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S Timing model: agents called in various orders iteratively apply the 
local rule, generating trajectories.

T Pattern

=� F Robust Solutions: rules whose trajectories always converge
to T from all initial configurations and under all call orders.

Statics

Dynamics

Task (or “functionality”)
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Last time .... 

... the model.

Today ... 

... some results.
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Let’s take the simple 1-D repeat pattern T10:

Problem: Find a nearest-neighbor solution to this pattern

Answer:

F (B) =

�
1�B(�1), B ⇥= left-end agent
1, B = left-end agent
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to be a fixed state.  
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Definition. A function � : Br ⇥ {0, 1} is a local check scheme
for pattern T if

• �[X] =
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i�V (X)(�(Br(i,X)) = 1) ⇤ X ⌅ T and

• T  Cn ⇧= ⌃ ⇤ there is X ⌅ Cn such that �[X] holds.
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Definition. A function � : Br ⇥ {0, 1} is a local check scheme
for pattern T if

• �[X] =
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i�V (X)(�(Br(i,X)) = 1) ⇤ X ⌅ T and

• T  Cn ⇧= ⌃ ⇤ there is X ⌅ Cn such that �[X] holds.

Local Checkability

Let LCR(T) denote the minimal radius of a check scheme for it -- this is 
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Let T� be the pattern generated by �.
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And:  2) When is Local Checkability sufficient?  Can we obtain sufficiency 
by making generic constructions?
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• All repeat patterns are locally checkable.  

has check radius 1,

For instance, 
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Q:  What kinds of patterns are locally checkable?

Local Checkability

• All repeat patterns are locally checkable.  

has check radius 2.

For instance, 
T100112001 = {(100112001)n}

whilehas check radius 2.

LCR(Tq) � |q|/2

In fact, whenever “repeat” is defined, 

where q is the unit being repeated.
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Local Checkability

• Locally generated patterns are closed under logical ‘AND’: 

LCR(¬�) � 2LCR(�) + 1

• and ‘OR’ 

• and weakly closed under logical ‘NOT’, i.e. 

�1 ⌅ �2 ⇤⇥ �1 · �2

so
�1 ⌅ �1 ⇤⇥ (�1 · �2 + �1 + �2) mod 2

LCR(�1⇥,⇤�1) � max(LCR(�1), LCR(�2))

the pattern 
generated by      is locally checkable. ¬�

• Hence,
LCR(�) � 2rank(�)+1

Definition. T is locally generated if T = T� for some �.
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e.g. for

T1 · T2 = {x · y|x ⇥ T1, y ⇥ T2}
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Q:  What kinds of patterns are locally checkable? Specific to 1-D.

• In 1-D, no nontrivial proportionate pattern is LC’able.

• In 1-D, LC’ability is closed under various concatenations, 
e.g. for

T1 · T2 = {x · y|x ⇥ T1, y ⇥ T2}

LCR(T1 · T2) ⇥ LCR(T1) + LCR(T2)
we have

T100 · T1000 = {(100)n(1000)m|n, m ⇥ 1}
has a radius 3 check scheme. 

For example,

• 1-D check schemes related to formal languages, since as 
a result of the closure properties: 
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has a radius 3 check scheme. 

For example,

• 1-D check schemes related to formal languages, since as 
a result of the closure properties: 

Proposition. All locally generated 1-D patterns are regular languages,

and all regular languages are locally checkable.
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Local Checkability

Q:  What kinds of patterns are locally checkable? Specific to 1-D.

• In 1-D, no nontrivial proportionate pattern is LC’able.

• In 1-D, LC’ability is closed under various concatenations, 
e.g. for

T1 · T2 = {x · y|x ⇥ T1, y ⇥ T2}

LCR(T1 · T2) ⇥ LCR(T1) + LCR(T2)
we have

T100 · T1000 = {(100)n(1000)m|n, m ⇥ 1}
has a radius 3 check scheme. 

For example,

• 1-D check schemes related to formal languages, since as 
a result of the closure properties: 

Proposition. All locally generated 1-D patterns are regular languages,

and all regular languages are locally checkable.

... so all 1-D check schemes are combinations of things with periodicities
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Q:  What kinds of patterns are locally checkable? Specific to 1-D.

Local Checkability
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Q:  What kinds of patterns are locally checkable? Specific to 1-D.

Local Checkability

Definition. A pattern T over state set S is (r,m)-locally encodable if it
can be generated by applying a radius-r local rule once (synchronously)

to a radius-r locally checkable pattern over m states.
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Local Checkability

Definition. A pattern T over state set S is (r,m)-locally encodable if it
can be generated by applying a radius-r local rule once (synchronously)

to a radius-r locally checkable pattern over m states.
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Q:  What kinds of patterns are locally checkable? Specific to 1-D.

Local Checkability

The r = 3 pattern on the 
bottom

Definition. A pattern T over state set S is (r,m)-locally encodable if it
can be generated by applying a radius-r local rule once (synchronously)

to a radius-r locally checkable pattern over m states.
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Q:  What kinds of patterns are locally checkable? Specific to 1-D.

Local Checkability

The r = 3 pattern on the 
bottom

is the (1,4) encoding of the r = 1
pattern on the top.

Definition. A pattern T over state set S is (r,m)-locally encodable if it
can be generated by applying a radius-r local rule once (synchronously)

to a radius-r locally checkable pattern over m states.
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Q:  What kinds of patterns are locally checkable? Specific to 1-D.

Local Checkability

The r = 3 pattern on the 
bottom

is the (1,4) encoding of the r = 1
pattern on the top.

We’ll come back to this radius/state “tradeoff”, but ...

Definition. A pattern T over state set S is (r,m)-locally encodable if it
can be generated by applying a radius-r local rule once (synchronously)

to a radius-r locally checkable pattern over m states.
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Q:  What kinds of patterns are locally checkable? Specific to 1-D.

Local Checkability

The r = 3 pattern on the 
bottom

is the (1,4) encoding of the r = 1
pattern on the top.

Proposition. In 1-D, all local encodings of locally checkable patterns

are again locally checkable.

We’ll come back to this radius/state “tradeoff”, but ...

Definition. A pattern T over state set S is (r,m)-locally encodable if it
can be generated by applying a radius-r local rule once (synchronously)

to a radius-r locally checkable pattern over m states.
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Local Checkability

Q:  What kinds of patterns are locally checkable? Specific to higher-D.

Thursday, November 28, 13



Local Checkability

Q:  What kinds of patterns are locally checkable? Specific to higher-D.

• In 1-D, all patterns had combinations of periodic structures, 
but in higher D there can be irreducible aperiodicites.  
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Local Checkability

Q:  What kinds of patterns are locally checkable? Specific to higher-D.

• In 1-D, all patterns had combinations of periodic structures, 
but in higher D there can be irreducible aperiodicites.  

The
Sierpinski
Gasket
has a 
radius-one
check scheme.
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Local Checkability

Q:  What kinds of patterns are locally checkable? Specific to higher-D.
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Local Checkability

Q:  What kinds of patterns are locally checkable? Specific to higher-D.

• In 1-D, no nontrivial proportionate pattern are LC, 
but in higher D they all essentially are.  
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Q:  What kinds of patterns are locally checkable? Specific to higher-D.

• In 1-D, no nontrivial proportionate pattern are LC, 
but in higher D they all essentially are.  
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Local Checkability

Q:  What kinds of patterns are locally checkable? Specific to higher-D.

• In 1-D, no nontrivial proportionate pattern are LC, 
but in higher D they all essentially are.  

The
Cross 
Pattern
(r = 1,
m = 2)
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Local Checkability

Q:  What kinds of patterns are locally checkable? Specific to higher-D.

• In 1-D, no nontrivial proportionate pattern are LC, 
but in higher D they all essentially are.  

Center-
Marked 
Pattern
(r = 1,
m = 3)
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Local Checkability

Q:  What kinds of patterns are locally checkable? Specific to higher-D.

• In 1-D, no nontrivial proportionate pattern are LC, 
but in higher D they all essentially are.  

Axis 
pattern
(r = 2,
m = 3)
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Local Checkability

Q:  What kinds of patterns are locally checkable? Specific to higher-D.

• In 1-D, no nontrivial proportionate pattern are LC, 
but in higher D they all essentially are.  

Half-
proportion
with skeleton 
pattern
(r = 2,
m = 3)
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Local Checkability

Q:  What kinds of patterns are locally checkable? Specific to higher-D.

• In 1-D, no nontrivial proportionate pattern are LC, 
but in higher D they all essentially are.  
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Local Checkability

Q:  What kinds of patterns are locally checkable? Specific to higher-D.
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Local Checkability

Q:  What kinds of patterns are locally checkable? Specific to higher-D.

• Quadratic splines (ellipsoids) and cubic splines are also locally 
encodable. 
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Local Checkability

Q:  What kinds of patterns are locally checkable? Specific to higher-D.

• Quadratic splines (ellipsoids) and cubic splines are also locally 
encodable. 

or or or

A) B) C) D)
radius 1 radius 4
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Local Checkability

Q:  What kinds of patterns are locally checkable? Specific to higher-D.

• Quadratic splines (ellipsoids) and cubic splines are also locally 
encodable. 

So, in effect, a vector pattern language is available in regular structures 
above 1 dimension. 

or or or

A) B) C) D)
radius 1 radius 4
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Local Checkability

Variety of ways to characterize LCSs:
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• As “part lists” or “tile sets”:
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Variety of ways to characterize LCSs:

• As “part lists” or “tile sets”:

Since � : Br � {0, 1} , ��1(1) � Br

These are the “accepted local parts” which “fit together” to 
form local steady states. 
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Variety of ways to characterize LCSs:

• As “part lists” or “tile sets”:

Since � : Br � {0, 1} , ��1(1) � Br

These are the “accepted local parts” which “fit together” to 
form local steady states. 

• In 1-D, as Formal Languages, but harder for higher dim.
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Local Checkability

Variety of ways to characterize LCSs:

• As “part lists” or “tile sets”:

Since � : Br � {0, 1} , ��1(1) � Br

These are the “accepted local parts” which “fit together” to 
form local steady states. 

• In 1-D, as Formal Languages, but harder for higher dim.

• Graph-theoretically.
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Local Check Schemes as Graphs

Definition. Given an underlying geometry G and label set S , the length-n
shift graph over G, S is the derived graph

Dn(G, S ) = (V, E)

where

V = {diameter-n induced subgraphs in S -configurations over G}

taken up to graph isomorphism, and where

(u, v) ⇥ E � v is a 1-shift of u.
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Local Check Schemes as Graphs

Definition. Given an underlying geometry G and label set S , the length-n
shift graph over G, S is the derived graph

Dn(G, S ) = (V, E)

where

V = {diameter-n induced subgraphs in S -configurations over G}

taken up to graph isomorphism, and where

(u, v) ⇥ E � v is a 1-shift of u.

v is a 1-shift of u if there is a

configuration X and agents x,

y � X such that dist(x, y) = 1
and Br(x, X) = u, Br(y, X) = v.
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Local Check Schemes as Graphs

1 1 1 0 0 0

Definition. Given an underlying geometry G and label set S , the length-n
shift graph over G, S is the derived graph

Dn(G, S ) = (V, E)

where

V = {diameter-n induced subgraphs in S -configurations over G}

taken up to graph isomorphism, and where

(u, v) ⇥ E � v is a 1-shift of u.

v is a 1-shift of u if there is a

configuration X and agents x,

y � X such that dist(x, y) = 1
and Br(x, X) = u, Br(y, X) = v.
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Local Check Schemes as Graphs

1 1 1 0 0 0

11100

Definition. Given an underlying geometry G and label set S , the length-n
shift graph over G, S is the derived graph

Dn(G, S ) = (V, E)

where

V = {diameter-n induced subgraphs in S -configurations over G}

taken up to graph isomorphism, and where

(u, v) ⇥ E � v is a 1-shift of u.

v is a 1-shift of u if there is a

configuration X and agents x,

y � X such that dist(x, y) = 1
and Br(x, X) = u, Br(y, X) = v.
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Local Check Schemes as Graphs

1 1 1 0 0 0

11100 11000

Definition. Given an underlying geometry G and label set S , the length-n
shift graph over G, S is the derived graph

Dn(G, S ) = (V, E)

where

V = {diameter-n induced subgraphs in S -configurations over G}

taken up to graph isomorphism, and where

(u, v) ⇥ E � v is a 1-shift of u.

v is a 1-shift of u if there is a

configuration X and agents x,

y � X such that dist(x, y) = 1
and Br(x, X) = u, Br(y, X) = v.
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Local Check Schemes as Graphs

Thursday, November 28, 13



Proposition. Radius-r local check schemes over G, S, are in
1-1 correspondence with subgraphs of D2r+1(G, S).

Local Check Schemes as Graphs
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Proposition. Radius-r local check schemes over G, S, are in
1-1 correspondence with subgraphs of D2r+1(G, S).

Local Check Schemes as Graphs

The reason why is:
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Proposition. Radius-r local check schemes over G, S, are in
1-1 correspondence with subgraphs of D2r+1(G, S).

Local Check Schemes as Graphs

The reason why is:

� �⇥ ��1(1)
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Proposition. Radius-r local check schemes over G, S, are in
1-1 correspondence with subgraphs of D2r+1(G, S).

Local Check Schemes as Graphs

The reason why is:

� �⇥ ��1(1)
And balls  of radius r have diameter 2r+1, so            is a subset of the 
nodes of                  .  So 

��1(1)
D2r+1(G, S )
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Proposition. Radius-r local check schemes over G, S, are in
1-1 correspondence with subgraphs of D2r+1(G, S).

Local Check Schemes as Graphs

The reason why is:

� �⇥ ��1(1)
And balls  of radius r have diameter 2r+1, so            is a subset of the 
nodes of                  .  So 
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� �⇥ ��1(1) �⇥ induced subgraph G(�)
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In words:  local check schemes are equivalent to graphs, and in fact 
subgraphs of a very specific “ambient space.” 

Proposition. Radius-r local check schemes over G, S, are in
1-1 correspondence with subgraphs of D2r+1(G, S).

Local Check Schemes as Graphs

The reason why is:

� �⇥ ��1(1)
And balls  of radius r have diameter 2r+1, so            is a subset of the 
nodes of                  .  So 

��1(1)
D2r+1(G, S )

� �⇥ ��1(1) �⇥ induced subgraph G(�)
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In words:  local check schemes are equivalent to graphs, and in fact 
subgraphs of a very specific “ambient space.” 

Proposition. Radius-r local check schemes over G, S, are in
1-1 correspondence with subgraphs of D2r+1(G, S).

Local Check Schemes as Graphs

The reason why is:

� �⇥ ��1(1)
And balls  of radius r have diameter 2r+1, so            is a subset of the 
nodes of                  .  So 

��1(1)
D2r+1(G, S )

� �⇥ ��1(1) �⇥ induced subgraph G(�)

             is known (from other contexts) as the DeBruijn graph, so the 
generalized DeBruijn graphs are the ``ambient spaces” of locally checkable 
patterns. 

Dn(Z, 2)
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Local Check Schemes as Graphs
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For example, the radius-2 check scheme for repeat pattern: 
Local Check Schemes as Graphs
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T1000 = {1000, 10001000, . . . , (1000)n, . . .}
For example, the radius-2 check scheme for repeat pattern: 
Local Check Schemes as Graphs
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T1000 = {1000, 10001000, . . . , (1000)n, . . .}
For example, the radius-2 check scheme for repeat pattern: 

is associated with the graph

Local Check Schemes as Graphs
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T1000 = {1000, 10001000, . . . , (1000)n, . . .}

100* 1000 10001 00010 00100 01000 1000 000* * * * * * *

For example, the radius-2 check scheme for repeat pattern: 

is associated with the graph

Local Check Schemes as Graphs
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T1000 = {1000, 10001000, . . . , (1000)n, . . .}

100* 1000 10001 00010 00100 01000 1000 000* * * * * * *

For example, the radius-2 check scheme for repeat pattern: 

is associated with the graph

The pattern 

Local Check Schemes as Graphs
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T1000 = {1000, 10001000, . . . , (1000)n, . . .}

100* 1000 10001 00010 00100 01000 1000 000* * * * * * *

T100 · T1000 = {(100)n(1000)m|n, m ⇥ 1}

For example, the radius-2 check scheme for repeat pattern: 

is associated with the graph

The pattern 

Local Check Schemes as Graphs
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T1000 = {1000, 10001000, . . . , (1000)n, . . .}

100* 1000 10001 00010 00100 01000 1000 000* * * * * * *

T100 · T1000 = {(100)n(1000)m|n, m ⇥ 1}

For example, the radius-2 check scheme for repeat pattern: 

is associated with the graph

The pattern 

has a radius-3 check scheme whose graph is:

Local Check Schemes as Graphs
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T1000 = {1000, 10001000, . . . , (1000)n, . . .}

100* 1000 10001 00010 00100 01000 1000 000* * * * * * *

T100 · T1000 = {(100)n(1000)m|n, m ⇥ 1}

1001*
10010*

100100*

1001001*

0010010*

0100100*

100100*
00100*0100*

1001000* 0010001*

0100010*

1000100*

0001000*

100010* 10001*

1000*

001000*

01000* 1000*

For example, the radius-2 check scheme for repeat pattern: 

is associated with the graph

The pattern 

has a radius-3 check scheme whose graph is:

Local Check Schemes as Graphs
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