in the state xi. Consider a second continuous time jump process y(t) taking on
values in the set Y = {y1, y2, ..., ym} with a probability law that satisfies the equation

q̇ = B(x)q

That is, qi(t) is the probability that y(t) is in state yi. The problem to be solved is this. Given
p(0), A, and B(·), find the conditional probability of x(t) given y(σ) for 0 ≤ σ ≤ t.

We are observing y. To infer something about x, from a knowledge of y we can use Bayes’
rule. We look at the behavior of y over a small interval of time, the interval [0,∆]. If over this
interval y is constant, say y(t) = yi, then

p(x|y) = p(y|x) · p(x)/p(y)
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Thus we may write

p(x(∆)|y) =
1
N

e(Diag(Byy(x1)...Byy(xn))+A)∆p(0)

Where Byy(xi) is the diagonal element of B(x) corresponding to the value that the y process
takes on over the interval [0,∆] and n is a normalization. On the other hand, if on [0,∆] the y
process jumps from yi to yj then, to within a normalization,

p(x| jump from i to j) ≈ p (jump from i to j|x) · p(x)

At the moment of the jump, p changes according to

p(x| jump from i to j) = Diag(By+y−(x1) . . . By+y−(xn)) · p(x)

In order to incorporate this into a stochastic differential equation, it is convenient to assign
yi to a point in a vector space. For convenience we identify yi with ei, the ith standard basis
element in Rm. Thus 〈ej , y〉 jumps from 1 to zero if y jumps away from state j and jumps from
zero to one if y jumps to state j. We seek a differential equation of the form

dp = (A + DiagByy(x))pdt +
∑
i 6=j

Dijpφj(y)〈ei, dy〉

for the evolution of p. Of course at a jump from i to j the quantity 〈ei, y〉 decreases by one and
〈ej , y〉 increases by one. Thus p goes to

p 7→ 1
N

(p +
∑
i 6=j

Dijφj(y)〈ei, dy〉)

By taking the Dij to be the appropriate diagonal matrix and φj(y) = 〈ej , y〉, we alter p by

p 7→ p + Dijp

when y goes from yj to yi. Thus the conditional density is

dp = (A + Byy)pdt +
∑
i 6=j

(Bij − I)〈ej , y〉eidy

If x is a diffusion process then this equation takes a similar form.

Example: Consider a continuous time jump process that takes on the values ±1 and is
generated by the Itô equation

dx = −2xdN

Let q satisfy

d

dt

 q1

q2

q3

 =

 −3 + x 1 2
1− x −3 1 + x

2 2 −3− x

 q1

q2

q3

 dt

If we assume that y(t) takes on the values in the set Y = {e1, e2, e3} then we can construct the
conditional density equation as above.

6.6 Extrapolation and Smoothing

It often happens that it is desireable to delay making an estimate of a process until further
data has been received. This leads to a problem of the smoothing type. In its basic form,
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the smoothing problem is that of determining the conditional probability distribution for x(ts),
given y(·) over [t0, tf ] with t0 < ts < tf . In this section we formulate problems of this type
mathematically and derive the appropriate evolution equation for the conditional density.

Consider first a discrete time situation. Suppose that the probability that x(0) = xi is pi(0)
and that in the absence of observations p(k+1) = Ap(k). We have seen that at some future time
the conditional probability can be obtained by normalizing

p(k) = D(y(k))AD(y(k))A...D(y(1))Ap(0)

with D being ther diagonal matrix defined in section 6.1.

In chapter two we discussed the problem of evolving the probability vector backwards in time
and introduced the operator AB = AT S with S being a diagonal matrix chosen so that AT S
has columns that sum to one. Now suppose that we know that x(tf ) = xi. In that case the
probability distribution for xf−1 is ABei. After we incorporate the observation at t = tf−1 the
probability changes to

p(k − 1) =
1
N

(D(y(k − 1))ABei

Continuing in this way, we see that

p̃(ts) =
1
N

(D(y(ts))AB ...D(y(k − 1))ABei

We can now put these two calculations together using Bayes’ rule. The first calculation gives
the probability distribution of x(tf ). The second gives that of x(ts), assuming that we know
x(tf )). Multiplying these together and normalizing, we have the desired conditional probability.
We may express matters as

p(ts|y(t), t0 < t < tf ) =
1
N

p̃(ts)¯D(y(k))AD(y(k))A...D(y(1))Ap(0)

or
p(ts|y(t), t0 < t < tf ) =

1
N

p̃(ts)¯ p(tf )

We can adapt this analysis to continuous time and infinite state spaces. For example, in the
case of continuous time jump processes the backwards equation for p̃ is simply

dp̃ = (AB −
1
2
D2)p̃dt + Dp̃dy

6.7 The Orthogonality Principle

In the study of inner products on functions spaces one often uses the definition

〈f(·), g(·)〉 =
∫

f(x)g(x)dµ

In those cases where dµ is a weighted version of Borel measure one often writes

〈f(·), g(·)〉 =
∫

f(x)g(x)w(x)dx

Thus far we have concentrated on the problem of propagating the conditional density and
have postponed all questions of what to do with the conditional density once we have it. In some
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cases the goal of the analysis is to estimate the value of some function of the state, say h(x).
Naturally

Eh(x) =
∫

h(x)ρ(t, x)dx

where ρ is the conditional density. The following fact is basic.

Theorem: The estimate e that minimizes the expected value of the square of the eror between
h(x) and its estimate, is the conditional expectation,

e =
∫

h(x)ρ(t, x)dx

Proof: In order to prove this we make the following observations. If we observe y and if z is
a casual functional of y and if e is y-measurable then so is e + εz for all ε. If e minimizes

E(e− h(x))2

then we see that
E(e + εz − h(x))2 ≥ E(e− h(x))2

¿From an analysis of this inequality in a neighborhood of zero we see that∫
z(e− h(x))ρ(t, x) = 0

That is to say, the error is orthogonal to any past measurable function of the observations.

6.8 Linear Estimation Theory

In some parts of the literature on stochastic differential equations one sees a notation in which
a Stratonovic equation is divided by dt and d−w/dt is written as ẇ. This allows for simpler
typography and we will use it in this section.

Consider a stochastic process y which is generated from a unity variance Wiener process w
according to the equations

ẋ(t) = A(t)x(t) + B(t)ẇ(t) ; ẏ(t) = C(t)x(t)

Now suppose that we observe not ẏ(t) itself but ẏ(t)+ v̇(t) where v is a zero mean, unity variance,
Wiener process. The question arises as to how, if at all, we can remove the effects of the noise v.

Lemma: A stochastic equation of the form

ż(t) = F (t)z(t) + H(t)(ẏ(t) + v̇(t))

has a solution z which has the same expectation as x if and only if Ez(0) = Ex(0) and the
matrices F and H are chosen so that the equation takes the form

ż(t) = A(t)z(t)−G(t)[C(t)(x(t)− z(t)) + v̇(t)]

Proof: This is a direct application of the rule for computing expectations.

If we seek an estimate which can be generated by a linear stochastic equation in the form
described in the lemma, and if we want an unbiased estimate we must constrain the equations
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for z in this way. Now from this point on there remains only the question of picking the best
choice of G. Notice that if we introduce e = x− z, then

ė(t) = A(t)e(t) + G(t)[C(t)e(t) + v̇(t)] + B(t)ẇ(t)

Writing down the variance equation (c.f. section 2.7) we have

Σ̇ee(t) = A(t)Σee(t) + Σee(t)AT (t) + G(t)C(t)Σee

+ Σee(t)CT (t)GT (t) + G(t)GT (t) + B(t)BT (t)

Now compare this with the solution of the equation

Ṡ(t) = A(t)S(t) + S(t)AT (t)− S(t)CT (t)C(t)S(t) + B(t)BT (t)

A little manipulation gives

Σ̇ee(t)− Ṡ(t) = (A(t) + G(t)C(t))(Σee(t)− S(t)) + (Σee(t)− S(t))(A(t) + G(t)C(t))T

+ G(t)GT (t) + G(t)C(t)S(t) + S(t)CT (t)GT (t) + S(t)CT (t)C(t)S(t)

If we set Σee (t0) = S(t0), then we have

Σee(t)− S(t) =
∫ t

t0

ΦA+GCT (t, σ)[G(σ) + S(σ)CT (σ)][G(σ) + S(σ)CT (σ)]T ΦT
A+GCT (t, σ)dσ

This shows that Σee(t)−S(t) is nonnegative definite and is zero if and only if G(t) = −S(t)CT (t).
Thus we see that the minimum variance estimate of x is generated by

dx̂ = Ax̂dt + Σee(t)CT (dy − Cx̂dt)

Theorem: If z satisfies the equations

ż(t) = A(t)z(t) + S(t)CT (t)(y(t)− C(t)z(t) + v̇(t))

with S(t) satisfying

Ṡ(t) = A(t)S(t) + S(t)AT (t)− S(t)CT (t)C(t)S(t) + B(t)BT (t) ; S(t0) = Σee(t0)

then z is the minimum variance estimate of x.

There is one additional property of the optimal solution which we need later in the discussion
of the separation theorem.

Theorem: The optimum error variance and the optimal estimate variance satisfy

Σxx(t) = Σee(t) + Σx̂x̂(t)

or equivalently

E x̂(t)eT (t) = 0

where Σxx = ExxT , Σx̂x̂ = E x̂x̂T .

To see that the second condition is equivalent to the first observe that

x(t)xT (t) = E(x̂(t) + e(t))(x̂(t) + e(t))T

= E x̂(t)x̂(t) + Ee(t)eT (t) + E(x̂(t)eT (t) + e(t)x̂T (t))
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and that the third term is zero if and only if E x̂eT is zero. To see that E x̂eT = 0 we observe that[ ˙̂x(t)
ė(t)

]
=

[
A(T ) Σee(t)CT (t)C(t)

0 A(t)− Σee(t)CT (t)C(t)

] [
x̂(t)
e(t)

]
+

[
Σee(t)CT (t) 0
Σee(t)CT (t) B(t)

] [
v̇
ẇ

]
Now the resulting variance equation is

d

dt
E

[
x̂x̂T x̂eT

ex̂T eeT

]
=

[
A(t) Σee(t)CT (t)C(t)

0 A(t)− Σee(t)CT (t)C(t)

]
E

[
x̂x̂T x̂eT

ex̂T eeT

]
+E

[
x̂x̂T x̂eT

ex̂T eeT

] [
A(t) Σee(t)CT (t)C(t)

0 A(t)− Σee(t)CT (t)C(t)

]T

+
[

Σee(t)CT (t)C(t)Σee(t) Σee(t)CT (t)C(t)Σee(t)
Σee(t)CT (t)C(t)Σee(t) B(t)BT (t) + Σee(t)CT (t)C(t)Σee(t)

]

A short calculation will verify that the solution of this is given by[
H(t) 0

0 Σee(t)

]
where H(t) is E x̂(t)x̂T (t). This calculation depends on verifying that we may take

H(t) = Ex(t)xT (t)− Ee(t)eT (t)

where, of course, EeeT = Σee and

d

dt
ExxT = AExxT + ExxT AT + BBT

d

dt
Σee = AΣee + ΣeeA

T − ΣeeC
T CΣee + BBT

Example: Consider the two different models for signal and observation given below. Evaluate
the variance of the steady-state estimation error in each case.

dx = −2xdt + dw ; dy = xdt + dν

dx = −3xdt + 1.5dw ; dy = xdt + dν

In which case is the estimation error larger and what is a qualitative explanation in terms of the
power spectrum? To answer this, begin with a calculation of the covariance equation associated
with the first model

σ̇1 = −4σ1 + 1− σ2
1

and for the second model
σ̇2 = −6σ2 + 2.25− σ2

2

We can calculate the steady state by setting the derivative equal to zero.

σ1 =
−4 +

√
5

2
=
√

5− 2

σ2 =
−6 +

√
45

2
=

3
2
(
√

5− 2)

Comparing these we have

σ2 − σ1 =
1
2
(
√

5− 2)



108 CHAPTER 6. ESTIMATION THEORY

Because both systems 1 and 2 are stable there is a steady state for the unobserved process.
The steady state variance of the first system when unobserved is 1/4; that of the second system
is 2.25/6 which is larger. The signal to noise ratio of the observation process is the same in both
cases so we may expect that the estimation error will be larger in the second case.

dx=Axdt+dw

dν
x

Σc T

dx=Axdt+Σcu
dw

Figure 6.2.Block Diagram of Optimal Filter.

Smoothing: Consider the problem

dx = −xdt + dw ; dy = xdt + dν

Suppose that x is distributed with a gaussian density with Ex(0) = 1 and E(x(0)− 1)2 = 2.

(a) Describe a process for generating the conditional expectation of x(1) given y(t) for 0 ≤ t ≤ 1.

(b) Describe a process for generating the conditional expectation of x(α) given y(t) for 0 ≤
t ≤ 1 and 0 ≤ α ≤ 1. In both cases “describe a process” means provide the appropriate
differential equations.

The Kalman-Bucy filter will generate the conditional mean and the variance.

dx̂(t) = −x̂(t) + p(t)(dy(t)− x̂(t)dt) ; x̂(0) = 1

ṗ = −2p + 1− p2 ; p(0) = 2

If we use these equations on a forward sweep to generate the conditional density at t = 1 then
we can run the related equation

dŝ(t) = −ŝ(t) + q(t)(dy(1− t)− ŝ(t)dt)

together with
q̇ = −2q + 1− q2 ; q(1) = p(1)

Example: Consider the problem of generating the conditional density for x when x satisfies

dx1 = x2dt + dw

dx2 = 3x1dt− x2dt

and the observation equation is
dy = x1dt + ax2dt + dν

Assuming Gaussian initial data, display the differential equation for the error variance. Will the
the solution fail to have a steady state value for any choice of a? Explain this.

Solution: the right-hand side of the error covariance equation is[
0 1
3 −1

] [
σ11 σ12

σ21 σ22

]
+

[
σ11 σ12

σ21 σ22

] [
0 −3
1 −1

]
−

[
σ11 σ12

σ21 σ22

] [
1 a
a a2

] [
σ11 σ12

σ21 σ22

]
+

[
1 0
0 0

]
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The A matrix has an eigenvalue with a positive real part. Thus if the system fails to be
observable for any value of a, the error covariance will go to infinity if the unstable mode is
unobservable. Otherwise it will have a (finite!) steady state value. The system fails to be
observable when

[c; cA] =
[

1 a
3a 1− 3a

]
is singular and this happens when 1− a− 3a2 = 0 One of these roots results in a value of a for
which the unobservable mode is stable and in this case the variance has a limit. The other root
results in the unstable mode being unobservable and in this case no limit exists.

6.9 Identification of Linear Systems

Control theory techniques generally require the a priori knowledge of an accurate model for the
dynamical system which is to be controlled. In some situations this is hypothesis is invalid and
it is necessary to develop algorithms to identify the system before, or while, control is being
exercised. This is a major problem. In this section we address it in the special case of linear
systems with constant coefficients. This special case is a good example of applying the tools we
have developed.

The approach to system identification is based on the conditional density equation. A simple
example should help to fix ideas. Consider the equation

dx = axdt + dw1 ; dy = xdt + dw2

together with the stochastic equation

da = 0

What does this mean? If we had set da equal to cdw3 for c nonzero, then this pair of equations
would have described the evolution of the pair (a, x). The observations would have enabled us
to learn something about the probability distribution of the pair. In the special case where c is
zero, a is a constant but that does not mean that a is known! What this models is the situation
where a is a random variable as opposed to being a full-fledged stochastic process. The initial
distribution for (a, x) expresses our a priori knowledge and the observation of y allows us to
improve on this.

The conditional density equation gives us a method to compute the joint conditional prob-
ability ρ(t, a, x). In order to obtain the conditional probability for a alone, it is necessary to
integrate with respect to x. Applying the general results of the previous chapter we have

∂ρ(t, a, x)
∂t

=
(
− ∂

∂x
ax +

1
2

∂2

∂x2
− 1

2
x2

)
ρ(t, a, x) +

dy

dt
xρ(t, a, x)

According to the general philosophy we have been espousing here, the first thing to do is to
compute the Lie algebra generated by the pair of operators.

In carrying out this computation there is one point which requires attention. Suppose that the
algebra contains an operator L and also contains aL. Are these linearly independent elements
of the Lie algebra? Unfortunately they are. Even though a is a constant and the operator
“multiplication by a” remains just that and must not be confused with multiplication by a
constant. Proceeding then, we see that the relevant Lie algebra here contains all of the following

a , −ax +
∂

∂x
, a2x− ax +

∂

∂x
, . . .
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and, in fact, is infinite dimensional.

Does this mean that there is nothing one can do with this estimation problem? Recall that
the family of “reachable” conditional densities can be low dimensional either because the Lie
algebra is low dimensional or because the initial condition is chosen in a suitable way. It is a
general feature of conditional density equations which involve unknown parameters which do not
change in time that the support of the conditional density does not increase as time evolves. If
one knows a priori that a is an element of the set S ⊂ R1, then the same is true for all time,
regardless of the observation history. In particular, if we know that a is either -1 or -1.5, then
the conditional density ρ(t, a, x) can be computed rather easily.

6.10 Exercises 6

1. By a “Wiener filter” one usually means the steady state filter (state estimator) associated
with a Gauss-Markov process observed with an additive noise term which is also a Gauss-
Markov process. In terms of state variable models, we have

dx = Axdt + bdw1

dn = Fndt + gdw2

dy = cxdt + hndt + dw3

set up the appropriate Riccati equation and estimation equation for the conditional mean
(also least squares) estimate. Show that under appropriate assumptions about controlla-
bility, the relevant Riccati equation approaches a steady state as t goes to infinity.

2. Show that if x(0) is distributed according to an arbitrary smooth density and satisfies the
stochastic equation

dx = Axdt + bdw1

then provided that the eigenvalues of A have negative real parts, the probability density
approaches a Gaussian density as t goes to infinity and this Gaussian density is independent
of the initial density. Establish a similar result for the conditional density that goes along
with the observation equation

dy = xdt + dw2

3. Consider 2n by 2n dimensional matrices of the form[
A Q
R −AT

]
with Q and R symmetric. Show that these form a Lie algebra.

4. At t = 0 one knows that x = ẋ = 0 and over the interval 0 ≤ t ≤ t0 we observe x(t) + v̇(t)
where v(t) is a unity-variance Wiener process. Suppose that

ẍ(t) + x(t) = ω̇(t)

where ω is also a unity variance Wiener process. Find a filter which computes an unbiased,
minimum variance estimate of x and ẋ, based on the observation x(t) + v̇(t). Examine the
limiting case t0 →∞; t→ t0.
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5. Suppose that A ∈ Rn×m is of rank m. Suppose that x is a zero mean Gaussian random
variable. Let y be a given n-vector. Find v such that

η = E‖Av − y + x‖2

is minimized. Find the minimizing value of η.

6. Given that x and y are uncorrelated Gaussian random variables with mean x̄ and ȳ and
variance Σxx and Σyy, find the mean and variance for x + y.

7. Consider the process x generated by

dx = Axdt + Bdw + ξ(t)dt ; x(0) = Gaussian

Where w is a standard m-dimensional Wiener process and ξ is a known function of time.
If we observe

dy = cxdt + dν

With ν an n-dimensional Wiener process independent of w, write out in full detail a set
of stochastic differential equations for the conditional mean given the observations. (These
will look like the Kalman-Bucy equations with a suitable modification.)

8. Suppose that we have

dx = dw ; dy = csdt + dw + dν

where w and ν are independent Wiener processes. Derive the values of the coefficients of the
unbiased, minimum variance estimator assuming the optimal filter to be one dimensional
and linear.

9. Consider the system

dx = αxdt + dw + budt ; dy = xdt + dν

where α is either -1 or -2 and x(0) is Gaussian, independent of α. Suppose that the a
priori probability is 1/2 that α = −1 and 1/2 that α = −2. If u is zero, find a finite set of
equations which accept input dy and propagate the conditional probability of α.

(a) Find equations for the conditional mean of x given that u(t) is zero.

(b) Consider letting u(t) = k(t)z(t) where

dz(t) = −β(t)zdt + γ(t)dy

Write an equation for the conditional mean of α.

(c) Discuss qualitatively which choices of k, β and γ make it easiest to determine α.

10. Write down the differential equations for the conditional mean and the conditional variance
for

dx = Axdt + αBdw ; dy = βCxdt + dv ; α9β > 0

This is standard except for the appearance of the real parameters α and β. Assume that
rank (B, AB, ...An−1B) and rank (C;CA; ...CAn−1) are n = dim x. Show that the steady
state conditional variance Σ(∞) is a monotone increasing function of α and a monotone
decreasing functions of β where Σ1 ≥ Σ2 means that the symmetric matrix Σ1 − Σ2 is
nonnegative definite. (Please avoid heuristic arguments.)
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11. Let x(t) be a Markov process which takes on values in the set of {1,2,3,4} and let pi(t) be the
probability that x(t) = i; assume that ṗ = Ap describes the evolution of the probabilities.
Suppose that at t = 1,2,3,... one makes an observation of x and through this observation
learns if x is larger than 2.5 or smaller than 2.5 (there is no uncertainty about the fact).
Give a rule for propagating the conditional probability in this case.

12. Consider the setup[
dx1

dx2

]
=

[
0 1
0 0

] [
x1

x2

]
dt +

[
0
u

]
dt +

[
0

dw

]
dy = x1dt + dv

Suppose that x(0) is gaussian. Find the control law which minimizes

η = E
∫ 1

0

x2
1(t) + u2(t)dt

Give all the details.

13. Show that the Lie algebra generated by the operators

A =
[

∂2

∂x2 − x2 − λ + ∂
∂xx λ

λ ∂2

∂x2 − x2 − λ + ∂
∂xx

]
B =

[
x 0
0 x

]
is infinite dimensional by showing that it contains the two operators

C =
[

∂
∂x + x 0

0 ∂
∂x − x

]
D =

[
x + ∂

∂x 0
0 x− ∂

∂x

]
14. The Pauli equation provides a quantum mechanical description of a spinning particle. It

takes the form

ih

2π

 ∂ψ+

∂t
∂ψ−
∂t

 =
1

2m

 ∂2ψ+

∂r2

∂2ψ−
∂r2

− [
Hz Hx − iHy

Hx − iHy Hz

] [
ψ+

ψ−

]

Find a solution corresponding to the right-hand equal to zero.

15. Let e be a random variable taking on values in (−∞,∞). Let ψ(e) be the probability
density of e. Let x be a random variable taking on values in the set {−2,−1, 0, 1, 2}.
Suppose that the probability that x = −2 is p−2, x = −1 is p−1, x = 0 is p0 and x = 1 is
p1 and x = 2 is p2. Added to this aprori information is the statement x + e = b. Find
the probability distribution for x conditioned on this additional information. In particular,
explain which aspects of ψ(·) matter and which are irrelevant.

16. If ρ(t, x) satisfies the unnormalized conditional density equation

∂ρ

∂t
=

1
2

∂2ρ

∂x2
− 1

2
x2ρ +

dy

dt
xρ

What equation does ψ(x)ρ(t, x) = η(t, x) satisfy? Explain the relevance for the propagation
of the conditional density for

dx = f(x)dt + dω

with observation
dy = xdt + dν
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17. Consider the pair of equations

dz = −2zdN ; z(0) ∈ {1,−1}
dx = −(2 + z)xdt + dw

and the observation

dy = xdt + dν

where N is a Poisson counter of rate λ and ν and w are standard Wiener processes. If λ is
very small, then the coefficient in the equation for x is unlikely to change very frequently.
Thus it is likely to be either

dx = −3xdt + dw

or

dx = −1xdt + dw

for long periods of time. If we knew that z never switched between these values and just
took on one or the other of them, then we would use two Kalman-Bucy filters to decide
which it is. What would be the equations of these filters?

18. Consider the stochastic process y generated by

dx = f(x)dt + g(x)dw

dy = h(x)dt + dν

Suppose that an inspired engineer has found that the equation

dz = a(z)dt + b(z)dy

is such that

m(t) = η(z(t))

is a good estimate of h(x). In fact, the engineer claims that it is the least squares estimate
of x in the sense that for any other past measurable function of y, say n,

E(h(x(t))− n(t))2 ≥ E(h(x(t))−m(t))2

Assuming the claim is correct, show that

E(h(x(t))−m(t)) · r(t) = 0

if r(t) satisfies any equation of the form

dr = γ(r)dt + δ(r)dy

19. Verify that there exists constants a, b, c and f such that the fundamental solution for

∂ρ(t, x)
∂t

=
1
2

(
∂2

∂x2
− x2

)
ρ(t, x)

is given by

ρ(t, x) =
a√

sinh bt
e
−cx2

tanh ft
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20. If y : [a, b]→ R is given them in some sense

F (ω) =
∫ b

a

e−iωty(t)dt

is an “approximate Fourier Transform” of y. If, on the other hand, we wish to construct a
periodic extension of y we can evaluate

bn =
∫ b

a

y(t) cos
( dπt

b− a

)
dt

cn =
∫ b

a

y(t) sin
( 2πt

b− a

)
dt

If y is a stochastic process generated by

dx = Axdt + bdω ; y = cx

then we may wish to define the short term spectral content by

F (ω) =
∫ t

−∞
e−t+σeiωπdσ
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Section 6

There is an alternative approach to estimation theory which is based on the idea that an
estimate can be optimal in the least squares sense only if the difference between it and the true
signal, i.e., the estimation error is orthogonal to any signal which can be generated from the
observable quantities. This point of view is explored in

6 M. H. A. Davis, Linear Estimation and Control, Chapman-Hall, London, 1977.
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Chapter 7

Stochastic Control

7.1 Stochastic Control with Perfect Observations

Suppose that x evolves according to an equation of the form

dx = f(x)dt + b(x)udt + g(x)dw

with u being a control and suppose we wish to minimize a loss function of the form

η = E
∫ t1

t0

L(x(t), u(t))dt + Eφ(x(t1))

If we observe the state x we can attempt to reduce the expected value of a loss function by
suitable selection of u as a function of x and t. Because u enters the the Fokker-Planck equation
as in

∂ρ(t, x)
∂t

= Lρ(t, x) +
∑ ∂bi(x)u(t, x)ρ(t, x)

∂xi

with L being the Fokker Planck operator with u = 0, and because we can express η as

η =
∫

X

∫ t1

t0

L(x, t)ρ(t, x)dtdx +
∫

X

φ(x(t1))ρ(t1, x)dx

the optimal control problem can be stated as a problem about controlling a deterministic partial
differential equation with no reference to the sample path equation. In general, problems of this
type are not easy to solve and so other approaches are adopted.

Consider the scalar equation with control,

dx = −xdt + udt + dw

Suppose that our goal is to minimize the steady state value of

η = Ex2 + u2

by means of a choice of feedback control law u(·). If there is a steady state density ρ(x) then it
satisfies

0 = − ∂

∂x
(−x + u(x))ρ(x) +

1
2

∂2ρ(x)
∂x2

117
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Thus in steady state
∂ρ(x)
∂x

= 2(−x + u(x))ρ(x)

and we wish to minimize

η =
∫ ∞
−∞

(x2 + u2)ρ(x)dx

If we introduce explicitly the constraint that the integral of ρ is one, we can treat this as an opti-
mization problem of the optimal control type, with x being the independent variable. Introduce
the hamiltonian h

h = 2p1(−x + u)ρ(x) + p2(x2 + u2)ρ(x) + p3ρ(x)

and let p3 = 1. From the maximum principle formalism we see that

dp1

dx
= −2(−x + u)p1 + x2 + u2 + p3

The optimal value of u minimizes 2p1u + u2. If u has no constraints then we have u = −p1 and

dp1

dx
= 2p1 + 2p2

1 + x2 + p2
1 + p3

dp3

dx
= 2

One sees without too much effort that u(x) = −(
√

2− 1)x satisfies this system.

Example 1: Consider the control problem

dx = −xdt + udt + dw ; x(0) = 0

and the performance measure

η = E
∫ T

0

x2 + u2dt

Suppose that u = k(t, x). In this case the Fokker-Planck equation for the density ρ(t, x) can be
expressed in terms of k and takes the form

∂ρ

∂t
= (

∂

∂x
(x− k(t, x)) +

1
2

∂2

∂x2
)ρ

If we express the performance measure in terms of ρ we get

η =
∫ T

0

∫ ∞
−∞

ρ(t, x)(x2 + k2(t, x))dxdt

We see that the optimal k satisfies As we will see in Section 7.2, this integral is minimized by
letting k̂ satisfy the equation

˙̂
k = −2k̂ − k̂2 + 1 ; k̂(T ) = 0

and letting k(t, x) = −k̂(t)x.

Example 2: The situation with respect to steady-state control is somewhat simpler. Consider
the equation

dx = −f(x)dt + b(x)udt + g(x)dw ; x(0) = 0
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and the performance measure

η = lim
t→∞

Eφ(x(t), u(t))

Suppose that u = k(t, x) so that the the Fokker-Planck equation for the density ρ(t, x) takes the
form

∂ρ

∂t
= (

∂

∂x
(f(x)− b(x)k(t, x)) +

1
2

∂2

∂x2
)g2(x)ρ

If we express the performance measure in terms of ρ we get

η =
∫ ∞
−∞

ρ(t, x)(x2 + k2(t, x))dx

The minimization of this integral can be approached using the calculus of variations. Setting the
time derivative of ρ equal to zero gives

(
∂

∂x
(f(x)− b(x)k(t, x)) +

1
2

∂2

∂x2
)g2(x)ρ = 0

and t can be eliminated from the problem.

Example 3: Consider the control problem

dx = −xdt + udt + dw ; x(0) = 0

and the performance measure

η = lim
t→∞

Ex2 + u2

Suppose that u = k(x) is only permitted to take on three values, a, b, c. The Fokker-Planck
equation for the density ρ(t, x) can be expressed in terms of k and takes the form

∂ρ

∂t
= (

∂

∂x
(x− k(t, x)) +

1
2

∂2

∂x2
)ρ

If we express the performance measure in terms of ρ we get

η =
∫ ∞
−∞

ρ(t, x)(x2 + k2(x))dx

If we introduce the parameters a, b, c we can parametrize the solution test and optimize. Sym-
metry suggests that the choice a = a, b = 0, c = −a deserves special consideration. The critical
question remains, however, as to how many times u should switch between the three possible
values. The overall structure of the problem can be investigated using the maximum principle of
Pontryagin, using x as the independent variable.

7.2 Stochastic Control with Noisy Observations

By far the most tractable class of stochastic control problems involve linear systems, Wiener
processes and the minimization of the expectation of a quadratic form. Consider

ẋ(t) = A(t)x(t) + B(t)u(t) + G(t)ẇ(t)

where ẇ is m-dimensional, unity variance, white noise and where x(t) ∈ Rn. We assume that we
are given

Ex(t0) = x̄(t0)
E(x(t0)− x̄(t0))(x(t0)− x̄(t0))T = Σee(t0)
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and a performance measure of the form

η = E
∫ t1

t0

xT (t)L(t)x(t) + uT (t)u(t)dt + ExT (t1)Qx(t1)

Our goal is to find a control law to minimize η. Making full use of the structure given we can
find the optimal linear feedback control law for this system as follows.

Let Π(t, Q, t) be the solution of the Riccati equation

K̇(t) = −AT (t)K(t)−K(t)A(t) + K(t)B(t)BT (t)K(t)− L(t) ; K(t1) = Q

If G were zero and if we knew x exactly, then the optimal control law would be u = −BT Kx.
In the present setting we can express η, through a completion of the square argument. The first
step is to observe that

0 = ExT (t)K(t)x(t)− ExT (0)K(0)x(0)− E
∫ t

0

d

dσ
xT (σ)K(σ)x(σ)dσ

Subtracting this from the right-hand side of the equation

η = E
∫ t1

t0

xT (t)L(t)x(t) + uT (t)u(t)dt + ExT (t1)Qx(t1)

allows us to complete the square to get

η = E
∫ t1

t0

‖u(t) + BT (t)Π(t, Q, t1)x(t)‖2 + tr(QΣ(t1))

−
∫ t1

t0

tr[Π̇(t, Q, t1)Σ(t)] + tr[Π(t, Q, t1)Σ̇(t)]dt

+
∫ t1

t0

trΠ(t, Q, t1)G(t)GT (t)dt

Integrating tr(Π̇Σ + ΠΣ̇) gives ΠΣ. So we have

η = E
∫ t1

t0

‖u(t) + BT (t)Π(t, Q, t0)x(t)‖2dt + trΠ(t0, Q, t1)Σ(t0)

+
∫ t

t0

trΠ(t, Q, t1)G(t)GT (t)dt

Since all quantities are of fixed value except the first integral, we see that the optimal control
law is the same as in the deterministic case

u(t) = −BT (t)Π(t, Q, t1)x(t)

and the minimum return is

η = tr[Π(t0, Q, t1)Σ(t0)] +
∫ t1

t0

tr[Π(t, Q, t1)G(t)GT (t)]dt

Now consider a more difficult problem where the state is not measured exactly. We have the
formula above, which is valid for all linear control laws applied to

ẋ(t) = A(t)x(t) + B(t)u(t) + G(t)ẇ(t)
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If we cannot observe x itself but only cx+ v̇, we write x = x̂+e where x̂ is the minimum variance
unbiased estimate. Then

η = E
∫ t1

t0

‖u(t) + BT (t)Π(t, Q, t1)x̂(t)‖2dt

+ E
∫ t1

t0

uT (t)BT (t)Π(t, Q, t1)[x(t)− x̂(t)]dt

+ E
∫ t1

t0

[x̂(t)− x(t)]T Π(t, Q, t1)B(t)BT (t)Π(t, Q, t1)[x̂(t)− x(t)]dt

+
∫ t1

t0

tr[Π(t, Q, t1)G(t)GT (t)]dt + tr[Π(t0, Q, t1)Σ(t0)]

The control choice u = Fx̂ gives

η = E
∫ t1

t0

‖u(t) + BT (t)Π(t, Q, t1)x(t)‖2dt

+ E
∫ t1

t0

xT (t)FT (t)BT (t)Π(t, Q, t1)[x(t)− x̂(t)]dt

+
∫ t1

t0

tr[Π(t, Q, t1)B(t)BT (t)Π(t, Q, t1)Σ(t)]dt

+
∫ t1

t0

tr[Π(t, Q, t1)G(t)GT (t)]dt

But on using the fact that E [x(t)− x̂(t)]x̂T (t) = 0 we can drop out the second integral. Thus the
best choice of u is

u(t) = −BT (t)Π(t, Q, t1)x̂(t)

The figure below shows the implementation of the separation principle for

η = E
∫ t1

t0

xT Lx + uT udt + xT (t1)Qx(t1). The defining equations are

Σ̇ = AΣ + ΣAT − ΣCT CΣ + GGT ; Σ(t0) = Σ00

K̇ = −AT K −KA + KBBT K − L ; K(t1) = Q

x=Ax+Bu State 
estimator

K

.

Figure 7.1: The implementation of the separation principle.

Example: Consider the scalar system

dx = (−x + u)dt + dw ; dy = xdt + dv
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with x(0) being distributed according to a Gaussian law with mean x̄ and variance σ(0) = σ0.
Suppose we wish to minimize

η = E
∫ t1

0

(3x)2(τ) + µ2(τ)dτ + Ex2(t1)

According to the separation theorem we need to compute both the optimal filter to recover
the best estimate of x and the optimal control assuming we know x. The latter involves solving

k̇ = 2k + k2 − 9 ; k(1) = 1

We denote the solution of this equation by π.

We also need to solve for the optimal estimate of x0 − xf , where xf =
∫ t

0
e−t+τu(τ)dτ . If we

denote this by x̂ then for

σ̇ = −2σ + 1− σ2 ; σ(0) = σ0

we would have

dx̂ = −2x̂ + σ(t)(dy − x̂dt)

if u were 0.

Putting this together we have

dx = −xdt− π(t)x̂(t)dt + dw

dx̂ = (−2− σ(t))x̂dt + σ(t)dy

u(t, x) = −π(t)x̂

π̇(t) = 2π(t) + π2(t)− 9 ; π(1) = 1

σ̇ = −2σ + 1− σ2 σ(0) = σ0

It may be enlightening to see this as a system

d

∣∣∣∣ x
x̂

∣∣∣∣ =
[
−1 −π
σc −2− σ

] [
x
x̂

]
dt +

[
dw

k(t)dv

]

π̇ = 2π + π2 − 9 π(1) = 1 Final cond.

σ̇ = −2σ + 1− σ2 ; σ(0) = σ0 Initial Cond.

If we work with x̂ and e = x− x̂ then

d

[
e
x̂

]
=

[
2− k 0

k 2− k

] [
e
x̂

]
dt +

[
dw
kdv

]
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7.3 Stochastic Control with No Observations

If we are given a system of the form

dx = f(x, u)dt + Σgi(x, u)dωi

with no observations of x available, what choice of u, possibly dependent on t, will minimize a
performance measure of the expected value form? That is to say, how can we choose u so as to
minimize

Eφ(x(t)) =
∫

ρ(x, t)φ(x)dx

Of course it may turn out that the best choice for u is some constant value. For example, if we
have

dx = −xdt + udt + dω

Then
d

dt
Ex = −Ex + u

and
d

dt
E(x− Ex)2 = −2E(x− Ex)2

In this case u has no effect on the variance of x. Unless one knows the sign of Ex(0) it is impossible
to choose u so as to reduce Ex(t).

This situation is not universal. There are classes of models for which open loop control
produces interesting effects. One such class is modeled on the study of the thermodynamics of
heat engines. If we combine the equation of a Nyquist-Johnson resistor with that of a linear
capacitor having the capacitance c, the result is an Itô equation describing the voltage across the
capacitance,

dcv = −gvdt +
√

2gT dw

The steady state value of E(v2) is easily seen to be

Ev2 = T/c

and so, in steady state, the expected value of the energy stored in the capacitor, Ecv2/2, is just
T/2. Notice that it does not depend on the values of g and c. This is, a very special form of the
equipartition of energy theorem discussed in chapter 5.

We now investigate a stochastic control analog of the problem of extracting mechanical work
from a heat bath. We do so by setting up a thermodynamic cycle based on a variable capacitance
interacting with resistors at different temperatures.

g g

c
ww T T

11 2
2

Figure 7.2: Extraction of work from an electrical circuit with noisy resistors and a variable
capicator.

We are interested in analyzing the possibility of extracting energy from the system using
control laws which depend on average values only and not properties of sample paths. One way
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to get mechanical energy (i.e., work) out of such a system is by changing the capacitance when
a charge is present. Because the energy stored in a capacitor is cv2/2 = q2/2c where v is the
voltage on the capacitor and q is the charge, we see that when we change the capacitance we
change the energy stored in the capacitor. The nature of the change depends on the electrical
connection in effect while the change is being made. We have the alternative expressions

Ė =
d

dt

cv2

2
=

d

dt

q2

2c

Thus we see that the effect is very different in the case of changing c at constant charge verses
changing c at constant voltage. The force required to change the value of the capacitance, is
expressible as the negative of the derivative of the potential energy, (f = −∂V/∂x )

f = − d

dx

q2

2c
=

cx

c2

q2

2
; cx =

dc

dx

The work done on the capacitor when it changes from an initial value of ci to a final value of cf

at constant charge can be computed by integrating fdx but it more direct to observe that it is
just the difference in the potential energy at the end points

W =
q2

2cf
− q2

2ci

From the stochastic equation for the circuit we get a variance equation

σ̇ = −2(ċ/c)σ − 2
g

c
σ + 2giTi/c2 ; σ = Ev2

with Ti being the temperature of the resistor connected to the capacitor. This can also be written
as

d

dt
cσ = − ċ

c
cσ − 2

g

c
cσ + 2giTi/c

This equation clearly expresses the flow of energy. Along a path on which Ev2c is constant, the
integral of the left-hand side is zero, the integral of the first term on the right is the work while
the last two terms describe the flow of the heat supplied to the resistor. In view of this, we may
say that the expected value of the work done when a capacitor changes slowly at an equilibrium
condition associated with a resistor at temperature T is

EW =
∫ b

a

cx

2c
Tdx =

T

2
ln

c(b)
c(a)

1

2
3

4

cv = energy

c  v  = charge2

v

c
2

2 2

Figure 7.3: Constant charge paths and constant energy paths.

We now discuss the Carnot cycle using figure 7.3 as a guide. In passing from 1 to 2 the
capacitor is connected to the resistor at temperature T1 = Tl. Along this path work is done by
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the capacitor in the amount

EW12 =
Tl

2
ln

c2

c1
(negative number)

The next step is to follow the path from point 2 to point 3 which is a constant charge path. The
capacitor is not connected to anything and work is done on the capacitor as required to change
c at constant charge.

EW23 =
q2

2c3
− q2

2c2
= T3 − T2

where we have used T = Eq2/2c. In passing from point 3 to point 4, the capacitor is attached to
the resistor with temperature Th along this path the capacitor does work in the amount

EW34 =
T4

2
ln

c4

c3
(positive number)

Finally, the capacitor is disconnected again and follows the constant charge path from point 4 to
point 1. Along this path the capacitor does work on the environment in the amount

EW41 =
q2

2c1
− q2

2c4
= T1 − T4

Notice that because T1 = T2 and T3 = T4, the magnitude of the work done along the path
from 2 to 3 is equal to the magnidude of the work done along the path from 4 to 1. They are
of opposite sign and therefore cancel in the overall accounting of the work. To evaluate the
performance of this system we examine the heat supplied at temperature Th = T4 = T3 and
compare it to the heat rejected at temperature Tl = T1 = T2. Defining the thermodynamic
efficiency as η = W/Q we see that because the magnitudes of the heat supplied along the paths
1-2 or 3-4 equals the magnitudes of the work done, we have

η =
W

Qh
=

W34 + W12

W34
=

Th

2 ln c4
c3
− Tl

2 ln c1
c2

Th

2 ln c4
c3

we proceed to evaluate η. The key step in evaluating η is to establish the fact that along the
closed path we have defined

c1

c2
=

c4

c3

To do this we combind the four equalities

c1Ev2
1 = c2Ev2

2 ; Ec2
2v

2
2 = Ec2

3v
2
3 ; Ec3v

2
3 = Ec4v

2
4 ; Ec2

4v
2
4 = Ec2

1v
2
1

These imply that

1 =
c1

c2

c2

c3

c3

c4

c4

c1
=
Ev2

2

Ev2
1

√
Ev2

3

Ev2
2

Ev2
4

Ev2
3

√
Ev2

1

Ev2
4

=

√
Ev2

2Ev2
4

Ev2
1Ev2

3

Again, using the four equations, we see that

1 =

√
Ev2

2Ev2
4

Ev2
1Ev2

3

=
√

c2c4√
c1c3

which establishes the desired fact. Now, returning to the efficiency, we see that

η =
Th

2 ln c4
c3
− Tl

2 ln c1
c2

Th

2 ln c4
c3

=
Th − Tl

Th

According to the Kelvin-Planck statement of the second law, it is impossible to remove work
from a single heat bath using a thermodynamic cycle. In our situation we see that we get no
work out if Th = Tl.
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7.4 Exercises 7

1. Consider the stochastic differential equation

dx = −xdt + dw + udt;x(t) = 0

Suppose we set u = −kx. What value of k minimizes

lim
t→∞

E(x2(t) + u2(t))

2. Suppose that x satisfies the equation

dx = −xdt + dw + udt

and suppose that one observes

dy = xdt + dν

with w and ν being standard, independent, Weiner processes. If x(0), the initial data for
x, is distributed according to the probability density

ρ(x(0)) =
1√
2π

e−x2(0)/2

evaluate

lim
t→∞

Ex2(t)

for udt = kdy. (Your answer will, of course, depend on k.)

3. Consider the second order equation[
dx1

dx2

]
=

[
0 1
−1 −2

] [
x1

x2

]
dt +

[
0

dw

]
+

[
0
u

]
dt

Find u(t) = a(t)x1 + b(t)x2 such that

η = E
∫ 1

0

u2(t) + x2
1(t)dt

is as small as possible.

4. Let x be an n-vector and let w be an n-dimensional Wiener process. Consider the Itô
equations

dx = dw ; x(0) = 0
dQ = xxT dt ; Q(0) = 0

Compute E Q(t). Consider the deterministic control problem

ẋ = u ; x(0) = 0
Q̇ = xxT ; Q(0) = 0

Suppose that one wants to find the optimal control for achieving Q(T ) = M , x(T ) = 0
while minimizing

η =
∫ T

0

uT u dt

Of course the optimal value of η depends on M and so we write η(M). Show that η(T )
depends on M only through the eigenvalues of M . How does η depend on T? Write the
Hamilton-Jacobi equation for this problem.
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5. Write the Fokker-Planck equation for the stochastic differential equations appearing in the
previous problem.

6. Consider the solution ρ of the Fokker Planck equation for x(0) = 0, Q(0) = 0. If t > 0, do
you expect that ρ(t, x, Q) will be positive for all x and Q = QT ? Will it be positive for all
x, Q such that Q = QT > 0?

7. Find the best open-loop u and v for the problem

dx = −xdt + udt + dw1

dy = −ydt + vdt + dw2

dz = (xv − yu)zdt + dw3

with
η = E(x2 + y2 + |z|+ u2 + v2)
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