Introduction to Topological Quantum Field Theory

Shintaro Fushida-Hardy

Outline for section 1

Physics: observe some crucial properties of Feynman's path integrals.

- 2 Category theory: develop a categorical frame work with the desired properties of path integrals.
- 3 Very low dimensional TQFT: introduce the definition, and study 1 and 2 dimensional TQFTs.
- Slightly low dimensional TQFT: explore some applications of TQFT.

A path integral from φ_0 to φ_1 is

$$\mathcal{A}(\varphi_0, t_0; \varphi_1, t_1) = \int_{\Phi|_{t_i} = \varphi_i} D[\Phi] e^{iS[\Phi]}.$$

- φ_0 and φ_1 represent *states* in a Hilbert space \mathcal{H} .
- A is a *propagator*, gives the likelihood of φ_0 evolving to φ_1 .
- The integral is taken over all field configurations with boundary data φ_i at t_i.
- $D[\Phi]$ is some measure. S is an *action*.

• There is a correspondence

path integral formalism <----> operator formalism

• Path integrals don't make sense!

Path integral properties i, and ii

- i. At time t_0 , we obtain a time-constant slice V_0 . We expect a corresponding Hilbert space $\mathcal{H}_{V_0} = Z(V_0)$.
- ii. A cobordism (M, V_0, V_1) between V_0 and V_1 should correspond to the path integral

$$Z(M)(-\otimes -)=\int_{(\Phi|_{t_0},\Phi|_{t_1})=(-,-)}D[\Phi]e^{iS[\Phi]}.$$

More suggestively, we should obtain a *propagator* $Z(M) : \mathcal{H}_{V_0} \otimes (\mathcal{H}_{V_1})^* \to \mathbb{C}$. Equivalently,

 $Z(M): \mathcal{H}_{V_0} \to \mathcal{H}_{V_1}.$

iii. If V_0 and V'_0 are disjoint, then

$$\mathcal{H}_{V_0\sqcup V_0'}=\mathcal{H}_{V_0}\otimes \mathcal{H}_{V_0'}.$$

iv. A cylindrical cobordism $M = V_0 \times [t_0, t_1]$ corresponds to the propagator $Z(M) : \mathcal{H}_{V_0} \to \mathcal{H}_{V_0}$.

For φ_0 normalised we expect

$$A(\varphi_0,\varphi_0)\sim 1.$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Therefore $Z(M) : \mathcal{H}_{V_0} \to \mathcal{H}_{V_0}$ should be the identity.

v. (Sewing law.) For $t_0 < t' < t_1$ we expect

$$\int_{\Phi|_{t_i}=\varphi_i} D[\varphi] e^{iS[\varphi]} = \int_{\varphi' \text{ at } t'} D[\varphi'] \bigg(\int_{\Phi|_{t_i}=\varphi_i, \Phi|_{t'}=\varphi'} D[\Phi] e^{iS[\Phi]} \bigg).$$

This corresponds to

$$Z(M)=Z(M_1)Z(M_0)$$

・ 同 ト ・ ヨ ト ・

where *M* is a cobordism from V_0 to V_1 , with $M = M_0 M_1$.

- Physics: observe some crucial properties of Feynman's path integrals.
- Category theory: develop a categorical frame work with the desired properties of path integrals.
- 3 Very low dimensional TQFT: introduce the definition, and study 1 and 2 dimensional TQFTs.
- Slightly low dimensional TQFT: explore some applications of TQFT.

A braided monoidal category is a category C equipped with a "tensor product". More precisely, C is equipped with a functor $\otimes : C \times C \to C$ which

- has a unit: $1 \in C$ such that $x \otimes 1 \cong 1 \otimes x \cong x$,
- is associative: $x \otimes (y \otimes z) \cong (x \otimes y) \otimes z$,
- and has a *braiding* $B_{x,y} : x \otimes y \xrightarrow{\sim} y \otimes x$.

There are additional "coherence conditions" for the natural isomorphisms (requiring that certain diagrams commute).

A braided monoidal category is called a *symmetric monoidal category* if the braiding is involutive:

$$B_{x,y} \circ B_{y,x} = \mathsf{id}_{x \otimes y}$$
.

A braided monoidal category is called a *symmetric monoidal category* if the braiding is involutive:

$$B_{x,y} \circ B_{y,x} = \mathrm{id}_{x\otimes y}$$
.

Example

Vect_k is a symmetric monoidal category, with the product given by the usual tensor product \otimes_k .

Example

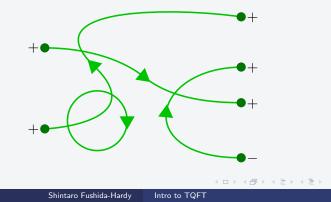
The category n**Cob** of oriented *n*-dimensional cobordisms is a symmetric monoidal category. The product of two closed (n-1)-manifolds is given by their *disjoint union*.

A closer look at 1**Cob**

Objects of 1**Cob** are oriented 0-manifolds, i.e. finite disjoint unions of signed points:

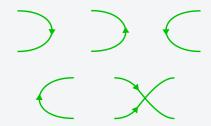
$$\varnothing$$
, +, + \sqcup - \sqcup -, + ^{n} \sqcup - ^{m} .

The morphisms are (oriented) 1-manifolds with these points as boundaries. For example,



A closer look at 1**Cob**

Generators of $1 \ensuremath{\textbf{Cob}}$:



Relations in 1**Cob**:



Э

A symmetric monoidal functor is a functor $F : C \to D$ between symmetric monoidal categories which preserves the product and the braiding.

More precisely, the following diagram commutes:

$$F(x \otimes y) \longrightarrow F(y \otimes x)$$

$$\downarrow \qquad \qquad \qquad \downarrow$$

$$F(x) \otimes F(y) \longrightarrow F(y) \otimes F(x)$$

In addition, F must respect the unit and associativity.

To determine $Z : 1\mathbf{Cob} \to \mathbf{Vect}_k$, the following data suffices:

- $Z(+) = V \in \mathbf{Vect}_k$.
- $Z(-) = W \in \mathbf{Vect}_k$.
- $Z(\varphi)$ for each generator φ .

(4 同) 4 ヨ) 4 ヨ)

To determine $Z : 1\mathbf{Cob} \to \mathbf{Vect}_k$, the following data suffices:

- $Z(+) = V \in \mathbf{Vect}_k$.
- $Z(-) = W \in \mathbf{Vect}_k$.
- $Z(\varphi)$ for each generator φ .
- 1. Given Z(+), we necessarily have $Z(-) = Z(+)^*$.
- 2. Moreover, we necessarily have

$$Z \bigoplus : V \otimes V^* \to k, \quad v \otimes \varphi \mapsto \varphi(v)$$

$$Z \bigoplus : V^* \otimes V \to k, \quad \varphi \otimes v \mapsto \varphi(v)$$

$$Z \bigoplus : k \to V^* \otimes V, \quad \lambda \mapsto \lambda \sum e_i^* \otimes e_i$$

$$Z \bigoplus : k \to V \otimes V^*, \quad \lambda \mapsto \lambda \sum e_i \otimes e_i^*.$$

3. Since *Z* is *symmetric*:

$$Z\left(\underbrace{} V \otimes V \to V \otimes V, \quad (v,w) \mapsto (w,v). \right.$$

Result:

Every symmetric monoidal functor $Z : 1\mathbf{Cob} \to \mathbf{Vect}_k$ is completely determined by Z(+).

< (17) > < (17) > <

3. Since *Z* is *symmetric*:

$$Z\left(\underbrace{} V \otimes V \to V \otimes V, \quad (v,w) \mapsto (w,v). \right.$$

Result:

Every symmetric monoidal functor Z : 1**Cob** \rightarrow **Vect**_k is completely determined by Z(+).

$$Z\left(\bigcirc\right) = Z\left(\bigcirc\right) \circ Z\left(\bigcirc\right)$$
$$= (\varphi \otimes v \mapsto \varphi(v)) \circ (\lambda \mapsto \lambda \sum e_i \otimes e_i^*)$$
$$= \lambda \mapsto \lambda \sum 1$$
$$= \lambda \mapsto (\dim V)\lambda.$$

(1) マント (1) マント

Outline for section 3

- Physics: observe some crucial properties of Feynman's path integrals.
- 2 Category theory: develop a categorical frame work with the desired properties of path integrals.
- Very low dimensional TQFT: introduce the definition, and study 1 and 2 dimensional TQFTs.
- Slightly low dimensional TQFT: explore some applications of TQFT.

An *n*-dimensional *topological quantum field theory* is a symmetric monoidal functor

 $Z: n\mathbf{Cob} \to \mathbf{Vect}_k,$

for some fixed $n \in \mathbb{N}$ and field k.

Theorem

Topological quantum field theories $1\mathbf{Cob} \rightarrow \mathbf{Vect}_k$ are in bijective correspondence with finite dimensional vector spaces over k. The correspondence is given by

$$Z \mapsto Z(+).$$

Why is the definition good?

- i. The functor Z sends each time slice to a space of states; i.e. a vector space.
- ii. Z sends a cobordism (M, V_0, V_1) to a linear map $Z(M) : \mathcal{H}_{V_0} \to \mathcal{H}_{V_1}$. (This is the *propagator*.)
- iii. Since Z is a symmetric monoidal functor, it indeed sends $Z(V \sqcup V') = Z(V) \otimes Z(V').$
- iv. By functoriality, Z(M) = id whenever M is a cylinder (trivial cobordism).
- v. By functoriality, $Z(M_0M_1) = Z(M_1) \circ Z(M_0)$, verifying the sewing law.

▲ 同 ▶ ▲ 国 ▶ ▲

Classification of 2 dimensional TQFTs

Theorem

There is an equivalence of groupoids

 ${TQFTs \ 2Cob \rightarrow Vect_k} \longleftrightarrow comFrob_k$

Shintaro Fushida-Hardy Intro to TQFT

イロト イポト イヨト イヨト

Classification of 2 dimensional TQFTs

Theorem

There is an equivalence of groupoids

```
\{TQFTs \ 2\mathbf{Cob} \rightarrow \mathbf{Vect}_k\} \longleftrightarrow \mathbf{comFrob}_k
```

Definition

A *Frobenius algebra* is an algebra A over a field equipped with a non-degenerate bilinear form

$$\sigma: A \times A \rightarrow k, \quad \sigma(ab, c) = \sigma(a, bc).$$

- Mat_{$n \times n$} equipped with $\sigma(A, B) = tr(AB)$.
- k[G] equipped with $\sigma(a, b) = \text{coefficient of } e \text{ in } ab$.

Frobenius algebras: categorical edition

Definition

A Frobenius algebra over k is a vector space A with morphisms

$$\mu: A \otimes A o A, \, \eta: k o A; \quad \delta: A o A \otimes A, \, arepsilon: A o k,$$

such that (A, μ, η) is a monoid, (A, δ, ε) is a comonoid, and

$$\delta \circ \mu = (\mathsf{id}_A \otimes \mu) \circ (\delta \otimes \mathsf{id}_A) = (\mu \otimes \mathsf{id}_A) \circ (\mathsf{id}_A \otimes \delta).$$

・ 同 ト ・ ヨ ト ・ ヨ ト

A Frobenius algebra over k is a vector space A with morphisms

$$\mu: A \otimes A o A, \, \eta: k o A; \quad \delta: A o A \otimes A, \, arepsilon: A o k,$$

such that (A, μ, η) is a monoid, (A, δ, ε) is a comonoid, and

$$\delta \circ \mu = (\mathsf{id}_A \otimes \mu) \circ (\delta \otimes \mathsf{id}_A) = (\mu \otimes \mathsf{id}_A) \circ (\mathsf{id}_A \otimes \delta).$$

Definition

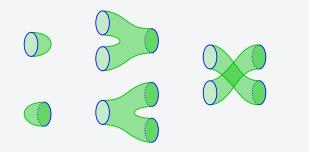
A morphism of Frobenius algebras is a k-linear map preserving both the monoid and comonoid structures.

$comFrob_k \subset Frob_k \subset Vect_k$

・ 「 ト ・ ヨ ト ・ ヨ ト

The structure of 2**Cob**

Generators:



Some relations:

Э

Э

<ロト < 同ト < 三ト <

TQFTs 2**Cob** \rightarrow **Vect**_k

М	Z(M)	Interpretation
	$\eta: k o A$	unit
8	$\mu: A \otimes A \to A$	multiplication
	$\varepsilon: A \to k$	counit
	$\delta: A o A \otimes A$	comultiplication

<ロト < 部ト < 注ト < 注ト = 注

Is it really a Frobenius algebra?

E

イロト イヨト イヨト イヨト

Is it really a Frobenius algebra?

$$id_{A} = Z \left(() \right) = Z \left(() \right)$$
$$= Z \left(() \right) \circ Z \left(() \right)$$
$$= \mu \circ (\eta \otimes id_{A}).$$
$$\delta = Z \left(() \right) = Z \left(() \right) = \beta \circ \delta.$$

Shintaro Fushida-Hardy

Intro to TQFT

Outline for section 4

- Physics: observe some crucial properties of Feynman's path integrals.
- 2 Category theory: develop a categorical frame work with the desired properties of path integrals.
- 3 Very low dimensional TQFT: introduce the definition, and study 1 and 2 dimensional TQFTs.
- Slightly low dimensional TQFT: explore some applications of TQFT.

TQFTs $n\mathbf{Cob} \rightarrow \mathbf{Vect}_k$ are a starting point for other "functorial QFTs".

Additional structure on M	Corresponding FQFT
Conformal	Conformal field theory
pseudo-Riemannian	Relativistic QFT
Submanifolds	Defect TQFT
Spin	Spin TQFT
Framing	Framed TQFT

▲ 同 ▶ → 目 ▶

TQFTs $n\mathbf{Cob} \rightarrow \mathbf{Vect}_k$ are a starting point for other "functorial QFTs".

Additional structure on M	Corresponding FQFT
Conformal	Conformal field theory
pseudo-Riemannian	Relativistic QFT
Submanifolds	Defect TQFT
Spin	Spin TQFT
Framing	Framed TQFT

- 3d TQFT: Chern-Simons theory
- 4d TQFT: Topological Yang-Mills theory

Chern-Simons theory

- Schwarz-type TQFT.
- Action:

$$S[A] = rac{k}{4\pi} \int_M \operatorname{tr}(A \wedge dA + rac{2}{3}A \wedge A \wedge A).$$

• *M* is a 3-manifold, with a principal *G*-bundle $P \rightarrow M$. (*G* is called the *gauge group*.)

▲ 同 ▶ ▲ 国 ▶ ▲

• A is a connection 1-form; $A \in \Omega^1(M, \mathfrak{g})$.

Chern-Simons theory

- Schwarz-type TQFT.
- Action:

$$S[A] = rac{k}{4\pi} \int_M \operatorname{tr}(A \wedge dA + rac{2}{3}A \wedge A \wedge A).$$

- *M* is a 3-manifold, with a principal *G*-bundle $P \rightarrow M$. (*G* is called the *gauge group*.)
- A is a connection 1-form; $A \in \Omega^1(M, \mathfrak{g})$.

For G abelian, Chern-Simons theories have been formalised as functorial TQFTs (Freed, Hopkins, Lurie, Teleman).

Chern-Simons theory to knot theory

Path integral for $L \subset M$:

$$\int_{\Omega^1(\mathcal{M},\mathfrak{g})} e^{iS[\mathcal{A}]} \prod \chi_{L_i}(\mathcal{A}) \, d\mathcal{A}.$$

イロト イポト イヨト イヨト

Path integral for $L \subset M$:

$$\int_{\Omega^1(M,\mathfrak{g})} e^{iS[A]} \prod \chi_{L_i}(A) \, dA.$$

• G = U(2), $M = \mathbb{S}^3 \rightsquigarrow$ Jones polynomial of L.

- G = U(n), $M = \mathbb{S}^3 \rightsquigarrow \text{HOMFLY polynomial of } L$.
- G = SO(n), $M = \mathbb{S}^3 \rightsquigarrow$ Kauffman polynomial of L.

"A TQFT is a QFT that computes topological invariants"