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Abstract

We consider the cascade and triangular rate-distortioblgnmo where side information is known to the source
encoder and to the first user but not to the second user. Waatkere the rate-distortion region for these problems,
as well as some of their extensions. For the quadratic Gaussise, we show that it is sufficient to consider jointly
Gaussian distributions, which leads to an explicit solutio
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I. INTRODUCTION

Yamamoto [1] considered the cascade source coding probiéere a source sends a message to User 1, and
then User 1 sends a message to User 2. In this paper, we extandmbto’s cascade source coding problem to
the case where side information is known to the source andsty W, but not to User 2. The problem is depicted

in Fig. 1.
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Fig. 1. A cascade rate distortion problem with three nodasdeer, User 1, User 2), where the first two nodes have sidenmationY”. User
1 and User 2 need to reconstruct the souksewithin distortion criteria.

This work was supported in part by NSF grant CCF-0729195, ¢&int 684/11, and by the Center for Science of InformatioSqi
an NSF Science and Technology Center, under grant agreed@Rt0939370. H. Permuter has been partially supported &yméarie Curie
Reintegration fellowship. This paper was presented in @atEEE Int. Symp. Info. Theory, Austin, Texas, ISIT 2010.

Author's emails: haimp@bgu.ac.il, and tsachy@stanfaiul.e



TABLE |
LITERATURE OVERVIEW OF CASCADE SOURCE CODING WITH SIDE INFRMATION AS SHOWN IN FIG. 2

|| Switch a | Switch b | Switch ¢ Gaussian quadratic case General case ||
open open open Solved [1] Solved [1]
open open closed Solved [2] Upper and lower bounds [2
open closed open Upper and lower bounds [3] Upper and lower bounds [3
open closed closed Solved [2] Upper and lower bounds [2
closed open open Solved [1] Solved [1]
closed open closed Solved [2] Upper and lower bounds [2
closed closed open Section IV Section I

More recently, Vasudevan, Tian and Diggavi [2] considereel tascade source coding problem, where side
information,Y’, is known to the source encoder and to User 1, additionalisfdemation 7 is known to User 2,
and the Markov relatiolX — Z — Y holds. Vasudevan et al. [2] provided an inner and an outentb@nd showed
that the bounds coincide for the Gaussian case. Cuff, Su k@hEBmal [3] considered the cascade problem where
the side information is known only to the intermediate node provided an inner and an outer bound. An additional
related problem, which was considered and solved in [4]h# of cascade source coding when side information
is known to all nodes with a limited rate. Table | summarizes literature on cascade source coding with side

information'.
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Fig. 2. A cascade rate distortion problem with several oytiof side information. Table | summarizes the lietrtaurettos problem.

The cascade source coding framework, of compressing aestlreugh an intermediate node (or relay) which

may reconstruct the source and then relay it to the next nedebuilding block of fundamental importance in a

1The case that was consider in [1] seems slightly differeamfithe case where all switches are open, however the casesjairalent.
Yamamoto considered in [1] the case where there are two esuvailable to the encoder, calléfl Y, decoder 1 reproduce¥ by X, and
decoder 2 reproduck by Y. Clearly, if we considetX = Y in [1], we obtain the case of Fig. 2 where all switches are o@amversely, if we
take in Fig. 2 the source to h& = (X, Y, the distortion functiond; (X, X1) to equald; (X, X1) and similarlyds (X, X2) = da(Y, Xa),
we obtain exactly the case that is considered in [1].



growing variety of compression and communication scesatiacaptures key aspects of multi-hop coding which is
common in wireless communication in general [5], and inipalar in cellular communication [6], sensor networks
[71[8], and ad-hoc networks [9]. The specific setting thataeasider in the paper is the case where the intermediate
node has side information that is also available to the su¥or instance, the side information may be a modified
version of the source sent in a previous transmission. T wbthis paper has been recently extended by Chia
et. al. in [10] for the case where additional side informati® available at the last node and has been recently used
by Tandon et. al. in [11] to derive the cascade rate-disgtortunction when the side information is an eraser.

Of special interest in lossy source coding is the Gaussiar wath quadratic distortion, which in many source
coding problems is amenable to an analytical solution ssdh the Wyner-Ziv problem [12] where side information
is available to the decoder, the Heegard-Berger problefhvjb@re side information at the decoder may be absent,
Kaspi's problem [14], [15] where side information is knowmthe encoder and may or may not be known to the
decoder, the multiple description problem [16], [17], ti{way source coding problem [18], the multi-terminal
problem [19] [20], the CEO problem [21]-[23], rate distortiwith a helper [24], [25], and successive refinement
[26] and its extension to successive refinement for the Wyneproblem [27].

Our main result in this paper is that the achievable regiantli@ problem depicted in Fig. 1 is given by
R(D1, Ds), which is the set of all rate-pairg?,, R2) that satisfy

RQ Z I(YvXaX2>a (1)

R1 > I(X,Xl,X2|Y), (2)
for some joint distributionP(z, y) P(Z1, 2|z, y) for which
Ed;(X,X;) < Dy i=1,2. ©)

An extension of the cascade source coding problem is theguiar setting [28], where there is an additional
direct link from the source encoder to User 2. We solve thabjgm where side information exists at the source
encoder and User 1, but not at User 2.

The remainder of the paper is organized as follows. In Sediiowe formalize the problem and present the
theorem establishing the achievable region. In Sectignudé provide the converse and achievability proofs of the
theorem, and in Section IV we explicitly compute the rateioedor the Gaussian case. In Section V we extend
our result to the triangular case (cf. Fig. 5), and conclud&eéction VI with further extensions to multiple users

and to the corresponding empirical coordination problem.

I[I. CASCADE RATE DISTORTION PROBLEM DEFINITIONS AND MAIN RESULTS

Here we formally define the cascade rate-distortion probtgmere side information is known to the source
encoder and to User 1. We present a single-letter charzatien of the achievable region. We use the regular
definitions of rate distortion, and we follow the notation[@8]. The source sequencéx; € X, i = 1,2,---},

and the side information sequengg < Y, i = 1,2, --- } are discrete random variables drawn from finite alphabets



X and ), respectively. The random variabléX;, ;) are i.i.d.~ P(z,y). Let X; and X, be the reconstruction
alphabets, and; : X x X, — [0,00), i = 1,2, are single letter distortion measures. Distortion betwseguences

is defined in the usual way
d ( n A’rL) 1 i:d ( A~ - 1 2 4
(A = N —1.9.
(3 » Mg n 4 (3 Jamt,j)a ? I ( )
7j=1
Let M; denote a set of positive integef$, 2, .., M;} for i = 1,2.
Definition 1 (Cascade rate distortion code with side infotima at the first two nodes)An

(n, My, Ms, Dy, D3) code for sourceX and side informatiort” consists of two encoders

fior AT XY My

fo @ YU XM= My (5)
and two decoders

g1 YV x My —>.2€1”

g2 1 Mo — )egn (6)
such that
1 — N
E |- di (X, X5 < D;, j=12 7
[n; i ( Js )] i J (7)
The rate pai Ry, R2) of the (n, My, Ms, D1, D2) code is defined by
1 .
Ri = —IOgMi; 1 = 1,2 (8)
n

Definition 2: Given a distortion pai( Dy, D2), a rate pair(R;, Rz) is said to beachievableif, for any € > 0,
and sufficiently larger, there exists ain, 2", 2752 D, +¢, Dy +¢€) code for the sourc&’ with side information
Y.

Definition 3: The (operational) achievable regidd® (D;, D») of cascade rate distortion is the closure of the
set of all achievable rate pairs.
Theorem 1 is the main result of this work.

Theorem 1:For the cascade rate distortion problem with side inforamtit the source and User 1, as depicted

in Fig. 1, the achievable region is given by
RC(D1, D3) = R(Dy, Ds), (9)

where the regiorR (D1, D2) is defined in (1)-(3).



I1l. PROOF OFTHEOREM 1

Achievability: The proof follows classical arguments, and therefore tloarteal details will be omitted. We
describe only the coding structure and justify why the iathd region is achievable. We fix a joint distribution

Py v ¢ %, for which (3) holds, and aa > 0, and we show that there exists a code with rates
s Ly A1, A2

Ry = I(Y,X;X5)+e, (10)
R = I(X;X1,X5|Y)+ 3e, (11)

complying with the distortion constraints.

Generate randomly2n(!(X.Y:X2)+€) codewords using an i.i.d~ Pg,. Then bin the codewords into
on(I(X;X:2[Y)+2¢) pins,. In each bin, there ar@(/(XY;:X2)—I(X5X:Y) =€) — on(I(YiX2)=€¢) codewords. In addi-
tion, for any typical sequenceg®, 27 generate2n(!(X:X1lY:X2)+¢) codewords using the pmP(:7|y",33) =
Hzlzl PX1|Y’X2 (f1,i|yi, 3:”21)

The source-encoder receives the sequenteg™ and first looks for a codeword?; that is jointly typical with
x™, y™. If there is such a codeword, the source encoder sends tee& ofdthe bin that includes this codeword to
User 1. User 1 looks which codeword in the received bin istipitypical with the side informatiog™. Since there
are less thar”(!(YiX2) in the bin, with high probability only one codeword will beiftly typical with y™ and it
would be the codeword sent by the encoder. User 1 then foeathed codeword to User 2.

Now we can think of a new problem where the source-encodetUsed 1 have side informatiori”, X2 and
hence a ratd (X; X;|Y, X,) + ¢ is needed to generat&” that is jointly typical with(X", Y™, X,). Therefore, a
total rate to User 1 oR; = I(X; X5|V) + 2e + I(X; X,|Y, Xs) + € = I(X; X1, X5|Y) + 3¢ is needed, and an
additional rateRs = I(Y, X;X'g) + € is needed from User 1 to User 2.

Converse: Assume that we have gm, M; = 2" M, = 22 D, D,) code as in Definition 1. We will show
the existence of a joint distributioRy ;- ¢ ¢ that satisfies (1)-(3). Denotg, = f1(X",Y™") € {1, ..., 2nfil and
Ty = fo(T1,Y™) € {1,...,2"%2}. Then,

TLRQ

Vv

H(Tz)

Vv

(X", Y™ Ty)

ZH(X“K> - H(Xi;}/”TQ;Xi_lei_l)
i=1

(i) ZH(X’M Y;> - H(Xz; Y;'|X27i,T2, ,X*i*l7 Yifl)
=1

n

> ZI(Xi)}/i;XQ,i)7 (12)

=1
where equality (a) follows from the fact that the recondinrcat times, Xg,i, is a deterministic function of5.

Now consider

an Z H(Tl)



> H(TY")
< H(T, ToY™)
> I(X™" T, ToY™)

= > H(Xi|Y) — H(X;|Y", Ty, Tp, X"~ )
=1

(:b) ZH(X’L'D/Z-)7H(Xi|YnaT15T27Xi71;X1,i;X2,i)
i=1
n R .
2 ZH(Xilyi)_H(Xi|Yi;X1,i;X2,i)
i=1
= ZI(Xi;Xl,szﬂYi), (13)
i=1

where equality (a) follows from the fact thdt is a deterministic function of; andY™, and, similarly, equality
(b) follows from the fact thafX; ; and X, ; are deterministic functions off}, Y™) andT», respectively.

The proof is concluded in the standard way by lettipdpe a random variable independent®f, Y, uniformly
distributed over the sefl,2,3,..,n}, and considering the joint distribution &g, Yo, X1 o, X2.q. For this joint
distribution, inequalities (12) and (13) imply that (1) at®) hold, respectively, and (7) implies that (3) holds

IV. CASCADE RATE DISTORTION THE GAUSSIAN CASE

In this section we explicitly calculate the rate regiB(D, D-) for the cases wher& andY are jointly Gaussian
and the distortion is the square-error distortion. The eos® and the achievability in the previous sections aregulov
for the finite alphabet case, but it can be extended to the Skausase [12].

Our first step in finding the achievable region for the quadi@aussian case is to show that it suffices to consider
only jointly Gaussian distribution®y - ¢, in order to exhaust the rate region. Then we solve an optiiniza
problem to find the achievable rate-region explicitly.

Lemma 2 (Optimality of jointly Gaussian distributiondjor the quadratic Gaussian cascade rate-distortion prob-
lem with side information known to the source-encoder andUser 1, i.e.,X,Y are jointly Gaussian and
di(z,#1) = (x—21)%, da(2, 22) = (x—i2)?, it suffices to consider only jointly Gaussian distribusaf . ¢ ¢
in order to exhaust the rate regi@®( Dy, D) given in (1)-(3).

Proof: Let us fix a point(R;, R2, D1, Ds) in the rate region and IePXyJ»(LX2 be a joint distribution that
satisfies (1)-(3). Such a distribution must exist since Uradities (1)-(3) define the rate region (Theorem 1). Note,
that it is enough to consider only distributiof, - ¢ ¢, where the mean oK, and X, is zero sinceX, Y have
zero-mean the distortion is the mean square distortion ALefenote the covariance matrix induced By y ¢ <,
and Iet15X7Y7)~(17)»(2 denote a normal joint distribution with mean zero and camaré matrixk. Now let us show
that (1)-(3) also hold where the joint distribution ‘%cY,Xl,Xz' Inequality (3) is automatically satisfied, since it

depends on the distribution ¢, Y, X1, X’Q) only through the covariance matrix. Consider,

R > I(X;X,Xs]Y),



= h(X|Y) - h(X|X1)X27Y)a
W XY = B(X — (a1 X + aaXs + asY)[ X7, Xa, V),

R(X|Y) = h(X — (a1 X1 4+ s X5 + a3Y))

—~
)
~

RX|Y) = hp(X — (a1 X1 + axXs + azY))

—~
U
=

IP(X§X17X2|Y)7 (14)

equality (a) is true for any set of scaldrs; , «2, a3) and in particular if we choose those that are the linear estim
of X given X1, X5, Y. Note that the coefficient§y , cvo, cv3) and the variancé& (X — (a1 X1 +as X2+ asY))? are

a function only of the covariance matriX. Inequality (b) follows from the fact that conditioning rezks entropy,
and (c) follows from the fact that, given a variance, the Gars distribution maximizes the differential entropy.
The term/;(X; X1, X»|Y) denotes the mutual information induced by the Gaussianifision nyy’leXz, and
equality (d) follows from the fact that for the Gaussian wligttion the error, i.e. X — (a1X1 + asXs + asY), is
independent of the observatiofs , X,, Y.

Similarly, we have
Ry > I(V,X;Xy)
= I(Y;X2) + I(X; Xo|Y)
> Ip(Y; Xo) + Ip(X; Xa|Y), (15)
where the last inequality follows from the same steps as. (14) [ |
The next theorem provides an explicit expression for thesSian case. The proof is provided in Appendix A
and is based on Lemma 2 and on solving an optimization problgmquadratic constraints and a linear objective.
Theorem 3 (Cascade Gaussian caséhie rate region of the cascade source coding with side irdtom at the

first two nodes, where the souréé and the side informatiol = X + Z are jointly Gaussian distributed, where

X and Z are mutually independent, and the distortion is quadraigjven by

1 Ui\y Ui\y
Ri1(D1,Ds, Ro) = 3 max | log = ,log o) ,0], (16)
X|W,Y 1
9 . .
whereo, ;- is given by the following four cases
222 p, 5% -2 -1 . 2 o 2R 0% (c%—D2) o
( Zotaz TOx)y) » T D2<oy, and e <27% < o B By

H 2 2 2
D, if Dy < U§(|Y and22R2 > oz(0x—Ds) o

7 7 2
04,0%—D20y, —D30% D2

oXwy (D1, D2, Ry) =

-1
2*F2py—o% -2 ; 2 % 2R, ok
( o2 ag(oﬁ + O—X\Y ’ if D2 Z JX|Y andD_z < 2 < O'E(DQ"FO'ZZDQ—O'?(O'%
4
2 H 2 2Ro ox
x|y if Do > 0%y, and2°® > Srpeds =y

(17)

-1

2
= [ ez ox Do _
anda = | 22 Dr—0% 277 1

Fig. 3 depicts the regions for two specific values/df and D, such that it captures all four cases of Eq. (17).

Now, let us consider several extreme cases that can be sasilyd using Theorem 3.
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Fig. 3. The Gaussian quadratic rate region. The graph orethbdnd side shows the rate region for the case wh%re: aQZ =1,D2=0.35

and Dy = 0.4. Since Dy < aﬁ(‘y, the rate region is given by Cases (a) and (b) in Eq. (17). Tdte hand side graph shows the rate region

for the case whereg( = O'QZ =1, D2 = 0.65 and D1 = 0.5. SinceDy > U%(\Y’ the rate region is given by Cases (c) and (d) in Eq. (17)

1) Side information is independent of the soufcel Y: This means that, = 0% ando? = co. For such

a case (17) becomes

2 2
U%{v if Dy < 0'3( and‘l’)—z < 92R; < ‘z)_);
2
Oy (D1, D2, Ro) = ¢ Dy, if Dy < 0% and2?fe > %5 (18)

o0, if Dy > 0%, and22f2 >0

and this implies that

Ry(D1, Do, Rg) = %max <10g %%’ log Uj};llY 7 0) 7 (19)
recovering a result that appears in the successive refirtesnance coding paper [26].
2) Side information equals the source, i.&,= Y For this caseg%,, = 0; henceR; = 0 and 222 > %,
consistent with the well known rate distortion function b&tGaussian source.

3) Ry — o00: If Dy < O'g(ly then

Ry(Dy, Dy, Ry) = ~ max [ log “xiy log 7Xiy 0 (20)
) ) 2 D2 b Dl ) )
and if Dy > o§ﬂy
2
1 o
Ri(D1, Dy, Ry) = — max <10g X—ly, ) . (21)
2 Dy

Note that for this case we can assume that the side informétics known to all three nodes; hence oy,
is manifested in the expression.

4) The message that User 2 receives depends only on the &deation: In this extreme case, the rafe and
the distortionD, are large enough so that the message that User 2 receivasddepaly on the side information.

This case is depicted in Fig. 4.
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Fig. 4. An extreme case where the rd?g and the distortiongd), are large enough so that the message that User 2 receivasddemaly on
the side information.

For this extreme, the rate region is simply

Ry

v

Ry > I(Y;Xy), (22)

for all joint Gaussian distributions that satlsﬁ)?(m)z1 < D; and TX|%s < Ds.
More explicitly, this region is given by

o4 (0%272 + 03)

0% + 0%

2

1 o
5 max <1og ;!Y , 0) . (24)

Indeed, if (23) holds, then according to Theorem¥3(D;, D2, R;) = 3 max <10g ag‘ly , 0> .

Dy (23)

Ry

Y

V. TRIANGULAR SOURCE CODING WITH SIDE INFORMATION

In this section, we extend the cascade source coding degusgrevious sections by adding a direct link from
the encoder to the second user, as depicted in Fig. 5. Thetdefiof the code(n, M, My, Ms, D1, Ds) is similar
to the one given in Def. 1 for the cascade case, with an additimessagé/s; at rate R3 sent from the source to
User 2.

A. Main theorem and its proof

Theorem 4 (The achievable rate region for the triangularedadhe achievable region for the problem depicted

in Fig. 5 is given byR A (D1, D3), which is defined as the set of all rate-tripl@3;, Rs, R3) that satisfy

Ry > I(X;X.,U[Y), (25)
Ry > I(X;X,|U), (27)
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Fig. 5. A triangular rate distortion problem with three nedencoder, User 1, User 2), where side informafioris known to the encoder
and User 1, but not to User 2. User 1 and User 2 need to recon#iiel sourseX to within distortion criteria.

for some joint distributionP(x, y) P(Z1, 22, ulx, y) satisfying
Edi(X,X;) < Dy, i=1,2, (28)

where the cardinality of the auxiliary variablé may be bounded bji/| < |X|| V|| X1 || X2 | + 2.

Lemma 5 below shows that one can restrict the joint distidout P(x,y)P (&1, 22, u|z,y) tO
P(x,y)P (21, ulx,y)P(Z2]z,u) without affecting the region.

Proof of Converse Part of Theorem Assume that we have gm, 2" 27%2 2nfis D) Dy) code. We will show
the existence of a joint distributioRy, y-; 5, «, that satisfies (25)-(28). Denofg = f1(X",Y™") € {1, ..., onfal
andTy = fo(Ty,Y"™) € {1,...,2"F2}  andTs = f3(X™,Y") € {1,...,2"f}. Then,

nkRy > H(Ty)

> H(TW|Y"™)

@ HT, ToY™)

> (X" Ty, oY)

= zn:H(XilYi)*H(XZ-IY”,TI,TQ,XH)
1=1

s zn:H(XHYi)—H(XiIY”,Tl,Tz,XH,XLi,Ui)
1=1

>

n
i=1

= ZI(Xi;Xl,i;UAYi)a (29)

=1
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where equality (a) follows from the fact thap is a deterministic function df; andY™, and, similarly, equality (b)
follows from the fact thatX, ; is a deterministic function of7},Y™) and from definingl/; £ (T, X=1, Y1),

Now, consider

TLPLQ

v

H(T3)
> I(X", Y™ Ts)

= ZH(XZ';}/Z')7H(Xi7m|T27Xi71aYi71)
i=1

n
i=1

Y

zn: I(X,Y;U;), (30)
i=1

where equality (a) follows from definition df; = (75, X*~!,Y*~1). In addition, consider

nRy > H(Ts)
> H(Ts|Tz)
> I(X", Y™ T5]T3)
- Z H(X;, Yi| Ty, X1 YY) — H(X, Vil T, T, X1 Y
i=1
2 XTL:H%YiIUi) — H(X;,Yi| Xo,:,Us)
i=1
2 zn:I(XaY;XzﬂUi)
i?
= ZI(X;X2,i|U¢), 31)

1=1
where equality (a) follows from the definition &f; = (T, X~!,Y?~!) and the fact thaiX, ; is a deterministic
function of (Ts, T53).

The proof is concluded in the standard way by lettipdpe a random variable independent®f, Y, uniformly
distributed over the sefl1,2,3,..,n}, and considering the joint distribution ofo, Yo, Ug, X1.q, Xs.o. For this
joint distribution, Inequalities (29), (30), (31) implyah(25), (26) and (27) hold, respectively, and the fact that t
code we have fixed satisfies the distortion constraints asphat (28) holds.

To prove the cardinality bound @f, we invoke the support lemma [30, pp. 310]. The external oamdariable
U must have|X||V||X;||Xs| — 1 letters to preserveé®(z,y, #1,42) plus three more to preserve the expressions
I(X; X,,U|Y), I(Y, X;U), I(X; X5|U). Note that preserving®(z,y, &1, 42) implies thatEd; (X, X;) < D; for
i1 =1,2is also preserved. |

For the achievability part, we first establish the following
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Lemma 5 (Optimality ofXs — (X,U) — (X;,Y)): The rate regiomR (D;, D5), which is defined by (25)-(28),
does not decrease by restricting the joint distributionhi® form P(x, y) P (21, u|x, y) P(Z2|z, u).
Proof: For a fixed (D1, Ds), let the rate-triple(R1, R2, R3) € Ra(Di1,Ds2). Then there exists a joint
distribution
P(x,y,u,1,22) = P(x,y)P (1, T2, ulz, y), (32)

for which (25)-(28) hold. Let P(#1,ulz,y) and P(Zs]z,u) be the conditional distribution induced by
P(z,y,u,d1,%2). We now claim that (25)-(28) are satisfied under the jointritigtion

P(xﬂyvuajlaj2) = P(Zay)P(j1;u|$7y>P(j2|xvu> (33)

This is true, since the expressions (25)-(28) depend®on y, u, &1, Z2) only through the marginal®(x, y, u, 1)
and P(x, u, #2). Now notice that those marginals are the same whether the gastribution isP(z,y, u, T1,Z2)
or P(m,y,u,il,fg). [ ]
Sketch of proof of Achievability part of Theorem Zhe achievability proof follows directly from the
achievability of cascade source coding as given in Theorerfkirkt, we fix a joint distribution of the form
P(x,y)P(&1, ulz, y)P(is]x,u,y) such that (25)-(28) hold. Sinc&;, > I(X;X,,U|Y) and R, > I(Y,X;U),
then according to Theorem 1, we can gene(aﬁ’@, U™) that with high probability would be jointly typical with
(X™,Y™) according to the distributioP(z, y) P(Z1,u|z,y). Now, sinceU™ is known both to the encoder and
to User 2, we need a ratls > I(X; X,|U) to generateXy such that with high probability it is jointly typical
with X" U™, Finally, because of the Markov relatiot, — (X, /) — (X;,Y), we can invoke the Markov lemma,
and conclude that the sequendé@,Y”,X{l,X;, U™ are jointly typical and therefore the distortion criterige a

satisfied. [ |

B. The Gaussian triangular case

We now evaluate the rate region of the triangular networkicddeg in Fig. 5 for the quadratic Gaussian case,
i.e., X,Y are jointly Gaussian and, (z,#1) = (x — 21)?, da(z,22) = (z — 22)%. We first show that it suffices to
consider only Gaussian joint distributions for exhausting region, and then we show that by a small change in
the Gaussian cascade region we obtain the Gaussian tréarrggion.

Lemma 6 (Optimality of jointly Gaussian distributiondjor the quadratic Gaussian triangular rate-distortion
problem with side information known to the source-encodet & User 1, it suffices to consider only jointly
Gaussian distribution®y . ; ¢, ¢, in order to exhaust the rate regi@®w (D1, D2) given in (25)-(28).

Before proving the lemma, let us introduce the Pareto fevrj81] of a region and show that if two rate-regions
have the same Pareto frontier then they are identical. Hdreto frontier of a regionR, which we denote by

Par(R), is the set of all points for which there is no strictly betpaint in the region. Formally,
Par(R) = {R" € R: JR" € R s.t. R" < R"}, (34)

where R" < R™ denotes thal?; < R; for all 1 < i < n and for somel <i <n, R; < R;.
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Lemma 7:If two closed rate-regionsk,; andR., have the same Pareto frontier, then they are identical.
Proof: Let us show that the assumptiofis € R, and R ¢ R, lead to a contradiction. IR € Par(Rq)

then the contradiction follows from the assumption that skés have the same Pareto frontier and they are both
closed which implies that the Pareto frontier is part of teéssiIf R € Ri\Par(R1), then there exists a point
R, € Par(R,) that satisfie®, < R. SinceR,, € Par(R.), it follows thatR, € Par(R2). Finally, sinceR, € R,
andR, < R, thenR € R,, which contradicts the assumption. |

Proof of Lemma 6As a result of Lemma 7, we conclude that it suffices to prove ioené only for the points in
the Pareto frontier. In addition, we notice that points thia Pareto optimal satisfy (25)-(27) with equality, which

may be also written as

Ry = I(X;X,UlY), (35)
Rs+Ry, = I(Y,X;X,,U). (37)

Finally, assuming without loss of generality is real-valued and using similar arguments as in Lemma 2, we
conclude that for any joint distributiofy ,- ¢ ¢, ;; there exists a Gaussian joint distributid?kyxh&ﬁ, with
the same covariance matrix £§(7Y7X17X27U, for which the induced right hand sides of (35)-(37) do naréasdaa
Now, with a small change in the solution to the Gaussian ciso&e obtain the triangular Gaussian region. The
proof is deferred to Appendix B.
Theorem 8 (Triangle Gaussian casé€lhe rate region of the triangular source coding with siderimiation at
the first two nodes, where the sourde and the side informatio = X + Z are jointly Gaussian distributed,
where X and Z are mutually independent, and the distortion is quadraigiven by Eq. (16)-(17), wher®, is
replaced byD,22%s i.e., R""“"'*(Dy, Dy, Ry, Rg) = R§%5¢@de( Dy, Dy22R3 | Ry).

VI. EXTENSIONS

Here we present two further extensions. The first is obtamedeneralizing the triangular network results to
more users. The second is obtained by considering a moraajgweblem of empirical coordination rather than

distortion criteria.

A. Multiple Users

The triangular problem depicted in Fig. 5 can be extendekltol users, where the side information is known
to the source encoder and to Usérg, ..., k, but is not known to Userg + 1,k + 2, ...,k + [. This problem is
depicted in Fig. 6, and its region is given by the next theorem

Theorem 9:The achievable region for the problem depicted in Fig. 6 isegi by the vector rates
(R1, Ra, ..., Ri141) that satisfy

Ri > I(X;X’hXi-‘rla"'an-‘rl—laU'Y)a 1§Z§k
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ﬂ User 1 User 2 a eoe % Userk

X
User + 22 k+2

Rit141 iRkJrl*l

Fig. 6. A triangular rate distortion problem with+ [ users, where the side informatidn is known to the encoder and to Userz2, ..., k,
but not to Usersk + 1,k + 2, ...,k + L.

R,

Y

I(X7Y;Xj7"'7Xk+l—l7U)a k+1§j§k+l

Y]

Ry I(X; Xpa|U), (38)

for some distributionP (z, y) P(Z1, &2, ..., Lx+1, u|z,y) for which
Edi(X,X;) < D;, 1<i<k+l (39)

where the cardinality of the auxiliary variablé may be bounded byi/| < | X||V|| X1 || Xa]...| Xkrt| + k + L.

The proof of Theorem 9 follows similar steps as the proof oédiem 4 and is therefore omitted.

B. Empirical coordination

In [32], two coordination problems were introduced: Enyati coordination, where the goal is to generate
sequences with a specific empirical distribution, and strooordination, where the goal is to generate sequences
with a distribution that is close (in total variation) to aesjfic i.i.d. distribution. The empirical coordination fxlem
is a generalization of the rate distortion problem, sincéstodion constraint defines a half-plane in the empirical
distribution space. Hence, if we find the optimal rate needegenerate a specific empirical distribution, we also
find the optimal rate needed to generate a specific distocomstraint. We adapt the definitions from [32] for the
cascade problem.

Definition 4 (Joint type):The joint typeP,» ,» .~ Of a tuple of sequencés™, y™, z™) is the empirical probability

mass function, given by

n

% Z 1((3:2; Yis ZZ) = (Za Y, Z))7

i=1

Ppn yn o0 (2,y,2)

for all (z,y,2) € X x Y x Z, wherel is the indicator function.
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Definition 5 (Total variation): The total variation between two probability mass functienbalf theZ; distance

between them, given by
1
||p(m,y,z)—q(m,y,2)||T\/ £ 5 Z |p($7ya2)—Q(33ayvz)|-
xr,y,z

The coordination codé2"%+ 2"z p) is the same as the code defined in Def. 1 without the distodidaria
given in (7) . The difference is the goal of the code which igegiin the following definition.

Definition 6 (Achievability):A rate pair(R;, R2) is achievable for a desired distributigi(z, y)p(Z1, 22|z, y)
if there exists a sequence "% 2nf2 n) codes such that under the induced distribution of the soancethe
code, i.e.p(a™, y", &7, 1Y), the total variation between the joint type of the actionthi@ network and the desired

distribution goes to zero in probability. That is,

| Prn v s (29,21, 22) = po(@,y)p(er, @ale, )| | — 0 in probabiliy

Definition 7 (Rate-coordination region)The rate-coordination regioRp, (P (i1, 22|z, y)) is the set of all pair-
rates(Ry, R2) that are achievable for the desired distributB(x, y) P(Z1, 2|z, y).

For the cascade rate distortion problem with side inforamait the first two nodes, the extension to the empirical
coordination problem is straightforward.

Theorem 10 (Rate coordination in the cascade problefit)e rate coordination regio®p, (P(Z1, &2|z,y)) of
the cascade problem where side information is known to tis¢ fivo nodes, where&X, Y ~ Py(x,y), and an

empirical distributionPy(z, y) P(i1, 22|z, y) is desired, is given by
Ry > I(V,X;Xy),

Ry > I(X;XI,X2|Y), (40)

where the joint distribution evaluating the mutual infotioa expression i (z, y) P(Z1, 22|z, y).

Proof: The achievability proof follows immediately from the ackadility proof of Theorem 1, where we fixed
an empirical distribution and showed that it can be achiaw@dg the above rates. The converse also follows from
the converse of Theorem 1, but in the last step we need to @8 Proposition 2], which states that the expected
empirical distribution equals the distribution of the rand variables chosen uniformly over the time sequence
1,2, 180 E Py o o iy (280, 22) | =Py v %, 0500 (381, 82). m

However, the triangular coordination problem is an operbjam, even without side information. The solution
here is heavily based on the fact that in the achievabiligopit suffices to consider only a specific empirical

distribution (with a Markov structure), but for an arbityatistribution the coordination problem remains open.

APPENDIXA

PROOF OFTHEOREM 3

Following Lemma 2 we can rewrite the rate region for the Giamssase as:

Ry > IY.X;W), (41)
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R, > I(X;V,W[Y), (42)
where the vectof X, Y, V, W) is jointly Gaussian distributed and satisfies

oxw < Do (43)

IN

X Wy Dy, (44)

whereo? ; £ E[(A — E[A|B])?).

Without loss of generality let us choose the following stane

Y = X+Z,
W = X+a¥Y+Zo=14+)X +aZ+ Zy,
V. = X+4pY +~25+ 74, (45)

where the random variableX, 7, Z,, Z, are jointly Gaussian and mutually independent, with varésn
a§,a%,o§l,a§2, respectively, and the coefficienfs, 8,~) are real number scalars.
Equations (42)-(44) become

Ry

Y

I(X,Y; W)

= H(W)-H(W|X,Y)
1 (14 a)?0% +a?0% + 0%,

- 21 46
5 log oz (46)

0% (*0% +0%,)

(1+a)20% + a?0% + 0%,

Dy > oXy = (47)

2 2
IXy 9Xy

1
Ry = 5 max <1og 5 ,log Dr ) , (48)

Ix|w,y

2 2
2 — 9x9z -2 _ =2 -2 -2
whereoy, = =3 andoyjy,y =0z, +ox +og°

Inequalities (46) and (47) follow directly from (41) and §48espectively. Eq. (48) follows from combining the
following two equations, (49)- (50). 1D, > o%w’y, then (44) is automatically satisfied, and thHéns not needed

(may be independent of anything else) and therefore

Ry

Y

I(X;W[Y)
= H(X|Y)—-H(X|Y,W)

= H(X|Y) - H(X|Y,W)

2
1 o
= —log QX‘Y . (49)
2 Ix|w,y

If Dy < aﬁqu, then

Ry > I(X;V,W]Y)

H(X[Y) - H(X|Y,V, W)
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l10 U§<|y
2% D,

(50)

The last equality is due to the fact that we can chogsey, Z1) such thaw§|W7V,Y = Ds.
Now let us fix D1 > 0, Dy > 0, and Ry > %1og %, and let us find the functio®, (D1, D2, R2), which defines
the rate region. (The condition oR; is due to the fact that iRy < %log % the rate will not be achievable for

any R;). To find R; we need to solve the following optimization problem

maximize o7, (51)
subject to (2°% — 1)o7, > (1 + a)?0% + a’o% (52)
0%2 (0% — D3) < a*(6% Dy + 054Dy — 0%0%) + 200% Do + Dyo% (53)

The objective (51) follows from the fact thdt; depends only orar%2 and (52) and (53) follow from (46) and
(47), respectively. To solve this optimization problem, dreide the problem into four cases, where each case has
a simple solution (each case corresponds to a line in (17)).

Case 1: For this case we assume that

)
07z0x

0% D2+ 03Dy — 050y <0= Dy < 2%
oz +0x

= oXjv (54)

and

1 o%(c% — D o
Ry > -log—5— AGhS 5 2) 5 .
2 05,0% — Dooy, — Doos Do

(55)

Because of the assumption in (54), Eq. (53) holds with etyyaince otherwiser%2 can be increased until it
hits the boundary of (53).

Constraint Eq. (52)

Constraint Eq. (53)

Fig. 7. Case 1: the maximum 0@2, where both constraints hold, is obtained at the maximumaf(&3).

The argument that achieves the maximum of a quadratic fewh+ go + ¢ is g—fl’ hence the argument that
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maximizes (53) is

2
_ _UXDQ
= 56
@ J%Dg + U%DQ — Jg(cf%’ (56)
and the maximum is
_ b?
0'222 = C — E
0'2D2 9
_ x 7D 2 D 2D 2 2
oIDs — o020l (o 2)(0x D2+ 0z Ds — 070%)
= aoy. (57)

Note that (57) can be also written as

1 1 1 1

- = 58
5222 Do O’% O'g( (58)

If (@,7%,) satisfy Eq. (52), then the solution to the optimization peabis simplya%_ and using (48) we obtain
2

2
1 oX|y Xy
R, = 5 max <1og Ds ,log Dr ) . (59)

Now let us investigate whe(w, EQZQ) satisfies Eq. (52) (or equivalently (46))
(1+@)%c% +a%c% + 0y,

—2
UZ2

Ry >

2 /=2 2 | =2
ox (@0 +77,)
—
O—ZZDQ
2/=2 2 | — 9
ox (@ oy, +aoy)
EU%DQ

0
log
o}

log

oy (0% — Da) %

log
020% — Dy0% — Da0c% D5’

(e)

1
2
1
2
® 1
2
1
5 (60)

where (a) follows from Equality (47), (b) from (57) and (cbin (56).

Case 2: Assume that
0%0%

Dy < 242
0% + 0%

=Xy (61)

and

1 o2 (6% — D o2
Ry = 510g 2 2Z(X 2 2) 2_X'
05,0% — Daoy, — Dao%, Do

(62)

Now if (60) is not satisfied, then the maximum @f_ should be on the boundary of the constraints, namely, both
(52) and (53) should hold with equality. This is because thgeu part of the intersection should be either increasing
or decreasing. Such a case is shown in Fig. 8.

Consider the case where (46) and (47) hold with equalitynTwe obtain

2 (2 2 2
22R20%2 _ ox (a g +0'Zz)’ (63)
2
which implies
2 2
2 _ 979x 2
07, = 2232D2 — o-g(a ’ (64)
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Constraint Eq. (52)

Constraint Eq. (53)

2 -15 -1 -0.5 0 05 1 15 2

Fig. 8. Case 2: the maximum 0@2, where both constraints hold, is obtained at the interseatf (52) and (53).

Now substitutinga%2 given by (64) into (52) we obtain

0420%03((221%2 -1

2 2 2 2
92F2 Dy — 0% =(1+a)’ox +a’oz, (65)

which simplifies to
a?0% (0% — D3)

— 2 2
D2 — O'A%(Q_QRZ = (]. -+ O[) Ox. (66)

Taking the square-root on each side of the equation we obtairpossible solutions fod:

1 oz O'g( — Do
=22 OXT 2 g 67
a ox \| Dy — 032720 (67)

Since we need to maximize%?, which is proportional tav? (see Eq. (64)), we choose the solution with the plus
sign.

Case 3: (The case corresponds to forth line in (17).) Assunae t

2 2
070x

Dy > ==
= 2 2
o7 +0%

and

4
22R2 > Ox 69
= 205+ o2 Dy — 0%l (69)

If the coefficient ofa? in (53) is larger than the coefficient of? in (52), i.e.,

(0% D2 + 03Dy —0%0%) _ 0% +0%
U%*DQ _221:327].7

which is equivalent to (69) then the maximuma:g2 is obtained at infinity (as illustrated in Fig. 9), which irgd
that

(70)

2 2
1 OX|y 1 OX|y
R == 0,1 = -1 . 71
: Zmax<,ogD1> 3 o8 (71)
Case 4: Assume that
‘7%0% 2
Dy > =0Xx|y> (72)

2 2
oy +0%x
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Fig. 9. Case 3: the maximum 0%2, where both constraints hold, is obtained at infinity, siti@re is a infinite overlap between the constraints.

The darker region is the overlap of the regions defined by &2) (53).

Fig. 10. Case 4: the maximum 0%2, where both constraints hold, is obtained at the interseatf (52) and (53).

and

4
92Rs < IX 73
S ZD, 02D, — 0%l (73)

If (70) does not hold, then the maximum o§2 should be at boundary of the constraint, namely, (52) and
(53) should hold with equality. This is because the uppet pathe intersection should be either increasing or

decreasing. Such a case is shown in Fig. 10. |

APPENDIXB

PROOF OFTHEOREM 8

Let us rewrite the rate region equations similarly to (423)(as,

Ry > I(X;V,W[Y), (74)
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Ry

Y

(Y, X; W), (75)
Ry > I(X;W'|W), (76)

where the vectof X, Y, V, W) is jointly Gaussian distributed and satisfies

IN

O%(\W,W/ D, (77)

oxwvy < Di, (78)

Without loss of generality, we may assume that’, W, V have the same structure as in (45) &= X +nW+2’
whereZ’ ~ N(0, 0%, is independent of, Y, W, V. Furthermore, we note that we can assume that (76) holds with
equality, since if not, we can changeand Z’ such that equality will hold, and the change will only decea

ag(WW, - therefore (74)-(78) will continue to hold. Now, the eqgtylin (76) implies that

J?{lW,W’ = Ui‘w272R3. (79)

Hence (77) becomes

Now we note that we obtain the same optimization problem g46)-(48), just thatD, is replaced byD,2%%: m
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