
Collaborative Filtering via Online Mirror Descent

Reza Takapoui
Department of Electrical Engineering

Stanford University
takapoui@stanford.edu

Abstract

In this report, we will study online learning algorithms, and in particular, online
mirror descent (OMD) method when applied to the collaborative filtering prob-
lem. This is motivated by the problem of real-world large-scale recommendation
systems, where the goal is to make relevant recommendations to the users based
on their demographic information, their past behavior, and the other users’ bahev-
ior. In order to analyze regret bounds of OMD on this problem, we need to equip
ourselves with tools from convexity analysis for matrices. We will compare our
results to the baseline result and observe a substantial improvement in the regret
function.

1 Introduction

The matrix completion paradigm discusses reconstructing a low rank matrix from a few uniformly
sampled entries and mainly focuses on minimizing the Frobenius norm error of the matrix recon-
struction. This paradigm received much attention as a solution to the collaborative filtering problem
in recommendation systems (e.g. Netflix Prize), where the user-by-item preference matrix can be
well modeled as a low rank matrix [KOM09, CR08]. A parallel literature on linearly parametrized
bandits emphasizes on implicit exploration/exploitation tradeoff between exploring the user’s true
preferences and exploiting the knowledge already acquired to make better decisions. The main focus
here, is to propose adaptive sampling techniques to minimize the incurred regret [RT10, DM12].

In our CS229 project [AAT13], we highlighted the need to reconcile these two frameworks to solve
problems in real-world large-scale recommendation systems. We empirically compared the per-
formance of Upper Confidence Bounds (UCB) [ACBF02] and posterior sampling (also known as
Thompson sampling) [Tho33] with the simplifying assumption that the latent parameters of items
were available. However, implementing posterior sampling in general case can be challenging due
to the intractability of the distribution and complexity of the sampling scheme.

The preference matrix of a recommendation system is known to be well-modeled by a low rank
matrix. In this report, we study online learning algorithms, and specifically online mirror descent
(OMD) and tailor these algorithms to best adapt to our prior knowledge on the rewards. In order
to run OMD, we need to discuss different regularization functions and study their behavior in a
theoretical framework.

The rest of this paper is organized as the following: in section 2, we will study a general model for
the problems and the methods to tackle the problem. We will also explain the motivation to study
this problem and the reason better results are expected. In section 3, we formalize the problem into
an online learning problem and use different OMD methods to find different regret bounds. Section
4 includes some discussion on the our intuitive understanding of the problem and also future work.
Some technical proofs are included in the Appendix.

1



2 Preliminaries

2.1 A general model

Consider a recommendation system with n users and m items. Define the user-item preference
matrix M ∈ Rn×m where Mij is the rating that user i would give to item j. We do not know all
entries of matrix M , but up to time t = 0, 1, · · · , we have sampled entries in Ω(t) ⊆ [n] × [m]. At
time t, we can sample any pair (i, j) ∈ S(t), probably with an additive noise, (for example, you can
assume S(t) is the associated row to a user who is waiting for a recommendation). The essential
idea here is that M can be well modeled by a low rank matrix, and this assumption may be used to
impute unobserved entries. More explicitly, if M is rank k, then it can be written as M = ATB
where A ∈ Rk×n and B ∈ Rk×m.

There are different risk metrics that we can define for this problem. One popular risk metric is the
Frobenius norm of the error, which has been extensively studied in the matrix completion paradigm.
The goal, in this case, is to sample adaptively to minimize

minimize
∑

(ij)∈Ω(t)(xij − rij)2 + γRank(X)

which can be relaxed to the following convex problem:

minimize
∑

(ij)∈Ω(t)(xij − rij)2 + γ‖X‖∗.

Here ‖X‖∗ denotes the trace norm ofX and is the convex envelope of the rank (i.e. the largest lower
bounding convex function). This framework focuses on minimizing the Frobenius error via adaptive
sampling, however, a better measure for the risk here might be expected Regret which is defined as

R(T ) = E

[
T∑
t=1

Mi?(t)j?(t) −Mi(t)j(t)

]
. (1)

where (i(t), j(t)) ∈ S(t), and (i?(t), j?(t)) = argmax(ij)∈S(t)Mij .

2.2 Methods

One popular method to tackle this problem is linear bandits, which takes the item features B as
granted. In this method, repeatedly, item features are estimated from the given samples and then a
linearly parametrized bandit algorithm is run as though the item features were known. However, we
argue that this algorithm can produce regret that grows linearly with time T . The reason is that this
method is not likely to recommend items without known ratings to users. To see this, consider the
case in which the initial sample of entries includes no samples from a certain column j. A naive
matrix completion estimate of the entries mij in column j will then be 0. A linear bandit algorithm
will then infer that this column is useless either for exploration or for exploitation. If the highest
value entries really lay in this column, we would never discover it.

Algorithm 1 Linear bandits
given initial samples Ω(0)

estimate item features B̂
for t = 0, 1, 2, . . . do

observe arrival of user i(t)
recommend j(t) based on linear bandit algorithm, assuming B̂ are true item features
observe the user’s rating Mij

update samples Ω(t+ 1) = Ω(t) + {(i, j)}
re-estimate item features B

end for

Most solution methods for bandit problems compute a priority pij for each user-item pair i, j at each
time t, and choose (i, j) ∈ S(t) to maximize pij . The differences between them lie in how each
priority is constructed. Priorities may be constructed in the following ways:

• Greedy. The priority pij is the MAP estimate of the true reward Mij .

2



• UCB. The priority is an upper confidence bound on the true mean of the distribution
[LR85]. Careful tuning is required to identify the best upper confidence percentile for a
given application.

• Thompson sampling. The priority is computed as a random draw from the posterior distri-
bution [Tho33]. This requires less tuning than UCB, and recent theoretical results [RVR13]
show that Bayes risk bounds for Thompson Sampling can be derived from those for UCB
algorithms.

• Information criterion. The priority is computed using the expected item reward based on a
k step look ahead [Git89]. This approach can be very computationally expensive; often a
one-step look ahead [RPF12] or an approximation thereof [LB99] is used instead.

• Online algorithms. The priorities are updated using online techniques such as online mirror
descent. The main focus of this project is on this part.

2.3 Why are we expecting better results?

Since the learner is getting partial feedback after taking an action, multi-armed bandits model can
serve a suitable model for this problem. A traditional multi-armed bandit framework makes no
structured assumptions about the relationships between the rewards of different choices. Thus every
user-item pair must be sampled at least once before the multi-armed bandit algorithm can even
begin to exploit previous knowledge. This means the regret must include a term proportional to the
number of entries in the matrix, mn. Since we know from the matrix completion literature that we
can (probably approximately) recover the entire matrix using only O(nr log n) samples, we expect
to be able to do much better.

Another argument is the following: we can see this problem as n parallel different multi-armed
bandit problems where each row is discussed independently from other rows. treating each row
independently will give us a regret bound of n

√
poly(m)T . But we should capture the relationship

between different rows (M being low rank) and hope to get better bounds for the regret. For example,
if k = 1, then different rows are a multiple of each other and by exploring one row, we would find
a regret bound of

√
poly(m)T for the whole matrix. We will show that the regret bound can be

decreased to n3/4k
√

poly(m)T , where k is the rank of the preference matrix.

3 Online Mirror Descent Algorithm

3.1 The setup

Let the set of actions S, be the set of real matrices with positive entries, such that the sum of entries
in each row is less than, equal to 1. More formally, define:

S
∆
= {W ∈ Rn×m : W ≥ 0,W1 � 1}.

At iteration t = 1, · · · , T , the learner chooses Wt ∈ S and then she samples an action in each
row ait ∼ (Wt)i,:, and observes the rewards (Zt)i,ait for 1 ≤ i ≤ n and enjoys the reward∑n
i=1(Zt)i,ait . Hence, the expected regret will be:

Regret = max
U∈S

T∑
t=1

[Tr(WT
t Zt)−Tr(UTZt)].

Let l = min{n,m} and the rank of the reward matrices Zt be equal to k � l.are chosen from
specific distributions. For now, we work on the genral case Assume that Ψ : Rn×m → R is 1

η -
strongly convex on the set of actions (and experts) S ⊂ Rn×m with respect to norm ‖ ·‖. Remember
that running Online Mirror Descent algorithm is simply using the following update rule: Wt+1 =
Πs(W t+1) where W t+1 = ∇Ψ∗

(
∇Ψ

(
W t

)
− ηZt

)
. We know that running OMD will give us the

following regret bound:

Regret ≤ max
S

Ψ−min
S

Ψ + ηT max{‖Zt‖∗}2.

3



In this section, we will study two different regularization functions Ψ, one of which captures the low
rank assumption, and will see that the bound from this regularization function is significantly better
than the generic bounds.

For the rest of this section, let ψ : Rl → R be the entopic function: ψ(w) =
∑l
i=1 wilogwi. Also

let σ : Rn×m → Rl have singular values of matrix W , such that σ1(W ) ≥ · · ·σl(W ). Also let
σmax = max{‖W‖2 : W ∈ S} and u = max{‖Z‖}.

3.2 A naive bound on the regret

We can get a bound on the regret, by simply running online mirror decsent on each row inde-
pendently. However, we do not take advantage of the prior knowledge on the eank of the reward
matrices. So we expect suboptimal bounds in this case. Running OMD on each row will give us
O(
√
Tm) bound (notice that here the action space is not the simplex anymore, and that is the reason

m appears instead of log(m), in fact the system can decide not to make recommendations and get
zero reward). Hence, the upper bound for the total regret will be O(n

√
Tm).

3.3 A bound on the regret using OMD on matrices

Define Ψ(W ) = 2
√
ln
η (ψ ◦ σ)(W ) = 2

√
ln
η

∑l
i=1 σi(W )logσi(W ) which is 1

η -strongly convex on
S with respect to the trace norm. Then we will have the following regret bound:

Regret ≤ O

(
m
√
ln

η

)
+ ηTu2.

By choosing an appropriate value for η, we get the upper bound: O(
√
u2Tm

√
ln). Noticing that

u2 = O(n), and l ≤ n, we get the regret bound O(n
√
mT ), which is no better than treating the

different rows independently.

3.4 A better bound on the regret using OMD on matrices

Now we try to design a regularizer that can capture the low rank property of reward matrices.
This regularizer will penalize us more on the second term of the regret, but we get a discount
on the first term and we get a better bound over all. Define Ψ(W ) = 2

√
n
η (ψ ◦ σ)(W ) =

2
√
n
η

∑l
i=1 σi(W )logσi(W ) which is 1

η -strongly convex on S with respect to the operator norm.
Notice that the regularizer defined in previous subsection was convex with respect to the operator
norm too (strong convexity with respect to the trace norm is stronger indeed), but this regularizer is
different within a factor. We will discuss this difference more in the next section. Then we will have
the following regret bound:

Regret ≤ O
(
m
√
n

η

)
+ ηTk2u2.

By choosing an appropriate value for η, we get the upper bound: O(
√
k2u2Tm

√
n). similar to

previous subsection, we get the regret bound O(n3/4k
√
mT ), which is substantially better than the

generic bound.

4 Discussion

4.1 Intution about the choice of norm

In the previous section, our two choices of the regularizer function were the same up to a scaler,
and the choice of norm was very critical in developing tighter bounds. In order to justify this phe-
nomenon, let’s consider the entropic regularizer function f(w) =

∑n
i=1 wilog(wi) on S ⊂ Rn.

The Hessian of this function evaluated at a point w is equal to (diag(w))−1. So, for an arbitrary
point x ∈ Rn, xT∇2f(w)x =

∑n
i=1 x

2
i /wi. We notice that

∑n
i=1 x

2
i /wi ≥ ‖x‖21/

∑
i wi, which

shows that f is 1
maxw∈S

∑
wi

-strongly convex with respect to l1 norm on S. On the other hand, we

4



notice that
∑n
i=1 x

2
i /wi ≥ ‖x‖2∞/maxw∈S wi, which means f is 1

maxw∈S wi
-strongly convex with

respect to l∞ norm on S. So if we, for example, know that S = [0, 1]n, we will be ensured to have
1
n -strong convexity of f with respect to l1 norm, and 1-strong convexity of f with respect to l∞
norm. Therefore, although strong convexity with respect to l∞ might seem weaker than convexity
with respect to l1, we should take into account the set we are working in.

There are two crucial steps to tackle the problem:

1) Finding unbiased estimates of Zt at each iteration, and reducing the problem to an online learning
problem with expert advice. It looks that the following estimate might do the trick:

(Ẑt)ia =

{
(Zt)i,a
(Wt)i,a

if a = ait
0 otherwise.

References
[AAT13] M. Afkhamizadeh, A. Avakov, and R. Takapoui. Automated recommendation systems, collabora-

tive filtering through reinforcement learning. CS229 Project, December 2013.

[ACBF02] Peter Auer, Nicolò Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed bandit
problem. Machine learning, 47(2-3):235–256, 2002.

[CR08] Emmanuel J. Candès and Benjamin Recht. Exact matrix completion via convex optimization.
CoRR, abs/0805.4471, 2008.

[DM12] Yash Deshpande and Andrea Montanari. Linear Bandits in High Dimension and recommendation
Systems. Communication, Control, and Computing (Allerton), 2012 50th Annual Allerton Confer-
ence on, pages 1750 – 1754, 2012.

[Git89] J.C. Gittins. Bandit Processes and Dynamic Allocation Indices. John Wiley, 1989.

[KOM09] Raghunandan H. Keshavan, Sewoong Oh, and Andrea Montanari. Matrix completion from a few
entries. CoRR, abs/0901.3150, 2009.

[LB99] M.S. Lobo and S. Boyd. Policies for simultaneous estimation and optimization. In Proceedings of
the 1999 American Control Conference (Cat. No. 99CH36251), volume 2, pages 958–964. IEEE,
1999.

[LR85] T. L. Lai and Herbert Robbins. Asymptotically efficient adaptive allocation rules. Advances in
Applied Mathematics, 6(1):4–22, 1985.

[RPF12] Ilya O Ryzhov, Warren B Powell, and Peter I Frazier. The knowledge gradient algorithm for a
general class of online learning problems. Operations Research, 60(1):180–195, 2012.

[RT10] P. Rusmevichientong and J. N. Tsitsiklis. Linearly Parameterized Bandits. Mathematics of Opera-
tions Research, 35(2):395–411, April 2010.

[RVR13] Daniel Russo and Benjamin Van Roy. Learning to optimize via posterior sampling. arXiv preprint
arXiv:1301.2609, 2013.

[Tho33] W.R. Thompson. On the likelihood that one unknown probability exceeds another in view of the
evidence of two samples. Biometrika, 25(3-4):285–294, 1933.

A Proof of strong convexity of Ψ

Theorem. Assume that f is a closed and convex function and let f∗ be the Fenchel conjugate of f . Then f is
β-strongly convex w.r.t. a norm ‖ · ‖ if and only if f∗ is 1

β
-strongly smooth w.r.t. the dual norm ‖ · ‖∗.

Definition. A function g : Rn → R∗ is symmetric if g(x) is invariant under arbitrary permutations of x. We say
g is absolutely symmetric if g(x) is invariant under arbitrary permutations and sign changes of the components
of x.

Theorem (Lewis[1995]). Let f : Rl → R∗ be an absolutely symmetric function. Then, (f ◦ σ)∗ = f∗ ◦ σ.

Lemma Juditsky and Nemirovski [2008]. Let ∆ be an open interval. Suppose φ : ∆ → R∗ is a twice
differentiable convex function such that φ′′ is monotonically non-decreasing. Let Sn(∆) be the set of all
symmetric n× n matrices wth eigenvalues in ∆. Define the function F : Sn(∆)→ R∗

F (X) =

n∑
i=1

φ(λi(x))

5



and let f(t) = F (X + tH) for some X ∈ Sn(∆), H ∈ Sn. Then we have,

f ′′(0) ≤ 2

n∑
i=1

φ′′(λi(X))λi(H)2.

Theorem. Define F (X) =
∑
i σi(X)log(σi(X)) on its domain {X ∈ Rn×m :

∑
i σi(X) ≤ 1}, i.e. the unit

norm ball of the trace norm, and F (X) = ∞ elsewhere. Then F (X) is 1/2-strongly convex w.r.t. the trace
norm.

Proof. We prove that the function g ◦ σ(X) is 2-smooth w.r.t. the operator norm where

g(x) = log

(
n∑
i=1

exp(xi)

)
.

Since g is symmetric, we have (g ◦ σ)∗ = g∗ ◦ σ, where g∗ can be shown to be the function

g∗(x) =

n∑
i=1

xilogxi

with domain {x ≥ 0 :
∑
i xi ≤ 1}. Notice that 2-smoothness of g◦σ implies 1/2 strong convexity of (g◦λ)∗.

Fix arbitrary X,H and define

f(t) =

n∑
i=1

exp(σi(X + tH)) =

n∑
i=1

exp(λi((X + tH)T (X + tH))

and let h(t) = log(f(t). Note that h(t) = (g ◦σ)(X+ tH). To prove 2-smoothness of g ◦σ, it suffices to prove
h′′(0) ≤ 2‖σ(H)‖2∞. By the chain rule,

h′′(t) = − (f ′(t))2

f(t)2
+
f ′′(t)

f(t)
.

The first term is non-positive and therefore h′′(0) ≤ f ′′(0)/f(0). By the lemma,

f ′′(0) ≤ 2

n∑
i=1

exp(σi(X))σi(H)2

≤ 2‖σ(H)‖2∞
n∑
i=1

exp(σi(X))

= 2‖σ(H)‖2∞f(0),

whence h′′(0) ≤ f ′′(0)/f(0) ≤ 2‖σ(H)‖2∞.

6


	Introduction
	Preliminaries
	A general model
	Methods
	Why are we expecting better results?

	Online Mirror Descent Algorithm
	The setup
	A naive bound on the regret
	A bound on the regret using OMD on matrices
	A better bound on the regret using OMD on matrices

	Discussion
	Intution about the choice of norm

	Proof of strong convexity of 

