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• Desire for provable and quantifiable robustness

• What agent resource capacities are required to solve a given 
task? Is the global task even locally solvable at all?  

• What does thinking of natural spatial computers qua 
computers tell us scientically?

 ... the Need for A Theory

Challenges ...

• G to L: description level mismatch

• L to G: inscrutable complexity
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For local rules?  For global tasks? (Today)

• An Existence Problem:  When do given global tasks even have 
robust local rule solutions in the first place?  What features 
make a global problem robustly solvable?  (Session 2) 

• A Construction Problem:  Given that problem is solvable, can 
we algorithmically construct a generic procedure for producing 
solutions? (Session 3)

• A Resources Problem:  The main parameters of a spatial 
multi-agent system are its communications capacity and the 
amount of agent internal memory.    Can we trade off between 
the two?  How do the answers to the other problems scale? 
(Session 4)  

... Global-to-Local compilation.
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Definition. An underlying space is a set G of (partially) directed graphs.

Usually is a large or infinite set of configurations
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The Model: Static Configurations

Definition. An underlying space is a set G of (partially) directed graphs.

Definition. Configurations are labelings of graphs in G with elements
of some “state set” S .

State labels represent the agent’s internal states.

Definition. Br(a, X) is the local ball of radius r around agent a
in configuration X.

    for X = 1-D configuration shown above� B2(6, X)
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Thought of as “agent-based local programs”.

Definition. A radius R local rule is a look-up table that maps R-ball

configurations to “updated state” choices. Formally,
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Sequences of agent calls can be synchronous or asynchronous.

• Completely Synchronous: all agents called at all timesteps.

• Completely asynchronous: only one agent called per 
timestep, and no other restriction, except liveness. 

• k-bounded asynchronous: only one agent called per timestep, 
and no agent called k+1 times before all others called once.

(liveness: no agent ever stops being called forever)

Definition. A size-n call sequence is a call sequence acting on an

n-agent configuration. A timing model is a set of call sequences

for each size n.
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Definition. The trajectory {Fns (X0)} is generated by iterating F from

the initial condition X0, calling agents as specified by call sequence s.

Time

X0

F(X0)

F(F(X0))

F
3(X0)

.

.

.
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Definition. A pattern is a set of configurations.

Proportionate Patterns

or or or

A) B) C) D)Other patterns
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The Model: Robust Solutions

Definition. A local rule F is a robust solution to pattern T
in timing model S if, for all sizes n and all configurations X of size n

and all call sequences on X

whenever T contains one more instances of size n.

limn�⇥ Fn
s (X)

Configuration Space

T

G

S

R

S
T

Underlying Geometry

State set of size m

Communication radius

Timing model

Pattern

=� F Robust Solution

Disorder to Order
Thursday, November 28, 13



Thursday, November 28, 13



Other models:   Amorphous Computing
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Other models:   Flocking & Sorting
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Other models:   Developmental Biology
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Other models:   Reconfigurable Robots
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Other models:   Pattern and Task Abstractions
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