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Last time ....

... the model.

Today ...

... Some results.
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Local Checkability

Let’s take the simple |-D repeat pattern T o:

000060 00
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Let’s take the simple |-D repeat pattern T o:

000060 00

Problem: Find a nearest-neighbor solution to this pattern

Answer:

1 — B(—1), B # left-end agent
1, B = left-end agent
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Now consider the repeat pattern T oo0:

00606666060

Can this pattern be solved robustly with a nearest-neighbor rule!?
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Local Checkability

Now consider the repeat pattern T oo0:

00000000 .

Can this pattern be solved robustly with a nearest-neighbor rule!?

Answer: No. Because the with a radius | rule, 000 would have
to be a fixed state.

000066060
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©-0-0-0-06-0-0-0

Problem:What is the smallest radius that will solve T?

Answer: Infinity. There is no solution.

Because this configuration:

Thursday, November 28, 13



Local Checkability

Now take the proportionate pattern:
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Problem:What is the smallest radius that will solve T?

Answer: Infinity. There is no solution.

F
Because this configuration: > rE) \

@ +%%M%%
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Local Checkability

Now take the proportionate pattern:

®-0-06-06-0-0-0-0

Problem:What is the smallest radius that will solve T?

Answer: Infinity. There is no solution.

F
Because this configuration: > rE) |

Will be indistinguishable from this one:
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Definition. A function © : B, — {0,1} is a local check scheme
for pattern T if

¢ O[X] = Aicyv(x)(O(B.(,X)) =1) = XeT and

e T'NC, # 0 = there is X € C,, such that ©[X]| holds.
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Definition. A function © : B, — {0,1} is a local check scheme
for pattern T if

¢ O[X] = Aicyv(x)(O(B.(,X)) =1) = XeT and

e TNC, # 0 = there is X € C,, such that ©[X] holds.

N \
©-0-000000

Example. The pattern Tyoo has a radius-2 local check scheme.

Let T be the pattern generated by 0.

Let LCR(T) denote the minimal radius of a check scheme for it -- this is
T’s “local check radius.” T is “locally checkable™ if LCR(T) is finite.
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We (essentially) have seen that a |-D pattern must be locally checkable
for there to be a robust solution:
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We (essentially) have seen that a |-D pattern must be locally checkable
for there to be a robust solution:

Proposition. If F' is a robust solution to I-dimensional pattern T, then

r(F) > LCR(T).
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We (essentially) have seen that a |-D pattern must be locally checkable
for there to be a robust solution: But actually:

Proposition. If F is a robust solution to +—dimensionat any pattern T', then

Proposition. If F is a robust solutioh & ILdiRidnyional pattern T, then

Local checkability is a very general ﬁé@s%aﬁf&gaition for solvability.

The proposition yields both a:

® Sharp existence condition: LC'R(I") = oo means unsolvability

® and a resource condition: LCR(T) is a lower bound.

Obvious next questions: |) What kinds of patterns are locally checkable!?

And: 2) When is Local Checkability sufficient? Can we obtain sufficiency
by making generic constructions?
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Q: What kinds of patterns are locally checkable?
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has check radius I,
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Q: What kinds of patterns are locally checkable?

® All repeat patterns are locally checkable. For instance,
T100 = {(100)"}

000060060006

has check radius |, while
T'1000000 = {(1000000)"}

0000000000600 0

has check radius 3,
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Q: What kinds of patterns are locally checkable?

® All repeat patterns are locally checkable. For instance,
T100 = {(100)"}

000060060006

has check radius |, while
T'1000000 = {(1000000)"}

0000000000600 0

has check radius 3, and
T100112001 = {(100112001)"}

o-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0

has check radius 2.
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Q: What kinds of patterns are locally checkable?

® All repeat patterns are locally checkable. For instance,
T100112001 = {(100112001)"}

@-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0

has check radius 2. while

2999090099

494494454

494094094

es00000ee Infactwhenever repeat” s defined
444494494 | P |
;?%5;;&5& LCR(T,) < |q|/2
000006000 where q is the unit being repeated.
®-0-0-0-06-06-0-06-0-0

Loy by b v 4
o-0-0-0-000000

has check radius 2.
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Definition. T is locally generated if T = T for some O.

® | ocally generated patterns are closed under logical ‘AND’:

O AN, > O -0

® and ‘OR’
O,V >, (B -0, +0;+0,) mod 2

SO
LCR(O;A,VO,) < max(LCR(®,), LCR(O,))

® and weakly closed under logical ‘NOT’, i.e. the pattern
generated by - O is locally checkable.

LCR(—0) <2LCR(O)+1

® Hence,
LCR(QD) < 2rank(gp)+1
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Q: What kinds of patterns are locally checkable!? Specific to |-D.

® |n I-D, no nontrivial proportionate pattern is LC’able.

® |n |[-D,LCability is closed under various concatenations,

e.g. for
T1°T2:{$'y‘$ET1,yETQ}

we have
LCR(Ty -1T5) < LCR(Ty) + LCR('T5)

For example,
TlOO y TlOOO — {(100)”(1000)”7”%, ™ Z 1}

has a radius 3 check scheme.

® |-D check schemes related to formal languages, since as
a result of the closure properties:

Proposition. All locally generated 1-D patterns are regular languages,
and all regular languages are locally checkable.

...s0 all 1-D check schemes are combinations of things with periodicities



Thursday, November 28, 13



Thursday, November 28, 13



Q: What kinds of patterns are locally checkable!? Specific to |-D.
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Q: What kinds of patterns are locally checkable!? Specific to |-D.

Definition. A pattern T over state set S is (r, m)-locally encodable if it
can be generated by applying a radius-r local rule once (synchronously)
to a radius-r locally checkable pattern over m states.
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Local Checkability

Q: What kinds of patterns are locally checkable!? Specific to |-D.

Definition. A pattern T over state set S is (r,m)-locally encodable if it
can be generated by applying a radius-r local rule once (synchronously)
to a radius-r locally checkable pattern over m states.
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Local Checkability

Q: What kinds of patterns are locally checkable!? Specific to |-D.

Definition. A pattern T over state set S is (r,m)-locally encodable if it
can be generated by applying a radius-r local rule once (synchronously)
to a radius-r locally checkable pattern over m states.

0 0000600000000

0000000000000

Thursday, November 28, 13



Local Checkability

Q: What kinds of patterns are locally checkable!? Specific to |-D.

Definition. A pattern T over state set S is (r,m)-locally encodable if it
can be generated by applying a radius-r local rule once (synchronously)
to a radius-r locally checkable pattern over m states.
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can be generated by applying a radius-r local rule once (synchronously)
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Local Checkability

Q: What kinds of patterns are locally checkable!? Specific to |-D.

Definition. A pattern T over state set S is (r,m)-locally encodable if it
can be generated by applying a radius-r local rule once (synchronously)
to a radius-r locally checkable pattern over m states.
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The r = 3 pattern on the is the (1,4) encoding of the r = |
bottom pattern on the top.

0000000000000

We’ll come back to this radius/state “tradeoff”, but ...

Proposition. In I-D, all local encodings of locally checkable patterns
are again locally checkable.
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Q: What kinds of patterns are locally checkable!  Specific to higher-D.
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® |n |-D,all patterns had combinations of periodic structures,

but in higher D there can be irreducible aperiodicites.
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Specific to higher-D.

Q: What kinds of patterns are locally checkable?

® |n |-D,all patterns had combinations of periodic structures,

but in higher D there can be irreducible aperiodicites.
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Q: What kinds of patterns are locally checkable!  Specific to higher-D.

® |n I-D, no nontrivial proportionate pattern are LC,
but in higher D they all essentially are.
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Local Checkability

Q: What kinds of patterns are locally checkable!  Specific to higher-D.

® |n I-D, no nontrivial proportionate pattern are LC,
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Q: What kinds of patterns are locally checkable!  Specific to higher-D.
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Q: What kinds of patterns are locally checkable!  Specific to higher-D.

® Quadratic splines (ellipsoids) and cubic splines are also locally
encodable.
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Q: What kinds of patterns are locally checkable!  Specific to higher-D.
® Quadratic splines (ellipsoids) and cubic splines are also locally
encodable.
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Q: What kinds of patterns are locally checkable!  Specific to higher-D.
® Quadratic splines (ellipsoids) and cubic splines are also locally
encodable.
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S0, in effect, a vector pattern language is available in regular structures
above | dimension.
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These are the “accepted local parts’” which “fit together” to
form local steady states.
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form local steady states.

® |n |-D,as Formal Languages, but harder for higher dim.
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Variety of ways to characterize LCSs:

® As “part lists” or “tile sets’:

Since ©:8, —{0,1} A ©7Y1)cCB,
These are the “accepted local parts’” which “fit together” to
form local steady states.

® |n |-D,as Formal Languages, but harder for higher dim.

® Graph-theoretically.
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Definition. Given an underlying geometry G and label set S, the length-n
shift graph over G, S is the derived graph

DG, S) = (V. E)
where
V = {diameter-n induced subgraphs in S -configurations over G}
taken up to graph isomorphism, and where

(u,v) € E & visa l-shift of u.
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Definition. Given an underlying geometry G and label set S, the length-n
shift graph over G, S is the derived graph

DG, S) = (V. E)
where
V = {diameter-n induced subgraphs in S -configurations over G}
taken up to graph isomorphism, and where

(u,v) € E & visa l-shift of u.

v 1s a 1-shift of u if there 1s a
configuration X and agents x,
y € X such that dist(x,y) = 1
and B,(x,X) = u, B,(y,X) = v.
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Definition. Given an underlying geometry G and label set S, the length-n
shift graph over G, S is the derived graph

DG, S) = (V. E)
where
V = {diameter-n induced subgraphs in S -configurations over G}
taken up to graph isomorphism, and where

(u,v) € E & visa l-shift of u.
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configuration X and agents x,
y € X such that dist(x,y) = 1
and B,(x,X) = u, B,(y,X) = v.
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Definition. Given an underlying geometry G and label set S, the length-n
shift graph over G, S is the derived graph

DG, S) = (V. E)
where
V = {diameter-n induced subgraphs in S -configurations over G}
taken up to graph isomorphism, and where
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Definition. Given an underlying geometry G and label set S, the length-n
shift graph over G, S is the derived graph

DG, S) = (V. E)
where
V = {diameter-n induced subgraphs in S -configurations over G}
taken up to graph isomorphism, and where

(u,v) € E & visa l-shift of u.

v is a 1-shift of u if there is a 4]0_’%@_’070_’
1/ X |

configuration X and agents x,
y € X such that dist(x,y) = 1 < Y
and B,(x,X) = u, B,(y,X) = v.

_—
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Proposition. Radius-r local check schemes over G, S, are in
1-1 correspondence with subgraphs of Day11(G,S).
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The reason why is:
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And balls of radius r have diameter 2r+1,so ® (1) is a subset of the
nodes of 9,,.1(G,S). So
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Proposition. Radius-r local check schemes over G, S, are in
1-1 correspondence with subgraphs of Day11(G,S).

The reason why is:
e — 07'(1)

And balls of radius r have diameter 2r+1,so ® (1) is a subset of the
nodes of 9,,.1(G,S). So

® — O (1) — induced subgraph G(®)

In words: local check schemes are equivalent to graphs, and in fact
subgraphs of a very specific “ambient space.”
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Proposition. Radius-r local check schemes over G, S, are in
1-1 correspondence with subgraphs of Day11(G,S).

The reason why is:
e — 07'(1)

And balls of radius r have diameter 2r+1,so ® (1) is a subset of the
nodes of 9,,.1(G,S). So

® — O (1) — induced subgraph G(®)

In words: local check schemes are equivalent to graphs, and in fact
subgraphs of a very specific “ambient space.”

D, (Z,2)is known (from other contexts) as the DeBruijn graph, so the
generalized DeBruijn graphs are the "ambient spaces” of locally checkable
patterns.
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For example, the radius-2 check scheme for repeat pattern:
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For example, the radius-2 check scheme for repeat pattern:
T1r000 = {1000, 10001000, ..., (1000)",...}

is associated with the graph

00O @

The pattern
TlOO . TlOOO — {(100)”(1000)?”’%, T 2 1}
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T1r000 = {1000, 10001000, ..., (1000)",...}

is associated with the graph
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The pattern
TlOO . TlOOO — {(100)”(1000)?”’%, T 2 1}
has a radius-3 check scheme whose graph is:
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