Retirement Lockboxes

William F. Sharpe
Stanford University

CFA Society of San Francisco
January 31, 2008
Based on work with:

• Jason Scott and John Watson
 – Financial Engines’ Center for Retirement Research

• For more, see *Post-retirement Economics* at www.wsharpe.com
The Prototypical Problem

• An individual or family has W dollars to finance retirement and
• Must choose a Retirement Financial Strategy, which includes decisions about:
 – Investment
 – Spending
 – Annuitization
Technologies Needed to find the Best Strategy

- Asset Pricing Theory
- Behavioral Economics
- Financial Engineering
- Operations Research
A Retirement Lockbox Strategy

• An analytical approach
 – Can provide greater clarity about the characteristics of traditional retirement financial strategies

• An actual approach
 – Can be tailored to provide better results for some retirees
 – Can provide better discipline to deal with problems associated with declining mental acuity
A Retirement Lockbox
Retirement Lockbox Characteristics

• Owner
 – Bill Sharpe

• Maturity Date
 – 2020

• Initial Investment
 – $20,000

• Investment Strategy
 – 60% Stocks, 40% Bonds, Rebalance annually

• Beneficiary
 – Monterey Institute of International Studies
Types of Retirement Lockboxes

• **Bequest**
 – Beneficiary gets the box if the owner is dead before the maturity date

• **Annuity**
 – An insurance company:
 • gets the box if the owner is dead before the maturity date
 • manages the investment strategy
 • matches the ending value in a pre-specified ratio if the owner is alive at the maturity date
A Retirement Lockbox Strategy
Individuals’ Performance When Making Financial Decisions

Home Equity Loan Interest Rates

"The Age of Reason: Financial Decisions Over the Lifecycle"
"The Age of Reason: Financial Decisions Over the Lifecycle"
The Simplest Possible Risky Capital Market

• Two periods
 – Now
 – Next year

• Two future *states of the world*
 – The market is up
 – The market is down

• Two securities
 – A riskless real bond
 – A portfolio of risky securities in market proportions
Capital Market Characteristics

Bond

- **0**: 1.00 with prob = 0.50
- **1.02** with prob = 0.50

Market Portfolio

- **0**: 1.00 with prob = 0.50
- **1.18** with prob = 0.50
- **0.94** with prob = 0.50
Desired Spending

\[Spending \]

\[\begin{array}{c}
\text{0} \\
50.00 \\
55.80 \\
48.60 \\
\end{array}\]

\[\text{prob } = 0.50 \]

\[\text{prob } = 0.50 \]
Wealth, Financial Strategy and Desired Spending

<table>
<thead>
<tr>
<th>x</th>
<th>W</th>
<th>B0</th>
<th>M0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>100</td>
<td>20</td>
<td>30</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>c</th>
<th></th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>50.00</td>
</tr>
<tr>
<td>0</td>
<td>1.02</td>
<td>55.80</td>
</tr>
<tr>
<td>0</td>
<td>1.02</td>
<td>48.60</td>
</tr>
</tbody>
</table>
Initial Wealth

Table: Initial Wealth

<table>
<thead>
<tr>
<th>W</th>
<th>B0</th>
<th>M0</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>20</td>
<td>30</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C</th>
<th>W</th>
<th>B0</th>
<th>M0</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1.02</td>
<td>1.18</td>
<td></td>
<td>50.00</td>
</tr>
<tr>
<td>0</td>
<td>1.02</td>
<td>0.94</td>
<td></td>
<td>55.80</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>48.60</td>
</tr>
</tbody>
</table>

S0, Su, Sd
Bond Investment

<table>
<thead>
<tr>
<th></th>
<th>W</th>
<th>B0</th>
<th>M0</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>100</td>
<td>20</td>
<td>30</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1.02</td>
<td>1.18</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1.02</td>
<td>0.94</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>S0</td>
<td>50.00</td>
</tr>
<tr>
<td>Su</td>
<td>55.80</td>
</tr>
<tr>
<td>Sd</td>
<td>48.60</td>
</tr>
</tbody>
</table>
Market Portfolio Investment

\[
\begin{array}{ccc}
\text{W} & \text{B0} & \text{M0} \\
100 & 20 & 30 \\
\end{array}
\]

\[
\begin{array}{ccc}
\text{C} & \text{S} & \\
1 & -1 & -1 & 50.00 \\
0 & 1.02 & 1.18 & 55.80 \\
0 & 1.02 & 0.94 & 48.60 \\
\end{array}
\]
Wealth, Financial Strategy, Capital Markets and Spending

Initial Wealth

<table>
<thead>
<tr>
<th>W</th>
<th>B0</th>
<th>M0</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>20</td>
<td>30</td>
</tr>
</tbody>
</table>

Financial Strategy

<table>
<thead>
<tr>
<th>C</th>
<th>1</th>
<th>-1</th>
<th>-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.02</td>
<td>1.18</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1.02</td>
<td>0.94</td>
<td></td>
</tr>
</tbody>
</table>

Capital Market Characteristics

<table>
<thead>
<tr>
<th>s</th>
<th>S0</th>
<th>Su</th>
<th>Sd</th>
</tr>
</thead>
<tbody>
<tr>
<td>50.00</td>
<td>55.80</td>
<td>48.60</td>
<td></td>
</tr>
</tbody>
</table>
Decisions → Spending

\[Cx' = s \]

<table>
<thead>
<tr>
<th></th>
<th>W</th>
<th>B0</th>
<th>M0</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>100</td>
<td>20</td>
<td>30</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>-1</th>
<th>-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>1</td>
<td>1.02</td>
<td>1.18</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>1.02</td>
<td>0.94</td>
</tr>
</tbody>
</table>

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>50.00</td>
<td>55.80</td>
<td>48.60</td>
</tr>
</tbody>
</table>

S0 Su Sd
Spending \rightarrow Decisions

$x' = C^{-1}s$

<table>
<thead>
<tr>
<th></th>
<th>W</th>
<th>B0</th>
<th>M0</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>100</td>
<td>20</td>
<td>30</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>-1</th>
<th>-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>0</td>
<td>1.02</td>
<td>1.18</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>1.02</td>
<td>0.94</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>S_0</th>
<th>S_u</th>
<th>S_d</th>
</tr>
</thead>
<tbody>
<tr>
<td>s</td>
<td>50.00</td>
<td>55.80</td>
<td>48.60</td>
</tr>
</tbody>
</table>
Lockbox, Period 1

<table>
<thead>
<tr>
<th></th>
<th>W</th>
<th>B0</th>
<th>M0</th>
</tr>
</thead>
<tbody>
<tr>
<td>x1</td>
<td>50</td>
<td>20</td>
<td>30</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>-1</th>
<th>-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>0</td>
<td>1.02</td>
<td>1.18</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>1.02</td>
<td>0.94</td>
</tr>
</tbody>
</table>

s1

0.00
55.80
48.60
Desired Spending: Multiple Periods

0 50.00

55.60

63.84 uu

53.76 ud

52.80 du

49.20 d

47.04 dd
Dynamic Strategies

<table>
<thead>
<tr>
<th></th>
<th>W</th>
<th>B0</th>
<th>M0</th>
<th>Bu</th>
<th>Mu</th>
<th>Bd</th>
<th>Md</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>150.00</td>
<td>40.00</td>
<td>60.00</td>
<td>14.00</td>
<td>42.00</td>
<td>24.00</td>
<td>24.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>-1</th>
<th>-1</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>0</td>
<td>1.02</td>
<td>1.18</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>1.02</td>
<td>0.94</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1.02</td>
<td>1.18</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1.02</td>
<td>1.18</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1.02</td>
<td>0.94</td>
</tr>
</tbody>
</table>

| | 0 | 0 | 0 | 0 | 0 | 1.02 | 0.94 |

| s | 50.00 | 55.60 | 49.20 | 63.84 | 53.76 | 52.80 | 47.04 |

<table>
<thead>
<tr>
<th></th>
<th>S0</th>
<th>Su</th>
<th>Sd</th>
<th>Suu</th>
<th>Sud</th>
<th>Sdu</th>
<th>Sdd</th>
</tr>
</thead>
</table>

Notes
- The table represents different dynamic strategies and their corresponding values for W, B0, M0, Bu, Mu, Bd, and Md.
- The values in the table are numerical and can represent costs or other metrics.
- The feedback values (s) are calculated based on the strategies and can be used to evaluate the effectiveness of each strategy.
Contingent Bond Purchases

<table>
<thead>
<tr>
<th></th>
<th>W</th>
<th>B0</th>
<th>M0</th>
<th>Bu</th>
<th>Mu</th>
<th>Bd</th>
<th>Md</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>150.00</td>
<td>40.00</td>
<td>60.00</td>
<td>14.00</td>
<td>42.00</td>
<td>24.00</td>
<td>24.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>C</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td></td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>1.02</td>
<td>1.18</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>1.02</td>
<td>0.94</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1.02</td>
<td>1.18</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1.02</td>
<td>0.94</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1.02</td>
<td>1.18</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1.02</td>
<td>0.94</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>s</th>
<th>S0</th>
<th>Su</th>
<th>Sd</th>
<th>Suu</th>
<th>Sud</th>
<th>Sdd</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>50.00</td>
<td>55.60</td>
<td>49.20</td>
<td>63.84</td>
<td>53.76</td>
<td>52.80</td>
<td>47.04</td>
</tr>
</tbody>
</table>
Lockbox, Period 2

<table>
<thead>
<tr>
<th></th>
<th>W</th>
<th>B0</th>
<th>M0</th>
<th>Bu</th>
<th>Mu</th>
<th>Bd</th>
<th>Md</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>49.67</td>
<td>16.34</td>
<td>33.33</td>
<td>14.00</td>
<td>42.00</td>
<td>24.00</td>
<td>24.00</td>
</tr>
</tbody>
</table>

inv(C)

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>-1</th>
<th>-1</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.02</td>
<td>1.18</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1.02</td>
<td>0.94</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1.02</td>
<td>1.18</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1.02</td>
<td>0.94</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1.02</td>
<td>1.18</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1.02</td>
<td>0.94</td>
<td>0</td>
</tr>
</tbody>
</table>

s

<table>
<thead>
<tr>
<th></th>
<th>S0</th>
<th>Su</th>
<th>Sd</th>
<th>Suu</th>
<th>Sud</th>
<th>Sdu</th>
<th>Sdd</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>63.84</td>
<td>53.76</td>
<td>52.80</td>
<td>47.04</td>
</tr>
</tbody>
</table>
Lockbox Separation (1)

- A retirement financial strategy is **fully specified** if spending in each year can be determined for any scenario of market returns.
- A market is **complete** if any desired spending plan can be implemented with a retirement financial strategy.
- If the market is complete, any fully specified retirement financial strategy can be implemented with a lockbox strategy.
Lockbox Separation (2)

• If a market is not complete
 – it may or may not be possible to implement a given retirement financial plan with a lockbox strategy
 – or, if there is a comparable lockbox strategy it may incur added expense

• But many popular retirement financial plans have equal-cost lockbox counterparts

• Prime examples are the Fidelity Income Replacement Funds
The Fidelity Income Replacement Funds

• Horizon date
 – E.g. 2036

• Investment strategy
 – Time-dependent “glide path” asset allocation

• Spending Rule
 – Pre-specified time-dependent proportions of asset value
Fund Characteristics
(from prospectus)

• “The Income Replacement Funds are designed for investors who seek to convert accumulated assets into regular payments over a defined period of time …

• The payment strategy for each Income Replacement Fund is designed to be implemented through a shareholder’s voluntary participation in the Smart Payment ProgramSM …

• Each Income Replacement Fund’s investment objective is intended to support the Smart Payment Program’s payment strategy …

• The income Replacement Funds are not designed for the accumulation of assets prior to retirement… [but they] do not provide a complete solution for a shareholder’s retirement income needs.”
Spending Rule

Annual Target Payment Rates

Years to Horizon

Percent of Fund Spent

0 10 20 30 40 50 60 70 80 90 100
Investment Strategy
Lockbox Equivalence

• Any strategy with a time-dependent proportional spending rule and a time-dependent investment strategy is equivalent to a lockbox strategy

• Each lockbox will have the same investment strategy and

• The initial amounts to be invested in the lockboxes can be computed from the pre-specified spending rates
Initial Lockbox Values (1)

• Let:
 \[K_t = \text{the proportion spent in year } t \]
 \[R_t = \text{the total return on investment in year } t \]
 \[(e.g. 1.02 \text{ for } 2\%)\]

• The amounts spent in the first three years will be:
 \[Wk_0 \]
 \[(1-k_0)WR_1k_1 \]
 \[(1-k_0)WR_1(1-k_1) R_2k_2 \]
Initial Lockbox Values (2)

- Re-arranging:
 \[
 \{W_k_0\} \\
 \{W(1-k_0)k_1\} R_1 \\
 \{W(1-k_0)(1-k_1)k_2\} R_1R_2
 \]

- But these are the ending values for lockboxes with the initial investments shown in the brackets \{ \}
 - investing these amounts in lockboxes will give the same spending plan as the original strategy
Percentages of Initial Wealth in Lockboxes
Rover: a Simple Income Replacement Fund

• Two assets
 – A riskless real bond
 – A market portfolio
 • (e.g. 60% Stocks, 40% Bonds)

• A glide path similar to that for equity funds in the Fidelity Income Replacement Funds

• A 30-year horizon

• Annual payment rates equal to those of the Fidelity Income Replacement Funds
Rover: Investment Strategy

![Graph showing investment strategy over time to horizon date. The graph illustrates a decreasing trend in the percent in market portfolio as time to horizon date increases.](image)
Rover: Percentages of Initial Wealth in Lockboxes
Capital Market Characteristics

- Riskless real return
 - 2 % per year

- Market portfolio real return
 - Lognormally distributed each year
 - Expected annual return
 - 6 % per year
 - Annual standard deviation of return
 - 12 % per year
 - No serial correlation from year to year
Monte Carlo Simulations

• 10,000 scenarios of 30 years each
• Returns for each lockbox are simulated
 – Results are the same as those for the original strategy
• The original set of scenarios is then used to evaluate alternative strategies
Rover: Spending in Year 30 per dollar invested in lockbox
Rover: Spending in Year 30: Strategy versus Market
Market Risk and Path Risk

- Market risk
 - Uncertainty about return due to uncertainty about cumulative market return

- Path risk
 - Uncertainty about return due to uncertainty about the path market returns will take

- In this setting, only market risk is rewarded with higher expected return
Minimizing Path Risk

- Sort all 10,000 amounts to be spent in the year from highest to lowest.
- Construct a strategy with the highest return in the scenario with the highest cumulative market return, the next highest return in the scenario with the next highest market return, and so on.
- This equal-distribution market strategy will have precisely the same distribution of spending with minimum path risk.
Rover: Spending in Year 30: Two Strategies versus Market
The Equal-distribution Market Strategy

• Provides returns almost the same as those from a constant-mix strategy rebalanced annually to give
 – 71% in the market portfolio
 – 29% in the riskless bond
• But it is cheaper to obtain these results since only market risk is taken
• Following such a constant-mix strategy with the funds in the lockbox will produce higher returns
 – In this case, over 11% better
Rover: Spending in Year 30: Three Strategies versus Market
Rover: Spending in Year 30: Glide Path versus Constant Mix

![Cumulative Returns, year 30: mean gain: 11.3%](chart)

- **Cumulative Returns, year 30: mean gain: 11.3%**
- **Axes:**
 - **Y-axis:** Probability of beating goal
 - **X-axis:** Goal
- **Graph:**
 - Blue line: Glide Path
 - Red line: Constant Mix
An Alternative Strategy

• Each lockbox follows a constant mix strategy
• The proportions invested in the market portfolio differ among boxes
• Boxes for later dates have more conservative asset allocations
• The distribution of outcomes for each year will be better than that for the original strategy
 – But the improvements will be greater for boxes with later dates
Is the Alternative Strategy Better?

• Probably for most retirees
• But it can provide more variation in spending from year to year
Percent Change in Spending for Two Strategies: Year 29 to Year 30
The Ultimate Goal

• To find the best retirement financial plan for a given retiree or retiree family
• This will depend on
 – Capital market characteristics
 – Personal preferences
Finding an Optimal Retirement Financial Strategy

Maximize:

\[H(s) \]

Subject to:

\[x(1) = W \]

\[x = C^{-1}s \]

where \(H(s) \) is the investor’s happiness with spending plan \(s \)
Happiness and Future Spending

- If a strategy determined today is to be followed without change, the appropriate objective is to maximize the happiness a retiree gets today from contemplating future spending when he or she may be ill or have diminished mental capacity.

- Such a strategy allows a retiree to act in loco parentis for his or her future (possibly diminished) self.

- Key is representing a retiree’s personal preferences adequately.
Personal Preferences and Retirement Lockboxes

• Economists have an approach to formulating personal preferences in terms of utility functions.
• The goal is to maximize expected utility, taking probabilities of states of the world into account.
• Much more work needs to be done to adapt this framework to help solve the retirement financial problem.
• But it is likely that lockboxes can help as analytic constructs and, in some cases, in practice.
Are There Retirement Lockboxes in Your Future?