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Abstract. Last week we saw an introduction to mapping class groups (of surfaces). This
week we’ll show that mapping class groups of surfaces are finitely generated, by studying
its action on a certain “curve complex”. If time permits, we’ll study a specific generating
set as well as its relations.

1. Overview of the talk

Given a smooth manifold with boundary (X, ∂X), recall that its mapping class group is

MCG(X, ∂X) = Diffeo+(X, ∂X)/ ∼ .

In words, this is the space of pointwise-boundary-fixing orientation preserving diffeomor-
phisms of X up to isotopy. Today we’ll focus on the case where X = Σg, the closed genus
g surface. In this case, it turns out the mapping class group is finitely generated.

Theorem 1.1 (Dehn-Lickorish theorem). For g ≥ 0, the mapping class group MCG(Σg)
is generated by finitely many Dehn twists about non-separating simple closed curves.

Recall that a Dehn twist is a diffeomorphism of a surface supported in an annulus, which
corresponds to ”twisting” the surface by a full loop about the core of the annulus.

Remark. Dehn, who was one of the first people to study mapping class groups, was also
the mathematician behind the word problem. This takes as input a group and a finite
generating set for the group, and asks if there is an algorithm that takes as input a word
in the generator and outputs whether or not the word is trivial in the group.

(1) There exist finitely generated groups with unsolvable word problem.
(2) For a given finitely generated group, solubility of its word problem is independent

of the choice of generating set.

Theorem 1.2. The word problem for mapping class groups is soluble.

Proof. Let S be a finite collection of non-separating simple closed curves on Σg, such that
Dehn twists about those curves generate the mapping class group. Let w be a word in these
Dehn twists. The bigon criterion tells us exactly when curves are isotoped to minimise their
intersections - the first step in the algorithm is to remove bigons via isotopy. Since the
curves are in minimal position, we can apply the Alexander method. Specifically, consider
the union of the curves as a graph on the surface. The Alexander method says that a
mapping class ϕ = w is trivial if and only if it fixes every edge and vertex of the graph!
This is a finite check, so we’ve found an algorithm to solve the word problem. �
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So how will we show that mapping class groups are finitely generated? We’ll use group
actions, specifically the following pseudo-theorem:

Theorem 1.3 (Approximately a theorem). Suppose a group G acts on a connected space
X. Let D be a subset of X with full orbit in X. Then G is generated by elements that only
slightly shift D.

Of course this needs to be formalised a lot more to make it true. The main idea we’re
trying to capture is that given the right conditions, every element of a group is a product
of elements that incrementally translate D.

To show that mapping class groups are finitely generated, we’ll construct a space on
which the mapping class group acts, as well as a subspace D with full orbit. The mapping
classes that “slightly shift D” turn out be finite. Specificaly, the space we’ll construct is
something called a curve complex.

2. Several examples of curve complexes

Definition 2.1. Let Σ be a surface. The curve complex C(Σ) is the flag complex defined
by the 1-skeleton given by the following data:

(1) There is a vertex for every isotopy class of essential simple closed curves in Σ.
(2) There is an edge between two vertices a and b if and only if i(a, b) = 0.

Example. Let Σ be a 2-sphere. Then every curve on Σ is isotopic to a point. Since no
essential simple closed curves exist, there are no vertices. Therefore C(Σ) is empty.

Example. Similarly, C(Σ) is empty if Σ is a sphere with one, two, or three punctures.

Example. Suppose Σ is a sphere with four punctures. Then C(Σ) has infinitely many
vertices, but no edges.

To see why there are infinitely many vertices, we draw the following family of non-isotopic
curves.

To see that the curve complex has no edges, consider two essential simple closed curves
on Σ. Each one necessarily cuts Σ into two components with two punctures each. If these
components consist of the same punctures, then the curves are isotopic. If they don’t, then
the curves must intersect.
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Remark. One might say “hey, aren’t those curves all isotopic?” referring to the claimed
infinite family above. The reason these are truly distinct is that we can’t drag the punctures
around the disk: this would involve mapping classes that exchange punctures.

This means to study a four-times punctured sphere, we need a modified version of the
curve complex. We introduce a few modifications here.

Definition 2.2. The complex Č(Σ) consists of the same vertices, but has edges whenever
i(a, b) = m, where m is the minimum intersection number between any two non-isotopic
essential simple closed curves on Σ.

Example. For sufficiently complicated surfaces, you can easily find two non-isotopic es-
sential simple closed curves which don’t intersect. This means m = 0, so Č(Σ) = C(Σ).

Example. For a four-times punctured sphere, we can draw two non-isotopic simple closed
curves which intersect twice. It’s not hard to see that one intersection is impossible.
Therefore m = 2.

In fact, Č(Σ) is the Farey complex, which is a triangulation of hyperbolic space.

Definition 2.3. There’s a subcomplex N(Σ) ⊂ C(Σ) whose vertices are exactly non-
separating essential simple closed curves on Σ. (That is, curves which don’t cut Σ into two
pieces when cutting along them.)

Definition 2.4. The actual curve complex used in the proof of finite generation of the

mapping class group is N̂(Σ), which consists of vertices isotopy classes of non-separating
essential simple closed curves, and edges between a, b whenever i(a, b) = 1.

Recall that our goal was to show that the mapping class group is finitely generated by
studying its action on the curve complex. This requires us to prove some properties of
curve complexes.

Theorem 2.5. When 3g+n ≥ 5, then C(Σg,n) is connected. (Here Σg,n means the surface
with genus g and n punctures.)
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Proof. I won’t give a proof but I’ll sketch the idea. Suppose a and b are curves on Σg,n,
i.e. vertices of the curve complex. If i(a, b) = 0 then there’s an edge from a to b so we’re
done. In general, we want to find a collecton of curves a = c0, c1, . . . , cn, cn+1 = b so that
i(cm, cm+1) = 0. We proceed inductively:

(1) In the case i(a, b) = 1, we find a curve c so that i(a, c) = i(c, b) = 0.
(2) In the case i(a, b) = n ≥ 2, we find a curve c so that i(a, c), i(c, b) < n.

I won’t provide all the details, but it goes something like this:
Base case. Consider a neighbourhood of the union of a and b. These intersect exactly

once, so it looks a bit like “gluing two annuli together”. Topologically, this is homeomorphic
to a torus with a disk removed. In particular, the boundary of this surface is a curve on
Σg,n which doesn’t intersect a or b. It remains to check that this curve is actually an
essential simple closed curve; i.e. that it isn’t null-homotopic or homotopic to a point. If
it were, then the surface is necessarily Σ1,0 or Σ1,1, both of which violate the premise that
3g + n ≥ 5.

Inductive step. We won’t provide any details - the idea is similar to above. Essentially,
the curves a and b intersect at least twice. We can do surgery near these two intersections
to find a curve c which decreases the number of intersections. �

Theorem 2.6. N(Σg,n) is connected if g ≥ 2.

Theorem 2.7. N̂(Σg,n) is connected if g ≥ 2.

The proof has been omitted.

3. Quasi-stabiliser generation theorems

These theorems don’t actually have names! I just decided to call them quasi-stabiliser
generation theorems. I’m now going to give formal statements of some theorems.

Theorem 3.1. Let G act on a connected topological space X. Suppose D is an open
translation domain. Then QStab(D) generates G.

Here a translation domain is a subset D ⊂ X such that GD = X. This is actually a
general case of a fundamental domain which is a phrase we hear often in geometry. For
example, the famous fundamental domain of hyperbolic space is a strange triangle in the
upper half plane model. (Precisely, a fundmental domain is a translation domain with the
added property that gD only ever meets D along their boundary for g non-trivial.)

Next, QStab(D) is what I’ve called the quasi-stabiliser. It’s defined to be

QStab(D) := {g ∈ G : gD ∩D 6= ∅}.

Recall that the stabiliser of a point x ∈ X under a group action by G is

Stab(x) := {g ∈ G : gx = x}.

We see that the quasi-stabiliser is something that ”stabilises points in the domain, up to
the domain”.
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Proof. We consider the space gD∩〈QStab(D)〉D for some g ∈ G. Suppose it’s non-empty.
(Such a g exists - the identity element works.) It follows that there exists some s in
〈QStab(D)〉 for which gD ∩ sD 6= ∅, so s−1gD ∩D 6= ∅. This is exactly the definition of
s−1g being in QStab(D)! Thus

g ∈ sQStab(D) ⊂ 〈QStab(D)〉.
It follows that (G − 〈QStab(D)〉)D is disjoint from 〈QStab(D)〉D. (This is exactly what
we’ve shown - we started with an arbitrary g and showed that if gD meets 〈QStab(D)〉D,
then g is also in 〈QStab(D)〉. Thus, it isn’t in G− 〈QStab〉. Since D is open, each of the
translations is open. Moreover, their union is X. From point-set topology, if two open
sets union to the whole space, then they’re distinct connected components! Because X
is connected, and 〈QStab〉D is non-empty, (G − 〈QStab(D)〉)D is empty. It follows that
G− 〈QStab(D)〉 is empty, i.e. 〈QStab(D)〉 is all of G. �

Next we introduce another version of the theorem which we’re actually going to use.

Theorem 3.2. Let X be a connected simplicial complex, and G a group that acts on X by
simplicial automorphisms. (This basically means vertices map to vertices, edges to edges,
etc.) Suppose D is a subcomplex of X which is a translation domain. Then QStab(D)
generates G.

This is genuinely distinct from the previous version of the theorem, because subcom-
plexes of simplicial complexes aren’t open.

The proof will be omitted, but it’s very different from the previous proof! It can be
proven by induction, by considering a sequence of vertices between v and gv (for any g),
and showing that each sucessive intermediate vertex differs by an element of QStab(D)
from the previous one.

Actually the version we’re really going to use is some sort of a special case: the statement
is slightly stronger, but the proof (which is also omitted) is pretty much identical to the
previous proof.

Theorem 3.3. Let X be a connected simplicial complex, and G a group that acts by
simplicial automorphisms. Suppose G acts transitively on vertices and edges. Let u and v
be adjacent vertices in X and h ∈ G such that hu = v. Then

{h} ∪ Stab(v)

generates G.

4. Finite generation of mapping class groups

Finally we give a proof outline to show that mapping class groups are finitely generated.

Theorem 4.1. MCG(Σg) is finitely generated (by Dehn twists about non-separating simple
closed curves).

Proof. (1) If g is less than 2, then the surface is a sphere or a torus. In the case of
the torus, the mapping class group SL(2,Z) is generated by Dehn twists about the
meridian and longitude. The sphere is trivial.
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(2) For g ≥ 2, we have that N̂(Σg) is connected. The mapping class group acts by
simplicial automorphisms (since it sends isotopy classes of non-separating curves
to other isotopy classes of non-separating curves). By the last quasi-stabiliser gen-
eration theorem, we have that

{h} ∪ Stab(v)

generates MCG(Σg), where v is any vertex of N̂(Σg), and h is an element of G
sending v to an adjacent vertex.

(3) We proceed by induction: suppose N̂(Σg−1) is generated by Dehn twists about

finitely many non-separating essential closed curves. Choose any vertex v in N̂(Σg),
i.e. any non-separating essential simple closed curve in Σg. Choose u to be an
adjacent vertex, i.e. a curve intersecting v exactly once. By a property of Dehn
twists,

hu := TuTv(u) = v,

so MCG(Σg) is generated by TuTv and the stabiliser of v.
(4) The stabiliser of v is generated by the Dehn twist about v, and the mapping class

group of the surface obtained by cutting along v. The latter surface has genus g−1,
so the inductive hypothesis applies!

Technically we needed to induct over both n and g. In the last step, cutting along
v introduces a new boundary component (puncture). A full proof first inducts over the
number of punctures, and then the genus. �

5. The Humphries generators

The Humphries generators are an explicit set of non-separating essential simple closed
curves whose Dehn twists generate the mapping class group.

Theorem 5.1. The Humphries generators (of which there are 2g+ 1) generate MCG(Σg).
In fact, any generating set consisting of Dehn twists must have at least 2g + 1 generators.

We now give a proof outline that 2g + 1 generators is minimal.

Proof. (1) The symplectic group Sp(2g,Z) consists of 2g × 2g matrices preserving a
non-degeneration skew-symmetric bilinear form.

(2) Any mapping class induces an isomorphism on homology; i.e. an element of

Aut(H1(Σg)) = Aut(Z2g) = GL(2g,Z).
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(3) Mapping classes preserve the algebraic intersection number î(a, b). This is a non-
degenerate skew-symmetric bilinear form, so we actually have a map

MCG(Σg)→ Sp(2g,Z).

(4) This is actually a surjection. Overall we can construct a surjection

MCG(Σg)→ Sp(2g,Z/2Z).

In this setting there’s an elementary proof that at least 2g + 1 generators are
required.

�
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