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These are expository notes on the slice Bennequin inequality, which we will prove using
Khovanov homology. In the first section, the contact-geometric background is introduced.
In particular, we introduce Legendrian and transverse knots, and their classical invariants.
We then state the classical Bennequin inequality. The remainder of the notes does not rely
on any definitions introduced in the first section, which is a bit like an historical background
section.

In the second section, the relevant parts of Khovanov homology are introduced. In
particular, we define the s invariant and describe some of its important properties. This
section largely follows Rasmussen’s pioneering paper on the s-invariant.

Finally in the third section, we use the s invariant to prove the slice Bennequin inequality
which an improvement of the Bennequin inequality to slice genus. We look at at least one
application.
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1 The classical Bennequin inequality

Traditionally knots are studied as purely topological objects - smoothly embedded circles
in S3. However, in contact geometry, we can consider knots that are tangent or transverse
to the contact structure to better understand the space.

In this section we introduce the basic concepts required in the study of knots in contact
manifolds. This culminates in the statement of the classical Bennequin inequality.

We always assume our manifolds are oriented, unless otherwise stated.

Definition 1.1. Let (M, ξ) be a contact 3-manifold. That is, ξ is a non-degenerate plane
field in M , or equivalently ξ is the kernel of a 1-form α with α∧ dα non-vanishing. A knot
K ⊂ M is said to be Legendrian (respectively, transverse) if it is tangent (respectively,
transverse) to ξ.

In usual topology we consider knots up to isotopy, where isotopy really means “a
homotopy whose image is a knot for all time”. In contact geometry, we consider Legendrian
(transverse) knots up to Legendrian (transverse) isotopy, which means we consider them
up to a homotopy whose image is a Legendrian (transverse) knot for all time.

Legendrian knots are more rigid than transverse knots, since given any point in M ,
there is only a plane of possible directions for a Legendrian knot passing through the
point, but there are many more possibilities for a transverse knot. This is reflected by the
fact that Legendrian knots have particularly nice knot diagrams.

Proposition 1.2. Let (R3, ξ) be the standard contact structure on R3. That is, ξ =
ker(dz + xdy). Let L be a Legendrian knot in (R3, ξ). Then the projection π(L) onto the
(y, z)-plane is a knot diagram satisfying the following properties:

� At any crossing, the arc with the greater gradient is the underpass.

� There are cusps instead of vertical tangencies.

This is called the front projection.

In fact, if L is Legendrian, then the x-coordinate of any point (x, y, z) on K satisfies
x = −dz/dy. Therefore the embedding of K can be recovered from the front projection.
We also frequently consider the Lagrangian projection, which is the projection onto the
(x, y)-plane.

1



Remark. Whenever the projection onto a knot diagram isn’t clear, we use π to denote
the front projection and Π to denote the Lagrangian projection.

How common are Legendrian knots? Pretty common! Any topological knot in R3 can
be C0 approximated by a Legendrian knot, by coiling around the knot arbitrarily closely
with the appropriate gradient. There is also a canonical way to obtain transverse knots
from Legendrian knots:

Definition 1.3. Let L be a Legendrian knot. Let ι : S1 × [−ε, ε] ↪→ M be a transverse
embedding of the annulus so that ι(S1 × {0}) = L. Then ι(S1 × {ε}) and ι(S1 × {−ε})
are both transverse knots, which we denote by T±(L). (It will later become clear how we
differentiate between T+(L) and T−(L). Note that there is no convention in the literature,
although we will choose one.)

We now define the classical invariants of Legendrian and transverse knots. For Legen-
drian knots, these are the knot type (simply the isotopy class of the knot in the topological
sense), the rotation number and Thurston-Bennequin invariant. For transverse knots, they
are the knot type and self linking number. It turns out that in some cases, the classical
invariants determine the knot:

Theorem 1.4 (Eliashberg-Fraser). Two Legendrian unknots in R3 are Legendrian isotopic
if and only if their classical invariants agree.

On the other hand, it is not true in general that classical invariants suffice.

Theorem 1.5 (Chekanov). There exist Legendrian knots with the same classical invariants
that are not Legendrian isotopic.

The proof of Chekanov’s theorem was to construct a new Floer theoretic invariant for
Legendrian knots using the Lagrangian projection. Chekanov then exhibits two Legendrian
knots of knot-type 52 which differ in this invariant. The construction is clearly explained
in Chekanov’s original paper.

So what are the classical invariants? In R3, they are easily defined using front projec-
tions.

Definition 1.6. Let L ⊂ R3 be Legendrian, and T ⊂ R3 transverse. The classical invari-
ants are defined as follows:

� The rotation number r(L) of L is given by

r(L) =
1

2
(cd(π(L))− cu(π(L)))

where cd, cu are the number of downward oriented cusps and upward oriented cusps
respectively, of the front projection π(L).
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� The Thurston-Bennequin number tb(L) of L is given by

tb(L) = w(π(L))− 1

2
c(π(L)) = w(Π(L)),

where w is the writhe, and c is the total number of cusps.

� The self linking number sl(T ) is given by

sl(T ) = w(π(T )).

These definitions only make sense because of the canonical projections that come with
the standard structure on R3. We can alternatively give definitions that work in any contact
3-manifold.

Definition 1.7. Let L, T ⊂ M be null-homologous Legendrian and transverse knots re-
spectively. The classical invariants are defined as follows:

� Let v be a vector field along L, tangent to L and inducing the orientation of L.
Next let Σ be a Seifert surface of L. (This requires an implicit assumption that L
is null-homologous.) The restriction ξ|Σ is a trivial 2-plane bundle, which induces a
trivialisation ξ|L ∼= L×R2. But now the vector field v determines a vector in R2 for
each point in L, and has a winding number as we traverse ξ|L. This winding number
is the rotation number of L.

� Next we define the Thurston-Bennequin invariant. Let L have Seifert surface Σ. Let
u be a vector field along L, but this time transverse to ξ. Let L′ be a push-off of L
in the direction of u. Then tb(L) is defined to be [Σ] · [L′] = lk(L,L′).

� Finally we define the self linking number. Let Σ be a Seifert surface of T , and w a
non-vanishing vector field along T which lies in ξ|T . Let T ′ be a push-off of T in the
direction of w. Then sl(T ) is defined to be [Σ] · [T ′] = lk(T, T ′).

Earlier we described how one could obtain two canonical transverse knots from a given
Legendrian knot. These turn out to behave very nicely with respect to classical invariants:
specifically,

sl(T±(L)) = tb(L)± r(L).

(We mentioned that there is no convention for T± - but one of the annulus boundaries
satisfies sl = tb+ r while the other sl = tb− r, so we use the convention which makes these
signs agree.)

It can be difficult to transfer results back and forth between “topology without geome-
try” and “contact geometry”, but this is addressed by a correspondence between transverse
links and topological braids.
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Theorem 1.8 (Bennequin). Any braid can be closed in a natural way to produce a trans-
verse link in R3. Conversely, any transverse link is transversely isotopic to a closed braid.

Proof idea. We use the contact structure ker(dz + xdy − ydx) in R3, which in cylindrical
coordinates is given by ker(dz + r2dθ). Any braid can be embedded away from the z-axis,
and then closed (by adding arcs) to form a “ring” around the z-axis. By moving the strands
arbitrarily close together, sufficiently C1-close to the circle in the (x, y)-plane of R3, it is
clearly transverse. Note that our contact structure is contactomorphic to the standard
structure introduced earlier.

For the converse, we need to specify exactly what is meant by a closed braid. We mean
a link that does not intersect the z-axis, and such that θ increases monotonically as we
follow the orientation of the link. Therefore the theorem asserts that we can transversely
isotope transverse links to be of this form.

In the original theorem, there’s a correspondence but it isn’t entirely clear what we
need to mod out by if we wish for the correspondence to be bijective. This was resolved in
2002.

Theorem 1.9 (Orevkov-Shevchishin, Wrinkle). Two braids represent transeversely iso-
topic links if and only if the braids are related by conjugation and positive stabilisation/desta-
bilisation.

By expressing braids algebraically, it is clear what conjugation means. Stabilisation on
the other hand, corresponds to adding an extra strand together with a braid group genera-
tor involving that strand. Choosing the positively signed strand is a positive stabilisation.
Similarly, destabilisation is the removal of a strand by removing a single positive crossing.
In summary, we have a bijective correspondence

{braids modulo positive braid moves} ↔ {transverse links modulo transverse isotopy}.

In fact, our invariants behave very well here!

Definition 1.10. Let β be a braid. We define n(β) to be the number of strands in β, and
w(β) to be the writhe of β. (These are clearly braid invariants.) However, they are not
invariants of braids modulo positive braid moves. On the other hand, it is easy to see that
w(β)− n(β) is an invariant under positive braid moves.

Proposition 1.11. Let T be a transverse knot, transversely isotopic to the closure of a
braid β. Then

sl(T ) = w(β)− n(β).

We’ve now established a strong relationship between the theory of braids and that
of transverse knots and links. Bennequin used this in his pioneering paper to prove the
Bennequin inequality.
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Notice that the write of a braid β is also the writhe of the link obtained as its closure.
We can also define the number of strands in a closed braid (for example, half the number of
intersection points of the closed braid with the (y, z)-plane). Therefore for any braid β, we
can consider w−n of its closure. Since the closure of a braid is an oriented link in R3, there
exist Seifert surfaces of the closure. The genus g(β) of a braid β is the minimum genus of
a Seifert surface of the closure of β. Similarly, χ(β) is the maximum Euler characteristic
of a Seifert surface of the closure of β.

Theorem 1.12 (Bennequin inequality). We state three forms of the (classical) Bennequin
inequality.

1. Let β be a (closed) braid. Then

w(β)− n(β) ≤ −χ(β).

2. Let T be a transverse knot in R3. Then

sl(T ) ≤ −χ(T ).

3. Let L be a Legendrian knot in R3. Then

tb(L) + |r(L)| ≤ −χ(L).

Proof. We do not give a proof of the first statement, but this is explained in the paper of
Bennequin.

For the second statement, we noted above that

sl(T ) = w(β)− n(β)

if the closure of β is transversely isotopic to T . We know that such a β exists, so we are
done.

Finally for the third statement, recall that any Legendrian knot L has two canonical
transverse knots T±(L) related to it. These satisfy

sl(T±(L)) = tb(L)± r(L).

Since each of L and T±(L) have the same topological type, they have the same Euler
characteristic, so the final inequality follows.

The Bennequin inequalities can help us compute the various invariants appearing in
the statements. A slightly silly application is the following:

5



Example. Consider the trefoil knot K embedded as a closed braid in R3. This has

w(K) = 3, n(K) = 2.

Therefore 1 = w(K)−n(K) ≤ −χ(K) = 2g(K)− 1. It follows that the genus of the trefoil
is at least 1, so the trefoil is not the unknot. More generally, knot which arises as a closed
braid with higher writhe than number of strands cannot be the unknot.

Finally, I remark that the above inequalities hold in more general spaces. The first
inequality in terms of braids cannot naively be interpreted in manifolds that aren’t R3 (or
S3), but the other two make sense in arbitrary contact 3-manifolds. It turns out that they
hold in tight contact manifolds.

Theorem 1.13 (Bennequin inequality). Let (M, ξ) be a tight contact manifold. Then the
above Bennequin inequalities for transverse and Legendrian knots holds in M .

What is a tight contact structure? Contact structures can be classified as either tight
or overtwisted. As the names suggest, tight contact structures are just twisty enough to be
everywhere non-integrable, but overtwisted ones are somehow not efficient. In the standard
contact structure in R3, we must go to infinity for our plane field to become “vertical”.
These notions are formalised by using characteristic foliations: an overtwisted contact
structure is exactly one that admits an embedded disk on which the characteristic foliation
has a closed orbit enclosing exactly one critical point. Otherwise the contact structure is
called tight. For more details, see any introduction to contact geometry (such as Etnyre’s
notes).

In the remainder of these notes, the goal is to prove the slice Bennequin inequality. This
is an improvement of the Bennequin inequality from Seifert genus to slice genus. Recall
that slice genus is the minimal genus of a surface embedded in B4 with boundary the given
knot, rather than surfaces in S3. Therefore typically the slice genus is at most the Seifert
genus, giving −χs(K) ≤ −χ(K). It turns out that the Bennequin inequality is true even
when we replace χ(K) with χs(K)!

2 Khovanov homology

In this section we introduce Khovanov homology by describing various properties, and
giving a brief construction. Most proofs will be omitted. The process is essentially a more
involved version of reading off a Jones polynomial from a knot diagram - the homology
theory is intrinsically combinatorial and can be algorithmically computed from a diagram.

Khovanov homology idea. The outline of Khovanov homology is as follows.

1. For each link diagram D, there is a corresponding cochain complex

CKh(D) =
⊕
i,j∈Z

CKhi,j(D).
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This is equipped with boundary maps

d : CKhi,j(D)→ CKhi+1,j(D), d2 = 0.

2. The index i is the homological grading. The index j is the quantum or Jones grading.

3. The homology of this chain complex is defined to be the Khovanov homology :

Kh(L) = H(CKh(D)) =
⊕
i,j

Khi,j(L),

where L is the link with diagram D.

The j grading is called the Jones grading because the graded Euler characteristic of Kho-
vanov homology is the Jones polynomial of the link:

χ(Kh(L)) =
∑
i,j

(−1)iqj rk Khi,j(L) = (q + q−1)JL(q2),

where JL(t) is the Jones polynomial of L. Recall that the Jones polynomial is characterised
by skein relations, much like the Alexander polynomial.

Example. The Khovanov homology of the trefoil knot is shown in the following table.

j
i

0 1 2 3 χ

9 Z -1

7 Z/2Z 0

5 Z 1

3 Z 1

1 Z 1

Reading the Euler characteristic off the table, we recover

χ(Kh(31)) = q + q3 + q5 − q9.

Indeed, the Jones polynomial of the trefoil is t+ t3 − t4, and so

(q + q−1)(q2 + q6 − q8) = q + q3 + q5 − q9

as required.

We now give a construction of Khovanov homology from a link diagram (although we
omit the proof of invariance under Reidemeister moves).

Definition 2.1. The Khovanov complex CKh of a link diagram D is defined as follows.
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1. Let n be the number of crossings in D. Then n = n+ +n−, where n± are the number
of positive/negative crossings in D.

2. Next, ignoring sign, each crossing admits exactly two resolutions:

0−−−→ 1−−−→ .

In total, D admits 2n resolutions, each resolution corresponding to some α ∈ {0, 1}n.
This is the cube of resolutions, and the resolution of D corresponding to some α is
denoted Dα.

3. Suppose two resolutions differ by one choice, e.g. (0, 0, 1, 0, 1) and (0, 0, 0, 0, 1). Then
we join the resolutions by an edge. Formally we define edges to be ξ ∈ {0, 1, ∗}n such
that ξj = ∗ for a unique j. In our above example, the corresponding edge is

ξ = (0, 0, ∗, 0, 1).

4. Let V = Z[x]/(x2). This is a graded module, with Jones grading

J(1) = 1, J(x) = −1.

At each α ∈ {0, 1}n we associate the graded module

Vα(D) = V ⊗k{|α|}, |α| =
∑

αi, k = #circles in Dα.

Note that for M graded (by the Jones grading), M{n} denotes a grading shift up by
n.

The underlying module of CKh is the direct sum of all the Vα(D). It remains to
define the homological grading and the boundary maps.

5. V is naturally a Frobenius algebra. The maps are

� unit: 1 ∈ V
� counit: ε : V → Z, ε(1) = 0, ε(x) = 1

� multiplication: m : V ⊗ V → V , the usual product on Z[x]/(x2)

� comultiplication: ∆ : V → V ⊗ V , ∆(1) = 1⊗ x+ x⊗ 1, ∆(x) = x⊗ x.

The multiplication and comultiplication maps induce boundary maps for every edge in
the cube of resolutions. Any edge ξ joins two resolutions whose number of components
differs by one. If the number of components decreases along ξ (as we increase |α| to
|α|+ 1) we declare dξ : Vα(D)→ Vα′(D) to be defined by m : V ⊗V → V on the two
components that fuse into one, and dξ is the identity on all other copies of V . On
the other hand, if the number of components increases, then dξ is defined similarly
but with ∆ instead of m. Notice that the maps dξ do not affect the Jones grading.
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6. We have already defined the Jones grading. The homological grading of a module
Vα(D) is defined to be |α|. Therefore each dξ has bidegree (1,0), where the first
component is the homological grading, and the second the Jones grading.

Define (−1)ξ to mean (−1)
∑

i<j ξi , where j is the location of ∗ in ξ = (ξ1, . . . , ξn). For
example, (∗, 0, 0) 1, (1, ∗, 1) −1.

The differential dr of is defined by

dr =
∑

ξ starts at α,|α|=r

(−1)ξdξ.

7. The preshifted complex is defined to be

([[D]]r, dr)

where [[D]]r =
⊕

α,|α|=r Vα(D). The homology of this complex is not invariant under
Reidemeister moves, in the same way that the Kauffman bracket fails to be a knot
invariant. In the same way that the Jones polynomial incorporates a grading shift,
the complex is shifted (in both the homological and Jones gradings) to ensure that
the homology is a knot invariant:

CKh(D) = (([[D]][−n−]{n+ − 2n−}, d).

We noted that the curly braces denote a grading shift in the Jones grading. Similarly
the square braces denote a grading shift in the homological grading.

A key observation is that the definition of the Khovanov complex can incorporate any
Frobenius algebra, rather than just Z[x]/(x2). In any case, the resulting homology becomes
a knot invariant!

Definition 2.2. The definition of the Khovanov complex can be modified by considering
V = Z[x]/(x2 − t) in the construction. This is a Frobenius algebra by modifying the
comultiplication map to be

∆t(1) = 1⊗ x+ x⊗ 1, ∆(x) = x⊗ x+ t(1⊗ 1).

With t = 0, we obtain Khovanov homology. Setting t = 1 gives the Lee homology, denoted
by Lee(L) for a link L. Leaving t free, we obtain the Khovanov-Lee homology Kh′(L) over
Z[t].

We observe that the comultiplication map in Lee’s complex (or the Khovanov-Lee
complex) doesn’t behave so well with respect to the Jones grading. Indeed, the map
can be written as

d+ tΦ : CKh′ i(D)→ CKh′ i+1(D),

9



where d is the differential from the Khovanov complex (with bidegree (1, 0)) and Φ is the
additional term occuring in ∆t, which has bidegree (1, 4). However, this implies that the
Jones grading of any term in (d + Φ)(v) is always guaranteed to be at least the Jones
grading of v. Thus CKhq≥j is closed under (d+ Φ) for any j. This induces a filtration on
the Lee complex,

· · · ⊃ CLeeq≥j ⊃ CLeeq≥j+1 ⊃ · · · .

This in turn gives rise to a spectral sequence.

Proposition 2.3. The filtration of the Lee complex induces a spectral sequence such that

E1 = (CKh(K), d),

E2 = (H(E1),Φ∗) = (Kh(K),Φ∗),

⇒ E∞ = H(CKh(K), d+ Φ) = Lee(K).

Proof. This is pretty much immediate: in both the Lee and Khovanov complexes, the
underlying modules are isomorphic, only the maps differ. The Jones grading preserving
part of the Lee complex is exactly the Khovanov complex, giving E1 = (CKh(K), d).
The second page follows. As for the infinity page, this is a general property of spectral
sequences: they must converge to the homology of the complex from which the spectral
sequence was induced.

It turns out that the Lee homology is surprisingly trivial! Hereafter we work in rational
coefficients.

Theorem 2.4. Lee(L;Q) ∼= Q2c, where c is the number of components of L.

Proof idea. Given a link L with c componenets, there are exactly 2c choices of orientation
of L. For each orientation O we define an element sO of the Lee complex, and these turn
out to be generators of the Lee complex which we call the canonical generators.

We start by choosing a new basis for V = Q[x]/(x2 − 1), namely

a = x+ 1, b = x− 1.

Notice that in this basis the Lee complex boundary maps are actually a lot simpler!
Given any orientation O of a diagram D of L, there is a unique resolution DO which is

compatible with the orientation. Choose a component C ∈ DO. We define τ(D) ∈ Z/2Z
to be the number of circles separating C from infinity, plus 1 if C is oriented clockwise.
Finally we define

gC =

{
a τ(C) = 0

b τ(C) = 1.
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This fixes the choice of “component-generator” corresponding to the C component for the
module at DO. Overall the canonical generator of O is defined to be

sO =
⊗
C∈DO

gC .

One can show that these are indeed generators of Lee(L;Q).

In particular, if L is a knot, then Lee(L;Q) ∼= Q ⊕ Q. It turns out that the gradings
of the two components differ by exactly 2. Using this observation, Rasmussen defined the
s-invariant.

Definition 2.5. Let K be a knot. Then

smin(K) := min{J(x) : x ∈ Lee(K;Q), x 6= 0},
smax(K) := max{J(x) : x ∈ Lee(K;Q), x 6= 0}.

In fact, Rasmussen showed that

smax(K) = smin(K) + 2,

and further defines s(K) = smax(K)− 1 = smin(K) + 1.

This completes the avalanche of definitions. We now study some properties! First we
take a step back to the Khovanov homology. We noticed that the Jones grading was always
odd for the trefoil knot, which is the one example we considered. More generally, one can
show that the parity of the Jones grading of any non-zero term is the parity of the number
of components in the link. As a corollary, we have

s(K) is even, for any knot K.

The s invariant also behaves well under mirror images and connected sums.

Proposition 2.6. Let K be a knot. Then

s(K) = −s(K).

Proof idea. The filtered complex CLee(K) is isomorphic to the dual of the complex CLee(K).
(The isomorphism sends x to 1∗ and 1 to x∗.) If two filtered complexes are dual, then so
are their induced spectral sequences.

Proposition 2.7. Let K1,K2 be knots. Then

s(K1#K2) = s(K1) + s(K2).
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Proof idea. This follows from a short exact sequence

0→ Lee(K1#K2)
p∗−→ Lee(K1)⊗ Lee(K2)

∂−→ Lee(K1#K2)→ 0,

where p∗ and ∂ are filtered of degree −1. One can show that canonical generators map to
canonical generators under p∗, which gives

smin(K1#K2)− 1 ≤ smin(K1) + smin(K2).

But now adding 1 to each term to obtain s from smin, we have

s(K1#K2) ≤ s(K1) + s(K2).

Applying the same argument to K, and using that s(K) = −s(K), we obtain the opposite
inequality, and hence an equality.

The four main theorems from Rasmussen’s paper introducing the s-invariant are the
following:

Theorem 2.8. Let K be a knot. Then

1. |s(K)| ≤ 2gs(K), where gs(K) is the slice genus of K.

2. s : C → Z is a well defined map, and in fact, a homomorphism. (Here C is the knot
concordance group.)

3. If K is alternating, then s(K) = σ(K), where σ(K) is the classical knot signature of
K.

4. If K can be represented by a positive diagram D, then

s(K) = 2gs(K) = 2g(K) = n(D)−O(D) + 1,

where g(K) is the Seifert genus, n(D) is the number of crossings in the diagram D,
and O(D) is the number of Seifert circles of D.

Before proceeding with proofs or examples, we need to define a few things!

Definition 2.9. Let K be a knot in S3. S3 bounds a 4-ball B4, so we can view K as being
embedded in the boundary of B4. A slice disk of K is a smoothly embedded D2 ⊂ B4

whose boundary is K. If such a disk exists, K is said to be a slice knot. In general, knots
are not slice, and the slice genus of K is the minimum genus of an embedded surface in
B4 with boundary K.

In the 4th theorem, we mention Seifert circles. This is the number of componenets
(circles) obtained in the positive resolution of a knot (or link). Recall that this is the firts
step in the Seifert algorithm for finding a Seifert surface!
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Proof idea for 1 and 2. The key idea is that Khovanov (and Lee) homology are functorial
under link cobordisms: given links L0, L1, suppose there is a cobordism Σ ⊂ S3 × [0, 1]
between them. Then there are induced maps

FΣ : Kh(L0)→ Kh(L1), FΣ,Lee : Lee(L0)→ Lee(L1).

In fact, it turns out that if Σ is a connected cobordism between knots, then

FΣ,Lee : Q⊕Q→ Q⊕Q

is an isomorphism.
Now we prove 1. Let Σ ⊂ B4 be a surface with boundary K, realising the slice genus

of K. Removing a disk from Σ gives a connected cobordism Σ′ from the unknot to K.
Now FΣ′ and FΣ′,Lee are maps from Khovanov and Lee homologies of K to those of the
unknot. We study how they change the Jones gradings. Reidemeister moves leave the
Jones gradings invariant, while Morse moves of index 0 and 1 increase the Jones grading
by 1, and Morse moves of index 1 decrease the Jones grading by 1. It follows that FΣ′

changes J by exactly χ(Σ′), and FΣ′,Lee by at least χ(Σ′). Now if x ∈ Lee(K) is a non-zero
element attaining smax(K), then

1 ≥ J(FΣ′(x)) ≥ J(x) + χ(Σ′) = s+ 1− 2gs(K).

The first inequality comes from the fact that FΣ′(x) lives in Lee(01) via the isomorphism.
therefore s ≤ 2gs(K). Now considering K gives the full result.

Next we prove 2. This is surprisingly straightforward! From the mirror and connected
sum properties of s, it only remains to verify that s is a well defined map on C. But to
see this, suppose K1 and K2 are concordant. Then K1#K2 is slice. But now by the first
result, s(K1)− s(K2) = s(K1#K2) = 0. Therefore s is well defined on concordance classes
as required!

A fun corollary is the following:

Corollary 2.10. Suppose K+ and K− differ by a single crossing change, the crossing being
positive in K+ and negative in K−. Then

s(K−) ≤ s(K+) ≤ s(K−) + 2.

The above inequality was shown by Livingston to hold for any knot invariant satisfying
theorems 1 and 2 above!

We skip the third theorem, as it will not appear in our discussion on the slice-Bennequin
inequality. However, we’ll now take a look at theorem 4. The crux of theorem 4 is the
following.

Proposition 2.11. If K has a positive diagram D with n(D) crossings and O(D) Seifert
circles, then s(K) = n(D)−O(D) + 1.
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Proof idea. The exact formula comes from considering canonical generators of Lee(K;Q).
One can show that

s(K) =
J([sO] + [sO]) + J([sO]− [sO])

2
.

This is simple because one of terms in the numerator corresponds to the copy of Q in
smax = s(K) + 1, and the other lies in grading smin = s(K)− 1. Moreover, we have

J([sO]) = J([sO]) = s(K)− 1.

Explicitly, J([sO]) is defined to be the maximum Jones grading among terms homologous
to sO. But D is a positive diagram, meaning our resolution is the 0-resolution and lives
in the lowest homological grading. Nothing can map into this grading, so sO must be the
unique class homologous to itself! Writing the class out explicitly, we have

sO = (a or b)⊗ (a or b)⊗ · · · = (x± 1)⊗ (x± 1) · · · .

In summary we know that sO has O(D) factors, and lies in the same Jones grading as ⊗kx.
Now from the definition of Khovanov homology,

s(K)− 1 = J(sO) = −O(D) + (n+(D)− 2n−(D)) = n(D)−O(D).

The result follows.

As a simple corollary, once can chain together inequalities as follows:

2gs(K) ≤ 2g(K) ≤ 2g(Σ) = n(D)−O(D) + 1 = s(K) ≤ 2gs(K)

where Σ is the Seifert surface obtained from the Seifert algorithm on the positive diagram
D, which can be shown to have genus half of n(D)−O(D) + 1.

3 The slice Bennequin inequality, from Khovanov homology

Finally we prove the slice Bennequin inequality using the s-invariant, as promised. Rather
than using contact structures and so on, our statement of the slice Bennequin inequality
will be in terms of braids, analogous to the first form of the Bennequin inequality: recall
the following theorem from section 1.

Theorem 3.1 (Bennequin inequality). Let β be a closed braid. Then

w(β)− n(β) ≤ −χ(β).

Here χ(β) is the Seifert Euler characteristic of β.

The main result is that we can improve this inequality by replacing χ(β) with χs(β),
i.e. the maximum Euler characteristic of a slice surface of β (instead of a Seifert surface).
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Theorem 3.2 (Slice Bennequin inequality). Let β be a closed braid. Then

w(β)− n(β) ≤ −χs(β).

The first step in this proof is to generalise the formula

s(K) = n(D)−O(D) + 1 = 2gs(K)

to diagrams that are not necessarily positive:

Theorem 3.3. Let K be a knot with diagram D. Then

w(D)−O(D) + 1 ≤ s(K).

Proof. This follows by a simple inductive argument using the result for positive knots, and
the corollary relating the s invariant for knots that differ at one crossing:

s(K−) ≤ s(K+) ≤ s(K−) + 2.

If the knot is positive, we’re done. Now suppose we change a positive crossing to a negative
one. The left side of the inequality decreases by exactly 2. On the other hand, from the
aforementioned corollary, the right side decreases by at most 2.

We’re almost ready to prove the slice Bennequin inequality. The main point of interest
is that closed braids need not be knots, but we can still use the s-invariant to extract
information. In preparation, we must prove one more lemma.

Lemma 3.4. Let β1 = w1w2 and β2 = w1σ
±1
i w2 be braids, where wi are arbitrary words

and σi is a standard generator. Let β̂i denote the closures of the βis. Then

|χs(β̂1)− χs(β̂2)| ≤ 1.

Proof. Let Σ ⊂ B4 be a slice surface for β̂1. Note that Σ is connected, and in particular
has no closed components. β̂2 differs by the addition of a twist, which can be realised on
the level of surfaces by the addition of a twisted band. The orientation of the braid ensures
that the twisted band respects the orientation of Σ, so we end up with a new oriented
connected surface Σ′, now with boundary β̂2.

If the twisted band joined two disjoint boundary components of Σ, then the genus of
Σ′ is the same as that of Σ, while the number of boundary components has decreased by
one. On the other hand, if the two strands being twisted together were the same boundary
component, then addition of the band separates them into two boundary components while
increasing the genus by one. In either case, we have

χ(Σ′) = χ(Σ)− 1.
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Therefore
χs(β̂2) ≥ χs(β̂1)− 1.

For the other direction, notice that β1 = w1σ
∓1
i σ±1

i w2, the same argument carries through
with the roles of β1 and β2 reversed to give

χ2(β̂) ≥ χs(β̂2)− 1.

Combining these we have
|χs(β̂1)− χs(β̂2)| ≤ 1

as required.

Theorem 3.5 (Slice Bennequin inequality). Let β be a braid, and β̂ its closure. Then

w(β)− n(β) = w(β̂)− n(β̂) ≤ −χs(β̂).

Proof. First we prove the result for knots. Since a knot has one component,

−χs(β̂) = 2gs(β̂)− 1.

Moreover, O(β̂) = n(β̂). Now from the previous result, we have

w(β̂)− n(β̂) = w(β̂)−O(β̂) + 1− 1 ≤ s(β̂)− 1 ≤ 2gs(β̂)− 1 = −χs(β̂).

This proves the result in the case where β̂ has one component. For the more general case,
we assume β̂ is an arbitrary link. We write β+ to denote the braid obtained by deleting all
generators in β which appear with a negative exponent. (In terms of standard generators,
every braid is of the form σk1n1

σk2n2
· · ·σkmnm

, and we remove any σkini
for which ki is negative.)

We can assume without loss of generality that β̂+ is a knot as follows: suppose the i and

jth strands of β̂+ are distinct components, with i < j. Then appending σi · · ·σj−1 · · ·σi to
β+ results in the two strands being twisted together into a single component in the closure.

On the other hand, if we append σiσ
−1
i to β, the resulting braid is topologically un-

changed. (In particular the writhe and number of strands is unchanged.) Therefore we can

append as many σiσ
−1
i as necessary onto the end of β so that β̂+ is a knot. (Note that

appending σiσ
−1
i to β corresponds to appending σi to β+.)

But now β̂+ is a knot, so the slice Bennequin inequality holds for β+. By construction,
β is obtained by adding some number of negative crossings into β+. The previous lemma
showed that χs can change by at most 1 upon the addition of a single negative crossing.
On the other hand, the writhe decreases by exactly 1 (while the number of strands is
unchanged). Therefore inductively the slice Bennequin inequality holds for all braids.

A famous application is the Milnor conjecture, which is a statement about the slice
genus of torus knots. (Actually the Milnor conjecture is equivalent to the slice Bennequin
inequality, but is the “easier to prove” version.)
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Theorem 3.6 (Milnor conjecture). The slice genus the torus knot Tp,q is

gs(Tp,q) =
(p− 1)(q − 1)

2
.

Proof. The torus knot Tp,q is canonically the closure of a braid with p strands and q(p− 1)
crossings. In fact, each of these crossings is positive, so that

w(Tp,q) = q(p− 1), n(Tp,q) = p.

This gives w(Tp,q)− n(Tp,q) = (q− 1)(p− 1)− 1. By the slice-Bennequin inequality, this is
bounded above by −χs(Tp,q) = 2gs(Tp,q)− 1. Therefore we obtain

(p− 1)(q − 1)/2 ≤ gs(Tp,q).

For the other direction, note that the naive Seifert surface for Tp,q has genus (p−1)(q−1)/2,
so that

gs(Tp,q) ≤ g(Tp,q) ≤ (p− 1)(q − 1)/2.

Theorem 3.7. The slice Bennequin inequality holds for transverse and Legendrian knots
in the standard structures of R3 (or S3). That is, if T is transverse and L is Legendrian,
then

sl(T ) ≤ −χs(T ), tb(L) + |r(L)| ≤ −χs(L).

Proof. These follow from the braid-form of the slice Bennequin inequality, in the same way
that the classical Bennequin inequality did.

Finally we add that the slice Bennequin inequality doesn’t even make sense if we want
to interpret it in a general (tight) contact manifold: there is no reason these should bound
some canonical 4-manifold - what do we consider to be slice surfaces?

That being said, in some cases we can indeed generalise the slice Bennequin inequal-
ity to tight contact structures. We now introduce the relevant definitions to state the
generalisation.

Definition 3.8. A Stein manifold is a complex manifold X admitting a proper strictly
plurisubharmonic function ϕ : X → R. This means that ω = d(dϕ ◦ J) is a symplectic
structure on X, compatible with J .

A contact manifold (M, ξ) is Stein fillable if M is the boundary of a Stein manifold X
such that ξ is the kernel of dϕ ◦ J .

Lisca and Matić showed that the slice Bennequin inequality generalises to knots in Stein
fillable contact manifolds. Note that their proof is inherently non-combinatorial/geometric,
as it relies on Seiberg-Witten theory.
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