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Abstract

It has been established in the literature, in various theoretical and asymptotic senses, that universal

lossy compression followed by some simple post-processing results in universal denoising, for the setting

of a stationary ergodic source corrupted by additive white noise. However, this interesting theoretical

result has not yet been tested in practice in denoising simulated or real data. In this paper, we employ

a recently developed MCMC-based universal lossy compressor to build a universal compression-based

denoising algorithm. We show that applying this iterative lossy compression algorithm with appropriately

chosen distortion measure and distortion level, followed by a simple de-randomization operation, results

in a family of denoisers that compares favorably (both theoretically and in practice) with other MCMC-

based schemes, and with the Discrete Universal Denoiser (DUDE).

Index Terms

Denoising, Compression-based denoising, Universal lossy compression, Markov chain Monte Carlo,

Simulated annealing.

I. INTRODUCTION

Consider a finite-alphabet random process X = {Xi}∞i=1 corrupted by an additive white (i.e., i.i.d.)

noise process Z = {Zi}∞i=1. The receiver observes the noisy process Y = {Yi}∞i=1, where

Yi = Xi + Zi,
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and desires to recover the noise-free signal X. For simplicity and concreteness, we assume that starting

here and throughout the paper, the source, noise, and reconstruction alphabets are the M -ary alphabet,

i.e., X = X̂ = Z = {0, 1, . . . ,M − 1}, and the noise is additive modulo-M . The idea and the approach

can be extended to more general settings as well.

Let π denote the probability mass function (pmf) of the noise process Z, i.e., P(Zi = z) = π(z), for

z ∈ Z and i ∈ N, and assume that π(z) > 0, for each z ∈ Z .

If Y and X̂ denote the alphabets of the received and the reconstruction signals, respectively, then, an

n-block denoiser can be described by its block length n and denoising mapping

θn : Yn → X̂ n,

such that X̂n = θn(Y n). Define the average distortion between source and reconstruction blocks xn and

x̂n as

dn(xn, x̂n) ,
1

n

n∑
i=1

d(xi, x̂i), (1)

where d : X × X̂ → R+ is a per-letter distortion measure. The performance of an n-block denoiser θn

is measured in terms of its expected average loss defined as

Lθn(X, π) , E[dn(Xn, θn(Y n))], (2)

where the expectation is with respect to the randomness both in signal and in noise. Hence, the per-

formance of a given denoiser depends on both the distribution of the signal and the distribution of the

noise.

In the case where the denoiser has knowledge of the probability distributions of the source and noise

processes X and Z, an optimal denoiser is a Bayesian denoiser whose ith reconstruction is given by

X̂Bayes
i = X̂Bayes

i (Y n) , arg min
x̂∈X̂

E[d(Xi, x̂)|Y n], (3)

where Y n = Xn + Zn. Let Lopt,B(X, π) denote the asymptotic performance of the Bayesian denoiser

defined by the set of denoiserz {X̂Bayes
i }ni=1 for stationary ergodic source X corrupted by an additive
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white noise process Z distributed according to π. In other words,

Lopt,B(X, π) = lim
n→∞

E

[
1

n

n∑
i=1

d(Xi, X̂
Bayes
i )

]
, (4)

where the limit exists by sub-additivity. In the case where X is Markov, the solution of (3) can be

obtained efficiently via the backward-forward recursions [1], [2].

In many practical situations, assuming that the denoiser knows the source distribution is not realistic.

However, it can be shown that the knowledge of the noise distribution π is enough for achieving

Lopt,B(X, π). In other words, there exists a family of n-block denoisers that achieves the optimal

performance Lopt,B(X, π), for any stationary ergodic X, as long as the noise distribution π is known

by the denoiser [3]. In fact, not only is this performance achievable for any stationary ergodic process

X, but it can be achieved practically with linear-complexity via the discrete universal denoising (DUDE)

algorithm proposed in [3].

In DUDE, the denoiser first estimates the probability distribution of the source using its observed

noisy version, and then it performs a Bayesian-type denoising operation using the estimated statistics. A

different approach to denoising is based on lossy compression of the noisy signal. This method provides an

alternative and more implicit method for learning the required statistics. After obtaining such statistics, the

Bayesian estimation can be done similar to the DUDE. The intuition behind this approach is as follows.

In universal lossy compression, to encode a sequence yn, the encoder looks for a more compressible

sequence ŷn, which is also ‘close’ to yn. At a high level, lossy compression of yn at distortion level D

can be done by searching among all sequences ŷn that are within radius D of yn, i.e., dn(yn, ŷn) ≤ D,

and choosing the one that has the lowest ‘complexity’ or ‘description length’. On the other hand, adding

noise to a signal, always increases its entropy, i.e., since I(Xn + Zn;Zn) ≥ 0,

H(Xn + Zn)−H(Xn + Zn|Zn) = H(Xn + Zn)−H(Xn) ≥ 0, (5)

and therefore H(Y n) ≥ H(Xn). Hence, in universal lossy compression of noisy sequence Y n = Xn +

Zn, if the distortion level is set appropriately, a reasonable reconstruction sequence can be the original

sequence Xn.

Minimum Kolmogorov Complexity Estimator (MKCE) proposed in [4] is constructed based on the

idea described above. If Xn is a binary sequence, and Y n = Xn +Zn, where {Zi} is an i.i.d. sequence
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and Zi ∼ Bern(δ), the MKCE denoiser looks for X̂n solving the problem

min K(x̂n)

subject to x̂n ∈ {0, 1}n,

dn(Y n, x̂n) ≤ δ. (6)

In (6), K(x̂n) represents the Kolmogorov complexity of x̂n, which is the length of the shortest program

that generates x̂n and halts [5]. Basically, K(x̂n) measures the complexity or compressibility of x̂n. It is

shown in [4] that the performance of MKCE is strictly worse than an optimal denoiser, but by a factor no

larger than 2. Later this result was refined in [6]. It was shown in [6] that replacing (6) with a universal

lossy compressor, and then performing some post-processing operation results in a universal denoising

algorithm with optimal performance. As explained before, the role of universal lossy compressor is

helping the denoiser to estimate the distribution of the source. Using the estimated source statistics, the

post-processing operation performs Bayesian denoising.

Compression-based denoising algorithms have been proposed before by a number of researchers. It

has been studied both from a theoretical standpoint [4], [6] and from a practical point of view. (See

[7]–[11] and references therein.) While the theoretical results, specially the work of [6], suggest that

compression-based denoising is able to achieve the optimal performance, there is yet a gap between

the theory and practice in this area. The implementable algorithms, while achieving promising results,

are suboptimal, and the theoretical results have not yet led to practical compression-based denoising

algorithms. In this paper, we show how combining the lossy compression algorithm proposed in [12]

and the denoising approach of [6] leads to an implementable universal denoiser. Our simulation results

show that the performance of the resulting scheme is comparable with the performance of the discrete

universal denoising (DUDE) algorithm, when applied to one-dimensional or two-dimensional binary data,

as proposed in [13].

The lossy compression algorithm proposed in [12] is based on Gibbs sampling, and simulated annealing

[14]–[16]. Consider the probability distribution p over X n, such that for xn ∈ X n, p(xn) ∝ f(xn), where

f(xn) ≥ 0, for all xn. In many applications, it is desirable to sample from such a distribution, which

is only specified through another function f . Clearly, p(xn) = f(xn)/Z, where Z =
∑

xn∈Xn f(xn).

However, since the size of the sample space grows exponentially with n, computing Z in general requires
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exponential computational complexity. Therefore, to sample from p, one usually looks for sampling

methods that do not directly require the computation of Z. Markov chain Monte Carlo (MCMC) methods

are a class of algorithms that address this issue. They consist of a class of sampling algorithms that sample

from distribution p by generating a Markov chain whose stationary distribution is p. Hence, running such

a Markov chain, after it reaches the steady state, its state is a sample drawn from the distribution p.

The Gibbs sampler, also known as the heat bath algorithm, is an instance of the MCMC methods. It is

applied in the cases where the computational complexity of finding the conditional distributions of each

variable given the rest, i.e., p(xi|xn\i), is manageable.

Simulated annealing is a well-known method in discrete optimization problems. Its goal is to find the

minimizer of a given function h(xn) over X n, i.e., xnmin = arg minxn∈Xn h(xn). In order to perform

simulated annealing, a sequence of probability distributions {pi(xn)}∞i=1 corresponding to the tempera-

tures {Ti}∞i=1, such that Ti → 0 as i → ∞, is considered. At each time i, the algorithm runs one of

the relevant MCMC methods in an attempt to sample from distribution pi ∝ e−βif(s), where βi = 1/Ti.

Note that as Ti → 0, or βi → ∞, pi converges to a probability distribution which is uniform over

the set of minimizers of h, and zero otherwise. Hence, clearly a sample from this distribution gives a

minimizer of h. On the other hand, starting from an extremely low temperature results in a Markov chain

that requires exponential time to reach the steady state. Therefore, in simulated annealing, the algorithm

starts from a moderate temperature, and decreases the temperature gradually. It can be proved that, if

the temperature drops slowly enough, the probability of getting the minimizing state as the output of the

algorithm approaches one [14].

The organization of this paper is as follows. Section II introduces the notation and definitions used in

this paper. Section III reviews the universal lossy compression algorithm proposed in [12]. In Section IV,

we show how the universal lossy compression algorithm of [12] can be employed to construct a universal

denoising algorithm. Section V presents some experimental results. The paper is concluded in Section

VI.

II. NOTATION AND DEFINITIONS

Calligraphic letters such as X and Y denote sets. The size of a set X is denoted by |X |. Bold letters

such as X = (X1, X2, . . . , Xn) and x = (x1, x2, . . . , xn) represent n-tuples, where n is implied by

the context . An n-tuple X or x of length n is also represented as Xn or xn when we want to be
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explicit about n. For 1 ≤ i ≤ j ≤ n, xji = (xi, xi+1, . . . , xj). For two vectors xi and yj , xiyj denotes a

vector of length i+ j formed by concatenating the two vector as (x1, . . . , xi, y1, . . . , yj). Capital letters

represent random variables and capital bold letters represent random vectors. For a random variable X ,

let X denote its alphabet set. For vectors u and v both of length n, let ‖u− v‖1 denote the `1 distance

between u and v defined as ‖u− v‖1 ,
∑n

i=1 |ui − vi|.

For yn ∈ Yn, let the |Y| × |Y|k matrix m(yn) denote the (k+ 1)th order empirical distribution of yn.

Each column of matrix m(yn) is indexed by a k-tuple bk ∈ Yk, and each row is indexed by an element

β ∈ Y . The element in row β and column bk of m(yn) is defined as

mβ,bk(yn) ,
1

n− k

∣∣∣{k + 1 ≤ i ≤ n : yi−1
i−k = bk, yi = β

}∣∣∣ , (7)

i.e., the fraction of occurrences of the (k + 1)-tuple bkβ along the sequence. Let Hk(y
n) denote the

conditional empirical entropy of order k induced by yn, i.e.,

Hk(y
n) =

∑
bk∈Yk

‖m·,bk(yn)‖1H
(
m·,bk(yn)

)
, (8)

where m·,bk(yn) denotes the column in m(yn) corresponding to bk, and for a vector v = (v1, . . . , v`) with

non-negative components, H(v) denotes the entropy of the random variable whose pmf is proportional

to v. Formally,

H(v) =


∑̀
i=1

vi
‖v‖1 log ‖v‖1vi

if v 6= (0, . . . , 0)

0 if v = (0, . . . , 0),

(9)

where 0 log(0) , 0 by convention. Alternatively, Hk(y
n) , H(Uk+1|Uk), where Uk+1 is distributed

according to the (k+1)th order empirical distribution induced by yn, i.e., P(Uk+1 = [bk, β]) = mβ,bk(yn).

Consider lossy compression of a stationary ergodic source X = {Xi}∞i=1 by block coding. The encoder

maps each source output block of length n, Xn, to a binary sequence fn(Xn), i.e.,

fn : X n → {0, 1}∗,

where {0, 1}∗ denotes the set of all finite-length binary sequences. The index fn(Xn) is then losslessly

transmitted to the decoder. The decoder maps fn(Xn) into a reconstruction block X̂n = gn(fn(Xn)),
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where

gn : {0, 1}∗ → X̂ n.

The performance of a lossy coding algorithm Cn = (fn, gn) with block length n is measured by its

induced rate Rn and distortion Dn. Let l(fn(Xn)) denote the length of the binary sequence assigned

to sequence Xn. The rate Rn of code Cn is defined as the expected average number of bits per source

symbol, i.e.,

Rn , E

[
l(fn(Xn))

n

]
.

The distortion Dn induced by code Cn is defined as the average expected distortion between source and

reconstruction blocks, i.e.,

Dn , E[dn(Xn, X̂n)], (10)

where dn(xn, x̂n) is defined according to (1), and, as before, d : X × X → R+ defines a single-letter

distortion measure.

For any D ≥ 0, and stationary ergodic process X, the minimum achievable rate (cf. [5] for exact

definition of achievability) is characterized as [17]–[19]

R(D,X) = lim
n→∞

min
p(X̂n|Xn):E[dn(Xn,X̂n)]≤D

1

n
I(Xn; X̂n). (11)

III. UNIVERSAL LOSSY COMPRESSION VIA MCMC

Lossy compression algorithms can be divided into three groups as: i) fixed-rate, ii) fixed-distortion,

and iii) fixed-slope. A family of universal lossy compression algorithms Cn = (fn, gn), n ≥ 1, is called

fixed-rate, if, for every stationary ergodic source X, Rn ≤ R, for all n, and lim supnDn ≤ D(R,X).

Similarly, a family of codes is called fixed distortion, if, for every stationary ergodic source, X, Dn ≤ D,

for all n, and lim supnRn ≤ R(D,X). Finally, a family of codes is called fixed distortion, if, for

every stationary ergodic source X, lim supn[Rn + αDn] = minD[R(D,X) + αD]. For a given source

X with rate distortion function R(D), a fixed-slope universal lossy compression algorithm at slope α

asymptotically achieves the point (Dα, Rα), which is the point on the rate-distortion curve where the

slope, ∂R(D)
∂D , is equal to −α.
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Now for a fixed slope α > 0, consider the quantization mapping x̂n : X n → X̂ n defined as

x̂n = arg min
yn

[Hk(y
n) + αdn(xn, yn)] . (12)

Finding the sequence x̂n from (12), and losslessly conveying it to the decoder using a universal lossless

compression algorithm such as the Lempel-Ziv (LZ) algorithm constitutes a lossy compression algorithm.

It can be proved that the described scheme attains the optimum rate-distortion performance at the slope

α, universally for any stationary ergodic process [12], [20] in a strong almost sure sense. In other words,

for any stationary ergodic source X,

1

n
`LZ(X̂n) + αdn(Xn, X̂n)

n→∞−→ min
D≥0

[R(D,X) + αD] , (13)

almost surely. In (19), `LZ(X̂n) denotes the description length of X̂n by the LZ algorithm [21], [22].

To find the minimizer of (12), one needs to search the space of all possible reconstruction sequences

which is of size |X |n. Hence, although the described scheme is theoretically appealing, it is an impractical

algorithm and its implementation requires an exhaustive search.

In [12], we showed how simulated annealing enables us to get close to the performance of the

impractical exhaustive search coding algorithm. In the rest of this section, we briefly review the lossy

compression algorithm proposed in [12] based on simulated annealing.

To each reconstruction sequence yn ∈ X̂ n, assign the energy E(yn) , n[Hk(y
n) + αdn(xn, yn)], and

define the probability distribution pβ on the space of reconstruction sequences X̂ n as

pβ(yn) =
1

Zβ
e−βE(yn), (14)

where β and Zβ denote the inverse temperature parameter and the normalization constant (partition

function), respectively. Sampling from this distribution for some large β results in a sequence Y n that

with high probability its energy is very close to the minimum energy, i.e.,

Hk(Y
n) + αdn(xn, Y n) ≈ min

yn
[Hk(y

n) + αdn(xn, yn)] . (15)

However, sampling from the distribution pβ for large values of β is a challenging task. A well-known

approach to circumvent this difficulty is the idea of simulated annealing. The main idea in simulated

annealing is to explore the search space for the state of minimum energy using a time-dependent random
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walk. The random walk is designed such that the probability of moving from the current state to one of

its neighboring states depends on the difference between their energies. To give the algorithm the ability

to escape from local minima, the Markov chain allows leaving a state of lower energy to reach a state

of higher energy. As time proceeds, the system freezes (β → ∞), and the probability of having such

energy-increasing jumps decreases to zero.

The lossy compression algorithm based on simulated annealing presented in [12] is described in Alg.

1. In Alg. 1, P(Yi = ·|Y n\i = yn\i) denotes the conditional probability of Yi given Y n\i , (Yn : n 6= i)

under pβt
. For a ∈ X̂ , P(Yi = a|Y n\i = yn\i) = pβ(a|yn\i) can be expressed as

P(Yi = a|Y n\i = yn\i) =
pβ(yi−1 a yni+1)∑
b∈X̂ pβ(yi−1 b yni+1)

=
e−βE(yi−1ayni+1)∑
b∈X̂ e

−βE(yi−1byni+1)

=
e−β(Hk(yi−1ayni+1)+αdn(xn,yi−1ayni+1))∑
b∈X̂ e

−β(Hk(yi−1byni+1)+αdn(xn,yi−1byni+1))

=
1∑

b∈X̂ e
−β(∆Hk(a,b,yi−1,yni+1)+α∆d(a,b,xi))

, (16)

where

∆Hk(a, b, y
i−1, yni+1) , Hk(y

i−1byni+1)−Hk(y
i−1ayni+1)

and

∆d(b, a, xi) , dn(xn, yi−1byni+1)− dn(xn, yi−1ayni+1) =
d(xi, b)− d(xi, a)

n
.

Computing the conditional probability distributions described in (16) forms the main step of Alg. 1.

Algorithm 1 Generating the reconstruction sequence
Input: xn, k, α, {βt}t, r
Output: a reconstruction sequence x̂n

1: yn ← xn

2: for t = 1 to r do
3: Draw an integer i ∈ {1, . . . , n} uniformly at random.
4: For each b ∈ X̂ compute pβt

(b|yn\i) given in (16).
5: Update yn by replacing its ith component yi by Z, where Z ∼ pβt

(·|yn\i).
6: Update m(yn) and Hk(y

n).
7: end for
8: x̂n ← yn
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Note that

∆Hk(a, b, y
i−1, yni+1) = Hk(y

i−1byni+1)−Hk(y
i−1ayni+1)∑

bk∈Yk

[
‖m·,bk(yi−1byni+1)‖1H

(
m·,bk(yi−1byni+1)

)
−‖m·,bk(yi−1ayni+1)‖1H

(
m·,bk(yi−1ayni+1)

)]
. (17)

On the other hand, changing the ith element of yi−1byni+1 from b to a affects at most 2k + 1 columns

of the matrix m(yi−1byni+1). In other words, at least 2k − 2k − 1 columns of m(yi−1byni+1) and

m(yi−1ayni+1) are exactly the same. Hence, from (17), the number of operations required for computing

∆Hk(a, b, y
i−1, yni+1) is linear in k, and independent of n.

Let X̂n
α,r(X

n) denote the (random) outcome of Algorithm 1 when taking k = kn and β = {βt}t to

be deterministic sequences satisfying kn = o(log n) and βt = 1
T

(n)
0

log(b tnc + 1), for some T (n)
0 > n∆,

where

∆ = max
i

max
ui−1 ∈ X̂ i−1,

uni+1 ∈ X̂n−i,

a, b ∈ X̂

∣∣E(ui−1auni+1)− E(ui−1buni+1)
∣∣ , (18)

applied to the source sequence Xn as input.1 By the previous discussion, for given n and k, the

computational complexity of the algorithm at each iteration is independent of n and linear in k. It

can be proved that this choice of parameters yields a universal lossy compression algorithm, i.e., for any

stationary ergodic process X,

lim
n→∞

lim
r→∞

[
1

n
`LZ

(
X̂n
α,r(X

n)
)

+ αdn(Xn, X̂n)

]
= min

D≥0
[R(D,X) + αD] , (19)

almost surely.

1Here and throughout it is implicit that the randomness used in the algorithms is independent of the source, and the
randomization variables used at each drawing are independent of each other.
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IV. DENOISING VIA MCMC-BASED LOSSY COMPRESSION

In [6], it is shown how a universally optimal lossy coder tuned to the right distortion measure and

distortion level combined with some simple “post-processing” results in a universally optimal denoiser.

In what follows we first briefly review the compression-based denoiser described in [6], and then show

how the lossy coder proposed in [12] can be used for performing the lossy compression part.

Define the difference distortion measure ρ : X × X → R+ as

ρ(x, x̂) , log
1

π(x− x̂)
, (20)

for any (x, x̂) ∈ X × X . As a reminder, in (20), π(z), z ∈ Z , denotes the pmf of the noise. Also as

before, ρn(xn, x̂n) = n−1
∑n

i=1 ρ(xi, x̂i).

Now consider a universal sequence of lossy compression codes Cn = (fn, gn) with distortion measure

ρ and fixed distortion H(Z), i.e., a sequence under which

E[ρn(Y n, gn(fn(Y n)))] ≤ H(Z),

and

lim sup
n→∞

E

[
l(fn(Y n))

n

]
→ R(H(Z),Y),

for each stationary ergodic process Y = {Yi}∞i=1.

As mentioned earlier, in the denoising scheme outlined in [6], first the denoiser compresses the noisy

signal appropriately, and partially removes the additive noise through lossy compression. To achieve this

goal we apply the described universal lossy compression code to the noisy signal Y n to get Ŷ n =

gn(fn(Y n)).

The next step is a simple “post-processing”, which involves computing the joint empirical distribution

between the noisy signal and its compressed version, and then constructing the final reconstruction based

on this empirical distribution. For a given integer m = 2mo + 1 > 0, the empirical joint distribution

p̂
(m)

[Y n,Ŷ n]
(ym, ŷ) of the noisy signal Y n and its quantized version Ŷ n is defined as as follows. For ym ∈ Ym

and ŷ ∈ Ŷ , let

p̂
(m)

[Y n,Ŷ n]
(ym, ŷ) ,

1

n−m+ 1

∣∣∣{mo + 1 ≤ i ≤ n−mo : (Y i+mo

i−mo
, Ŷi) = (ym, ŷ)

}∣∣∣ . (21)
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In other words, p̂(m)

[Y n,Ŷ n]
(ym, ŷ) counts the fraction of times we observe the block ym in Y n (Y i+mo

i−mo
=

ym), while the position in Ŷ n corresponding to the middle symbol ymo+1 is equal to ŷ (Ŷi = ŷ). After

constructing these count vectors, the output of the denoiser is generated through the “post-processing”

or “de-randomization” process as follows

X̂i = arg min
x̂∈X

∑
x∈X

p̂
(m)

[Y n,Ŷ n]
(Y i+mo

i−mo
, x)d(x̂, x), (22)

where d(·, ·) is the original loss function under which the performance of the denoiser is to be measured.

The described denoiser is shown to be universally optimal [6], the argument being roughly as follows:

The rate-distortion function of the noisy signal Y under the defined difference distortion measure satisfies

the Shannon lower bound with equality. It is proved in [6] that for such sources, for a fixed ` > 0, the

`th order empirical joint distribution between the source block and its quantization by a sequence of

universal codes, i.e.,

p̂
(`)

[Y n,Ŷ n]
(y`, ŷ`) ,

1

n− `+ 1

∣∣∣{1 ≤ i ≤ n− `+ 1 : (Y i+`−1
i , Ŷ i+`−1

i ) = (y`, ŷ`)
}∣∣∣ , (23)

converges to the unique joint distribution that achieves the minimum mutual information in the kth order

(informational) rate-distortion function of the source. In other words, p̂(`)

[Y n,Ŷ n]

d→ q(`), where

q(`) = arg min
q(y`,ŷ`):Eq[d`(Y `,Ŷ `)]≤D

I(Y `; Ŷ `)

It turns out that in quantizing the noisy signal at distortion level H(Z) under the distortion measure

defined in (20), q(`) is equal to the `th order joint distribution between the source and noisy signal [6].

Hence, the count vector p̂(m)

[Y n,Ŷ n]
(ym, ŷ) defined in (21) asymptotically converges to pXi|Y n , which is

what the optimal denoiser would base its decision on. After estimating pXi|Y n , the post-processing step

is just making the optimal Bayesian decision at each position.

The main ingredient of the described denoiser is a universal lossy compressor. Note that the MCMC-

based lossy compressor described in Section III is applicable to any distortion measure. Hence, combining

the MCMC-based lossy compressor and the described post-processing operation yields a universal de-

noiser for our additive white noise setting.

Let −α(Y, H(Z)) < 0 denote the slope of the unique point on the rate distortion curve of the process

Y = {Xi+Zi}∞i=1 corresponding to the distortion level D = H(Z), under the distortion measure defined
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in (20). Furthermore, let k = kn and β = {βt}t be deterministic sequences satisfying kn = o(log n)

and βt = 1
T

(n)
0

log(b tnc + 1), for some T (n)
0 > n∆, where ∆ is defined in (18). Combining the results

from [6] and [12] yields the following theorem, which proves the asymptotic optimality of the proposed

denoising scheme.

Theorem 1: For any stationary ergodic process X,

lim
m→∞

lim
n→∞

lim
r→∞

E[dn(Xn, X̂n)] = Lopt,B(X, π),

where X̂n = X̂n(Y n, Ŷ n
α(Y,H(Z)),r(Y

n)) is generated by (21) and (22), and Ŷ n
α(Y,H(Z)),r(Y

n) is the

output of Alg. 1. Moreover, for each source destitution, there exists a deterministic sequence {mn}n,

mn →∞, such that

lim
n→∞

lim
r→∞

E[dn(Xn, X̂n)] = Lopt,B(X, π).

Remark 1: The main problem is choosing the parameter α corresponding to the distortion level of

interest, i.e., α(Y, H(Z)). To find the right slope, we run the quantization MCMC-based part of the

algorithm independently from two different initial points α1 and α2. After convergence of the two runs

we compute the average distortion between the noisy signal and its quantized versions. Then assuming a

linear approximation, we find the value of α that would have resulted in the desired distortion, and then

run the algorithm again from this starting point, and again computed the average distortion, and then find

a better estimate of α from the observations so far. After a few repetitions of this process, we have a

reasonable estimate of the desired α. Note that, for finding α, it is not necessary to work with the whole

noisy signal, and one can consider only a long enough section of data first, estimate α from it, and then

run the MCMC-based denoising algorithm on the whole noisy signal with the estimated parameter α.

The outlined method for finding α is similar to what is done in [23] for finding an appropriate Lagrange

multiplier.

Remark 2: Note that the deterministic sequence mentioned in Theorem 1 may depend on the source

as well.

Discussion: Our proposed approach, MCMC coding and de-randomization, is an alternative not only to

the DUDE, but also to MCMC-based denoising schemes that have been based on or inspired by the Geman

brothers’ work [14]. While algorithmically our approach has much of the flavor of previous MCMC-based
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denoising approaches, ours has the merit of leading to a universal scheme, whereas the previous MCMC-

based schemes guarantee, at best, convergence to a performance which is good according to the posterior

distribution of the noise-free given the noisy data, but as would be induced by the rather arbitrary prior

model placed on the data. In our case no assumptions, beyond ergodicity, about the distribution/model

of the noise-free data are made, and optimum performance is guaranteed (in the appropriate limits).

V. SIMULATION RESULTS

In this section, we compare the performance of the proposed denoising algorithm to that of the discrete

universal denoiser, DUDE, introduced in [3]. DUDE is a practical universal algorithm that asymptotically

achieves the performance attainable by the best n-block denoiser for any stationary ergodic source. The

setting of operation of DUDE is more general than what is described in the previous section, and in fact

in DUDE the additive white noise can be replaced by any known discrete memoryless channel.

As the first example, consider a binary symmetric Markov source (BSMS) with transition probability

p = 0.2. The source sequence Xn is corrupted by a binary discrete memoryless channel (DMC) with

error probability δ. Figures 1 and 2 compare the performances of the DUDE with the new MCMC-based

deposing algorithm, for the cases of δ = 0.1 and δ = 0.05, respectively. In each figure, we have plotted the

average bit error rate (BER) of each algorithm over N = 50 simulations versus the transition probability p.

Also, for the sake of comparison, we have added to each figure the performance of the forward-backward

dynamic programming denoiser which achieves the optimum performance in recovering the described

source from its noisy version, in the non-universal setup. In both figures the blocklength is n = 104, and

the parameters of the MCMC compressors are chosen as follows: γ = 0.75, βt = ( 1
γ )dt/ne, r = 10n,

and k = 7.2 It can be observed that in both figures, the performance of the proposed compression-based

denoiser is very close to the performance of the DUDE algorithm.

In each case, the slope α is chosen such that the expected distortion between the noisy image and its

quantized version using Alg. 1 with distortion measure

ρ(x, x̂) =

 − log δ, if x 6= x̂

− log(1− δ), if x = x̂,
(24)

2A discussion on the selection of these parameters is presented in [24].
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is close to H(Z). Note that

E[ρ(X, X̂)] = −P(X 6= X̂) log δ − P(X = X̂) log(1− δ), (25)

which is equal to H(Z) = −δ log δ − (1 − δ) log(1 − δ) when P(X 6= X̂) = δ. Hence, we require our

MCMC lossy encoder to compress the noisy signal under the Hamming distortion at D = δ. Fig. 3 shows

the average Hamming distortion, i.e., BER, of the MCMC-based lossy compressor versus p, for the cases

of δ = 0.05 and δ = 0.1. In both cases, the average distortion incurred by the lossy compressor is close

to its desired value which is δ.

In another example, we consider denoising the 256× 256 binary image shown in Fig. 5. Fig. 6 shows

its noisy version which is generated by passing the original image through a binary DMC with error

probability of 0.05, i.e., π(1) = 1 − π(0) = 0.05. Fig. VI shows the reconstructed image generated by

DUDE and 8(b) depicts the reconstructed image using the described algorithm. Here, the number of pixels

is n = 2562. In this experiment the DUDE context structure is set as Fig. 4(c). The 2-D MCMC coder

employs the context shown in Fig. 4(a), and the de-randomization block is chosen as Fig. 4(b). Note that

while we require the context used in computing the conditional empirical entropy of the image to have

a causal structure, i.e., only contain pixels located prior to the current pixel, for the de-randomization

block we have no such constraint. While the former is used to measure the complexity of the signal, the

latter is used for learning the joint distribution between the noisy signal and its quantized version.

The BERs of the DUDE and compression-based denoising algorithms are 8.17×10−3 and 7.59×10−3,

respectively. Though the performance of DUDE here is slightly better in terms of BER, the visual quality of

the reconstruction is arguably better with the new denoiser, and the ‘texture’ of the original image seems

to be better preserved with our reconstruction. This may be a result of the fact that the compression-based

approach is guaranteed of recovering not only the marginal distributions of one noise-free symbol given

the noisy data, as in the DUDE, but in fact that k-dimensional distributions, for every k.

VI. CONCLUSIONS

The idea of deriving a universal denoising algorithm based on a universal lossy compression scheme

with some post-processing was proposed in [6]. However, this result has not yet been tested in practice.

In this paper we employed the MCMC-based universal lossy compression algorithm proposed in [12] to

derive a universal denoising algorithm. The algorithm first applies the MCMC-based lossy compression
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algorithm to the noisy signal, using a distortion measure and level which are both functions of the channel

probability distribution. Then it performs some simple post-processing operations on the compressed noisy

signal. Our simulation results show that the performance of the resulting denoising algorithm is promising

and comparable to the performance of the DUDE. This proves that in practical situations compression-

based denoising algorithms can be quite effective.
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Fig. 2. Comparing the bit error rates of the denoiser based on MCMC coding plus de-randomization with the DUDE and the
optimal non-universal Bayesian denoiser which is implemented via forward-backward dynamic programming. Here δ = 0.05,
and α = 0.9 : 0.3 : 2.4. The rest of the parameters are identical to the setup of Fig. 1.
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Fig. 3. Comparing the average BER performance of the MCMC-based lossy compressor applied to the noisy signal versus p
with the optimal BER which is δ. The simulations setups here are those of Fig. 1 and Fig. 2, respectively.
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(a) (b) (c)

Fig. 4. Contexts used by the MCMC compressor, DUDE and the derandomizer. (a) The 6th order context used by the 2-D
MCMC-based lossy compressor. (b) The de-randomization block used in MCMC-based denoising. (c) The 8th order context
used by DUDE.

Fig. 5. Panda image
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Fig. 6. Panda image corrupted by a DMC with error probability δ = 0.05

Fig. 7. The denoised image generated by the DUDE: dn(xn, x̂n) = 7.97× 10−3.
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(a) The denoised image generated by the MCMC compressor:
dn(x

n, x̂n) = 1.01 × 10−2. (α = 3.5, βt = ( 1
γ
)dt/ne, γ = 0.99

and r = 8n.)

(b) The denoised image generated by the MCMC compressor plus de-
randomization: dn(xn, x̂n) = 8.11× 10−3.

Fig. 8. The MCMC-based denoiser applied to a binary image.
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