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Optimization of deep neural networks is still 
relatively poorly understood. Despite the high 
dimension of the weight space loss landscape, 
the optimization behavior shows many 
surprisingly simple features.

Surprising observations
1) No significant obstacles along the way. 
[1] show that there are no significant obstacles 
along a path from initialization to an optimum.
→ long directions

2) Solutions everywhere and dense. 
[2] and [3] show that constraining optimization 
to random, low-dimensional sections of the 
weight space is sufficient for good optimization.
→ solution manifold is high-dimensional

3) Optima are connected by tunnels.
[4] and [5] show that independently optimized 
optima are connected by low-loss tunnels. 
Those are virtually impossible to find at 
random.
→  the solution manifold is sponge-like

Our contribution
1) Integrating these observations into a unified 
phenomenological model of the neural 
network loss landscape

2) Constructing the model explicitly in 
TensorFlow and replicating all experiments on 
it.

3) Extending the notion of a tunnel between 2 
optima to m-tunnels between m optima.

4) Explicit connection to the intrinsic 
dimension of the loss landscape.

5) We investigate consequences for modern 
ensembling schemes.

The low-loss manifold of the D-dimensional weight space is made of high-
dimensional n-wedges, where n is the number of their long directions and 
D  n. The number of their short directions ≅ s = D – n. 

When observed along random directions, the n-wedges appear like radial 
tunnels due to the high dimension of the space. In fact, their true nature is 
extremely difficult to show on any random landscape sections.

We generalize the notion of a low-loss tunnel between 2 optima to an m-tunnel 
between m optima at once. E.g. 3-tunnel connects 3 optima by a deformed 
sheet.

Our landscape model

Tunnels and generalized m-tunnels

Constructing m-tunnels and verifying the increasing number 
of short directions with m.

Experiments
The effect of hyperparameters  on the radial tunnel width.

The effect of the landscape on ensembling. Stochastic Weight 
Ensembling (SWA) works well only if solutions do not change 
n-wedges.

Conclusion
We built a phenomenological model of the low-loss manifold of the 
neural network loss landscape. We integrate previously observed 
phenomena of 1) no significant obstacles along optimization 
trajectory, 2) dense and distributed nature of the solution manifold, 
and 3) the connectedness of independent optima. Based on our 
model, we make further predictions and verify them in real networks.
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