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Abstract

One of the most useful sensitivity analysis
techniques of decision analysis is the com-
putation of value of information (or clair-
voyance), the difference in value obtained by
changing the decisions by which some of the
uncertainties are observed. In this paper,
some simple but powerful extensions to pre-
vious algorithms are introduced which allow
an efficient value of information calculation
on the rooted cluster tree (or strong junction
tree) used to solve the original decision prob-
lem.

Keywords: value of information, clairvoyance, clus-
ter trees, junction trees, decision analysis, influence
diagrams.

1 Introduction

The analysis of sequential decision making under un-
certainty is closely related to the analysis of probabilis-
tic inference. In fact, much of the research into efficient
methods for probabilistic inference in expert systems
has been motivated by the fundamental normative ar-
guments of decision theory. Previous research has ap-
plied those developments by modifying algorithms for
efficient probabilistic inference on belief networks to
address decision making problems represented by in-
fluence diagrams (Jensen and others 1994; Ndilikilike-
sha 1991; Shachter and Ndilikilikesha 1993; Shachter
and Peot 1992; Shenoy 1992).

One of the most useful sensitivity analysis techniques
of decision analysis is the computation of value of in-
formation (or clairvoyance), the difference in value ob-
tained by changing the decisions by which some of the
uncertainties are observed (Raiffa 1968). In this paper,
some simple but powerful extensions to previous algo-
rithms are introduced which allow an efficient value of
information calculation on the rooted cluster tree (or
strong junction tree) used to solve the original decision
problem.

Dittmer and Jensen(1997) proposed that multiple
value of information calculations could all be per-
formed using the same tree. It is this idea that this
paper builds on.

Section 2 presents a brief introduction of influence di-
agrams and Section 3 reviews the most efficient meth-
ods for solving them. Section 4 develops some new
results which are in applied in Section 5 to efficiently
perform multiple value of information calculations. Fi-
nally, Section 6 provides some suggestions for future
research.

2 Influence Diagrams

Influence diagrams are graphical representations for
decision problems under uncertainty. In this section
the components and notation of influence diagrams are
briefly introduced. The graphical structure of the in-
fluence diagram reveals conditional independence and
the information available at the time decisions must be
taken. This is a cursory introduction and the reader
is referred to the relevant literature for more informa-
tion.

An influence diagram is a directed graph network rep-
resenting a single decision maker’s beliefs and prefer-
ences about a sequence of decisions to be made un-
der uncertainty (Howard and Matheson 1984). The
nodes in the influence diagram represent variables–
uncertainties (drawn as ovals), decisions (drawn as
rectangles), and the criterion values for making deci-
sions (drawn as diamonds). The parents of uncertain-
ties and values condition their distributions, while the
parents of decisions represent those variables that will
be observed before the decision must be made. The
value represents the expected utility of its parents, and
decisions are made to maximize this expected utility.
When there are multiple value nodes, the total utility
is the sum of the utilities for each value. (The results in
this paper could also be applied to products (Shachter
and Peot 1992; Tatman and Shachter 1990).)

Consider the influence diagram shown in Figure 1 from
Dittmer and Jensen(1997). There are four uncertain-
ties, A,B,C , and E, three decisions, D1, D2, and D3,



Figure 1: The example influence diagram from
Dittmer and Jensen(1997).

Figure 2: The influence diagram from Figure 1 with
clairvoyance on B before D1 is chosen.

and a single value, U . The decisions are ordered in
the graph and information available at the time of one
decision is remembered for subsequent decisions, the
no forgetting principle. For example, D1 and C are ob-
served before both D2 and D3, while D2,E, and A are
observed before only D3. None of the variables are ob-
served before D1 is chosen. Not all of the observations
are really needed or requisite for a decision. For exam-
ple, although five of the variables are observed before
D3 is chosen, A is the only requisite observation–once
A has been observed, the other variables provide no
additional information. Similarly, C is the only requi-
site observation for D2. The diagram can be analyzed
to determine the maximal expected utility. If the util-
ity does not represent dollars, we could convert it to
dollars by applying the inverse of the utility function
that maps from dollars to utility.

We can solve a different decision problem without
changing any of the distributions in the uncertainties
and values by changing the informational assumptions.
For example, in Figure 2 B is now observed before
D1 is chosen. The expected utility from this diagram
must be at least as much as from the earlier diagram
because of this extra information, the opportunity to
observe B. The influence diagram makes it explicit
what information is available and when it is available
in the two diagrams. This extra value leads to a differ-
ence in dollar values called the value of information or
value of clairvoyance. Technically, the value of infor-
mation is only approximated by this difference (Raiffa
1968), but we will work with this approximated value.
Without any new assessments, the decision problem
can thus be solved many times, varying the informa-
tional assumptions for one variable at a time. This is
the process this paper seeks to perform efficiently.

Another influence diagram example that will appear
in this paper is shown in Figure 3 (Jensen and oth-
ers 1994). This diagram has four value nodes, whose

Figure 3: The example influence diagram from Jensen
et al(1994).

functions are summed to obtain the expected utility.

The influence diagram has been developed as a practi-
cal representation for a decision problem, and to that
end there are several semantic restrictions, which are
described in detail elsewhere (Howard and Matheson
1984; Shachter 1986). In particular, we cannot ob-
serve the descendant of a decision before making the
decision, since the decision can affect its descendants.
The one exception is when the descendant represents a
constraint and is a deterministic function of the deci-
sion and its requisite observations. But this case could
be modeled as a value node (with certain cases hav-
ing prohibitive value) instead of as an observation and
thus we can exclude it without loss of generality.

3 Rooted Cluster Trees

Efficient algorithms have been developed to solve de-
cision problems represented as influence diagrams.
These algorithms build an auxiliary structure called
a rooted cluster tree or strong junction tree. Previous
work has suggested how value of information calcula-
tions could be performed efficiently on such a tree.

Although the influence diagram can be solved directly
(Shachter 1986), the most efficient procedures work on
related graphical structures (Jensen and others 1994;
Ndilikilikesha 1991; Shachter and Ndilikilikesha 1993;
Shachter and Peot 1992; Shenoy 1992). This paper
considers one of those graphical structures, the rooted
cluster tree, a slight generalization of the strong junc-
tion tree.

A set of variables is called a cluster. A tree of clus-
ters is called a cluster tree (or join tree) if every de-
cision or uncertainty appears somewhere in the tree1,

1If the cluster tree were not being constructed to compute
value of information, it might be worthwhile to exclude vari-
ables determined to be extraneous, but here it is desirable
to keep all of the variables in the model.



Figure 4: Rooted cluster tree for the influence diagram
from Figure 1 from Dittmer and Jensen(1997)

each uncertainty and its parents appear together in at
least one cluster, and any variable that appears in two
different clusters appears in all of the clusters on the
path between them. Corresponding to the notation in
Jensen et al(1994), there are two potential functions
associated with each cluster C , a probability poten-
tial, φC , and a utility potential, ψ C . This paper will
introduce and present a minimal amount of this nota-
tion, instead focusing on other extensions to Jensen et
al(1994). All of the tables in the influence diagram are
incorporated into these potential functions.

The cluster tree is rooted if the arcs between clusters
are directed so that one cluster, the root cluster, has
no children, and all of the other clusters have exactly
one child. It is useful to distinguish between clusters
and variables by their location relative to the root.
Cluster C is inward of another cluster C ′ in a rooted
cluster tree if C is either the root cluster or between
the root cluster and C ′. In that case C ′ is said to
be outward of C. If all clusters containing a variable
A are outward of some cluster containing a variable B
then A is strictly outward of B and B is strictly inward
of A. If all clusters containing A either contain B
or are outward of a cluster containing B, then A is
weakly outward of B and B is weakly inward of A. For
example in Figure 5, k is strictly outward of h, strictly
inward of j, and neither weakly inward nor weakly
outward of g.

There are other restrictions that have been developed
for rooted cluster trees, but for simplicity only the fol-
lowing, new definition will be presented here. A rooted
cluster tree is properly constructed for an influence di-
agram if

1. decision D is strictly inward of decision D′ only if
D must be chosen before D′;

2. decision D is weakly inward of uncertainty A if A
is a descendant of D in the influence diagram;

3. decision D is not strictly inward of uncertainty A
if A will be observed before D is chosen;

4. decision D and its requisite observations are all
contained in some cluster; and

Figure 5: Rooted cluster tree for the influence diagram
from Figure 3 from Jensen et al(1994).

5. any variable A strictly inward of decision D and
also in a cluster with D is observed when D is
chosen.

Rooted cluster trees properly constructed for the in-
fluence diagrams from Section 2 are shown in Figure 4
and Figure 5. The influence diagram’s value can then
be determined by making a single sweep through the
rooted cluster tree toward the root, as summarized
in Algorithm 1. The marginalization operator is de-
scribed in Jensen et al(1994).

Algorithm 1 (Value Calculation) This algorithm
computes the optimal expected value on a properly con-
structed rooted cluster tree.

Visit each cluster C in the tree working inward from
the leaves toward the root. That is, choose any cluster
to visit whose outward neighbors have already been vis-
ited. When visiting a cluster, incorporate the updates
from C’s outward neighbors, and marginalize all vari-
ables that do not appear in C’s inward neighbor in an
order consistent with observation.

At the end, the root cluster computes two scalar up-
dates, φ∅ representing the probability of the evidence
and ψ ∅, where ψ ∅/φ∅ is the expected utility of the op-
timal strategy. For value of information calculations,
this latter quantity can be used directly or it can be
converted to units of dollars (by applying the inverse
utility function).

This algorithm is generalized in Dittmer and Jensen
(1997) to perform multiple value of information calcu-
lations with only one cluster tree. The variable(s) to
be observed earlier are added to inward clusters. For
example, the tree in Figure 6 has uncertainty B added
to the three clusters where it did not appear before.

It is not exactly clear how this expanded cluster tree
should be processed. According to Dittmer and Jensen
(1997), “As mentioned earlier, a control structure is
associated with the (strong) junction tree. This struc-
ture handles the order of marginalization, and there-
fore we can use the expanded junction tree (and the
associated control structure ) in Figure 7c to marginal-



Figure 6: Expanded rooted cluster tree for the influ-
ence diagram from Figure 1. Those clusters changed
from the rooted cluster tree in Figure 4 are shaded.

Figure 7: Finding requisite observations for the influ-
ence diagram from Figure 1.

ize B from any clique of our choice. After B has been
marginalized from a clique, the table space reserved for
B in cliques closer to the strong root is obsolete. Clever
use of the control structures will prevent calculations
to take place in the remaining table expansions, and
the number of table operations in the remaining sub-
tree equals that of an ordinary strong junction tree.”

4 New Results

The definition for a properly constructed rooted clus-
ter tree introduced in Section 3 allows the derivation
of some simple but powerful results that will be ap-
plied to perform value of information calculations in
Section 5. But first it will be helpful to build the best
possible rooted cluster trees for the original influence
diagram.

Figure 8: Finding requisite observations for the influ-
ence diagram from Figure 3.

The first step in building a cluster tree is recognizing
which observations are requisite for the different de-
cisions. Although the BayesBall algorithm (Shachter
1998) is fast (linear time in the size of the graph), it
is conservative in computing requisite observations, as-
suming that the value sets are nested. A less conserva-
tive algorithm can be fashioned by teaming BayesBall
with the reductions in Tatman and Shachter(1990).

Algorithm 2 (Requisite Observations) This al-
gorithm determines the requisite observations for each
decision in an influence diagram as a prelude to proper
construction of a rooted cluster tree. It runs in time
O((number of decisions)(graph size)).

Visit each decision Di in reverse chronological order,
i = m, . . . , 1. Let Vi be the set of value descendants
of D in the current diagram. Run the BayesBall al-
gorithm on Vi given Di and Ii, the variables observed
before Di is chosen, and let Ri be the requisite obser-
vations (not including Di). Replace Di by a chance



Figure 9: Moral graph based on the modified version
of the influence diagram from Figure 1. The value
node has been removed, requisite informational arcs
are drawn as heavy lines, and the moralizing arc is
drawn as dashed line.

Figure 10: Moral graph based on the modified version
of the influence diagram from Figure 3. Value nodes
have been removed, requisite informational arcs are
drawn as heavy lines, and moralizing arcs are drawn
as dashed lines.

node “policy” with Ri as parents and proceed to the
next earlier decision.

This algorithm is applied to the two influence diagrams
from Section 2, as shown in Figure 7 and Figure 8.
In the figures, the value descendants for a particular
decision are highlighted, and the decision and its ob-
servations are shaded. In Figure 7, it can be seen that
the requisite observations are R3 = {A}, R2 = {C},
and R1 = ∅. In Figure 8, the requisite observations
are R4 = {g,D2}, R3 = {f}, R2 = {e}, and R1 = {b}.
Note the different sets of value descendants.

The next step is to generate the moral graph of the
modified diagram. These moral graphs are shown in
Figure 9 and Figure 10. The heavy shaded arcs cor-
respond to requisite observations, the dashed lines are
moralizing arcs (added between parents with a child
in common), and the value nodes have been removed
(after any corresponding moralizing arcs were added).

Rooted cluster tree can now be properly constructed
based on the moral graphs of the modified diagrams.
There is no efficient algorithm to generate such trees,
but the structure of the moral graph guides the process
(Jensen and others 1994). It can be shown, however,

Figure 11: Properly constructed rooted cluster trees.

that the method just presented can always yield at
least some properly constructed rooted cluster trees.

Theorem 1 (Requisite Observations) Al-
gorithm 2 can be applied to an influence diagram to
yield a rooted cluster tree properly constructed for the
diagram.

Proof: It is sufficient to show how one such rooted
cluster tree could be properly constructed for any in-
fluence diagram. At each step of the algorithm, let
Q be the non-value variables relevant to Vi as deter-
mined by the BayesBall algorithm. (If we are building
a rooted cluster tree for potential value of informa-
tion queries also add to Q any descendants of Di that
could be observed. Otherwise, apparently extrane-
ous variables will not appear in the constructed tree.)
Now let Qi be those nodes in Q for the first time,
Qi = Q \ (Qi+1 ∪ . . . ∪ Qm). Finally, let Q0 be any
nodes relevant to R1 that have not been included in
Q1, . . . ,Qm.

If the value sets are nested, that is, V1 ⊇ . . . ⊇ Vm,
then the rooted cluster tree shown in Figure 11a is
properly constructed. Otherwise, Vi+1 6⊇ Vi+2 if and
only if Vi+1 ∩ Vi+2 = ∅. Suppose that Vi+1 ∩ Vi+2 = ∅
but Vi ⊇ (Vi+1 ∪ Vi+2). In that case, then the partial
tree shown in Figure 11b is properly constructed. 2

Of course, the purpose of this exercise is to generate
more efficient rooted cluster trees. Examples of such
for the influence diagrams from Section 2 are shown
in Figure 12 and Figure 13. They are indeed more
efficient than the rooted cluster trees in Figure 4 and
Figure 5, respectively, reducing the size of the cluster
state spaces.

The rest of this section contains the derivation of three
simple but powerful results, based on the definition of
properly constructed rooted cluster tree. First, the in-
wardmost cluster with a particular decision must con-
tain its requisite observations.

Lemma 1 (Current Requisite Observations)
Given a rooted cluster tree properly constructed for



Figure 12: A more efficient rooted cluster tree for the
influence diagram from Figure 1.

Figure 13: A more efficient rooted cluster tree for the
influence diagram from Figure 3.

an influence diagram, all requisite observed variables
for decision D are contained in the inwardmost clus-
ter containing D. Furthermore, any variables in both
that cluster and the next inward cluster are observed
when D is chosen.

Proof: By proper construction, any variable observed
before D is chosen must be weakly inward of D and any
requisite observation must be contained in a cluster
with D. On the other hand, if A is not observed before
D is chosen and strictly inward of D then it must not
be contained in that cluster. 2

Next, when an uncertainty becomes observable before
decision D is chosen, it will not become requisite unless
it is weakly outward to D.

Theorem 2 (Newly Requisite Observations)
Given a rooted cluster tree properly constructed for an
influence diagram, if uncertainty A is not weakly out-
ward of decision D nor in any clusters with D then if
A were to be observed before D were chosen it would

not be requisite for D.

Proof: By proper construction and Lemma 1, the util-
ity from D is weakly outward from D and all variables
in common between the inwardmost cluster containing
D and the next inward cluster are observed when D is
chosen. Therefore, the utility is separated in the clus-
ter tree from A by observations for D, and the utility
from D is conditionally independent of A given the ob-
servations for D (Jensen and others 1990a; Lauritzen
and others 1990). 2

Finally, when an uncertainty stops being observable
before decision D is chosen, all of the observations now
requisite for D are weakly inward.

Proposition 1 (Previously Requisite Observa-
tions) Given a rooted cluster tree properly constructed
for an influence diagram where uncertainty A is ob-
served before decision D is chosen, then if A were
not to be observed before D were chosen, all variables
which would be requisite observations for D are weakly
inward of D.

Proof: When properly constructed, all variables ob-
served before decision D is chosen (not just the requi-
site ones) are weakly inward of decision D. 2

5 Computing the Value of
Information

The new results from Section 4 can now be applied
to perform value of information calculations on the
rooted cluster tree for the original influence diagram.
First a method is presented for computing the value
of a decision problem when an uncertainty is already
observed. This is then generalized to computing the
value when there is an earlier observation, and then
when there is a later observation.

Suppose that an uncertainty has already been ob-
served, such as a in the influence diagram shown in
Figure 3. By Theorem 2 it can be requisite only for
decisions weakly inward in the tree shown in Figure 13.
By exploiting the probabilistic heritage of the decision
algorithm (Jensen and others 1990b; Lauritzen and
Spiegelhalter 1988), the rooted cluster tree is ideally
suited to solve this problem. First, the evidence is
stored in the probability potential in a cluster contain-
ing a, say the inwardmost cluster containing a. Now
Algorithm 1 could be run incorporating this evidence.

Suppose, however, that Algorithm 1 had already been
run before a was observed. No problem–only the clus-
ters between the inwardmost cluster containing a and
the root need to be visited. All of the other calcu-
lations are unchanged! We could perform this same
operation even if a were not observed precisely, pro-
vided we had some imperfect observation about a rep-
resented by a likelihood function.

Now consider the case in which an uncertainty will be



Figure 14: Effective rooted cluster trees for value of
information calculations on the influence diagram from
Figure 1 when B is observed before decisions are made.
Those clusters changed from the rooted cluster tree in
Figure 12 are shaded.

observed earlier, but has not yet been observed, such
as B in Figure 2. Again it is possible to exploit the
well-known properties of cluster trees. To compute the
value of the decision problem in which B will be ob-
served earlier, cycle through all of the possible values
of B, performing the calculations each time as though
B were observed. The potentials computed can then
be summed, thereby incorporating the probability dis-
tribution over the different possible values of B. If this
summing occurs immediately after the optimal policy
for Di is computed, then this is the value of observing
B before Di is chosen.

One can think of this as “effectively” adding B to the
clusters inward to the inwardmost cluster containing
Di, as shown in Figure 14. In Figure 14a, this is used
to compute the value of observing B before D1, and
in Figure 14b before D2. Figure 14c is not different
from Figure 12 because B would not be requisite if
it were observed before D3. This can be recognized
immediately from the rooted cluster tree in Figure 12
in which B is inward of D3. Note that unlike Figure 4,
in which the tree has been “expanded,” this approach
sums over cases, doing the same work, but there is no
need to store the larger tables, and it uses the original
rooted cluster tree!

Now consider the influence diagram shown in Figure 3.
Observing a earlier yields the effective rooted cluster
tree shown in Figure 15a. Uncertainty a would be
requisite for D1 but not for any of the later decisions.
Suppose instead that j were observed earlier. It cannot
be observed before D1 since it is a descendant of D1.
It is not requisite for D2 or D4 since it is not inward
of either, but it would be requisite for D3 as shown in
Figure 15b.

Now suppose that a variable is observed later rather
than earlier. Consider C in Figure 1 and suppose that
it is no longer observed before D2 is chosen. From
Proposition 1, the observations now requisite for D2

are inward, so the solution is to run Algorithm 2 to

Figure 15: Some effective rooted cluster trees for value
of information calculations on the influence diagram
from Figure 3.

Figure 16: Effective rooted cluster trees for value of in-
formation calculations on the influence diagram from
Figure 1 when the observation of either C or E is de-
layed.

figure how inward D2 must effectively move up as in
Figure 16a. Only now maximize over different cases
for D2 instead of summing. Similarly, if A were not
observed for D3, D3 can be effectively moved inward
as in Figure 16b. Finally, if E were not observed for
D3 there is no change, since E is not requisite for D3.

Finally, a similar process can be done for the diagram
in Figure 3. Figure 17a shows the effective rooted clus-
ter tree when f is no longer observed before D3 and
Figure 17b shows the effective tree when e is no longer
observed before D2.

6 Conclusions and Future Research

This paper has developed improved value of informa-
tion calculations over previous work in two respects.
First, it improves the rooted cluster trees used to solve



Figure 17: Some effective rooted cluster trees for value
of information calculations on the influence diagram
from Figure 3.

for the value of a decision problem. Second, it devel-
ops methods for reusing the original tree in order to
perform multiple value of information calculations.

There are several opportunities for further research.
When a particular variable is observed at multiple ear-
lier decisions it should be possible to reuse some of the
calculations. Also, this approach exploits the special
properties of changing the time when a single uncer-
tainty becomes observed. It would be useful if the
method could be generalized to solve the decision prob-
lem with any set of informational assumptions from
the original rooted cluster tree. If that could be done
efficiently, then the original decision problem could be
solved from the most convenient cluster tree.
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