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Abstract. Smooth 4-dimensional topology is full of mysteries. One class of mysteries is
to understand embedded surfaces in 4-manifolds. In this talk I’ll describe ongoing work
with Devashi Gulati and Laura Wakelin in which we use trisections to study Lagrangian
surfaces in symplectic 4-manifolds.

1. Introduction

(1) I graduated with a BSc in maths and physics here at the University of Auckland in
2017. I then did a BSc with Honours in 2018, under the instruction of Rod Gover.

(2) Since then, I’ve been studying towards a PhD at Stanford University. In a couple
of weeks I’ll be starting my fourth year there - I should finish in about two years
from now. Stanford is on the west coast of the United States of America - this is
my first time back home, and I’m very happy to be back!

(3) I’m working in low dimensional topology, advised by Ciprian Manolescu. I spend my
time thinking about surfaces embedded in 4-manifolds. My main guiding question
has been the “minimal genus problem” which I’ll mention soon.

(4) Today I’ll talk about a side project I’m working on with two other postgrads -
Devashi Gulati at the University of Georgia (in Georgia, USA), and Laura Wakelin
at Imperial College (in London).

2. Four dimensions

Why four dimensions?
To illustrate why we care about 4-dimensions, we’ll consider smooth homotopy spheres

in each dimension.

Definition 2.1. In dimension n, a smooth homotopy sphere is a closed smooth n-dimensional
manifold S such that

• πn(S) = Z,
• πm(S) = 0 for m 6= n.

We have the following list:

(1) A 1-dimensional homotopy sphere is a circle.
(2) A 2-dimensional homotopy sphere is a 2-dimensional sphere.
(3) More generally, every 3, 5, 6, 12, 56, and 61 dimensional homotopy spheres are

spheres.
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(4) In every dimension at least 5, there are finitely many distinct homotopy spheres. In
principle the number can be computed in each dimension, but the general algorithm
is too inefficient to implement in practice.

(5) In dimension 4, the result is completely unknown: maybe the only homotopy sphere
is the sphere, or maybe there are even infinitely many distinct homotopy spheres.

In fact, there is not a single closed topological 4-manifold for which all compatible smooth
structures are known. In general, this is referred to as the problem of

classifying exotic smooth structures.

Hopefully this demonstrates how four dimensions is hugely complicated, and explains why
a lot of mathematicians work in four dimensional topology.

Some difficult open problems closer to my heart are the following:

• The exotic embedding problem. Suppose S and S′ are embedded 2-dimensional
spheres in S4. Suppose there’s a topological isotopy from S to S′. Then is there a
smooth isotopy from S to S′?
• What are the knotted surfaces in S4?
• Given a homology class a ∈ H2(X) for some 4-manifold X, what is the minimum

genus of an embedded surface Σ ⊂ X such that [Σ] = a?

3. Symplectic topology

Rather than working in the smooth category, in this talk we’ll consider some more
geometric structure.

Definition 3.1. A symplectic manifold is a manifold X equipped with a closed non-
degenerate 2-form ω (which is called a symplectic form.

Symplectic manifolds are necessarily even dimensional, for the same reason that complex
manifolds are even dimensional.

Recall that a Riemannian manifold is essentially a manifold together with a symmetric
bilinear form. Here we’re equipping a manifold with an anti-symmetric bilinear form.

Example. The standard symplectic structure on R4 is

(R4, dx ∧ dy + dz ∧ dw).

Example. The simplest closed symplectic 4-manifold is CP2. We can think of this space
in homogeneous coordinates as

{[z1 : z2 : z3]|zi ∈ C}.

The symplectic form is given by

ω = − i
2
∂∂ log(|z1|2 + |z2|2 + |z3|2).

Definition 3.2. A submanifold L ⊂ (X,ω) is called Lagrangian if it is a maximal sub-
manifold on which ω vanishes. (This forces dimL = 1

2 dimX.)
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Example. In the standard symplectic R4, the (x, z)-plane is a Lagrangian submanifold.
This is because given any pair of vector fields u and v in the plane, one can compute that
ω(u, v) = 0.

Why do we care about Lagrangians? I’ll motivate them a little through physics. The
main idea is that the Hamiltonian formulation of classical mechanics corresponds precisely
with symplectic geometry. (The Hamiltonian formulation is when mechanics is encoded
by a configuration space X of points (q, p) corresponding to position and momentum, and
a Hamiltonian H : X → R encoding the energy of each configuration.) In the corre-
spondence, Lagrangian submanifolds correspond to all of the possible momenta of a given
position.

What is the question I’m thinking about in my collaboration?

Question. Let X be a closed symplectic 4-manifold. What are all of the Lagrangian
surfaces inside X?

First we need to know how we’re counting them! two common methods are the following:

(1) Smooth isotopy.
(2) Lagrangian isotopy. (Smooth isotopy through Lagrangian submanifolds.)
(3) Hamiltonian isotopy. Lagrangains L and L′ are Hamiltonian isotopic if there’s an

isotopy X × [0, 1] → X arising from some Hamiltonian flow, under which L maps
to L′.

Classifying Lagrangians is very difficult, but here are some known and unknown results.

(1) Up to Lagrangian isotopy, there is a unique Lagrangian torus in CP2 and S2 × S2.
(Rizell-Goodman-Ivrii)

(2) Lagrangian spheres in T ∗S2 are Hamiltonian isotopic to the 0-section. Similarly for
T ∗T2. (Hind, Rizell-Goodman-Ivrii)

(3) Up to Hamiltonian isotopy, we have no classification of all Lagrangians in any
symplectic 4-manifold.

Our approach for classifying Lagrangians, introduced by Sarah Blackwell in her PhD
thesis for CP2, is the following:

(1) Trisect (or multisect) the ambient manifold X.
(2) Embedded surfaces are determined up to isotopy by the intersections with the spine

of the trisection.
(3) This cuts down dimensions, and counting Lagrangians in X should correspond to

counting grid diagrams.

4. Trisections

The last big idea we need to introduce is trisections.

Definition 4.1. Let X be a closed oriented 4-manifold. A trisection of X is a decompo-
sition X = X1 ∪X2 ∪X3 such that

• each Xi is of the form \kS1 ×B3 for some k,
• each Hi = Xi ∩Xi+1 is of the form \gS1 ×B2 for some g,
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• and Σ = X1 ∩X2 ∩X3 is a surface of genus g.

Theorem 4.2. Given any closed oriented 4-manifold X, there is always a trisection of X.
These are unique up to certain stabilisation move. Trisections are determined uniquely by
their spines H1 ∪H2 ∪H3.

Example. S4 has a genus 0 trisection built up from lower dimensional balls and spheres.

Example. CP2 has a genus 1 trisection.

Theorem 4.3. Importantly, we can encode trisections by trisection diagrams which con-
sist of curves on a surface. I won’t define these rigorously, but I’ll explain them through
examples.

Example. Trisection diagram for S4.
Example. Trisection diagram for CP2.

We can also embed surfaces in a special way inside trisections.

Definition 4.4. Let K ⊂ X be an embedded surface in a 4-manifold. K is said to be in
bridge position if the following hold:

• Each Ki = K ∩Xi is a disjoint union of boundary-parallel disks.
• Each τi = K ∩Hi is a disjoint union of boundary-parallel arcs.

Theorem 4.5. Every surface K ⊂ X can be smoothly isotoped to lie in bridge position
in any trisection of X. A surface in bridge position is determined by its spine (i.e. its
intersection with the spine of the trisection of X).

Example. Draw shadow diagram of CP1 ⊂ CP2. Explain how it builds up into a surface
in a 4-manifold.

5. Trisections, but symplectic

Finally, the question is whether or not we can encode pairs (X,L) of embedded La-
grangian surfaces inside symplectic manifolds with diagrams as above that not only encode
the smooth topology of our manifolds but also the geometry. This might be possible! It’s
the crux of my research with Devashi Gulati and Laura Wakelin.

To describe this I need to introduce a couple more definitions! These are essentially the
analogues of Lagrangian surfaces in symplectic manifolds in odd dimensions rather than
even dimensions.

Definition 5.1. A contact 3-manifold is a 3-manifold Y equipped with a non-integrable
plane field ξ (called the contact distribution). (This means we’re specifying a plane at
every point in Y , and locally ξ is not the tangent bundle of any embedded surface.) Often
contact manifolds are described as (Y, α) where α is a 1-form whose kernel is the contact
distribution.

Example. R3 equipped with the 1-form α = dz − ydx is the standard contact structure
on R3. If we consider the half space {(x, y, z, w) | w ≥ 1} in R4, the standard symplectic
structure is ω = dα on the boundary.
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The analogue of Lagrangians in symplectic manifolds is Legendrian knots in contact
manifolds. These are knots in Y that are everywhere tangent to the contact distribution.

Example. Draw example of a Legendrian unknot in a drawing of a contact distribution.

Legendrian knots are combinatorial objects: the front projection is a knot diagram with
two additional properties:

(1) There are no vertical tangencies, instead there are cusps.
(2) In any overpass, the overpass has a larger gradient than the underpass.

The key idea connecting all of this to our original question of classifying Lagrangians is
that if (X,L) is a Lagrangian surface embedded in a symplectic manifold X, and X has a
compatible contact boundary Y , then L intersects Y along a Legendrian knot. With this
in mind, we’re finally ready to bring everything together.

Definition 5.2. A Weinstein trisection of a closed symplectic manifold X is a trisection
(X1, X2, X3) in which each Xi is a Weinstein domain. This essentially means the boundary
of each Xi is a compatible contact manifold ∂X.

Theorem 5.3 (Lambert-Cole, Meier, Starkston). Every closed symplectic manifold admits
a Weinstein trisection.

6. The classification programme

We’re now ready to outline the programme for classifying Lagrangian surfaces in some
symplectic manifolds.

(1) Suppose (X,L) is a Lagrangian surface embedded in a symplectic manifold.
(2) Weinstein trisect the manifold X.
(3) Lagrangian isotope the surface L, so that it’s also in bridge position in the trisection.

Now L is determined by its intersection with the spine of the trisection.
(4) Since L is a Lagrangian and the trisection is a Weinstein trisection, the spine of L

is a collection of three Legendrian knots (links), satisfying some properties.

The idea is that classifying these triples of Legendrian links should correspond to clas-
sifying Lagrangians. Classifying Legendrian links is an easier problem because it’s combi-
natorial. For all of this to work, we need two directions to hold:

(1) Every set of three Legendrians (with certain properties) must uniquely determine
a Lagrangian, up to Lagrangian isotopy.

(2) Every Lagrangian must have a corresponding set of three Legendrians that encodes
it.

In my collaboration with Devashi and Laura, we’ve established the first fact, but have yet
to verify the second. We have a concrete example showing that the second statement is
actually false in general:

Example. There is only one valid triple of Legendrian links in the spine of S2×S2 encodes
a Lagrangian torus in S2 × S2. However, S2 × S2 also contains a Lagangrian sphere.

Our hope is that there’s some condition we can determine which tells us when La-
grangians really arise from these triples of Legendrians.
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In summary, we have a programme for possibly classifying some Lagrangian surfaces in
certain symplectic 4-manifolds. It’s still on-going but we’re having a lot of fun!
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