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Collusion under monitoring of sales
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and
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Collusion under imperfect monitoring is explored when firms’ prices are private information and
their quantities are public information; such an information structure is consistent with several
recent price-fixing cartels, such as those in lysine and vitamins. For a class of symmetric oligopoly
games, it is shown that symmetric equilibrium punishments cannot sustain any collusion. An
asymmetric punishment is characterized that does sustain collusion and it has firms whose sales
exceed their quotas compensating those firms with sales below their quotas. In practice, cartels
could have performed such transfers through sales among the cartel members.

. . . if I’m assured that I’m gonna get 67,000 tons [of lysine sales] by the year’s end, we’re gonna sell it at the prices we
agreed to and I frankly don’t care what you sell it for.

Terrance Wilson of Archer Daniels Midland from the March 10, 1994, meeting of the lysine cartel.

And that total for us for the year, calendar year is 68,000; 68,334. 68,334 and our target was 67,000 plus alpha. Almost
on target.

Mark Whitacre of Archer Daniels Midland from the January 18, 1995, meeting of the lysine cartel.1

1. Introduction
� Many, if not most, price-fixing cartels involve firms selling to industrial buyers, with the
lysine cartel being a notable example. As price can be settled through private negotiation, it is
not typically observable. In such cases, compliance with the collusive agreement is often based
on firms’ sales. Indeed, cartels can go to great lengths to ensure that sales are public information
among the cartel members. In the citric acid cartel, for example, firms hired an international
accounting firm to independently audit sales reports (Connor, 2001). The objective of this article
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is to explore collusion in an imperfect monitoring setting in which prices are private information
and firms’ quantities are public information.

In spite of such a monitoring environment being applicable to many market settings, there
is relatively little work with such a structure even though, interestingly enough, it was the one
described by Stigler (1964) when he originally raised the issue of imperfect monitoring. There
are, of course, many articles using the classical monitoring setting of Green and Porter (1984),
in which firms’ quantities are private information and the market price is publicly observed. In
the context of repeated auctions, Blume and Heidhues (2003) and Skrzypacz and Hopenhayn
(2004) assume price is private information, while who won the auction is known. However, the
assumption of one unit per period makes the model unsuitable for many markets and, pertinent
to the issue at hand, constrains the monitoring of collusion through sales (a point we elaborate
on later). Tirole (1988), Bagwell and Wolinsky (2002) and Campbell, Ray, and Muhanna (2005)
allow for multiunit demand in the context of the infinitely repeated Bertrand price model with
imperfect monitoring. The assumption that firm demand is discontinuous is obviously extreme
and, furthermore, plays an important role in sustaining collusion. Our model is the first to consider
collusion when prices are private information and monitoring occurs with respect to sales, while
making standard and fairly general demand assumptions: demand is multiunit and expected firm
demand is everywhere continuous.

Our first main finding is a surprising impossibility result. For a general class of symmetric
demand structures with inelastic market demand, no collusion can be sustained by symmetric
punishments. By way of example, one such demand structure is when the probability distribution
of demand depends only on the difference in firms’ prices, as is true with the discrete-choice
model. The rough intuition for our result can be conveyed as follows for the duopoly case.
To begin, one would expect punishment to occur when market shares are sufficiently skewed.
Suppose, for example, punishment occurs when the market share of one of the firms exceeds
70%. A firm that considers charging a price below the collusive price raises the probability that its
market share exceeds 70%—which makes punishment more likely—but lowers the probability
that the other firm’s market share exceeds 70%—which makes punishment less likely. What we
show is that, for small price cuts, these two effects exactly offset each other, which implies that
a firm’s continuation payoff is unaffected by its price. Therefore, an equilibrium price for the
infinite horizon game must be the same as that for the stage game. Though shown for the extreme
case of fixed market demand, robustness prevails when market demand is stochastic and sensitive
to firms’ prices. Specifically, if market demand is very insensitive to firms’ prices, then collusive
prices are very close to noncollusive prices.

The conclusion we draw from this result is not that firms cannot collude but rather of the
importance of treating apparent deviators differently from apparent nondeviators. The second
main result is showing that collusion can be sustained with asymmetric punishments involving
transfers in which firms that sold too much compensate those who sold too little. In fact, some
price-fixing cartels, such as those in citric acid (Arbault et al., 2002) and sodium gluconate
(European Commission, 2002), did indeed deploy asymmetric punishments through the use of
interfirm sales, which can act as transfers. The main message of this article is that, if we are to
understand the actual practices of some cartels, it is essential that we take account of imperfect
monitoring with respect to prices and the role of asymmetric punishments that condition on sales.

After the model is described in Section 2, the inability of symmetric punishments to sustain
collusion is established in Section 3. Some robustness issues are explored in Section 4, while a
characterization of asymmetric equilibria that sustain collusion is provided in Section 5. We relate
these results to the literature in Section 6 and briefly conclude in Section 7.

2. Model

� Consider an infinitely repeated game in which n ≥ 2 firms make simultaneous price deci-
sions. Cost functions are common and linear and, without loss of generality, cost is zero. Demand
© RAND 2007.
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is fixed at m discrete units.2 We often refer to there being m customers (with unit demands).
Though total demand is fixed, firm demand is stochastic. Letting qi denote the quantity of firm i ,
the set of feasible quantity vectors is

� ≡
{

(q1, . . . , qn) ∈ {0, 1, . . . , m}n :
n∑

i=1
qi = m

}
.

Define ψ(q; p) : � × �n → [0, 1] as the probability of realizing quantity vector q given price
vector p. As regards the stochastic nature of firm demand, one can imagine that products are
differentiated or that they are homogeneous but buyer-specific shocks, which may be independent
or correlated, that influence demand in each period. We describe some examples below.

We make three assumptions on the probability distribution on firm demand.

Assumption 1. ψ is continuously differentiable with respect to pi for all i .

Assumption 2. ψ(q; p) = ψ(ω(q; i, j); ω(p; i, j)), for all i, j and all (q; p), where ω(q; i, j) is
the vector q when elements i and j are exchanged.

Assumption 3.
∑n

i=1(∂ψ(q; (p, . . . , p))/∂pi ) = 0, for all (q, p).

Assumption 1 is standard and Assumption 2 imposes symmetry in that permuting the price
vector permutes the probability function. Assumption 3 is the key restriction, though it is satisfied
in many models. Assumption 3 implies, that if we start at equal prices, then the distribution of
demand remains unchanged if firms make small, identical price changes.

When n = 2, Assumption 3 holds if the demand distribution depends solely on the difference
in prices; in that case, equal changes in price do not affect the difference. For general n, a sufficient
condition for Assumption 3 to be true is that ψ depends only the price differences for all pairs of
firms. To show this explicitly, consider n = 3 and suppose ∃ξ : � ×�3 → [0, 1] such that

ψ(q; p) = ξ (q; �12, �23), ∀ (q; p) ∈ � ×�3,

where �i j ≡ pi − p j . Hence, the probability function depends only on the pairwise differences
in firms’ price. Then

3∑
i=1

(
∂ψ(q; (p, . . . , p))

∂pi

)
=

∂ξ (q; 0)
∂�12

(
∂�12

∂p1
+

∂�12

∂p2

)
+

∂ξ (q; 0)
∂�23

(
∂�23

∂p2
+

∂�23

∂p3

)
=

∂ξ (q; 0)
∂�12

(1 − 1) +
∂ξ (q; 0)
∂�23

(1 − 1) = 0,

so that Assumption 3 holds.
An example from the literature that conforms to our demand specification is the following

m-buyer generalization of the duopoly model of Cabral and Riordan (1994). Let the probability
that firm 1 sells to a particular buyer equal F(p2 − p1), where F : � → [0, 1] is continuously
differentiable and nondecreasing and F ′ is symmetric around zero. Assume also that buyers’
decisions regarding from whom to buy are i.i.d. That implies that a firm’s demand is binomially
distributed,

ψ(b, m − b; p1, p2) =
m!

b!(m − b)!
F(p2 − p1)b(1 − F(p2 − p1))m−b,

so only the price difference matters.

2 See Section 4 for a generalization to when m is variable.
© RAND 2007.
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The discrete-choice model, in which consumer indirect utility is linear in price, is another
common example satisfying Assumption 1–Assumption 3. In that case, the utility to consumer j
from buying the product of firm i is U j

i − pi , so that customer j buys firm i’s product iff

U j
i − pi > U j

h − ph, ∀ h �= i

or, equivalently,

U j
i − U j

h > pi − ph ∀ h �= i.

If F j
h is the c.d.f. on U j

h , then the probability that customer j buys firm i’s product is∫ ∏
h �=i

Fh(U j
i + ph − pi )d Fi (U j

i ),

so that, once again, only price differences matter. However, if there is an outside option, then the
discrete-choice demand system does not satisfy Assumption 3.

More generally, note that we can represent ψ(q; p) by ψ̂(q; f q (p)) : �×� → [0, 1], where
f q (·) is allowed to vary with q . It follows that Assumption 3 holds when

n∑
i=1

∂ f q (p, . . . , p)
∂pi

= 0 ∀ q

and, furthermore, for any smooth transformation g( f q (·)) or f q (g(p1), . . . , g(pn)). For exam-
ple, start with f q (p1, p2) = p1 − p2 and use the transformation: g(p) = ln(p). We then have
f q (p1, p2) = ln(p1) − ln(p2) = ln(p1/p2). Performing another transformation using g( f q ) =
exp f q gives us f q (p1, p2) = p1/p2. Thus, if the probability distribution depends only on the
ratio of prices, then it satisfies Assumption 3.

There is an infinite horizon and each firm’s payoff is the expected present value of its profit
stream where the common discount factor is δ ∈ (0, 1). The information structure is one of
imperfect monitoring as firms’ price decisions are private information though firms’ quantities
are public information. This conforms to the industrial buyer case in which price is negotiated
between a seller and a buyer and thus is not publicly posted.3 It is sufficient to think of a public
history at the start of period t , denoted ht−1, to be a sequence of quantities sold by firm 1. Denote by
H t−1 the set of all possible histories ht−1. A firm’s (public) strategy is then an infinite sequence of
price functions, {ρ t

i (·)}∞t=1, where ρ t
i : H t−1 → �. We restrict attention to perfect public equilibria

so that firms do not condition their prices on their own past prices, just on the realized quantities.4
One final assumption is that first-order conditions are sufficient for defining an equilibrium.

The imperfect monitoring structure we consider obviously differs from the classical for-
mulation of Green and Porter (1984), in which firms’ quantities are private information and the
market price is publicly observed. Assuming firms’ prices are private information and monitoring
is based on sales appears to better conform with many price-fixing cases. Nevertheless, there is
a limited amount of work that considers such an informational structure. Blume and Heidhues
(2003) and Skrzypacz and Hopenhayn (2004) consider collusion in repeated single-unit auctions.
The limitation to one unit per period is restrictive and, as a result, their models are not appli-
cable to many markets. Tirole (1988) and Bagwell and Wolinsky (2002) consider the Bertrand
price model with uncertain aggregate demand in which firms’ prices and quantities are private
information. The standard Bertrand assumption of infinite elasticity of firm demand is clearly an
extreme (though common) assumption, especially as even arbitrarily small deviations lead to a

3 Though list prices may be posted, they are often unrelated to transaction prices.
4 For equilibria in pure strategies, focusing on public strategies is without loss of generality.
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discontinuous change in the distribution of the monitoring variable. Our model is then unique
in the imperfect monitoring literature in allowing for the following compelling features: price is
private information, monitoring occurs with respect to sales, multiunit demand, and expected firm
demand is everywhere continuous. Though we do assume total market demand is fixed, robustness
is established with respect to that assumption. All of these features—including highly inelastic
market demand—fit well with many markets, including lysine and vitamins.

There are two assumptions that warrant discussion before moving on. First, it is assumed
that firms’ quantities are public information. Though this is not an issue when there are just two
firms and market demand is perfectly inelastic—as a firm can infer the other firm’s sales from its
own—it is an issue more generally. In defense of this assumption, some cartels have gone to great
lengths to make sales public information. The case of the citric acid cartel hiring an independent
auditor was mentioned earlier. Furthermore, the documents on the lysine cartel suggest that
cartel members acted “as if” the reported sales numbers were accurate. Though the validity of
this assumption demands further investigation—both empirically and theoretically (what are the
incentives to truthfully report sales?)—we feel the evidence provides some justification for making
this assumption.

The second assumption is that, in some cases, we restrict a firm to charging the same price
to all buyers, even though buyers are discrete. When it comes to deviating from a collusive
arrangement, a firm may want to undercut its competitors’ prices on only a subset of consumers
so as to make detection less likely. (Of course, to a limited extent, it can do that by not undercutting
as much.) For the impossibility result (Theorem 1), the assumption of a common price simplifies
the analysis and, most important, the result is robust to allowing for customer-specific prices; if
collusion is unsustainable when a deviating firm is constrained to setting the same price to all
buyers, it is surely unsustainable when the set of options for a deviating firm is expanded. The
assumption of a common price for all buyers is more of an issue when it comes to establishing
positive results about collusion. Section 4 explores some robustness issues with respect to the
impossibility theorem and has some results regarding when collusion is sustainable under that
assumption. The main positive result is provided in Section 5, and there we do allow for customer-
specific prices and show that one can construct asymmetric punishments to support collusion.5

Though we do not then need to assume a firm charges the same price to all buyers, let us
conclude by arguing that, in some contexts, such an assumption may be reasonable. In many, if not
most, price-fixing cartels, collusion is among high-level managers rather than sales representatives
(that is, those who actually deal with customers); collusion then requires pricing authority to be
centralized. For a manager to instruct sales representatives to charge different prices to different
customers, it is necessary that they be identifiable ex ante, which means the manager needs to be
able to predict who will be the buyers in the market in the current period. This, however, may
not always be feasible. An individual customer’s demand may be short-lived so that the market
is continually replenished with new buyers. Even if the pool of customers is stable, the identity
of the customers seeking to buy in that period may be random. Alternatively, a manager could
mandate a distribution of prices without specifying the price for a specific customer but that may
not be implementable if the number of customers is random and they arrive sequentially. There
are then settings for which it may be reasonable to require a firm to set a common price for all
buyers.

3. An impossibility result

� With single-unit demand per period (m = 1), symmetric equilibria6 are trivially ineffective
at supporting collusion if the players observe only sales and not actual prices.7 The reason is

5 Clearly, this result also holds when we constrain a firm to charge a common price to all buyers.
6 In the sense of strongly symmetric equilibria, as we define below.
7 This was first noted in Blume and Heidhues (2003) and Skrzypacz and Hopenhayn (2004), who explore collusion

in repeated auctions. Their work will be discussed later.
© RAND 2007.
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prosaic: regardless of firms’ prices, the customer buys from one of the sellers and this means that
continuation play has to treat symmetrically the “winner” and the “loser.” After either outcome,
we would have to end up in a punishment or nonpunishment regime and, hence, there can be no
symmetric punishment for secret price cutting.

However, with more than one customer per period, one might expect to be able to sustain
collusion even with symmetric punishments. Considering the case of two customers and two
sellers, two natural outcomes emerge: the sellers split the market or one of the sellers serves the
whole market. If the collusive scheme recommends that they set a common high price, then a
market split would seem less likely if one of the players deviates by charging a lower price. If so,
then a punishment can be conditioned on market shares being skewed. This intuition is confirmed
if we model the market as a continuum of independent customers as, by the law of large numbers,
demand is then nonstochastic, which means deviations can be detected precisely. However, as we
show in this section, that intuition is not correct in a large class of markets. If there is a finite
number of customers, then no symmetric equilibrium can achieve prices above the competitive
level.

In exploring collusion in a symmetric setting, it is common (and one might suppose natural)
to first consider equilibria that take full advantage of this symmetry. For a particular strategy
profile, let vt

i (·) : H t−1 → � denote the continuation payoff starting at t as a function of the
public history. A set of symmetric histories consists of the initial null history, denoted h0, and,
if m is a multiple of n, also of histories in which each firm had sales of m/n in every period. A
symmetric Nash equilibrium is a Nash equilibrium in which the strategy profile calls for identical
prices when the history is symmetric. This implies that continuation payoffs are identical across
firms after such histories.

The next property, which we believe is compelling, is exchangeability. A Nash equilibrium is
exchangeable if, when we permute the histories of firms i and j , the strategies of firms i and j are
permuted while other firms’ strategies are left unchanged. This produces the following property
for continuation payoff functions:

vt
i (q

1, . . . , qt−1) = vt
j (ω(q1; i, j), . . . , ω(qt−1; i, j))

vt
j (q

1, . . . , qt−1) = vt
i (ω(q1; i, j), . . . , ω(qt−1; i, j))

vt
k(q1, . . . , qt−1) = vt

k(ω(q1; i, j), . . . , ω(qt−1; i, j)), k �= i, j.

A more restrictive but commonly imposed property is that of strong symmetry. 8 A strongly
symmetric Nash equilibrium is one in which strategies are symmetric for all histories. That implies
the continuation payoffs are also symmetric after all histories,

vt
i (h

t−1) = vt
j (h

t−1) ∀ ht−1 ∈ H t−1, ∀ t, ∀ i, j.

Let this common continuation payoff be denoted vt (·).
The final restriction is designed to eliminate equilibria that condition on the history in

nonmeaningful ways. Define p̃t (ht−1) to be the equilibrium price vector in period t after history
ht−1 and let p̂ be a static Nash equilibrium price vector. An equilibrium is said to be history relevant
when, if p̃t (ht−1) = p̂, then vt+1

i (ht−1, q ′) = vt+1
i (ht−1, q ′′) for all q ′, q ′′ ∈ �, for all i . That is,

if firms charge static Nash prices in period t , then the period t + 1 continuation payoff functions
are independent of the period t quantities. This prevents equilibria—that start with static Nash
prices—from circumventing the exchangeability restrictions through the use of an asymmetric
history. 9 Our view is that continuation payoff functions are made to depend on the current period’s

8 This is assumed, for example, in Abreu (1986).
9 If firms wanted to break symmetry so as to get around the exchangeability restrictions, they surely have more

direct means, such as having the managers introduce themselves to each other by name!
© RAND 2007.
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outcome in a repeated game in order to influence that period’s behavior; this is the mechanism by
which good behavior is induced. Thus, if current behavior is independent of those continuation
payoff functions, then there is not an economic rationale for those continuation payoff functions
to depend on the current period’s outcome. As our objective is to characterize limits to collusion
in symmetric equilibria, we think that restricting equilibria to be history-relevant is the natural
assumption.10

Our first main finding is an impossibility result. Equilibria satisfying these properties cannot
sustain collusion regardless of the discount factor. In stating this result, we define the set of equi-
librium prices for the infinite horizon game to be those prices that arise with positive probability
for some equilibrium.11

Theorem 1. Assuming Assumptions 1–3, the set of strongly symmetric exchangeable history-
relevant Nash equilibrium prices for the infinite horizon game coincides with the set of symmetric
Nash equilibrium prices for the stage game.

Proof. Consider a strongly symmetric Nash equilibrium which, for period t , has all firms charge
a price of p̃t (ht−1) and yields a continuation payoff of vt+1(ht−1, qt ). Firm i’s expected payoff
from pricing at pt

i is then∑
q∈�

ψ(q; p̃t , . . . , pt
i . . . , p̃t )[pt

i γi (q) + δvt+1(ht−1, q)],

where γi (q) is defined to be the i th element of q (in other words, firm i’s sales). By Assumption
1, a necessary condition for p̃t to be an equilibrium price is

∑
q∈�

(
∂ψ(qt ; p̃t , . . . , p̃t )

∂pt
i

)
p̃tγi (q) +

∑
qt∈�

ψ(qt ; p̃t , . . . , p̃t )γi (q)

+
∑
q∈�

(
∂ψ(qt ; p̃t , . . . , p̃t )

∂pt
i

)
δvt+1(ht−1, q) = 0.

Our method of proof is to show that the third term is zero, for, if that is the case, then p̃t must
satisfy ∑

q∈�

(
∂ψ(qt ; p̃t , . . . , p̃t )

∂pt
i

)
p̃tγi (q) +

∑
q∈�

ψ(qt ; p̃t , . . . , p̃t )γi (q) = 0,

which is the condition defining a symmetric Nash equilibrium for the stage game.12 We then want
to show that ∑

q∈�

(
∂ψ(q; p̃t , . . . , p̃t )

∂pt
i

)
δvt+1(ht−1, q) = 0. (1)

10 Alternatively, Theorem 1 can be proven by replacing the requirement that equilibria be exchangeable and
history relevant with that of recursive exchangeability. Define the state after period t to be st ≡ (vt , qt ), which is the
vector of continuation payoffs at the beginning of period t and the vector of period t quantities. The equilibrium is
recursively exchangeable if the continuation equilibrium strategies after a permutation of st are an analogous permutation
of the strategies after st . This property is motivated by Abreu, Pearce, Stachetti (1990) in presuming that the vector of
continuation payoffs act as sufficient state variables.

11 For the case of a duopoly, Theorem 1 holds for strongly symmetric Nash equilibria, so that neither exchangeability
nor history relevance is required. We have thus far been unable to prove that for the general case of n firms. The proof of
the duopoly case is in the Appendix.

12 Let us remind the reader that we are assuming the first-order condition is both necessary and sufficient for
equilibrium. If it is not sufficient, then Theorem 1 as stated may not be true. Though the first-order conditions for the stage
game and the infinitely repeated game still coincide, the second-order conditions need not. What is true, however, is that
the set of strongly symmetric exchangeable history-relevant Nash equilibrium prices for the infinitely repeated game is a
subset of the set of solutions to the first-order condition for the stage game.
© RAND 2007.
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The next step derives the key property used in proving Theorem 1. As Assumption 2 implies

ψ(q; (p, . . . , p)) = ψ(ω(q; i, j); (p, . . . , p)), ∀ q, p,

it follows that
∂ψ(q; (p, . . . , p))

∂pi
=

∂ψ(ω(q; i, j); (p, . . . , p))
∂p j

. (2)

For an arbitrary quantity vector q ∈ �, define �(q) to be the set of permutations of q .
Consider some arbitrary quantity vector qo. It then follows from (2) that

∑
q∈�(qo)

(
∂ψ(q; (p, . . . , p))

∂pi

)
=

∑
q∈�(qo)

(
∂ψ(ω(q; i, j); (p, . . . , p))

∂p j

)
, ∀ i, j. (3)

Because

�(qo) = {ω(q; i, j) : q ∈ �(qo)},

(3) implies ∑
q∈�(qo)

(
∂ψ(q; (p, . . . , p))

∂pi

)
=

∑
q∈�(qo)

(
∂ψ(q; (p, . . . , p))

∂p j

)
, ∀ i, j. (4)

By Assumption 3, ∑
q∈�(qo)

n∑
i=1

(
∂ψ(q; (p, . . . , p))

∂pi

)
= 0.

Exchanging the summations, we have
n∑

i=1

∑
q∈�(qo)

(
∂ψ(q; (p, . . . , p))

∂pi

)
= 0. (5)

Using (4)–(5), we derive ∑
q∈�(qo)

(
∂ψ(q; (p, . . . , p))

∂pi

)
= 0, ∀ i. (6)

It has then been shown that, given all firms charge a common price, the probability of �(qo)—that
is, all vectors that are permutable from qo—is locally independent of a firm’s price.

An equivalent representation of (1) is

∑
qo∈�∗

∑
q∈�(qo)

(
∂ψ(q; p̃t , . . . , p̃t )

∂pi

)
δvt+1(ht−1, q) = 0, (7)

where �∗ is the set of “basis vectors;” that is, no element of �∗ is a permutation of any other
element of �∗ and any element of � is a permutation of some element of �∗. Consider t = 1 and
let h0 denote the null history. By exchangeability,

v1(h0, q ′) = v1(h0, q ′′), ∀ q ′, q ′′ ∈ �(̃q).

Therefore, (7) can be represented as

∑
qo∈�∗

δv2(h0, qo)
∑

q∈�(qo)

(
∂ψ(q; p̃t , . . . , p̃t )

∂pi

)
= 0,

© RAND 2007.
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which does indeed hold by (6). This implies p̃1(h0) = p̂, where p̂ is a static Nash equilibrium
price vector.

The proof is completed by strong induction. Suppose p̃τ (h0) = p̂, for all τ ≤ t − 1.13 Then,
by the condition that equilibria be history relevant, vt+1(ht−1, qt ) is independent of ht−1. Using
exchangeability, (7) can be represented as

∑
qo∈�∗

δvt+1(ht−1, qo)
∑

q∈�(qo)

(
∂ψ(q; p̃t , . . . , p̃t )

∂pi

)
= 0,

which completes the proof. Q.E.D.

In explaining the intuition, it will be easiest to consider the duopoly setting. In thinking about
punishment for perceived noncompliance in this setting, one would expect it to occur when market
shares are sufficiently skewed: firm 1’s sales are too high or too low. The former is consistent
with firm 1 having undercut the collusive price and the latter with firm 2 having done so. Strong
symmetry implies that the punishment entails identical behavior in the form of a price war. In
such a situation, Theorem 1 shows that no collusion can be sustained.14 This result hinges on the
fact that, when firm 1 sets a price marginally below the collusive price, it reduces the likelihood
of having a low demand (say, q ′

1 < m/2) and, at the same time, raises the probability of having a
high demand (say, m − q ′

1). The proof shows that the ensuing reduction in the probability of q ′
1

is exactly equal to the rise in the probability of m − q ′
1, so that the probability of q ′

1 or m − q ′
1

remains constant for a marginal change in price.15 Now suppose

vt+1(ht−1, (q1, m − q1)) = vt+1(ht−1, (m − q1, q1)), ∀ q1,

so that the continuation payoffs depend only on the distribution of market share. It follows that the
probability distribution over the continuation payoff is then unaffected by firm 1’s price. Hence,
an equilibrium price must maximize expected current profit because, at the margin, price has no
effect on the expected continuation payoff. This implies the equilibrium price must be the same
as that for a Nash equilibrium for the stage game.

A similar impossibility result can be obtained in environments such as are modeled in
Blume and Heidhues (2003) and Skrzypacz and Hopenhayn (2004). 16 These articles consider
tacit collusion in auctions, where the bidders submit bids and the auctioneer chooses the best
bid, announcing the winner but not the bids. One can think about those auctions as having one
customer per period that performs closed-door price negotiations with the two potential sellers. In
such a model, strongly symmetric equilibria also cannot support any collusion. The reason is more
prosaic than in our model. At any point of the game, there are only two possible outcomes: firm 1
sells or firm 2 sells. That makes it impossible to detect a deviation if firms follow the same pricing
strategy. In our model, however, asymmetric market shares can be used to detect deviations; it is
just that the tests are too weak for small deviations. We will elaborate on this point later.

It is also interesting to ask why symmetric equilibria can be used to sustain collusion in
Green and Porter (1984) but not in our model. As we show in the next section, it is not per se
the difference in strategic variables (quantity versus price). It is instead the quality of information
contained in the market signals. In Green and Porter, a deviation has a first-order effect on the
probability of punishment. In our model, due to Assumption 1 and Assumption 3, a deviation to

13 It need not be the same static Nash equilibrium price vector in all periods.
14 As the proof of Theorem 1 used only the symmetry of the continuation payoffs and not their level, results would

not change if we allowed for “money burning” activities that arbitrarily lowered v(·).
15 For the general n-firm case, a marginal change in price shifts probability mass over all quantity vectors that are

permutations of each other but doesn’t change the sum of their probabilities.
16 In Blume and Heidhues (2003) and Skrzypacz and Hopenhayn (2004), the bidders have private shocks that affect

the efficient allocation of the object. This feature is not shared by our model, but it does not affect the result.
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a lower price has no first-order effect on the probability of going to a punishment. That intuition
becomes clearer in the next section, as we present an example which violates Assumption 1 and
Assumption 3.

4. Robustness of the impossibility result
� Here we explore the robustness of this impossibility result. In the first subsection, departures
from Assumptions 1–3 are considered, while market demand is allowed to respond to firms’ prices
in the second subsection.

� Nondifferentiability of firm demand. The proof of Theorem 1 is based on the property
that the probability of a particular distribution of market shares is locally independent of a firm’s
price when firms charge a common price. Thus, skewness in market share is not made more likely
when a firm undercuts the collusive price. One might imagine it is essential that ψ is continuously
differentiable when firms charge a common price so that small price changes have small effects
on the probability distribution over sales. That, however, proves not to be the case.17 Here, we
present a simple model that assumes ψ is discontinuous at the point where firms have identical
prices and show that collusion through symmetric punishments still need not be sustainable; we
also show when it is sustainable.

Consider the following modest modification of a discrete version of the standard Bertrand
price game with homogeneous goods. (By discrete, we mean that we are retaining our assumption
of m units.) Assume that when firms do not charge the same price that all buyers go to the firm with
the lowest price for sure. When instead, all prices are identical, then the probability distribution
on firm demand is symmetric and let y ∈ (0, 1) denote the probability at least two firms sell a
positive amount (that is, no firm sells all m units).

This model is related to that in Tirole (1988) and Bagwell and Wolinsky (2002) in their
specification of discontinuous expected residual demand when firms’ prices are identical. Tirole
(1988) assumes prices and quantities are private information. With homogeneous goods, market
demand is stochastic and takes two possible states: it is positive (and nonincreasing in price) or it
is zero for all prices. The inference problem is that, if a firm has zero sales, it isn’t sure whether
market demand was low (that is, zero) or market demand was positive and its rival cheated.
Collusion is shown to be sustainable if the discount factor is sufficiently high. Whereas Tirole
(1988) and Bagwell and Wolinsky (2002) allow market demand to be stochastic and firm demand
to be deterministic (conditional on market demand), here we fix market demand and allow firm
demand to be stochastic. This distinction proves unimportant as results are qualitatively similar.

Consider a strongly symmetric strategy profile that has all firms price at the collusive price
p in period 1 and do so in period t as long as no firm had 100% of market sales in some past
period. Otherwise, firms go to the static Nash equilibrium price of zero forever.18 Denoting the
(rescaled) collusive payoff to be v, it is defined recursively by

v = (1 − δ)(m/n)p + δyv.

From this, we get

v =
(

1 − δ

1 − δy

)
p(m/n).

For the scheme with price p to be an equilibrium, the following incentive compatibility must
hold:

v ≥ (1 − δ)mp ⇔
(

1 − δ

1 − δy

)
p(m/n) ≥ (1 − δ)mp ⇔ y ≥ n − 1

δn
.

17 We thank Phil Reny for conjecturing that differentiability is unnecessary.
18 It can be verified that, because the stage-game Nash equilibrium produces the minimax payoff and that only

totally skewed market shares are possible when there is a deviation, the ensuing condition is both necessary and sufficient
for collusion.
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Thus, if y ≥ (n − 1)/δn, then any collusive price (up to the maximum price that consumers are
willing to pay) can be sustained by this strategy profile. If y < (n − 1)/δn, then only the static
Nash equilibrium price is sustainable because the strategy profile contains the worst equilibrium
punishment. Hence, regardless of the discount factor, collusion is not sustainable using symmetric
punishments when y < (n − 1)/n.

The key issue here is whether firms can statistically detect deviations in the sense that the
distribution of market shares under deviation and no deviation are different. Under the assumptions
of Theorem 1, the likelihood of skewness in market share is unaffected when a firm marginally
undercuts the collusive price. Thus, no statistical detection is possible. For the example of this
section, this property doesn’t hold, as the probability of a maximally skewed market share is
one when a firm deviates and 1 − y when all firms are compliant. But that isn’t sufficient for
collusion. Though statistical detection follows from y > 0, collusion is sustainable only when
y ≥ (n − 1)/δn. The reason is that the probability of a false positive (that is, going to a punishment
even though no firm deviated) is 1− y and, if it is too high, the continuation payoff from colluding
is too small, which makes it hard to provide incentives to collude. In order for collusion to be
sustainable, the statistical test must be sufficiently precise so that punishment is sufficiently less
likely when a firm colludes than when it cheats.

To see this more clearly, let us add some more structure by supposing that, when firms charge
equal prices, each buyer randomly chooses between the n firms and their decisions are i.i.d. It
follows that

y = 1 −
(

1
n

)m−1

.

Because then y → 1 as m → ∞, collusion can be sustained with i.i.d. buyers as long as there
are sufficiently many of them and δ > (n − 1)/n. The probability of a false positive is (1/n)m−1,
so the statistical test is very precise when there are many buyers. This reduces the likelihood of
wrongly triggering a punishment and thereby enhances the collusive payoff.19

� Elastic market demand. Theorem 1 was proven under the extreme assumption that market
demand is fixed and insensitive to firms’ prices. Robustness is established by showing that very
little collusion can be sustained when market demand is very inelastic.

Assume there is an upper bound on market demand of M units. A stochastic realization is
comprised of total demand and an allocation of that demand, which can be represented as an
element of

� ≡ {(m, q) : m ∈ {0, 1, . . . , M}, q ∈ �(m)},
where m is total sales, q is the vector of firms’ quantities and �(m) is as defined in Section 2,
though now its dependence on m is made explicit. Letting ξ : � × �n → [0, 1], denote the
probability function on (m, q) given prices, the expected continuation payoff is

M∑
m=0

∑
q∈�(m)

ξ (m, q; p)v(m, q),

where the continuation payoff conditions on the most recent period’s outcome, (m, q), and im-
plicitly depends on the preceding history as well. Defining ρ(m; p) as the marginal probability
function on m and ψ(q; p, m) as the conditional probability function on q , then

ξ (m, q; p) = ρ(m; p)ψ(q; p, m).

19 We also have a modified version of the Hotelling duopoly model, which makes similar points to those made
in this subsection—see Harrington and Skrzypacz (2005). It entails a smooth expected demand function, but where the
probability distribution on firm demand has a point of nondifferentiability (though is continuous everywhere). Symmetric
punishments are still not capable of sustaining collusion when the kink is sufficiently small but collusion can be sustained
when the kink is sufficiently large.
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The expected continuation payoff can then be represented as

M∑
m=0

ρ(m; p)
∑

q∈�(m)
ψ(q; p, m)v(m, q).

Assume ρ(·; p) is differentiable in p and is symmetric. Then

∂ρ(m; p, . . . , p)
∂pi

=
∂ρ(m; p, . . . , p)

∂p j
, ∀ i, j, ∀ p.

Finally, assume ψ(q; p, m) satisfies Assumptions 1–3, for all m ∈ {1, . . . , M}.
The maximization problem of firm i is

max
pi

πi (p) + δ

 M∑
m=0

ρ(m; p)
∑

q∈�(m)
ψ(q; p, m)v(m, q)

 ,

where

πi (p) ≡
M∑

m=0
ρ(m; p)

∑
q∈�(m)

ψ(q; p, m)piγi (q)

is the expected static profit of firm i (recall that γi (q) is firm i’s sales according to vector q). The
necessary first-order condition at a strongly symmetric Nash equilibrium is then

∂πi (p, . . . , p)
∂pi

+ δ

 M∑
m=0

(
∂ρ(m; p, . . . , p)

∂pi

) ∑
q∈�(m)

ψ(q; (p, . . . , p), m)v(m, q)


+ δ

 M∑
m=0

ρ(m; p, . . . , p)
∑

q∈�(m)

(
∂ψ(q; (p, . . . , p), m)

∂pi

)
v(m, q)

 = 0. (8)

By the method used in the proof of Theorem 1, one can show

∑
q∈�(m)

(
∂ψ(q; (p, . . . , p), m)

∂pi

)
δv(q, m) = 0 ∀ m,

and, therefore, the third term in (8) is zero. Thus, (8) becomes

∂πi (p, . . . , p)
∂pi

+ δ

 M∑
m=0

(
∂ρ(m; p, . . . , p)

∂pi

) ∑
q∈�(m)

ψ(q; (p, . . . , p), m)v(m, q)

 = 0. (9)

We conclude that a necessary condition to sustain collusion is that the second term in (9) is
nonzero.

First, note that, if ∂ρ(m; p, . . . , p)/∂pi = 0, so that the distribution on market demand is
independent of prices, (9) becomes the condition for a stage game equilibrium. Hence, collusion
cannot be sustained as long as market demand is insensitive to prices, regardless of whether or not
it is stochastic. When ∂ρ(m; p, . . . , p)/∂pi is close to zero, then the set of values for p that satisfy
(9) are, generically, close to the set of stage game symmetric equilibrium prices. We conclude that
the collusive price is close to a stage game equilibrium price when market demand is sufficiently
insensitive to firms’ prices. In that sense, Theorem 1 is robust with respect to market demand
being variable and sensitive to firms’ prices.
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An assumption of highly inelastic market demand is plausible for many of the price-fixing
cartels mentioned, including those that arose in the markets for vitamins, lysine and citric acid.
These products are largely being purchased by other firms as inputs—for example, vitamins and
lysine are mixed with animal feed in the food-processing industry. As they make up a very small
fraction of the unit cost of these purchasers, their demand is likely to be insensitive to price for a
wide range of prices. Of course, the cartel members could set price high enough so as to induce
a nonnegligible fall in market demand, but the size of the price increase required to make that
happen may be of such a magnitude as to create suspicions among buyers that the input suppliers
are colluding. As a result, the cartel might want to avoid such large price increases.20 This may
argue to the assumption that, over the relevant range of prices, market demand is highly inelastic.

Finally, note that, if we define

v(m) ≡
∑

q∈�(m)
ψ(q; p, m)v(m, q),

then (9) can be rewritten as

∂πi (p, . . . , p)
∂pi

+ δ

M∑
m=0

(
∂ρ(m; p, . . . , p)

∂pi

)
v(m) = 0.

v(m) is the expected continuation payoff conditional on the total market size and ignoring the
division of market shares. This suggests that collusion may be supportable by conditioning on
the size of market demand and not on the allocation of that demand across firms. An explo-
ration of that conjecture we leave to future work. However, if v(m) is constant, so firms expect
the same continuation payoff regardless of the realized total market size, then it follows from∑M

m=0(∂ρ(m; p, . . . , p)/∂pi ) = 0 (which holds as the probabilities always sum up to 1) that again
no collusion is sustainable.

5. Collusion with asymmetric punishments
� We now show how collusion can be sustained with asymmetric punishments. In order to
establish that collusion is sustainable against the most devious deviations, we allow a firm to set a
unique price for each customer. Given n price vectors—each comprised of m prices (one for each
buyer)—an outcome (which is generically denoted as r ) assigns a seller to each of the buyers and
is an element of � ≡ {1, 2, . . . , n}m . Define ϕ(r ; p) : � × �n×m → [0, 1] to be the probability
function over outcomes conditional on a price vector for each firm.

In designing a collusive strategy, we retain the focus on market-sharing schemes as have
been used in a number of price-fixing cartels, such as the lysine cartel. If firms are in the collusive
state, then, for each unit that a firm sells, it is to pay z ≥ 0, which is then shared equally among
the remaining members of the cartel. This implies that a firm’s net transfer is increasing in its
sales and its net transfer is positive (negative) when it sells more (less) than m/n units. The cartel
starts in a collusive state and remains in it unless one of the firms fails to make the recommended
transfer. If such a deviation is ever observed, the firms switch to static Nash equilibrium forever.

Given a realized outcome r , let γ
i
(r ) be an m × 1 vector of 0’s and 1’s specifying if a given

customer buys from firm i . Let pi be an m×1 vector of prices set by firm i and 1 be an m×1 vector
of ones. Assuming that future transfers will be honored, in the collusive state, firm i chooses its
price vector to maximize

∑
r∈�

ϕ(r ; p1, . . . , pi , . . . , pn)
[
γ

i
(r )′ · (pi − z1) + (1 − γ

i
(r ))′

(
1

n − 1

)
z1

]
+ δvt+1. (10)

20 For studies that model the effect of the prospect of detection on the cartel price path, see Harrington (2004, 2005)
and Harrington and Chen (2006).
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Note that, as long as all transfers are made, the continuation payoff (net of transfers) is
independent of prices. Collecting the terms, we obtain

∑
r∈�

ϕ(r ; p1, . . . , pi , . . . , pn)
[
γ

i
(r )′ ·

(
pi −

n
n − 1

z1
)]

+
(

m
n − 1

)
z + δvt+1. (11)

Therefore, the prices in such a scheme will be the same as prices in a one-shot game in which
firms have a cost of [n/(n − 1)]z per unit. Assume that the equilibria of such games are well
behaved, in the sense defined in Assumption 4, and that there is an equilibrium that is symmetric
with respect to firms.

Assumption 4. The one-shot game with demand ϕ(·) and cost c per unit has, for all c ≥ 0, a
symmetric Nash equilibrium and there is a lower bound to the equilibrium price vector that is
increasing and unbounded in c.

Let p̂ denote a stage-game symmetric equilibrium when c = 0. Verifying for a particular
game if Assumption 4 is satisfied may be nontrivial because each firm has many ways to deviate
with its price vector and, therefore, the sufficiency of first-order conditions will require careful
investigation. This is relatively straightforward in some special cases, however. For example, if
customer choices are independent—as in the generalization of the Cabral and Riordan (1994)
model that we discussed in Section 2—one can treat the problem as m independent problems and
hence focus on single-customer deviations. Finally, note that the condition of an increasing lower
bound on the equilibrium price vector holds if all equilibrium prices weakly exceed unit cost.

Under Assumption 4 it is straightforward to prove that this collusive scheme can support
arbitrarily high prices and profits if firms are sufficiently patient.

Theorem 2. If Assumption 4 holds, then, for any price vector p > p̂ (component-wise), there
exists δ∗ < 1 such that for all δ ≥ δ∗, there exists a subgame perfect equilibrium in which the
cartel sets a price vector exceeding p in every period.

Proof. First, assume that all future transfers will be paid in equilibrium. Firms then set prices to
maximize (11). At z = 0, this results in the price vector p̂. Now consider an arbitrary price vector,
p > p̂. By the existence of an increasing unbounded lower-bound function, ∃co > 0 such that
the lower bound exceeds p. By choosing z so that z[n/(n − 1)] = co, we have that an equilibrium
price vector exceeds p.

Second, after demand is realized, we must make sure that all firms have an incentive to pay
its net transfer when it is positive. It is sufficient to verify the incentives of a firm that sells to all
customers,

−mz + δvz ≥ δvN ,

where vz is the sum of expected discounted payoffs along the proposed equilibrium path and vN is
analogously defined for the infinitely repeated static Nash equilibrium. As in the collusive state,
all the firms set prices higher than p̂, the difference in expected per-period profits in the collusive
equilibrium and in the static Nash equilibrium is strictly positive regardless of δ. Therefore, as
δ → 1, δ(vp − vN ) increases to infinity. That establishes the existence of δ∗ < 1. Q.E.D.

We finish this section with two remarks. First, note that we have used monetary transfers
after every period. If such transfers increase the probability of detection or are costly (so as to
avoid detection by the antitrust authorities), one can use methods from Fudenberg, Levine, and
Maskin (1994) to show that, for δ sufficiently close to one, similar collusive schemes are incentive
compatible with monetary transfers replaced by transfers of continuation payoffs. Such transfers
usually cause some loss of efficiency after asymmetric histories, but, for δ close to one, this loss
is small.

Second, a class of collusive schemes was described that achieves very high prices and
hence very high profits (unlike with symmetric price wars, in the above equilibrium, transfers
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are balanced among the cartel members so the sum of profits across the firms depends only on
the level of prices). Such high profits should not be taken too literally, of course, as the result
follows from our extreme assumption that market demand is inelastic. While for some products
this may be a reasonable approximation over some range of prices, the assumption becomes
untenable for sufficiently high prices. Instead, we suggest interpreting the result as simply stating
that asymmetric punishments can allow for a substantial degree of collusion.

In sum, collusion can be sustained by a punishment strategy in which firms with above-
average sales compensate those firms with below-average sales. This is sustainable as long as
firms are sufficiently patient and transfers can be made. In practice, transfers can be implemented
by having a firm with excess sales buy output from a firm with insufficient sales at an inflated
price. Several recent price-fixing cartels engaged in side payments of this sort, including the citric
acid cartel of 1991–1995 (Connor, 2001), the graphite electrodes cartel of 1992–1997 (Levenstein,
Suslow, and Oswald, 2004) and the vitamins cartel, in particular vitamins A and E over 1989–1999
(European Commission, 2003).

6. Related literature

� Athey and Bagwell (2001) and Athey, Bagwell, and Sanchirico (2004) consider an infinitely
repeated price game under perfect monitoring of both prices and sales but where each firm’s
cost is subject to i.i.d. shocks and, most important, is private information. They also show that
asymmetric equilibria can achieve higher collusive payoffs than symmetric equilibria, though
for fundamentally different reasons. In their model, sustaining high prices is not a problem and
can be achieved with a sufficiently high discount factor. The problem lies in the inefficiency
of a symmetric equilibrium in that buyers may not be efficiently allocated across sellers. Both
types of problems—imperfect monitoring through sales and the efficient allocation of buyers—are
relevant for real-life cartels and, furthermore, are intertwined. For example, splitting the market
may be an effective method for circumventing the problem of monitoring secret price cuts, but it
can increase the problem of allocating buyers efficiently across the sellers (and hence extracting
higher surplus). We plan to study this trade-off in future research.21

The role of observability of prices has also been recently studied by Bergemann and Välimäki
(2002). In their model, one buyer faces two sellers and all players are long lived and strategic.
They show that, if prices are unobservable, the set of equilibrium payoffs is much smaller than
if they are observable. By reacting strategically to the cartel, the buyer can “divide and conquer”
the sellers. If one of them deviates to a lower price, the buyer has the option of not revealing it
to the other seller and hence effectively coordinating at the same time with both sellers to the
detriment of the cartel. The strategic behavior of buyers is largely neglected in the literature (for
a general mechanism design approach, see Abdulkadiroglu and Chung, 2003) but is potentially
important for cartels. In our model, the buyers are either short lived (so they don’t internalize
the effect their behavior has on future prices) or do not realize they are facing a cartel. However,
the asymmetric equilibrium in Section 5 would seem robust to strategic deviations by the buyer,
as future prices do not depend on the current market shares and incentives are provided directly
through transfers. Such immunity to a buyer’s strategic behavior may be another advantage to
providing incentives via transfers rather than through the threat of a price war. This topic also
deserves further investigation.

Cole and Kocherlakota (2005) explore conditions under which strongly symmetric equilibria
cannot achieve payoffs higher than static Nash equilibrium payoffs. They show that this arises
with strategies having finite history dependence, though infinite-memory equilibria can sustain
higher payoffs. The economics are very different from our article. With Cole and Kocherlakota,
the problem is one of insufficient incentives for the cartel to carry out punishments, while in our
model, the problem lies in a deficiency of monitoring.

21 With many buyers per period, the problem of efficient allocation in a cartel with communication can be solved,
as shown by Pesendorfer (2000).
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Finally, the challenge of achieving efficient detection is a theme in Abreu, Milgrom, and
Pearce (1991) and Sannikov and Skrzypacz (2005a). In these articles, as the frequency of moves
increases, detection of deviations becomes more and more difficult. In fact, Sannikov and Skrzy-
pacz (2005b) present a class of games in which, as the frequency of moves increases, the provision
of incentives by symmetric punishments becomes increasing costly and this results in the set of
strongly symmetric equilibrium payoffs collapsing to the set of static Nash payoffs. This is in
spite of the fact that deviation is, in principle, detectable (unlike in our model).

7. Concluding remarks

� A common perception of collusive schemes is built around the idea of price wars: the cartel
members are recommended to set high prices and if deviation is detected (actual or perceived
through a noisy signal), then the firms punish each other by setting low prices. The actual practice
of many well-documented price-fixing cartels tells a very different story. It is quite common to
employ more complicated schemes involving history-dependent transfers among members. Our
analysis suggests that imperfect monitoring in those markets may be the key reason why they
did so. For a natural class of multiunit demand functions, symmetric price wars are incapable of
sustaining any collusion regardless of how patient firms are. It may then be necessary for cartels
to deploy punishments that discriminate between the firms that sold too much and those that sold
too little. We put forth one punishment scheme that works and entails those who supplied over
quota providing a transfer to those who sold under quota. This is a practice consistent with several
recent price-fixing cartels.

There are a number of directions one can go from here. Though we have shown that collusion
by virtue of symmetric punishments is minimal when market demand is highly inelastic, this
leaves open the question of how effective price wars can be in sustaining collusion when market
demand is responsive to price. Our initial investigation suggests conditioning punishments on
total sales might be effective, though this is only a conjecture. It would be particularly interesting
to characterize optimal equilibria that condition on both total sales and firms’ market shares and
see how that information is used.

This article has explored collusion when firms can only condition on market shares. Though
this is one scheme that has been used in practice, another approach is to allocate customers rather
than market share. In that case, each firm is entitled to sell to a set of customers and violation
of that condition results in a punishment. Hence, the public information is not simply a firm’s
sales but also who bought from them. From a monitoring perspective, it would seem customer
allocation is superior because a firm isn’t even supposed to bid for another firm’s customers, in
which case a sale is a perfect signal of a deviation. This raises the question of why a market-share
allocation scheme is used at all. More broadly, it is an open question as to what determines the
type of allocation mechanism that cartels use.22

Appendix

� Theorem A1 and its proof follow.

Theorem A1. Assuming Assumptions 1–3 and n = 2, the set of strongly symmetric Nash equilibrium prices for the infinite
horizon game coincides with the set of symmetric Nash equilibrium outcomes for the stage game.

Proof. First note that the derivation of (6) in the proof of Theorem 1 only requires strong symmetry. For n = 2, (6) takes
the form

∂φ(b; p, p)
∂p1

+
∂φ(m − b; p, p)

∂p1
= 0, (A1)

where φ is defined at the start of Section 4. If m is even, (A1) implies ∂φ(m/2; p, p)/∂p1 = 0.

22 As mentioned in a previous section, allocating customers can be inefficient if there are firm-specific shocks, for
example, like in Athey and Bagwell (2001).
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Using (A1), (1) takes the following form when n = 2:

(m/2)−1∑
b=0

(
∂φ(b; p, p)

∂p1

)
[v(b) − v(m − b)] +

∂φ(m/2; p, p)
∂p1︸ ︷︷ ︸

0

v
( m

2

)
= 0

when m is even, and takes the form:

(m−1)/2∑
b=0

(
∂φ(b; p, p)

∂p1

)
[v(b) − v(m − b)] = 0

when m is odd. To prove these conditions hold, subtract the first-order condition for firm 2 from the first-order condition
for firm 1 to obtain

m∑
b=0

(
∂φ(b; p, p)

∂p1
− ∂φ(m − b; p, p)

∂p2

)
pb + δ

m∑
b=0

[(
∂φ(b; p, p)

∂p1

)
v(b) −

(
∂φ(m − b; p, p)

∂p2

)
v(m − b)

]

+
m∑

b=0
[φ(b; p, p) − φ(m − b; p, p)]b = 0.

The first summation is zero by (2) and the third summation is zero by Assumption 2 and that the probabilities add up 1.
Using (4) in the second summation, we derive

m∑
b=0

(
∂φ(b; p, p)

∂p1

)
[v(b) − v(m − b)] = 0.

This can be used to complete the proof; for example, if m is odd. Using again (6), it can be rewritten as

(m−1)/2∑
b=0

(
∂φ(b; p, p)

∂p1

)
[v(b) − v(m − b)] = 0,

which establishes the claim. Q.E.D.
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