Let S and Ω be anti-symmetric real matrices of dimensions $n \times n$ and $k \times k$ respectively. Furthermore, let G and B be real matrices such that

$$
\operatorname{rank}\left(\left[G|S G| S^{2} G|\ldots| S^{n-1} G\right]\right)=n
$$

and

$$
\operatorname{rank}\left(\left[B|\Omega B| \Omega^{2} B|\ldots| \Omega^{k-1} B\right]=n+k\right.
$$

Of course, the dimensions of G are $n \times r$ for some r, and the dimensions of B are $n \times k$.
Consider the following stochastic differential equation system:

$$
\left[\begin{array}{l}
d x \\
d z
\end{array}\right]=\left[\begin{array}{cc}
S-G G^{T} & B \\
-B^{T} & \Omega
\end{array}\right]\left[\begin{array}{l}
x \\
z
\end{array}\right]+\left[\begin{array}{c}
G d w \\
0
\end{array}\right]
$$

Find the steady-state variance for this system. Extra credit will be given for interpreting the physical meaning of the result that you get. You may use the following theorem:

Theorem 1 Let

$$
\dot{x}(t)=A x(t)+B u(t)
$$

be a controllable time-invariant system in which $A^{T}=-A$. Then all solutions to the system

$$
\dot{z}(t)=\left(A-B B^{T}\right) z(t)
$$

converge to zero as $t \rightarrow \infty$.
I suggest following these steps:

1. Use the Ito equations to set up a diffential equation for the second moment $E\left[(x z)(x z)^{T}\right]$ of the system. This equation will be of the form

$$
L(X)=A X+X A^{T}+C
$$

where A and C are matrices and $X=[x z]^{T}$. To do this part of the problem you just need to find A and C.
2. Find, by inspection, a solution to setting $L(X)=0$. HINT: The solution is extremely simple. Try the simplest invertible matrix you can think of, and then tweak it by a constant factor.
3. All you have to do now is show that the solution you found in the previous part is unique. Toward this end, notice that $L(X)$ is a linear operator and solutions to

$$
L(X)=A X+X^{T}+C=0
$$

are unique iff A has no zero equigenvalues. So now you must simply show that A has no zero eigenvalues. You should show in fact that the real parts of the eigenvalues of A are strictly negative. To do this, suppose otherwise. That is, that there is a nonzero eigenvector $X^{*}=\left[x^{*} z^{*}\right]^{T}$ such that

$$
A X=\lambda X
$$

where $\operatorname{Re}(\lambda) \geq 0$. Work out, using the expression for A that you derived in the first part, what this actually means in terms two linear equations relating x^{*} and z^{*}.
4. Now, consider the theorem noted above. It has a consequence for the sign of the real part of the eigenvalues of the matrix $A-B B^{T}$. Use this to draw conclusions about the real parts of the eigenvalues of the matrices $S-G G^{T}$ and $\Omega-B^{T} R^{T} R B$ where R is any invertible matrix.
5. Use this to be able to invert certain matrices in the two linear equations you derived, and get a single linear eigenvalue equation in one of the variables, say z^{*}. Finally, use the same information about the real parts of the eigenvalues of those matrices to derive a contradiction from assuming that $\operatorname{Re}(\lambda) \geq 0$ in this eigenvalue equation for z^{*}.

As for interpretation: think in terms of statistical thermodynamics and the famous "equipartition" theorem. Ω is a heat bath and B is a term coupling the stochastic system

$$
\dot{x}=\left(S-G G^{T}\right) x+G d w
$$

in to the heat bath.

