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Chapter 1

Introduction to knots

The fundamental question in knot theory is the following: given two knots (1 dimensional
loops embedded in 3 dimensional space), how can we determine whether or not the knots
are the same? The tactic is to find knot invariants - quantities corresponding to each knot
which are invariant under “untangling knots without allowing strands to pass through each
other”. (The basic legal moves are formalised as Reidemeister moves.) Thus whenever
a given knot invariant exhibits different quantities for two knots, the two knots must
be distinct. Knot invariants arise in many forms, including integers, polynomials, and
homology theories. The game is to try to construct invariants which are useful (in the
sense that they can actually be calculated), but complicated enough that they distinguish
many inequivalent knots.

In this chapter we introduce some basic definitions and a few examples of knot invari-
ants.

1.1 Basic definitions

Definition 1.1.1. A link L is a smoothly embedded closed 1-dimensional submanifold in
S3 or R3. L is a link of m components if it is a collection of m simple closed curves. A
knot is a link with one component. Equivalently, piecewise linear structures can be used
to define knots and links.

Definition 1.1.2. Two links L1 and L2 are said to be equivalent if they satisfy either of
the two equivalent properties:

• They are ambient isotopic. This means there is a homotopy Ft : S3 → S3 such that
each Ft is a diffeomorphism, F0 is the identity, and F1 maps L1 onto L2.

• There is an orientation preserving diffeomorphism F : S3 → S3 mapping L1 onto L2.
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It’s very difficult to draw knots in 3-dimensions. In particular, we have no way of
drawing S3 in a meaningful way. However, by the following fundamental theorem it is
always sufficient to draw figures in two dimensions.

Theorem 1.1.3. Let L be a link in R3 or S3.

1. L admits a regular projection onto R2 or S2 respectively. (In fact, almost all pro-
jections are regular.) Such a projection is injective at all but finitely many points,
which are the projections of only two points. By orienting the ambient space, the
image of L under the projection is therefore a planar 4-regular graph whose vertices
are decorated with crossing (over/under) information.

2. The ambient isotopy class of a link L is determined by a regular projection with
crossing information.

Combining points 1 and 2 above, the theory of knots and links is equivalently the theory
of planar 4-regular graphs with crossing information at all of the vertices. These graphs
are called link diagrams. Ambient isotopies of links descend to three basic transformations
of link diagrams called Reidemeister moves, as shown in figure 1.1. Earlier we remarked

Type I Type II Type III

Figure 1.1: The three Reidemeister moves

that ambient isotopy is equivalent to orientation preserving diffeomorphism. Therefore
considering orientation, we can produce new knots (which may or may not be equivalent
to the original knot). We do this in two ways:

Definition 1.1.4. Let K be an oriented knot. The reverse of K, denoted rK, is the same
knot (as smoothly embedded circle), but with the opposite orientation.

Definition 1.1.5. Let K be a knot. The obverse or reflection of K, denoted K, is the
image of K under an orientation reversing diffeomorphism of S3.
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Example. K, rK,K, rK are all distinct for the knot 932.

The basic operation for composing two knots is the connected sum, which we simply
denote byK1+K2. A knot is called the unknot if it bounds an embedded disk. Equivalently,
the unknot is given by a knot diagram which is equivalent to the diagram with no crossings.
By the definition of the connected sum, it is immediate that the unknot is a zero of addition
of knots. We see later that no knot other than the unknot has an additive inverse.

Definition 1.1.6. A knot K is said to be prime if it is not the unknot, and K = K1 +K2

implies that K1 or K2 is the unknot.

To understand knots, we wish to understand all of the prime knots. In an attempt to
tabulate prime knots, we first want some notion of complexity. This is given by our first
knot invariant, the crossing number.

Definition 1.1.7. The crossing number of a knot K, denoted c(K), is the minimum
number of crossings required in a knot diagram representing K.

For example, the crossing number of the unknot is 0, and the crossing number of the
trefoil knot is 3. It is easy to enumerate all possible knots with small crossing numbers, but
the difficultly comes in determining which knots are prime and which knots are duplicates
of other knots already in the list. (The most popular naming scheme for knots involves an
enumeration using the crossing number.)

While the crossing number is very easy to define, and incredibly powerful for distin-
guishing knots (for example, it distinguishes the unknot from the trefoil knot, and these
two knots from every other knot in existence), it is intractable. By its very definition
(involving a “minimum”) it is difficult to compute given a general knot.

Another intractable but popular invariant is the unknotting number.

Definition 1.1.8. Let K be a knot. The unknotting number, denoted u(K), is the mini-
mum number of changes required in the crossing information of a knot diagram to make
it equivalent to the unknot.

Example. The unknotting number of the unknot is 0. The unknotting numbers of 31 and
41 are 1. The unknotting number of 1011 is unknown as of the time of writing.

1.2 Some families of knots

We’ve now defined some invariants of knots and methods of manipulating existing knots,
but we have yet to define any family of knots to study. One important family is the
collection of Pretzel links (and knots).
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Definition 1.2.1. The pretzel link P (a1, . . . , an) is the link defined by connecting n sets
of ai crossings in a spiral. When the sign of ai is positive, the crossings are “anticlockwise
upwards”, and when ai is negative, the crossing information is reversed. To clarify, figure
1.2 shows the Pretzel link P (6, 6,−5, 5). By choosing different ai, this proliferates an
infinite number of links.

Figure 1.2: The pretzel link P (6, 6,−5, 5)

Definition 1.2.2. Another important family of links and knots are the so-called rational
links (and knots). The (p, q)-rational link is given by C(a1, . . . , an), where q/p has continued
fraction

q

p
=

1

a1 +
1

a2 + · · · 1

an−1 +
1

an

.

The different ways of expressing q/p as a continued fraction all give rise to equivalent knots.
Here C(a1, . . . , an) follows a similar construction to the pretzel links, with C(2, 1,−2, 3)
shown in figure 1.3.

Definition 1.2.3. A braid of n strings is a collection of n arcs traversing a box from left
to right, keeping track of crossing information. Any braid gives rise to a link in a standard
way by identifying the left and right edges of the box. All braids on n strings are elements
of the braid group Bn, which has presentation

〈σ1, . . . , σn−1 | [σi, σj ] = 0 if |i− j| ≥ 2, σiσi+1σi = σi+1σiσi+1〉.

In the above, σi is realised as the braid where the ith arc crosses over the i+ 1th arc, and
all other arcs are unchanged.

Definition 1.2.4. The Torus link Tp,q is formally the standard closed link obtained from
the braid (σ1 · · ·σp−1)q. Intuitively, it is the link obtained by wrapping p loops around a
torus (in the toroidal direction), and applying q fractional twists (in the poloidal direction).
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Figure 1.3: The (2/9)-rational knot, C(2, 1,−2, 3).

Many methods of proliferating complicated knots in easy stages exist. Of course the
connected sum gives a method of constructing more complicated knots from smaller pieces.
Another important method is the satellite knot.

Definition 1.2.5. Let K,C be knots. Suppose K is embedded in a solid torus T , and
e : T → S3 is an embedding so that e(T ) is a regular neighbourhood of C. Then e(K) is
called a satellite knot with pattern K and companion C.

In fact, the connected sum K = K1 +K2 arises as a satellite knot with pattern K1 and
companion K2.

1.3 Linking number

Suppose L is an oriented link. Then each crossing in its link diagram can be given a
sign ±1 depending on the crossing information, as in figure 1.4. The existence of type I

-1 1

Figure 1.4: The standard sign convention for oriented crossings.

Reidemeister moves makes it clear that the signed count of crossings of an oriented knot
is not a knot invariant. Moreover, we can’t define something like the “minimum signed
count” as applying enough type I moves will always ensure that the signed count can be
zero. However, the signed count gives rise to an invariant for two-component links.

7



Definition 1.3.1. Let L = L1 ∪ L2 be a two component oriented link. Then the linking
number lk(L1, L2) is an invariant of L, defined to be half the signed count of crossings with
one strand from L1 and one from L2.

The linking number embodies some homology theory as we soon see. The idea is to
study knot complements as well as knots. Given a compact manifold X, with a knot K
embedded in X, the knot complement of K is XK = X − int(N), where N is a tubular
neighbourhood of K in X.

In particular, if X is taken to be S3 (which is the most common choice), then XK is
a compact manifold has boundary a 2-torus, with homotopy type S3 − K. We can also
consider simple closed curves on ∂N ∼= T 2, and they turn out to be important in the
understanding of the homology of XK .

Definition 1.3.2. Let K be a knot in S3, with tubular neighbourhood N . A simple closed
curve in ∂N is called a meridian of K if it is non-separating and bounds a disk in N (and
hence bounds a disk that meets K at exactly one point). A simple closed curve in ∂N is
called a longitude of K if it is homologous to K in N , but null-homologous in XK .

The following theorem shows how we can understand the homology of XK from K:

Theorem 1.3.3. Let K be an oriented knot in S3, and X its knot complement. Then
H1(X) is canonically isomorphic to Z = 〈[µ]〉, where µ is a meridian of K. Moreover,
if C is any simple closed curve in X, then [C] ∈ H1(X) is lk(C,K). Finally, H2(X) =
H3(X) = 0.

This theorem generalises to complements of links:

Theorem 1.3.4. Let L be an oriented link in S3 with m components, and X its link
complement. Then H1(X) is canonically isomorphic to Zm, with generators given by a
meridian for each component of L. Moreover,, H2(X) = Zm−1.

1.4 Exercises

Exercise 1.4.1. (Lickorish, 1.1) Show that 41 is equivalent to its reverse and reflection.

Solution: We first show that 41 is equivalent to its reflection, 41. This follows from a
sequence of type II and type III Reidemeister moves, as shown in figure 1.5:

i. First, we drag the crossing labelled A to the top right of the diagram without changing
any of the crossings (i.e. we apply an orientation preserving homeomorphism of the
plane).

ii. Next we carry out a series of type II and type III Reidemeister moves on the segment
labelled b, with the aim of pulling the strand to the top of the diagram.
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iii. We continue applying type II and type III Reidemeister moves to b, along with two
type I Reidemeister moves at the end.

iv. Finally we rotate the knot diagram by about 180◦ (in the plane), and wiggle the
diagram to obtain what is clearly 41.

41 41i. iii.

ii. iv.

A

b

b

Figure 1.5: Proof that 41 = 41.

To see that 41 is equivalent to its reverse, r41, assign an arbitrary orientation to the knot
diagram for 41 shown in figure 1.5. Rotate the diagram about the vertical axis (in the plane
of the figure) by 180◦. This is an orientation preserving homeomorphism of the ambient
space R3 which maps 41 onto its reverse. 4

Exercise 1.4.2. (Lickorish, 1.5) Show that every knot diagram can be changed into a
diagram of the unknot by changing some crossings from “over” to “under”. How many
changes are necessary?

Solution: We first show that the unknotting number u(K) is always finite. We then show
that u(K) ≤ c(K)/2, i.e. it is bounded above by half the crossing number.

The following proof is shown pictorially in figure 1.6. Consider a knot diagram K in the
plane, where the plane is parametrised by (x, y)-coordinates. (Perturbing the diagram if
necessary), the projection function πY : K → R onto the y-coordinate has a unique global
minimum, which we fix as our basepoint p. Moving right from p, every time a crossing is
reached for the first time, change the crossing information so that we “pass over” rather
than passing under.

Eventually we return to the basepoint. Given the new crossing information, we can
parametrise an embedding of the knot in R3 as follows: first give the knot a parametrisation
in time, i.e. K is the image of γ : [0, `] → R2, parametrised by arc-length, with γ(0) =
γ(`) = p. Next we use this to construct an embedding in R3, namely

e : [0, 2`]→ R3, e(t) =

{
(γ(t),−t) 0 ≤ t ≤ `
(p, t− 2`) ` ≤ 2 ≤ 2`.
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(Note that this is not smooth at two points: t = 0 and t = `. However, e can be smoothed
at these points by arbitrarily small perturbations.) Due to our assignment of crossing
information, this is truly a knot represented by the modified knot diagram. Moreover,
since p is the unique global minimum of πY , and ∂ze is strictly decreasing for (x, y, z) with
(x, y) 6= p, and strictly increasing at (p, z), the projection of e([0, 2`]) onto the (y, z)-plane
gives a knot diagram with no crossings. Therefore we have successfully unknotted K in
finitely many moves (at most the number of crossings in K). Next we prove that u(K) is

Unknot

K

p

Reassign crossings
rightwards from p.

Construct e : [0, 2`]→ R3.

Project.

x

y
x

y

z

z

y

Figure 1.6: Proof that the unknotting number is finite.

bounded above by c(K)/2. Let K be a knot diagram exhibiting exactly c(K) crossings. If
the above procedure changes N ≤ c(K)/2 crossings, we are done. Otherwise, follow the
above procedure but “passing under” instead of passing over at each new new crossing.
Then the end result is again the unknot (by constructing a similar embedding e′ as above,
but with ∂ze

′ = −∂ze). Moreover, the crossing information is completely opposite that
of the original procedure, so we must have changed c(K) − N crossings. But this time
N > c(K)/2, so c(K)−N ≤ c(K)/2 as required. 4

Exercise 1.4.3. (Lickorish, 1.11) Let X1 and X2 be knot complements of non-trivial knots
K1 and K2. Describe a homeomorphism h : ∂X1 → ∂X2 so that X1 th X2 has the same
homology as S3.

Solution: The boundary ∂X1 is homeomorphic to S1 × S1. Moreover, the two copies of S1

(in this product) can be chosen to be a meridian and longitude of K1 respectively, which
we denote by µ1 and ν1. Similarly, the boundary ∂X2 is the product of a meridian and
longitude µ2 and ν2 of K2.

We define h to be a homeomorphism identifying µ1 with ν2, and ν1 with µ2. The idea
is that H1(X1) is generated by µ1, but ν2 is trivial in X2. Similarly H1(X2) is generated
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by µ2, but ν1 is trivial in X1. Therefore both generators of H1(X1) and H1(X2) are trivial
in X, so we expect H1(X) to be trivial.

It is immediate that H0(X) and H3(X) agree with H0(S3) and H3(S3). Finally, by the
universal coefficient theorem and Poincaré duality, H2(X) is isomorphic to H1(X) modulo
torsion. Thus if H1(X) vanishes, so does H2(X). In summary, to prove that X = X1thX2

is a homology sphere, it suffices to prove that H1(X) is trivial.
We proceed by the long exact sequence of relative homology and the excision theorem.

Specifically, we have the following diagram of exact sequences:

H1(X1) H1(X) H1(X,X1) H0(X1)

H1(∂X2) H1(X2) H1(X2, ∂X2) H0(∂X2).

∼=

Using H to denote reduced homology, H0(X1) = H0(∂X2) = 0. We also know that H1(X1)
is generated by µ1, and H1(X2) by µ2. Finally, H1(∂X2) is the abelian group generated
by µ2 and ν2. Therefore the above diagram becomes

〈µ1〉 H1(X) H1(X,X1) 0

〈µ2, ν2〉 〈µ2〉 H1(X2, ∂X2) 0.

ϕ

∼=
ψ

Inspecting the bottom row, ψ is necessarily surjective. Moreover, exactness at 〈µ2〉 forces
ψ to be the zero map. Therefore H1(X2, ∂X2), and consequently H1(X,X1), are trivial.
But now this forces ϕ to be surjective. On the other hand, µ1 is trivial in X (since it
is identified with ν2). Therefore ϕ is the zero map. It follows that H1(X) is trivial as
required. 4
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Chapter 2

Prime factorisation

2.1 Seifert surfaces

Definition 2.1.1. A Seifert surface for an oriented link L in S3 is a connected compact
oriented surface contained in S3 which has L as its boundary.

Theorem 2.1.2. Every oriented link admits a Seifert surface.

The preferred proof of this fact uses the so-called Seifert algorithm. The idea is to
locally “uncross” all of the crossings so that a given knot diagram induces a collection of
disjoint simple closed curves in the plane. Then each of these bounds an oriented disk
(with the orientation induced from the boundary). Finally we “recross” the crossings to
glue the disks together in such a way that the boundary of the resulting surface is exactly
the given link. The resulting surface is oriented (and clearly compact and connected).

Remark. Any Seifert surface of a knot necessarily has one boundary component. In
general, the number of boundary components is the number of link components.

Definition 2.1.3. The genus g(K) of a knot K is defined by

g(K) = min{g(S) : S is a Seifert surface of K}.

Recall that the genus of a compact surface with boundary is the genus of the closed
surface obtained by capping all boundary components with disks. Alternatively, we can
define the genus of a compact surface via the Euler characteristic, using the formula

V − E + F = χ(S) = 2− 2g − b.

Corollary 2.1.4. K is the unknot if and only if g(K) = 0.

Clearly g(01) is zero. On the other hand, any connected surface with one boundary
component and genus 0 is necessarily a disk, so the boundary is 01.
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Remark. In summary the genus is another knot invariant that distinguishes the unknot
from all other knots. As remarked in chapter 1, invariants involving “min” are impractical
for most computations. However, abstract properties of intractable invariants can have
properties that still make them useful, as we see now.

Theorem 2.1.5. Knot genus is additive:

g(K1 +K2) = g(K1) + g(K2).

Proof. We give a proof outline. To see that g(K1 +K2) ≤ g(K1) + g(K2), consider Seifert
surfaces F1 and F2 for K1 and K2 with minimal genus (embedded in S3). Observe that
F1 ∪ F2 is non-separating, as follows:

By exercise 2.3.2, given any knot C, i(C,Fj) = lk(C,Kj). Inspecting knot diagrams,
we can always link Kj with copies of the unknot 01, 02 to arrange i(0j , Fk) = δjk. Since
the Fj are each connected embedded surfaces, this shows that F1 ∪ F2 is not separating.

In particular, it follows that we can find an arc α from K1 to K2 in S3− (F1∪F2). Now
choose a parallel arc α′ from K1 to K2, so that α and α′ bound a “strip” S (with twisting
to match the orientations of the Seifert surfaces). The connected sum of K1 and K2 along
α and α′ is equipped with the Seifert surface S ∪F1 ∪F2, which has genus g(K1) + g(K2).
This proves that

g(K1 +K2) ≤ g(S ∪ F1 ∪ F2) = g(F1) + g(F2) = g(K1) + g(K2).

Conversely, let F be a minimal genus Seifert surface for K1 + K2. Let S2 be a sphere
embedded in S3, which intersects K1 + K2 transversely at two points a, b in such a way
that K1 and K2 are contained in distinct components of S3 − S2. Then S2 intersects S
along an arc α from a to b, and along finitely many disjoint circles.

Therefore F is cut into finitely many oriented components Fi. In particular, two of these
satisfy ∂F1 = K1 ∪ nS1 and ∂F2 = ∂K2 ∪ mS1. Then g(F1) + g(F2) ≤ g(F ). Although
F1 and F2 are oriented, they are not Seifert surfaces since they have additional boundary
components. Therefore we do surgery to create a new Seifert surface for K1 +K2 without
increasing the genus which only intersects S2 along α.

Consider any component S1 ⊂ S ∩ S2. Then S1 bounds two disks in S2, one of which
contains α. The other disk may or may not intersect F . If it does, it does so along a circle.
By induction, there exists S1 ⊂ F ∩ S2 which bounds a disk which does not intersect F .

Consider a bicollar S1 × S0 around this circle (in F ). (One copy of S1 lies in each
component of S3 − S2.) We now do surgery and replace the collar S1 ×D1 with D2 × S0.
The surgery is valid since F doesn’t intersect the interior of either copy of D2.

If this surgery is non-separating, then by the classification of surfaces, the genus of F
decreases by 1. Therefore it must be separating. But K1 + K2 is connected and wasn’t
modified by the surgery, so it must belong to a single component of F = tFi. Proceeding
inductively, we produce a Seifert surface F ′ with boundary K1 +K2 which only intersects
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S2 along α. Moreover, g(F ′) ≤ g(F ). Therefore, cutting along α, we obtain Seifert surfaces
F ′1 and F ′2 for K1 and K2 such that

g(K1) + g(K2) ≤ g(F ′1) + g(F ′2) = g(F ′) ≤ g(F ) = g(K1 +K2).

This proves that g(K1) + g(K2) = g(K1 +K2) as required.

2.2 Prime decompositions

Using the additivity of genus, the following corollaries are almost immediate.

Corollary 2.2.1. 1. No non-trivial knots have additive inverses.

2. There are infinitely many knots.

3. Any knot of genus 1 is prime.

4. Every knot is a finite sum of prime knots.

Proof. 1. If K1 +K2 = 01, then g(K1) and g(K2) are non-negative integers summing to 0,
so g(K1) = g(K2) = 0. Therefore K1 = K2 = 01.

2. Let K be a non-trivial knot. Then for each n ∈ N, g(nK) = ng(K), and g(K) is
non-zero, so each of the nK are distinct knots.

3. Suppose K has genus 1, and K = K1+K2. Then the genus of K1 or K2 is necessarily
zero, so K1 or K2 is the unknot. Moreover, K is not the unknot since it has positive genus.
Therefore K is prime.

4. Suppose K is not prime. Then K = K1 +K2, where K1 and K2 have strictly lower
genus than K. By induction on the genus (and point 3 above), K is the connected sum of
at most g(K) prime knots.

In fact, analogously to unique factorisation domains, we find that prime knots appear
uniquely as factors of knots:

Theorem 2.2.2. Suppose K = P + Q, where P is prime. Suppose moreover that K =
K1 +K2. Then one of the following hold:

• There exists K ′1 such that K1 = P +K ′1, and Q = K ′1 +K2.

• There exists K ′2 such that K2 = P +K ′2, and Q = K ′2 +K1.

Proof. We first establish notation. Let ΣK be a 2-sphere embedded in S3 which realises
the decomposition K = K1 +K2. Let ΣP be a 2-sphere which realises the decomposition
K = P +Q. Let B be the (closed) component of S3 carved out by ΣP which “contains” P .
All intersections are assumed to be transverse. In particular, ΣK ∩ ΣP is a disjoint union
of (unknotted) circles. The proof idea is as follows:
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1. The circles in ΣK ∩ ΣP each have linking number -1, 0, or 1 with K. First we do
surgery to eliminate the circles with linking number 0.

2. The circles with linking number -1 or 1 bound components of ΣK ∩B. We show that
these surfaces are either disks or annuli.

3. We eliminate any components of ΣK ∩B which are disks.

4. The “trivial” annular components are eliminated in a similar manner to above. If
all components are “trivial”, we conclude that ΣK ∩ ΣP is empty, and deduce the
conclusion of the theorem.

5. Given any “non-trivial” annular component, we use it to deduce the conclusion of
the theorem.

1. Suppose S ⊂ ΣK ∩ΣP is a component of ΣK ∩ΣP . This cuts ΣK into two disks, which
either intersect K once each, or one of which intersects K twice. In the former, S has
linking number ±1 with K, and in the latter, it has linking number 0 with K.

Let C be a component of ΣK ∩ ΣP in the latter case. C bounds a disk on ΣK which
doesn’t intersect K. Without loss of generality, C is the innermost such circle, so that
it bounds a disk whose interior doesn’t intersect ΣP . We do surgery: consider a bicollar
S1 × S0 of ΣP around C. This bounds a copy of S1 × D1 ⊂ ΣP which we replace with
D2 × S0. This is necessarily separating (since ΣP has genus 0). Since K is connected
and intersects ΣP exactly twice, it intersects exactly one of the components obtained by
surgery. Therefore we disregard the other component, and observe that the intersection
S ⊂ ΣK ∩ ΣP has been eliminated. We inductively eliminate all components which have
linking number 0 with K.

2. ΣK ∩B is a disjoint union of genus zero surfaces bound by circles each with linking
number±1 withK. Suppose S ⊂ ΣK∩B is a surface bound by n circles. Then ΣK∩(S3−B)
is a copy of n disjoint disks, each intersecting K once each. This forces n ≤ 2. By the
classification of surfaces, either S is a disk or an annulus.

3. Suppose S ⊂ ΣK ∩ B is a component which is a disk. It necessarily intersects K
exactly once. On the other hand, ∂S cuts ΣP into two disks Σ′P t∂SΣ′′P which also intersect
K once each. This gives B = B′ tS B′′, with ∂B′ = Σ′P t∂S S, and ∂B′′ = Σ′′P t∂S S. This
gives an expression P = P ′ + P ′′, but P is prime, so either P ′ or P ′′ is trivial. Assuming
P ′ is trivial, we replace B and ΣP with B′′ and Σ′′P t∂S S. Then ΣK ∩ B no longer has
the component S (by a small perturbation using the orientation). Inductively, all “disk”
components are eliminated.

4. Now any component S ⊂ ΣK ∩B is an annulus, A′. This has a boundary C1 tC2 ⊂
ΣK ∩ΣP . This also bounds an annulus A on ΣP . Observe that A′ cuts B into two pieces,
one of which has boundary A ∪A′. We denote this component of B by M .

On the other hand, ΣP − A consists of two disjoint disks, each intersecting K exactly
once each. Choose one of the disks, say D1. Then thickening D (into the ball) we obtain
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a 3-ball D̃ whose boundary intersects K twice, with D̃ ∩K unknotted. But now D̃ ∪M is
topologically a ball, and its boundary intersects K exactly twice. Since P is a prime knot
contained in B, either P is contained in D̃∪M or its intersection with D̃∪M is trivial. In
the latter case, we update B by replacing it with B− (D̃∪M). This decreases the number
of components of ΣK ∩ ΣP .

If all components bounded by two annuli are trivial as above, by induction we eliminate
all components of ΣK ∩ΣP . Then (without loss of generality) ΣP lies inside the component
of S3 − ΣK containing K1. This expresses K1 as P +K ′1. On the other hand, it expresses
Q has K ′1 +K2.

5. Finally suppose we find a non-trivial component D̃ ∪M . Without loss of generality
M is contained in the component of S3 (carved out by ΣK) containing K1. Surgically
replace the other component by a trivial ball-arc pair, by noting that its intersection with
B was already trivial. Then K is replaced with K1, while D̃∪M is still a solid ball realising
the sum K = P +K ′. This proves that K1 = P +K ′1.

Finally to show that Q = K ′1 + K2, we follow a similar procedure: surgically replace

D̃ ∪M with a solid torus T , in such a way that D̃ ∪ T is still a ball. (Specifically glue ∂D
to a longitude of T ). This replaces K with Q. On the other hand, the component of ΣK

containing K2 has been unchanged, and we have realised Q = K ′1 + K2. This completes
the proof.

Corollary 2.2.3. Suppose P is prime, and P +Q = P +K. Then Q = K.

Proof. By the previous theorem, there are two cases to consider. First suppose there exists
P ′ such that P = P + P ′, and Q = P ′ +K. Since P is prime, P ′ must be the unknot, so
P ′ +K = K. Therefore Q = K. Next suppose there exists K ′ such that K = P +K ′ and
Q = K ′ + P . Then we immediately have Q = K.

Theorem 2.2.4. Every knot has a unique (up to order) factorisation into primes.

Proof. Suppose K = P1 + · · ·+Pn = Q1 + · · ·Qm are factorisations of K into prime knots.
By the previous theorem, P1 is a summand of Q1 or a summand of Q2 + · · · + Qm. But
now by inductively applying the theorem, P1 is a summand of Qi for some i. Since each Qi
is prime, it follows that P1 = Qi. Without loss of generality, choose i = 1. By the previous
corollary, we can now “cancel” the P1, so that P2 + · · ·+Pn = Q2 + · · ·+Qm. Inductively
we find that Pj = Qj for each 1 ≤ j ≤ n. But now Qn+1 + · · · + Qm = 0, so each Qj for
j > n is the unknot. This proves that n = m, and moreover that the Pj are equal to Qj
(up to order).

2.3 Exercises

Exercise 2.3.1. (Lickorish, 2.1) Prove that a non-trivial torus knot is prime by considering
the way in which a 2-sphere meeting the knot at two points intersects the torus that contains
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the knot.

Solution: Suppose K is a torus knot, and write K = K1 +K2. Then there is a 2-sphere S
which meets K (transversely) at exactly two points, with K1 and K2 contained in distinct
components of S3 \ S (according to the Schönflies theorem). Since K is a torus knot, it
is itself embedded on the surface of a torus T . By the transversality theorem, we assume
T ∩ S is transverse, so that it is a 1-manifold. T ∩ S is necessarily compact and without
boundary, so it is a disjoint union of simple closed curves.

Since T ∩ S is a disjoint union of embedded circles, either K meets two components of
T ∩S once each, or K meets one component of T ∩S twice. We first show that the former is
impossible. Note that the simple closed curves in the first case cannot be null-homotopic:
in that instance the Jordan curve theorem ensures that each curve intersects K an even
number of times. It follows that the curve is necessarily a meridian, so if it intersects the
torus knot exactly once, this contradicts the non-triviality of K.

Next suppose K intersects a single component γ of T ∩S, twice. By the Schönflies the-
orem, the signed count of intersections of K and S must vanish. Therefore γ ∩K contains
two points, with signs 1 and −1. Suppose first that γ is not null-homotopic. Then γ is
non-separating, and cutting along γ gives a cylinder. K induces two arcs on the cylinder,
each with end points on the same boundary component. Any such arc forms a bigon with
the boundary, so gluing the cylinder back to an arc, K is guaranteed to bound a disk. This
contradicts the non-triviality of K. It follows that γ is null-homotopic, so it necessarily
bounds a disk D. Recall our expression K = K1 +K2. We have shown that one of tne of
the components Ki is induced from an arc in D, so Ki is the unknot. This proves that K
is prime. 4

Exercise 2.3.2. (Lickorish, 2.4) Suppose F is a Seifert surface for an oriented knot K,
and let C be an oriented simple closed curve in F −K. Prove that lk(C,K) = 0.

Solution: We will prove a more general result. Namely, if K1,K2 are any two oriented
knots, then lk(K1,K2) is the signed intersection number i(K1, F ) of K1 with any Seifert
surface F of K2.

To prove this, we first show that lk(K1,K2) = i(K1, F ), where F is the Seifert surface
constructed by the Seifert algorithm. Next we show that i(K1, F ) is independent of the
choice of Seifert surface.

Consider the link diagram of K1 and K2. Let F be the Seifert surface of K2 obtained
by the Seifert algorithm. Let K ′2 be the “uncrossed” link corresponding to K2, and F ′ the
“uncrossed surface” bound by K ′2 which appears in the construction of F . Since K1 and
K2 are in general position, and all orientations are preserved, the signed count of crossings
of K1 and K2 is the same as that of K1 and K ′2. Similarly the signed count of intersections
of F with K1 is equal to that of F ′. It suffices to show that i(K1, F

′) = lk(K1,K
′
2).

Since K ′2 is a collection of disjoint unknots, and F ′ is a collection of disks bounded
by the components of K ′2, it suffices to show equality of linking and intersection numbers
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for a single component. Assume without loss of generality that K ′2 is the unknot, and F ′

is a disk. (Working in the projection), the intersection of K1 with F ′ is a union of arcs
with their endpoints on K ′2. Fix an arc γ. There are three cases: either the signed count
of intersections is -2, 0, or 2. The signed count are -2 and 2 exactly when the crossings
for the arc alternate, which corresponds to the arc passing through the surface F ′ at one
point. On the other hand, the signed count is 0 exactly when the crossings of the arc
and K ′2 don’t alternate, and hence the arc doesn’t pass through F ′. Therefore the signed
counts of intersections i(K1, F

′) is exactly lk(K1,K
′
2) as required, from which it follows

that i(K1, F ) = lk(K1,K2).
It remains to prove that i(K1, F ) is independent of the choice of Seifert surface. This

is a homological result: suppose F, F ′ are both Seifert surfaces of K2. Then F and F ′ rep-
resent 2-chains in homology. Reversing the orientation of F ′ and gluing it to F along their
common boundary (K2) gives an oriented surface without boundary, and hence a 2-cycle.
Therefore its image under ∂ must vanish. But in particular this requires that the algebraic
intersection number of F tK2 F

′ with any knot vanishes. Therefore i(K1, F ) = i(K1, F
′)

as required. 4

Exercise 2.3.3. (Lickorish, 2.9) Show that connected sums of links are not well defined,
and that L1 + L2 = L1 + L3 does not imply that L2 = L3.

Solution: First let L1 be a trivially linked unknot and trefoil knot (i.e. a trefoil and unknot
with linking number 0). Let L2 be a trefoil knot. Then L1 +L2 is not well defined, since it
either gives two knots with crossing numbers of 3, or two knots where one of them is the
unknot. These cannot be equivalent links.

We now write L = L1 + L2 to mean an internal sum; in other words L is already
understood, and L1 and L2 are links such that L is their sum given a choice of components
to carry out the operation (even though the connected sum of links isn’t well defined as
an external operation.) We show that L1 + L2 = L1 + L3 doesn’t imply that L2 = L3.
Concretely, let L be a link with two components; a connected sum of two trefoils with the
same chirality, and an unlinked trefoil again with the same chirality. (Hereafter all trefoil
knots are chosen to have the same chirality.) Now if L1 is a trefoil, and L2 consists of an
unlinked unknot and the sum of two trefoils, we see that L = L1 +L2. On the other hand,
if L3 consists of two unlinked trefoils, again L = L1 + L3. But for the same reason as
earlier, L2 is not equivalent to L3. 4
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Chapter 3

Jones and HOMFLY polynomials

3.1 Jones polynomial

Definition 3.1.1. The Kauffman bracket is a map

〈−〉 : link diagrams → Z[A,A−1]

determined uniquely by

• 〈01〉 = 1,

• 〈L t 01〉 = (−A2 −A−2)〈L〉,

• 〈 〉 = A〈 〉+A−1〈 〉

Lemma 3.1.2. It is straight forward to verify that the Kauffman bracket is invariant under
type II and type III Reidemeister moves. On the other hand, type I Reidemeister moves
have the following effect:

〈 〉 = −A3〈 〉, 〈 〉 = −A−3〈 〉.

Example. Let H denote the usual diagram of a Hopf link. Then by two applications of
the above lemma, we find that

〈H〉 = −A4 −A−4.

Using this calculation, it straight forward to show that

〈31〉 = A−7 −A−3 −A5,

where 31 is the usual (rotationally symmetric) diagram of the trefoil knot. Finally if 41 is
the usual diagram of the figure-eight knot (e.g. as used in exercise 1.4.1 (Lickorish 1.1)),
then

〈41〉 = A−1〈31〉 −A4〈H〉 = A−8 −A−4 + 1−A4 +A8.
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Definition 3.1.3. The writhe of an oriented diagram D, denoted w(D), is the signed sum
of the crossings of D (with signs assigned as in figure 1.4). This is invariant number type
II and III Reidemeister moves, but changes by −1 under a type I Reidemeister move (and
+1 under the mirrored Reidemeister move).

Theorem 3.1.4. Let D be an oriented link diagram. Then

(−A)−3w(D)〈D〉

is a link invariant of D.

Proof. If D is modified by type II or III Reidemeister moves, neither the writhe nor Kauff-
man bracket change, so the above epression is unchanged. If D  D′ is a type I Reide-
meister move, by the earlier lemma,

(−A)−3w(D)〈D〉 = (−A)−3(w(D′)+1)(−A3〈D′〉) = (−A)−3w(D′)〈D′〉.

Definition 3.1.5. The Jones Polynomial is the link invariant V (L) defined by

V (L) =
(

(−A)−3w(D)〈D〉
)
t1/2=A−2

∈ Z[t1/2, t−1/2]

for any link diagram D of L.

For knots (and more generally links with an odd number of components), the Jones
polynomial is truly a polynomial in the sense that it lies in Z[t, t−1]. The Jones polynomial
does not detect the orientation of knots, since if the orientation of every component of a
link is reversed, the signed counts are unchanged. It is currently unknown whether or not
there is a non-trivial knot K such that V (K) = 1.

Example. The writhe of the trefoil is 3. Therefore its Jones polynomial is

V (31) = −t−4 + t−3 + t−1.

The writhe of the figure-8 knot is 0. Therefore its Jones polynomial is

V (41) = t−2 − t−1 + 1− t+ t2.

Theorem 3.1.6. The Jones polynomial is characterised by normalisation and a skein
relation. More precisely, the Jones polynomial is the unique function

V : { oriented links in S3} → Z[t1/2, t−1/2]

satisfying

20



• V (01) = 1,

• t−1V (L+) − tV (L−) + (t−1/2 − t1/2)V (L0) = 0, for any L0, L± which have identical
link diagrams at all but one crossing, at which point L+ has a positive crossing, L− a
negative crossing, and L0 an un-crossing (in the unique orientation-compatible way).

Proof. A straight forward computation shows that the above properties are satisfied by the
Jones polynomial. For the converse, it suffices to show that the above properties uniquely
define V (L) for all link diagrams L. We proceed by induction on the number of crossings
of a link diagram. The base case is known; V (01) = 1. For the inductive step, suppose
V (L) is known for all links L with at most n crossings. Suppose L′ is a link with n + 1
crossings. By changing k crossings for some k, we obtain a diagram of an unlink U . By
the skein relations, V (L′) is expressed in terms of V (U) and V (L1), . . . , V (Lk) where each
Li is a link diagram with n crossings. Therefore the problem reduces to knowing V (U) for
all unlinks U .

Using the fact that V is a link invariant, we can use the skein relations to inductively
conclude that the unlink with c components has invariant (−t−1/2−t1/2)c−1. This completes
the proof.

Proposition 3.1.7. Two immediate properties of the Jones polynomial are

• V (K1 +K2) = V (K1)V (K2),

• V (K)(t) = V (K)(t−1).

Proof. For the first fact, simply compute the Jones polynomial of K1 first. For the second
fact, observe that reflections do not change the Kauffman bracket, but they change the
sign of the writhe.

Corollary 3.1.8. The trefoil is distinct from its reflection.

Using the multiplicative property of the Jones polynomial, one might like to attempt to
prove that knots admit prime decompositions. The proof would look something like this:

Let K be a knot. If K isn’t prime, it has a decomposition K = K1 +K2 into non-trivial
knots. Then V (K) = V (K1)V (K2). Since Z[t1/2, t−1/2] is a unique factorisation domain,
by induction V (K) can only be factored into finitely many terms, at which point each factor
is the Jones polynomial of a prime knot.

The reason this proof fails is because there is no guarantee that V (Ki) isn’t a unit if Ki

is non-trivial. In fact, we noted earlier that it is open whether or not there exist non-trivial
knots whose Jones polynomial is 1. Conversely, it is clear that the “uniqueness” aspect of a
unique factorisation domain will not guarantee uniqueness of prime decompositions, since
different knots can have the same Jones polynomial. In summary, we obtain the following
question:

Question. Does there exist a non-trivial knot K such that V (K) is a unit in Z[t, t−1]?
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3.2 HOMFLY polynomial

Theorem 3.2.1. There is a unique link invariant

P : { oriented links in S3} → Z[`±1,m±1]

such that

• P (01) = 1,

• `P (L+) + `−1P (L−) +mP (L0) = 0.

P is called the HOMFLY polynomial.

Proof. We proceed with a proof by induction on the number of crossings. At each step we
must ensure the skein relation and invariance under Reidemeister moves. For each n, let
Dn denote the set of link diagrams in the plane with at most n crossings. We will prove
that for all n ∈ N,

1. The skein relation holds for any three diagrams in Dn related in the assigned way.

2. P (D) is unchanged by Reidemeister moves on D involving at most n crossings.

3. Any ascending diagram D of a link in Dn with k components has

P (D) =
(−`− `−1

m

)k−1
= µk−1.

By an ascending diagram, we mean a link diagram where each component has been ordered
and assigned a base point, so that tracing out the components in order, each crossing is
first encountered as an underpass.

Base case: D0 consists only of unlinked diagrams of the unknot. We verify the above
three properties for n = 0:

The first result holds vacuously; no diagrams in D0 contain crossings. The second result
also holds vacuously; all Reidemeister moves involve at least 1 crossing. Finally the the
third property can be forced, since members of D0 are precisely diagrams consisting of
unlinks of k components.

For the inductive step, suppose that P : Dn−1 → Z[`±1,m±1] has been defined, so that
the above properties hold. We define P : Dn → Z[`±1,m±1] as follows:

(i) Let D be a diagram with n crossings and k components in some order.

(ii) Choose a base point in each component, and let αD denote the associated ascending
diagram. Define P (αD) = µk−1.

22



(iii) Changing crossings one at a time, αD can be modified to achieve D. With each
crossing change, there is a bi-product with n − 1 crossings (according to the Skein
relations). By the inductive hypothesis, the value of P on such a bi-product diagram
is known. P (D) is then defined using the Skein relations (applied to P (αD) and each
of the bi-products).

Each step required a choice: we must show that P (D) is well defined by proving that P (D)
is unaffected by the component order, base point position, and crossing-change order. We
start with the choice in (iii).

Let Dαβ be a diagram with α, β ∈ {+, 0,−}. The indices α and β represent the signs
of fixed crossings. To prove that the order in which crossings are changed doesn’t affect P ,
we transpose the operations. We obtain the following four skein relations:

`P (D++) + `−1P (D−+) +mP (D0+) = 0

`P (D−+) + `−1P (D−−) +mP (D−0) = 0

`P (D++) + `−1P (D+−) +mP (D+0) = 0

`P (D+−) + `−1P (D−−) +mP (D0−) = 0.

For example, to get from D−− to D++, we can go via D−+ or D+−. To prove that the
order doesn’t matter, we must show that

mP (D0+)− `−2mP (D−0) = mP (D+0)− `−2mP (D0−).

By the inductive hypothesis, the skein relation holds, so we have

`P (D0+) + `−1P (D0−) +mP (D00) = 0

`P (D+0) + `−1P (D−0) +mP (D00) = 0.

The result follows.
Next we prove that there is no dependence on the choice in (ii), i.e. the choice of

base point for each component is irrelevant. Suppose b is the original base point of a
component, and b′ is a new base point, which is placed one crossing x after b. Let βD
denote the ascending diagram of D using this new base point. If the crossing x involved
a distinct component, then αD = βD, so nothing changes. If the crossing consists of
segments from our chosen component, then βD differs from αD be reversing this crossing.
But annulling this crossing as in the skein relation gives another ascending diagram, with
exactly one more component. (This is easily seen by considering the “heights” of the four
segments meeting at a crossing.) Therefore

`P (βD) + `−1µk−1 +mµk = 0.

This gives P (βD) = µk−1. This shows that P (αD) = P (βD). But above we showed that
the order in which crossings are changed doesn’t affect the value of P (D), so one such
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process is to change from βD to αD, and then obtain D. Since P (αD) = P (βD), the final
value for P (D) is again unchanged.

So far we have shown that the value of P (D) does not depend on the base points of
components, or the order in which crossings are changed. The only possible dependence is
on the order of the components. It is also clear that P satisfies the skein relation for any
three related diagrams with at most n crossings. Before proving that P is independent of
the order of components, it remains to prove that P is invariant under Reidemeister moves.

The idea for each of the types of Reidemeister moves is to push everything to the start
of the algorithm. We prove the invariance under type I Reidemeister moves, as type II and
III are similar. Suppose D is modified by a type I Reidemeister move which involves at
most n crossings. Then the only possibility is that a crossing was removed. Let D′ denote
the diagram from D after removing a crossing with the type I move. Since the choice of
base point in each component has been shown to be immaterial, we can choose the base
point to be immediately before the crossing. Then αD still contains the crossing, and
the algorithm to calculate P (D) from αD doesn’t affect the crossing. Moreover, it follows
that calculating P (D′) from αD′ follows precisely the same crossing changes. Therefore it
suffices to show that P (αD) = P (αD′). But this is immediate, since both αD and αD′ are
ascending diagrams with the same number of components.

Proving invariance under type II and type III moves in a similar fashion, it remains to
prove that P (D) is invariant under the choice of component ordering. We do not describe
the details here, but the idea is as follows: suppose we choose a new ordering, and obtain
an ascending diagram βD. But now we can re-label the ordering, consider βD is a diagram
obtained by changing crossings in αD. Then P (βD) is obtained from P (αD) = µk−1.
Since β was arbitrary, it suffices to prove that P (βD) = µk−1 to prove that P (D) doesn’t
depend on the choice of component order.

3.3 Exercises

Exercise 3.3.1. (Exercise to myself) Can I modify the definition of the Kauffman bracket
to find a link invariant?

Solution: For any (possibly multivariable) polynomials P,Q,R ∈ Z[Ai] let I be a map from
link diagrams to Z[Ai] defined by

(a) I(01) = 1,

(b) I(L t 01) = PI(L),

(c) I( ) = QI( ) +RI( ).

Then by relations (b) and (c),

I( ) = (R+ PQ)I( ), I( ) = (PR+Q)I( ).
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To achieve link invariance, we must have R + PQ = PR + Q = 1. This forces RP 2 =
P +R− 1, so in particular

2 degP + degR ≤ max{degP,degR}.

This forces P to be an integer (so that it has degree 0 or −∞). Thus write P = n ∈ Z, so
that

R+ nQ = nR+Q = 1.

Next we consider type II moves. By using invariance of I under type I moves (and (b) and
(c)), it is straight forward to show that we must have

Q+R = 0.

Substitution into the earlier relations give (1− n)R = (n− 1)R = 1. This requires R non-
zero, which forces 1−n = n−1. The only solution is n = 1, which contradicts (1−n)R = 1.
Therefore there are no link invariants satisfying the generalised Kauffman properties. 4

Exercise 3.3.2. (Exercise to myself) Is there a map from link diagrams to Z[t1/2, t−1/2]
which satisfies the skein relation and normalisation (characterising the Jones polynomial)
which isn’t a link invariant?

Solution: For any Laurent polynomial P (A) ∈ Z[A,A−1] let BP be a map from link
diagrams to Z[A,A−1] defined by

(a) BP (01) = 1,

(b) BP (D t 01) = P (A)BP (D),

(c) BP ( ) = ABP ( ) +A−1BP ( ).

This uniquely determines a function on link diagrams by induction: suppose the function
is defined for links with at most n crossings. Then given a link with n + 1 crossings, (c)
reduces the link to two copies with n crossings each.

Note that BP is never invariant under both type I Reidemeister moves and its ”dual
move”, by applications of (b) and (c). (Precisely, this follows from the argument in the
previous exercise.) We can now define a modified Jones polynomial:

VP (D) =
(

(−A)−3w(D)BP (D)
)
t1/2=A−2

∈ Z[t1/2, t−1/2].

In general this is not a link invariant, although it is a well defined map on link diagrams.
It remains to verify that VP is normalised and satisfies the skein relation. Normalisation
is immediate, and the skein relation follows from the fact that

w(L+)− 1 = w(L0) = w(L−) + 1

and property (c). 4
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Chapter 4

Alternating links

4.1 General properties

In this section we prove two important properties of alternating links, which essentially say
that split-ness and primality can be read off alternating link diagrams. These motivate the
idea that alternating diagrams are in some sense “minimal”, which is pursued in the next
section. Formally, the relevant definitions and theorems are as follows:

Definition 4.1.1. A link L is alternating if it admits an alternating link diagram D.
That is, tracing around any component, the crossings alternate between underpasses and
overpasses.

Definition 4.1.2. A link L ⊂ S3 is split if there exists S2 ⊂ S3 such that non-empty
components of L lie in both components of S3− S2, with L∩ S2 = ∅. A link diagram D is
split if there is a simple closed curve γ in R2 such that non-empty components of D lie in
both components of R2 − γ, with D ∩ γ = ∅.

Definition 4.1.3. A link L ⊂ S3 (which is not the unknot) is prime if for any S2 ⊂ S3

intersecting L transversely at exactly two points, L intersects a component of S3 − S2

along an unknotted arc. A link diagram D is prime if for any simple closed curve γ in
R2 intersecting D transversely at exactly two points, D intersects a component of R2 − γ
along a link diagram of a trivial ball-arc pair. D is said to be strongly prime if the above
intersection is guaranteed to be an arc with no crossings.

The two main theorems are the following:

Theorem 4.1.4. Let L be a link with an alternating diagram D. Then L is split if and
only if D is split.

Theorem 4.1.5. Let L be a link with an alternating diagram D. Then L is prime if and
only if D is prime.
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To prove these theorems we fix some notation. A link diagram D will be taken to be
a subset of S2 (rather than R2). Then D ⊂ S2 ⊂ S3, and the corresponding link L can
be isotoped so that it agrees with D everywhere except on small balls at the crossings
of D. We place a ball centered at each crossing, and declare that L lies on the spheres
bounding these balls (so as to “blow up” the crossings). These balls are called bubbles. S2

separates every bubble into a Northern hemisphere and Southern hemisphere by fixing an
orientation.

We next define S+ and S− to be the spheres obtained from S2 by perturbing by the
bubbles. Formally, define S+ to be the union of “S2 − bubbles” with all of the Northern
hemispheres, and S− to be the union of “S2 − bubbles” with Southern hemispheres. We
further define B+ to be the unique component of S3 − S+ which is disjoint from all the
bubbles, and B− to be the component of S3 − S+ disjoint from the bubbles.

Finally we fix the notion of a surface in S3 in general position with respect to our data.
Let F be a surface in S3 transverse to L. By perturbing F , it can be assumed to intersect
L only on S2 (so that F never meets L on the surface of bubbles). Moreover, F can be
taken to be transverse to S+ and S−. Then F meets S+ and S− in the union of disjoint
simple closed curves.

Next we consider the intersection of F with a bubble. By the assumption that F meets
L only along S2, it must be the case that F meets each bubble in a union of “saddles”.
The boundary of each saddle is comprised of four arcs (forming a circle), with two arcs in
each hemisphere. We say that F as described is a surface in general position.

Definition 4.1.6. Suppose F ⊂ S3 is a surface in general position with respect to the data
(D,L, S+, S−,S2). We say that F is in standard position if:

(a) Each of F ∩B+ and F ∩B− is a disjoint union of disks.

(b) No component of F ∩ S+ or F ∩ S− meets a bubble in more than one arc.

(c) Each component of F ∩ S+ and F ∩ S− meets some saddle or meets L.

Lemma 4.1.7. Let D be a non-split diagram for L. Suppose F is a 2-sphere separating
some components of L. Then F can be replaced with another 2-sphere with the same
property, but in standard position.

Proof. We give a proof outline. Suppose F is in general position. We first explain (a).
The same argument applies for both B+ and B−. Consider the components of F ∩ S+:
these are each simple closed curves. Of these, consider the ones that do not bound a disk
in B+. Choose the inner-most of these curves. This curve bounds a disk on S+ which can
be pushed to a disk in B+. Since our chosen curve was inner-most, the interior of this disk
is disjoint from F . Cutting along the disk, we decompose F into two disjoint spheres. At
least one of these components separates L, and we have removed the curve. By induction,
all curves in F ∩ S+ and F ∩ S− that do not bound disks in F ∩ B+ and F ∩ B− can be
eliminated.
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For (c), suppose a component C of F ∩ S+ or F ∩ S− doesn’t meet a saddle. Then C
necessarily lies in S′ = S2 − bubbles. But F doesn’t intersect D, so this forces C to not
intersect D. In particular C cannot separate D by assumption.

On the other hand, C bounds two disks whose union is F , and these disks necessarily
lie in F ∩ B+ and F ∩ B−. Since C doesn’t separate D, F doesn’t separate L. This is a
contradiction, so C must meet a saddle. In particular, it meets a saddle or L.

Finally, we leave (b) for when I have more time!

Lemma 4.1.8. Suppose L, with diagram D, is not a split link. Suppose F is a 2-sphere
meeting L transversely at two points, separating S3 into two balls, neither of which in-
tersects L in trivial ball-arc pairs. Then F can be replaced with a 2-sphere in standard
position.

Proof. The proof of this lemma is analogous to the previous lemma.

The first of these two lemmas is the key ingredient in the proof of alternating links being
split if and only if alternating diagrams are split, and the second lemma is key for alternating
links being prime if and only if alternating diagrams are prime. An important property of
alternating links is that we can deduce the following: suppose F is in standard position,
and D is alternating. Consider a component C of F ∩ S+, and give it an orientation.
Suppose C enters the surface of a bubble, with the bubble on its left. Then the next time
C enters the surface of a bubble, it must appear on the right, and so on, alternating. The
one exception is that F ∩S+ can intersect D. (For example, the pattern can be left, right,
left, intersection with D, left, right,. . . )

Theorem 4.1.9. Let L be a link with an alternating diagram D. Then L is split if and
only if D is split.

Proof. If D is split, it is immediate that L is split. Conversely, suppose L is split but D is
not split. By an earlier lemma, there exists a 2-sphere F separating some components of L
in standard position with (D,L, S+, S−). Choose an inner-most component C of F ∩ S+,
i.e. a curve C which bounds a disk on S+ whose interior doesn’t meet F . By property (c)
(of standard position surfaces), C meets a saddle. To return back to the original position,
C must meet at least two saddles, so in particular it meets at least one saddle on the left
and one on the right.

Now consider the saddle that meets C on the left. There is another arc in F bounding
the saddle, and by property (b), this arc belongs to a distinct component C ′ of F ∩ S+.
On the other hand, C also meets a saddle on the right, which is also bounded by an arc
from a component C ′′ of F ∩S+. This shows that both sides of C intersect F , so C cannot
be inner-most. This proves that in fact F cannot intersect S+ at all. Similarly F ∩ S−
is empty. It follows that F is contained in B+, B−, or a bubble. In any case F cannot
separate L.

This is a contradiction, so it must be the case that whenever L is split, so is D.
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Theorem 4.1.10. Let L be a link with an alternating diagram D. Then L is prime if and
only if D is prime.

Proof. This result follows an analogous proof by making use of the second standard-position
lemma.

4.2 Applications of the Jones polynomial

The main goal of this section is to prove that any (appropriately reduced) alternating
diagram necessarily exhibits the crossing number of the corresponding link. This was a
long standing conjecture - one of the Tait conjectures - and first resolved in 1987. (The
resolution used the Jones polynomial, as we do now.) Another of the Tait conjectures
we resolve here that the writhe of a reduced alternating diagram is an invariant of the
knot. (More precisely, any two reduced alternating diagrams of a given knot have the same
writhe.)

Definition 4.2.1. Suppose D is an alternating diagram. D is reduced if it has no removable
crossings. That is, the diagram cannot be expressed as A B (or its mirror image).

Next we wish to introduce a measure of redundancy for link diagrams. To this end we
develop some notation to compare link diagrams.

Definition 4.2.2. Let D be a link diagram. Order the n crossings of D. A function
s : {1, . . . , n} → {−1, 1} is called a state of D. Given a state s, let sD denote the diagram
obtained by replacing crossings as follows:

• If s(i) = 1, and is the ith crossing, replace it with .

• If s(i) = −1, and is the ith crossing, replace it with .

For any s, |sD| denotes the number of components of sD. (Note that sD is an unlink.)

Proposition 4.2.3. Let D be a link diagram. Then the Kauffman bracket is given by

〈D〉 =
∑
s state

A
∑
i s(i)(−A−2 −A2)|sD|−1.

Proof. It suffices to show that the above formula satisfies the definition of the Kauffman
bracket.

1. Let D denote 01. Then there is a unique state (the empty state), so
∑

i s(i) = 0. On
the other hand, sD = D has one component, so |sD|−1 = 0. It follows that the expression
on the right gives 1 as required.

2. Suppose D′ = D t 01. Then all of the states are unchanged: the only difference on
the right side is that |sD′| = |sD|+ 1. Therefore the right side is multiplied by a factor of
−A−2 −A2, as required.
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3. Finally observe that has two states, giving the diagrams and . Suppose D′

and D′′ are obtained my modifying a crossing in D to each of the un-crossings. Every
state s′ on D′ extends to a state s on D, with |s′D′| = |sD|, and

∑
i s
′(i) =

∑
i s(i) − 1.

Analogous results hold for D′′. Combining these, we have

〈D〉 =
∑

s state of D

A
∑
i s(i)(−A−2 −A2)|sD|−1

=
∑

s′ state of D′

A
∑
i s
′(i)+1(−A−2 −A2)|s

′D′|−1

+
∑

s′′ state of D′′

A
∑
i s
′′(i)−1(−A−2 −A2)|s

′′D′′|−1

= A〈D′〉+A−1〈D′′〉.

This completes the proof that the expression on the right agrees with the definition of the
Kauffman bracket.

Definition 4.2.4. We write s+ and s− to denote the constant states sending all crossings
to 1 and −1 respectively. D is said to be plus-adequate if |s+D| > |sD| for all s with∑

i s(i) = n − 2, and minus-adequate if |s−D| > |sD| for all s with
∑

i s(i) = 2 − n. D is
called adequate if it is both plus and minus adequate.

The idea is that whenever two arcs replace a crossing (to from s+D from D) we require
that all of these pairs belong to distinct components. (Similarly for s−D.)

Proposition 4.2.5. A reduced alternating link diagram is adequate.

Proof. Suppose D is a reduced alternating link diagram. Since D is alternating, giving it
a chess-board colouring, s+D consists of boundaries of black regions (wlog) with corners
rounded off, and s−D consists of boundaries of white regions.

Suppose for a contradiction that D is not plus-adequate, so changing some crossing of
s+D gives a diagram with at least as many components. Then this crossing is removable:
consider a push-off S from the component formed by changing the given crossing of s+D.
This realises the removability of the crossing, since the alternating condition requires that
S does not interact with any other crossings.

Definition 4.2.6. Given a Laurent polynomial P , we write MP and mP to denote the
maximum and minimum degrees of terms of P . The breadth of a polynomial, denoted BP ,
is defined by MP −mP .

Lemma 4.2.7. Let D be a link diagram with n crossings. Then

• M〈D〉 ≤ n+ 2|s+D| − 2, with equality if D is plus-adequate.

• m〈D〉 ≥ −n− 2|s−D|+ 2, with equality if D is minus-adequate.
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Proof. For each state s, we write

〈D|s〉 = A
∑
i s(i)(−A−2 −A2)|sD|−1.

By an earlier proposition, 〈D〉 =
∑

s〈D|s〉. Since
∑

i s+(i) = n, M〈D|s+〉 = n+2|s+D|−2.
Now consider any other state s. This is achieved from s+ by changing one point at a time,
i.e. we have a sequence s0, . . . , sk such that

s0 = s+, sk = s, sr−1(i) = sr(i) for all but exactly one i ∈ {1, . . . , n}.

For each r, we have ∑
i

sr(i) = n− 2r, |srD| = |sr−1D| ± 1.

It follows that M〈D|sr−1〉 −M〈D|sr〉 is either 2 − 2 or 2 + 2, i.e. 0 or 4. In particular,
M〈D|sr−i〉 ≥M〈D|sr〉, so by induction

M〈D|s〉 ≤ n+ 2|s+D| − 2.

Since s was arbitrary, summing all of the above gives

M〈D〉 ≤ n+ 2|s+D| − 2.

Next assume that D is plus-adequate. Then in the previous sequence, |s+D| = |s1D| + 1
is guaranteed, M〈D|s1〉 < M〈D|s+〉. It follows that s+ is the only state achieving degree
n+2|s+D|−2, so summing over all states cannot cancel the largest degree term. Therefore

M〈D〉 = n+ 2|s+D| − 2.

Next we inspect the second condition. Recall that the mirror image of a diagram
corresponds to the substitution of A−1 for A in the Kauffman polynomial. Moreover, it
corresponds to replacing each state s by reversing its image. It follows that the second
statement is simply the first applied to D.

Corollary 4.2.8. If D is adequate, then

B〈D〉 = M〈D〉 −m〈D〉 = 2n+ 2|s+D|+ 2|s−D| − 4.

To use this result, we need some further estimates on |s+D|+ |s−D|.

Lemma 4.2.9. Let D be a non-split link diagram with n crossings. Then

|s+D|+ |s−D| ≤ n+ 2.
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Proof. This follows from induction on n. If n = 0, the inequality reads 2 ≤ 2, which is
clearly true. Next suppose the result holds for diagrams with n − 1 crossings. Choose
a crossing of D. Replacing the crossing with or , one of the outcomes D′ must be
connected (essentially by the Jordan curve theorem). Then without loss of generality,
s+D

′ = s+D, and |s−D′| = |s−D| ± 1. By the inductive hypothesis, it follows that

|s+D|+ |sD| = |s+D
′|+ |s−D′| ∓ 1 ≤ (n− 1) + 2∓ 1 ≤ n+ 2.

This result can tightened:

Lemma 4.2.10. Let D be a connected n-crossing diagram. If D is alternating, then
|s+D|+ |s−D| = n+ 2.

Proof. Consider a chess-board colouring of the regions bound by D. Then |s+D| is the
number of components of s+D, but each component bounds a black region (wlog). Similarly
|s−D| counts the number of white regions. Therefore |s+D|+ |s−D| is the number of faces
of D.

On the other hand, recall that V −E + F = 2 by Euler’s formula. Since D is 4-valent,
E = 2V . Therefore

|s+D|+ |s−D| = F = V + 2 = n+ 2

as required.

Theorem 4.2.11. Let D be a connected n-crossing diagram of an oriented link L. Then
B(V (L)) ≤ n. If D is alternating and reduced, then B(V (L)) = n.

Proof. Under the substitution t = A−4, we have

V (L) = (−A)−3w(D)〈D〉.

This gives

4B(V (L)) = B((−A)−3w(D)〈D〉) = B(〈D〉) ≤ 2n+ 2|s+D|+ 2|s−D| − 4

by lemma 4.2.7. Moreover, by lemma 4.2.9, this gives

4B(V (L)) ≤ 2n+ 2|s+D|+ 2|s−D| − 4 ≤ 2n+ 2(n+ 2)− 4 = 4n.

It follows that B(V (L)) ≤ n. Now suppose that D is alternating and reduced. Then D
is adequate, so by corollary 4.2.8, the first inequality above is strict. Moreover, by lemma
4.2.10, the second inequality is also strict. This gives the second claim.

Corollary 4.2.12 (Tait’s conjecture). Suppose L is a link that admits a reduced alternating
diagram. Then this diagram exhibits the crossing number of L.
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Proof. Suppose L is split. Then the alternating diagram D is necessarily split by one of
the main theorems from the previous section. Consider the connected components Di of
D. Again by the theorem from the previous section, the link Li corresponding to Di is not
split, and hence admits only connected link diagrams.

By the previous theorem, B(V (Li)) = ni, where ni is the number of crossings in the
reduced alternating diagram Di. But by the first part of the previous theorem, any diagram
of Li has at least B(V (Li)) crossings. It follows that any diagram of L has at least

∑
i ni

crossings. But D has exactly
∑

i ni crossings as required.

4.3 Exercises

Exercise 4.3.1. (Lickorish 4.2) Prove that the Whitehead link is not a split link.

Solution: Each component of the Whitehead link W is an unknot. Since any two link
diagrams are related by Reidemeister moves, the two componenets of any diagram of the
Whitehead link will always be unknots. In particular, if the Whitehead link was a split
link, it would have a diagram 01 t 01. Therefore

V (W ) = −t1/2 − t−1/2.

On the other hand, a straight forward calculation shows that the Jones polynomial of the
Whitehead link is

V (W ) = t−3/2(−1 + t− 2t2 + t3 − 2t4 + t5).

4

Exercise 4.3.2. (Lickorish 4.5) Show that K1 + K2 is an alternating knot if and only if
K1 and K2 are alternating.

Solution: We first note that the connected sum of any two alternating knots is an alter-
nating knot. Suppose K1 and K2 are alternating, and let D1 and D2 to be alternating
diagrams for K1 and K2 respectively.

The “boundary” of the diagrams D1 and D2 are comprised of segments whose end-
points are under-crossings and over-crossings. Each segment inherits an orientation from
the embedding in the plane, as well as an orientation from the crossings at the end points.
We now sign each segment: + if the two induced orientations agree, and − if they disagree.

If at least one boundary segment from D1 and D2 have the same sign, then the naive
connected sum between these segments gives an alternating diagram of K1 +K2. If every
boundary segment of D1 has positive sign and every boundary segment of D2 has negative
sign, we create a new alternating diagram D′2 as follows:

D2 can be viewed as a graph in the plane. Then D2 defines an “exterior” face F1,
and choosing any boundary segment of D2, another face F2. Choose push-offs C1, C2 of
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∂F1 and ∂F2 disjoint from D2. The curves Ci bound an annulus, in which D2 is not
embedded. An isotopy of the annulus in the 3-sphere is given by swapping the inner and
outer boundaries. (Visually, this corresponds to rotating a solid torus by 180◦ along a
meridian.) Projecting this back onto the plane, we obtain a new alternating diagram D′2,
in which our chosen boundary segment is still a boundary segment, but has opposite sign.
Therefore the connected sum of D1 and D′2 via this segment gives an alternating diagram
of K1 +K2.

This completes the proof of one direction. For the other direction, recall that a knot K
admitting an alternating diagram is prime if and only if the alternating diagram is prime.
With this in mind, suppose K = K1 + K2 is alternating, and let D be an alternating
diagram of K. Since K isn’t prime, D is not a prime diagram, so there exists a simple
closed curve γ realising a non-trivial connected sum of D. Moreover, (considering chess
board colourings for example), one can show that the connected summands are themselves
alternating. Inductively, we conclude that D can be expressed as a connected sum of al-
ternating prime knots. Since prime decompositions are unique, this gives an expression for
both K1 and K2 as connected sums of alternating prime knots. By the first direction, K1

and K2 are alternating as required. 4

Exercise 4.3.3. (Lickorish 5.3) Show that

c(K1 +K2) = c(K1) + c(K2)

for alternating knots K1 and K2.

Solution: Since K1 and K2 are alternating, there exist minimal crossing alternating dia-
grams D1 and D2 for K1 and K2 (by the main theorem of this chapter). In particular, D1

and D2 are reduced. By the proof from above, by isotoping the diagram D2 if necessary,
we can construct an alternating diagram D by taking a connected sum D1#D2 along a
path. Moreover, since D1 and D2 are reduced, so is D. It follows that D exhibits the
crossing number of K1 +K2 (by the main theorem of this chapter). That is,

c(K1) + c(K2) = c(D1) + c(D2) = c(D) = c(K1 +K2).

4
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Chapter 5

The Alexander polynomial

5.1 Homological definition of the Alexander polynomial

The Alexander polynomial is the first known knot polynomial, and is well understood
via homology theory. We begin by introducing relevant terminology, and then define the
polynomial.

Definition 5.1.1. Let F,E,M be R-modules, and suppose F and E are free with finite
bases {fi} and {ej}. A short exact sequence

F
α−→ E

ϕ−→M → 0

is called a finite presentation of M . Given our choice of bases for E and F , let A be a
matrix representing α, i.e.

αfi =
∑
j

Aijej .

Then A is called a presentation matrix for M . We think of {ej} as a basis for M , and {fi}
as relations.

Theorem 5.1.2. Any two presentation matrices A1 and A2 differ by a sequence of the
following matrix moves and their inverses:

• Standard row/column operations:

– Adding a scalar multiple of one row/column to another row/column.

– Permuting two rows or two columns.

• Addition of an extra column of zeros.

• Replacement of A with

(
A 0
0 1

)
.
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Definition 5.1.3. Let R be a commutative ring, and M a module over R with m × n
presentation matrix A. The rth elementary ideal Er is the ideal of R generated by all of
the (m − r + 1) × (m − r + 1) minors of A. By convention, for r ≤ 0, we declare Er = 0.
For r > m, we declare Er = R.

Recall that an a×a minor of A is the determinant of an a×a submatrix of A. Therefore
the rth elementary ideal is generated by determinants of all sub-matrices after removing
r − 1 rows and n−m+ r − 1 columns.

Proposition 5.1.4. Elementary ideals satisfy the following properties:

• For each r, Er is independent of the choice of presentation matrix. (This follows from
elementary properties of determinants together with the previous theorem classifying
presentation matrices for a given R-module M .)

• For each r, Er−1 ⊂ Er.

• If A is an m × m (square) matrix, there is a unique m × m minor, namely detA.
Therefore E1 = 〈detA〉.

We now develop the relevant homology theory in order to define the Alexander poly-
nomial. This first proposition is an instance of Alexander duality:

Proposition 5.1.5. Let Σ ⊂ S3 be a connected, compact, orientable surface with non-
empty boundary. Then H1(S3 − Σ;Z) and H1(Σ;Z) are isomorphic. Moreover, there is a
unique non-degenerate bilinear form

β : H1(S3 − Σ;Z)×H1(Σ;Z)→ Z

satisfying β([c], [d]) = lk(c, d) for any oriented simple closed curves c, d in S3 − F and F
respectively.

Note that any Seifert surface satisfies the premises of F in the above proposition. With
this in mind, we next aim to define the Seifert form.

Suppose F is a Seifert surface for a link L. Let N be a tubular neighbourhood of
L. Let X denote the closure of S3 − N . Then X ∩ F is just a copy of F with a collar
around the boundary of F removed, so we can identify X ∩ F with F . F then has a
tubular neighbourhood F × [−1, 1] in X, so that every meridian of a component of L
enters at F × {−1} and leaves from F × {1}. Define embeddings i± : F → S3 − F by
i±(x) = x× {±1}.

Definition 5.1.6. Let F be a Seifert surface of an (oriented) link L. The Seifert form is
defined to be

α : H1(F ;Z)×H1(F ;Z)→ Z, α : (x, y) 7→ (i−∗(x), y).
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By the previous proposition, the Seifert form is well defined, and α([a, b]) = lk(a−, b)
where a− = i−a.

Since F is an oriented surface, H1(F ;Z) is freely generated by 2g+n− 1 simple closed
curves, which we denote by {fi}. That is,

H1(F ;Z) = 〈[f1], . . . , [f2g+n−1]〉 =

2g+n−1⊕
i=1

Z.

Since β : H1(S3 − F ;Z) × H1(F ;Z) → Z is non-degenerate, it defines a dual basis for
H1(S3 − F ;Z). That is, we can choose homology classes {[ei]} in H1(S3 − F ;Z) so that
β([ei], [fj ]) = lk(ei, fj) = δij .

Definition 5.1.7. Let {[fi]} be a basis for H1(F ;Z). The matrix A representing α in this
basis is called a Seifert matrix of F .

Observe that A satisfies

Aij = α([fi], [fj ]) = lk(f−i , fj) = lk(fi, f
+
j ).

Now let {[ei]} be the β-dual basis of {[fi]} for H1(S3 − F ;Z). Then lk(ei, fj) = δij , so in
S3 − F the above immediately gives

[f−i ] =
∑
j

Aij [ej ], [f+
j ] =

∑
i

Aij [ei].

(These can be verified by substitution into the above expression, noting that β is non-
degenerate.)

Definition 5.1.8. Let X be the link complement of L in S3 as above. The infinite cyclic
cover X∞ of X is constructed as follows:

1. Let Y be the cut manifold (with boundary) of X obtained by cutting along F (where
F is viewed as a submanifold of X).

2. Note that Y is a cobordism, with boundary F− and F+ (where the signs are deter-
mined by the orientation of F ).

3. Let X∞ be the manifold obtained by gluing infinitely many copies of (Yi, F
+
i , F

−
i )

end to end, so that Yi and Yi+1 are glued together along F−i and F+
i+1.

Note that the orientations are chosen so that if µ was a meridian of a component of L,
then the orientation of µ agrees with the order of the indices Yi.

X∞ → X has a canonical covering map (which mirrors that of R→ S1.)

Proposition 5.1.9. H1(X∞,Z) has a canonical module structure over Z[t, t−1].
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Proof. We first note that X∞ is obtained by · · · tF Yi tF Yi+1 tF · · · , so there is an
automorphism t ∈ Aut(X∞) defined by translation by 1 to the right. The infinite cyclic
group 〈t〉 is now a group of automorphisms, in fact, Deck transformations, of X∞. These
descend to automorphisms of H1(X∞;Z). On the other hand, H1(X∞;Z) is an abelian
group, so it is naturally a Z-module. Therefore H1(X∞;Z) is a Z〈t〉 = Z[t, t−1] module.

Theorem 5.1.10. Let F be a Seifert surface for an oriented link L, and let A be a Seifert
matrix of the corresponding Seifert form (in any basis for H1(F ;Z)). Then tA − AT is a
matrix presenting H1(X∞;Z) as a Z[t, t−1] module. (In particular, H1(X∞;Z) is a finitely
presented Z[t, t−1]-module.)

Proof. The proof will be omitted, but the idea is that if F has free basis {1 ⊗ [fi]} and
E has free basis {[ei]⊗ 1} as Z[t, t−1]-modules, then tA− AT presents α∗ the short exact
sequence

F
α∗−→ E → H1(X∞;Z).

We are finally ready to define the Alexander polynomial and related invariants.

Theorem 5.1.11. The Z[t, t−1]-module H1(X∞;Z) is an invariant of oriented links. It is
called the Alexander invariant or Alexander module.

Recall from an earlier proposition that elementary ideals of a finitely presented R-
module are invariants of the module. Therefore the Alexander module gives further invari-
ants:

Definition 5.1.12. The rth Alexander ideal is the rth elementary ideal of H1(X∞;Z) as
a Z[t, t−1]-module. The rth Alexander polynomial is a generator of the smallest principal
ideal of Z[t, t−1] that contains the rth Alexander ideal. The first Alexander polynomial,
denoted ∆L(t), is called the Alexander polynomial.

Note that we have only defined Alexander polynomials up to multiplication by a unit;
±tk. In the next section we see that the Alexander polynomial can be calculated via Skein
relations, if we fix a normalisation.

5.2 Alternative definitions of the Alexander polynomial

In this section we explore three more methods of computing the Alexander polynomial.
The first two methods are useful given a link diagram. In particular, the second method
relates the Alexander polynomial to the HOMFLY polynomial, and so we also have a con-
nection with the Jones polynomial. The third method allows us to compute the Alexander
polynomial of a knot given a presentation of its knot group.

First alternative approach: diagram incidence matrix.
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Let D be an oriented diagram of a link L. Suppose D has n crossings, v0, . . . , vn−1. By
Euler’s formula V − E + F = 2, noting that a link diagram is 4-regular, we have

F = 2− V + E = 2− V + 2V = V + 2 = n+ 2.

That is, the diagram partitions the plane into n + 2 regions, which we label r0, . . . , rn+1.
We now construct an n× (n+ 2) incidence matrix for the vertices and faces:

Mij =



0 rj doesn’t meet vi

−t rj meets vi on the left, before undercrossing

1 rj meets vi on the right, before undercrossing

t rj meets vi on the left, after undercrossing

−1 rj meets vi on the right, after undercrossing.

M is not square, so we cannot compute its determinant. However, once can remove two
columns from the matrix corresponding to adjacent regions to obtain a square matrix Ã.
Then det Ã is the Alexander polynomial.

Remark. The Alexander polynomial constructed above is only determined up to a unit.
Removing different choices of columns from M will scale det Ã by ±tk.

The matrix Ã is called the Alexander matrix, and is equivalent to tA − AT from the
previous section, where A is the Seifert matrix of L. Therefore Ã captures the data of the
Alexander module.

Second alternative approach: skein relations.
In the chapter on the Jones polynomial, we observed that a skein relation together with

normalisation determines the Jones polynomial uniquely. Similarly, a certain normalisation
of the Alexander polynomial (called the Conway polynomial) is determined uniquely by a
skein relation:

Definition 5.2.1. The Conway polynomial is the unique link invariant

∇ : { oriented links in S3} → Z[z, z−1]

such that

• ∇01(z) = 1,

• ∇L+(z)−∇L−(z) = z∇L0(z).

Theorem 5.2.2. Let A be a Seifert matrix for L. Then det(t1/2A − t−1/2AT ) is a well
defined invariant of L, in that there is no ambiguity of units. Moreover,

1. ∇L(t−1/2 − t1/2) = det(t1/2A − t−1/2AT ), so det(t1/2A − t−1/2AT ) is obtained by
reparametrising the Conway polynomial.
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2. If A is an r × r matrix, then

t−r/2∆L(t) = t−r/2 det(tA−AT ) = det(t1/2A− t−1/2AT ),

so this invariant is obtained by specifying a normalisation of the Alexander polyno-
mial.

In particular, the Conway polynomial is a normalisation of the Alexander polynomial.

Remark. The HOMLFY polynomial P (`,m) was defined to be the unique oriented link
invariant satisfying

• P (01) = 1,

• `P (L+) + `−1P (L−) +mP (L0) = 0.

Therefore the Conway polynomial is obtained by a substitution into the HOMFLY poly-
nomial:

∇(z) = −iP (i,−iz).
Similarly, the Jones polynomial is obtained by substitution into the HOMFLY polynomial:

V (L)(t) = −iP (it−1, i(t−1/2 − t1/2)).

Third alternative approach: group presentations.

Definition 5.2.3. Let K be a knot in S3. Then its knot group is π1(S3 −K).

We find that knot groups admit balanced presentations (called Wirtinger presentations)
that can be readily computed from knot diagrams. We now describe this procedure.

1. Let D be an oriented diagram of a knot K. If D has n crossings, D is composed of n
arcs. (At each crossing, we consider an incoming arc to be the same as the outgoing
arc if the arc follows an overpass. We consider the incoming and outgoing arcs to be
distinct if the arc follows an underpass.) Choose a basepoint of D, and label each
arc: x1, . . . , xn.

2. The symbols x1, . . . , xn are generators of the knot group. The relations are given
by each crossing. Suppose xi, xj , xk meet at a crossing, with xi passing over, xj
incoming, and xk outgoing, so that the crossing is positively oriented. Then we add
a relation

xixj = xkxi.

If the crossing is negatively oriented, we add the relation

xjxi = xixk.

This gives a presentation

π1(S3 −K) = 〈x1, . . . , xn|r1, . . . , rn〉.
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Observe that any one relation is determined by the other n − 1 relations. Similarly, any
one generator can be removed by Tietze transformations.

Definition 5.2.4. The Fox derivative is a notion of differentiation for words in a free
group. Explicitly, for each xi in F (xj), the fox derivative is a map ∂xi : F (xj)→ Z[F (xj)]
defined by

• ∂xi1 = 0

• ∂xixj = δij

• ∂xix−1
j = −δijx−1

j

• ∂xiwxj = ∂xiw + wδij .

Using this notion of a derivative, we can readily compute the Jacobian of a presentation
P ,

J(P )ij = ∂xjri =

∂x1r1 · · · ∂xnr1
...

. . .
...

∂x1rn · · · ∂xnrn

 .

There is a unique map T : Z[F (xj)]→ Z[t, t−1] defined by sending each xi to t. This map
naturally extends to matrices, and in particular we denote by JT the Jacobian with each
xi replaced with t.

Theorem 5.2.5. Let P,Q be finite presentations of a group G. Then JT (P ) and JT (Q)
are equivalent in that they differ by a sequence of the following moves:

• Standard row/column operations (see the start of the chapter).

• Addition of an extra row of zeros.

• Replacement of A with

(
A 0
0 1

)
.

• Multiplication of any row or column by ±tk.

It follows that the determinant of JT (P ) is a well defined invariant of G, up to multi-
plication by a unit.

Theorem 5.2.6. Let P be a presentation of the knot group π1(S3 − K). Then the rth
elementary ideals of JT (P ) are the rth Alexander ideals. In particular, the Alexander
polynomial is the generator of the smallest principal ideal containing the minors of the
largest square blocks of JT (P ).

Earlier we remarked that the Wirtinger presentation of a knot group is redundant in a
symmetric way (in that we can remove any relation and any generator). This is realised
in the calculation of the Alexander polynomial using a Wirtinger presentation P : one can
remove any row and column from JT (P ), and the determinant of the remaining square
matrix is the Alexander polynomial.
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5.3 Properties of the Alexander polynomial

One of the main uses of the Alexander polynomial is in the study of the genus of links.
Some properties relating the Alexander polynomial to genus will be explored in this section,
along with other general properties.

Theorem 5.3.1. Let L be an oriented link.

• ∆L(t) is associate to ∆L(t−1).

• If L is a knot, ∆L(1) = ±1. If L has more than one component, ∆L(1) = 0.

• ∆L(t) is associate to ∆L(t) and ∆rL(t).

• For knots K1 and K2, ∆K1+K2(t) is associate to ∆K1(t)∆K2(t).

• If L is split, then ∆L(t) = 0.

Proof. The first claim follows from the formula ∆L(t) = det(tA−AT ), and the properties
of the determinant and how it interacts with transposition.

The second claim comes from realising that ∆L(t) = det(A − AT ), and the ijth entry
of A−AT counts the algebraic intersections of fi and fj on F .

The third claim comes from the fact that if A is a Seifert matrix for L, then −A is a
Seifert matrix for L, and AT is a Seifert matrix for rL.

The fourth claim comes from the fact that diag(A1, A2) is a Seifert matrix for K1 +K2,
if A1 and A2 are Seifert matrices for K1 and K2 respectively.

FInally, the fifth claim is most easily seen by using the characterisation of the Alexander
polynomial via skein relations. Taking the split link to be L1 tL2 = L0, let L+ and L− be
obtained by “cross-gluing” components in each of L1 and L2 with the correct orientation.
That L+ and L− are diagrams of the same link, so ∇L0(t) = ∇L+(t)−∇L−(t) = 0.

As a corollary, a certain normal form of the Alexander polynomial of knots is

∆L(t) = a0 + a1(t−1 + t) + a2(t−2 + t2) + · · · ,

where each ai is an integer, and a0 is odd. This was used by Alexander (before Conway
introduced the Conway normalisation).

Corollary 5.3.2. The Alexander polynomial doesn’t distinguish the granny knot from the
square knot.

Theorem 5.3.3. Let L be a link with c components. Let g be the genus of L. Then

2g + c− 1 ≥ breadth ∆L(t).

In particular, for a knot K, the genus is bounded below by half the breadth of ∆K .
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Proof. Let F be a Seifert surface of L with genus g. Then H1(F ;Z) has 2g + c − 1
generators, and hence its Seifert matrix A is a (2g+ c− 1)× (2g+ c− 1) matrix. It follows
that det(tA−AT ) is a polynomial with degree at most 2g + c− 1.

Theorem 5.3.4. Let K,C be knots. Suppose K is embedded in a solid torus T , and
e : T → S3 is an embedding so that e(T ) is a regular neighbourhood of C. Then e(K) is
the satellite knot with pattern K and companion C. Choose n > 0 so that K represents n
times a generator of H1(T ;Z). Then

∆e(K)(t) = ∆K(t)∆C(tn).

Equality is up to multiplication by a unit, but genuine equality holds when ∆ is given the
Conway normalisation.

Corollary 5.3.5. A Whitehead double of any knot has Alexander polynomial equal to 1
(up to multiplication by units). (Thus the Alexander polynomial cannot distinguish satellite
knots from the unknot.)

Proof. A Whitehead double is a satellite knot with pattern K as in figure 5.1. Let C be

Figure 5.1: Pattern for the Whitehead double.

the companion knot, so that the Whitehead double of C is e(K). By the previous theorem,
write

∆e(K)(t) = ∆K(t)∆C(tn).

Since K represents the trivial first homology class in H1(T ), n = 0, so ∆C(tn) = ∆C(1) =
±1. On the other hand, K is the unknot, so ∆K(t) is a unit. It follows that ∆e(K) is itself
a unit.

Theorem 5.3.6. The Deck transformation t : X∞ → X∞ induces a map t∗ : H1(X∞;Q)→
H1(X∞;Q). (H1(X∞;Q) is an infinite dimensional vector space.) Then the Alexander
polynomial of the link (whose link complement has infinite cyclic cover X∞) is the charac-
teristic polynomial of t∗.
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One final important property is that the Alexander module also bounds unknotting
numbers.

Theorem 5.3.7. If the rth elementary ideal of the Alexander module of a knot K is
properly contained in Z[t, t−1], then the unknotting number of K is bounded below by r:

u(K) ≥ r.

5.4 Exercises

Exercise 5.4.1. (Exercise to myself) Compute the Alexander polynomial of the trefoil
knot using the four different approaches outlined in this chapter.

Solution: 1. First we use the homological approach. The Seifert surface F obtained
from the usual diagram of the trefoil knot has minimal genus 1. Therefore generators for
H1(F ;Z) are given by two simple closed curves f1, f2 on F . Choosing orientations, for one
example pair we have

Aij = lk(fi, f
+
j ) =

(
1 1
0 1

)
.

Therefore det(tA−AT ) = t2 − t+ 1.
2. Next we use the incidence matrix approach. Consider a standard diagram of the

trefoil knot, so that it has five regions. We order the regions by middle, leaf, leaf, leaf,
exterior. Then the incidence matrix is a 3 × 5 matrix. To compute the Alexander poly-
nomial, we can drop two adjacent regions, so our incidence matrix will be a 3 × 3 matrix
with columns: middle, leaf, leaf. This gives

Ã =

1 −t 0
1 0 −1
1 −1 −t

 .

The determinant of this polynomial is −t2 + t− 1.
3. Now we use the skein relation to inductively determine the Conway polynomial of

the trefoil. First we conclude from the skein relations that the unlink U of two components
has vanishing Conway polynomial. This is proven more generally in the previous section
for any split link.

But now if 31 denotes the trefoil knot, H a Hopf link, U the unlink with two components,
and 01 the unknot, the skein relations give

∇31(z)−∇01(t) = z∇H(z), ∇H(z)−∇U (z) = z∇01(z).

It follows that ∇31(z) = z2 + 1. By substitution of z = t−1/2 − t1/2, this gives

∆31(t) = ∇31(t−1/2 − t1/2) = t− 1− t−1.
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4. Finally we use the approach with Fox derivatives. A Wirtinger presentation of the
knot group of the trefoil is given by

〈x0, x1, x2 | x0x1 = x2x0, x1x2 = x0x1, x2x0 = x1x2〉.

This can be vastly simplified using Tietze transformations, through which we obtain

π1(S3 − 31) = 〈x, y | x−1y−1x−1yxy〉.

The Jacobian of this presentation is a 1× 2 matrix, specifically

J = (−x−1 − x−1y−1x−1 + x−1y−1x−1y, x−1y−1x−1yx+ x−1y−1x−1 − x−1y−1).

Hence JT = (−t−1 − t−3 + t−2, t−1 + t−3 − t2). The first Alexander ideal is therefore
〈t−1 + t−3 − t2〉, so the Alexander polynomial is t−1 − t2 + t−3.

In summary, our four methods have obtained:

t2 − t+ 1, −t2 + t− 1, t− 1− t−1, t−1 − t2 + t−3.

These all differ by units, as required. 4

Exercise 5.4.2. (Lickorish 6.4) Show that for a knot K, ∆K(t) = 1 if and only if
H1(X∞;Z) = 0.

Solution: If H1(X∞;Z) = 0, it is presented by the 1 × 1 unit matrix. The determinant is
1.

Conversely, suppose H1(X∞;Z) 6= 0. In particular, K cannot be the unknot, so K
has genus at least 1. Therefore K has a Seifert matrix A of size 2g × 2g, with g ≥
1. A presentation matrix of H1(X∞;Z) is now given by the square matrix tA − AT , so
det(tA− AT ) = ∆K(t). Suppose for a contradiction that det(tA− AT ) = 1. Consider the
presentation below:

F
α−→ E

β−→ H1(X∞;Z)→ 0.

tA−AT is a matrix representing α. Since tA−AT is invertible, α is surjective. Therefore
by exactness kerβ = E. But β cannot be the zero map, since H1(X∞;Z) 6= 0. 4

Exercise 5.4.3. (Lickorish 6.5) Which polynomials can arise as the Alexander polynomial
of a genus 1 knot?

Solution: Let A be a Seifert matrix for a genus 1 Seifert surface. Then A is a 2× 2 matrix,
and

(A−AT )ij = lk(f−i , fj)− lk(f−j , fi) = lk(f−i , fj)− lk(f+
i , fj).
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The expression on the right gives the algebraic intersection number of fi and fj , so

A−AT =

(
0 1
−1 0

)
.

Therefore A is of the form

A =

(
a b

b− 1 c

)
, a, b, c ∈ Z.

We now verify that any such matrix arises as the Seifert matrix for some knot. To this
end, consider the Pretzel knot P (q, r, s) where q, r, s are odd integers. Then P (q, r, s) has a
canonical Seifert surface F , obtained by attaching three strips (with q, r, and s half-twists)
between two disks. Let f1 be the anticlockwise loop in F passing through the strips with
q and r twists, and let f2 be the clockwise loop in F passing through the strips with r and
s twists. The corresponding Seifert matrix is

A′ =
1

2

(
q + r r + 1
r − 1 r + s

)
.

Therefore given a matrix A with entries a, b, b − 1, and c as above, this is realised as the
Seifert matrix of the pretzel knot

P (2a− 2b+ 1, 2b− 1, 2c− 2b+ 1).

We now have

det(tA−AT ) = det

(
a(t− 1) tb− b+ 1
tb− b+ t c(t− 1)

)
= ac(t2 − 2t+ 1)− (b2t2 + bt2 + t− 2b2t+ 2bt+ b2 − b)
= (ac− b2 + b)t2 + (−2ac− 1 + 2b2 − 2b)t+ (ac− b2 + b).

Considering Alexander polynomials in the normal form

∆K(t) = a0 + a1(t+ t−1) + a2(t2 + t−2) + · · · ,

the above gives a0 = 2ac− 2b2 + 2b+ 1, a1 = b2 − ac− b, and ai = 0 for i > 1.
We now observe that ac = b2− b− a1, so by substitution, a0 = −2a1 + 1. Therefore all

possible Alexander polynomials of genus 1 knots (up to multiplication by a unit) are given
by

∆K(t) = a1(t+ t−1)− 2a1 + 1

where a1 is an unconstrained integer. 4
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Chapter 6

Further applications of Seifert
surfaces

6.1 Conway polynomial

In the previous section, we took for granted the fact that the Conway normalisation of the
Alexander polynomial is well defined. We can understand why this is the case (without
reference to skein relations) by studying how Seifert surfaces of a given link relate to each
other.

Theorem 6.1.1. Suppose F1 and F2 are Seifert surfaces of an oriented link L. Then there
is a sequence

F1 = Σ1,Σ2, . . . ,ΣN = F2

of Seifert surfaces of L, such that for each i, Σi is obtained from Σi−1 by surgery along an
arc (or vice versa), or they are related by an isotopy of S3.

We don’t prove this, but we give a description of what it means for an oriented surface
Σ to be obtained from Σ′ by surgery along an arc.

1. Let Σ ⊂ S3 be an oriented surface. Let γ : [0, 1] → S3 be an arc meeting Σ trans-
versely, exactly at γ(0) and γ(1), so that γ(ε) and γ(1 − ε) are on the same side of
Σ.

2. Let D1 × 0 denote the image of γ (so that γ(t) = t × 0, D1 = [0, 1]). Consider a
tubular neighbourhood D1 ×D2 of D1 × 0, which meets Σ exactly at S0 ×D2.

3. Define Σ′ = (Σ− S0 ×D2) tS0×S1 (D1 × S1). Then Σ′ is obtained from Σ by surgery
along the arc γ.

47



The condition that γ(ε) and γ(1− ε) are on the same side of Σ is required to ensure that
the surface obtained after the surgery is itself oriented.

Next we investigate how the corresponding Seifert matrices are related.

Definition 6.1.2. Let A be a square matrix over Z. An elementary enlargement of A is
a matrix B of either of the following two forms:A 0 0

ηT 0 0
0 1 0

 ,

A ξ 0
0 0 1
0 0 0

 .

In the above, η, ξ are arbitrary vectors. Similarly obtaining A from either of the two
matrices above is called an elementary reduction.

Matrices A,A′ over Z are called S-equivalent if they are related by a sequence of ele-
mentary enlargements, elementary reductions, and conjugation by unimodular matrices.

Theorem 6.1.3. Any two Seifert matrices of an oriented link L are S-equivalent.

Corollary 6.1.4. The Conway normalisation of the Alexander polynomial is well defined.

Recall that the Conway normalisation refers to the definition

∆L(t) = det(t1/2A− t−1/2AT )

for a Seifert matrix A of L. This is related to the original definition of the Alexander
polynomial by multiplication by units in Z[t1/2, t−1/2].

Proof. Given that the Alexander polynomial is well defined up to multiplication by units,
it remains to show that modifying the underlying Seifert surface doesn’t affect the Conway
normalisation. In other words, if ∆(t) = det(t1/2A−t−1/2AT ), then ∆(t) is invariant under
changing A by an S-equivalence. It’s immediate that ∆(t) is invariant under conjugation of
A by unimodular matrices. Similarly one can show that ∆(t) is invariant under elementary
enlargements and elementary reductions of A.

Theorem 6.1.5. The Conway polynomial ∇L(z) defined by ∆L(t) = ∇L(t−1/2 − t1/2)
enjoys the following properties, for an oriented link L with c components.

1. ∇L is characterised by the following normalisation and skein relation:

• ∇(01) = 1,

• ∇L+ −∇L− = z∇L0.

2. If L is split, ∇L(z) = 0.

3. Write ∇L(z) =
∑∞

i=0 ai(L)zi. Then
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(a) ai(L) = 0 for i ≡ c mod 2,

(b) ai(L) = 0 for i < c− 1.

4. If c = 1, a0(L) = 1.

5. If c = 2, a1(L) is the linking number of the two components of L.

6. If L+, L−, L0 are as in skein relations, and L+ and L− have one component each,
then L0 has two components, and a2(L+)−a2(L−) is the linking number of these two
components.

Proof. Points 1 and 2 have already been established.
For point 3, we use the skein relations. Suppose i ≡ c mod 2, and suppose both (a)

and (b) holds for all diagrams with at most n crossings. (The base case is immediate, by
inspecting the Conway polynomials of the unknot and unlinks.) Let D be a diagram of a
link L with c components and n+ 1 crossings. By the skein relations, we can write

∇L(z) = ∇L′(z) + z∇L1(z) + · · ·+ z∇Lm(z)

where the Li are a sequence of links with c − 1 components and n crossings. The link L′

is an unlink obtained after uncrossing m crossings. Since the Conway polynomial of the
unlink vanishes, we’ve written ∇L(z) = z(

∑
∇Li(z)). Both (a) and (b) follow.

For point 4, observe that a0(L) = ∇L(0). But evaluating the skein relation at 0 shows
that changing any crossing of L doesn’t modify a0(L). By unknotting, we obtain a0(L) = 1.

For point 5, suppose L has components L1 and L2, with lk(L1, L2) = n. Assume
without loss of generality that n ≥ 0. Consider the skein relation with L+ = L, and change
one of the crossings of the two components. Then L− has two components L′1 and L′2, and
L0 has one component. Then

lk(L1, L2)− lk(L′1, L
′
2) = 1 = a0(L0) = a1(L)− a1(L−).

By induction, the linking number lk(L1, L2) is equal to a1(L) − a1(L̃). where L is a link
with two components with crossing number 0. In particular, we could have chosen L to be
a split link, so a1(L) = lk(L1, L2).

Point 6 follows immediately from point 5.

6.2 Signatures

Another knot invariant obtained from Seifert matrices are signatures. Unlike the Alexander
polynomial, the signatures detect reflections.

Definition 6.2.1. Let L be an oriented link. The signature of L is

σ(L) = signature(A+AT )

where A is a Seifert matrix of L.
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To prove that this is a well defined invariant, it suffices to show that the signature
of A + AT is invariant under S-equivalence. By Sylvester’s law of inertia, the signature
is invariant under conjugation by unimodular matrices. One can explicitly show that the
signature is also invariant under elementary enlargement and elementary reductions.

Proposition 6.2.2. The signature satisfies the following properties:

• σ(L) = σ(rL),

• σ(L) = −σ(L),

• σ(K1 +K2) = σ(K1) + σ(K2).

Proof. These are immediate from the fact that if A is a Seifert matrix for L, then AT is a
Seifert matrix for rL, and −A is a Seifert matrix for L. Finally diag(A1, A2) is a Seifert
matrix for K1 +K2, if A1 and A2 are Seifert matrices for K1 and K2 respectively.

This can be generalised in the following way:

Definition 6.2.3. The ω-signature σ∗ω(L) is defined for an oriented link L and unit-length
ω ∈ C by

σ∗ω(L) = signature((1− ω)A+ (1− ω)AT ).

where A is a Seifert matrix of L. This is defined for ω 6= 1 and ω which are not zeros of
the Alexander polynomial of L. This is extended further as follows. The Tristram-Levine
signature is the function

σ : S1 → Z; ω 7→ σω(L) := lim
σ∗ω+(L) + σ∗ω−(L)

2

where ω+ and ω− are unit length complex numbers tending to ω with arguments above
and below that of ω.

The Tristram-Levine signature a well defined invariant of oriented links, and also sat-
isfies the three properties mentioned above concerning the (classical) signature.

6.3 Slice knots

Definition 6.3.1. A knot K ⊂ S3 is a topologically slice knot if it is the boundary of a
disk D2 locally flatly embedded in B4. K ⊂ S3 is smoothly slice if it is the boundary of a
smoothly embedded disk in B4.

By locally flat, we mean that D2 has a tubular neighbourhood D2 ×D2, which meets
S3 exactly on K ×D2.
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Definition 6.3.2. A knot K ⊂ S3 is a ribbon knot if it bounds a disk D2 immersed in
S3, which only has ribbon singularities. That is, D2 intersects itself transversely along
arcs, and the preimage of each such arc in the disk consists of two arcs: one is completely
contained in the interior of the disk, and the other has its endpoints on K.

A famous conjecture asks whether all slice knots are ribbon knots. This is currently
unsolved, but as of 2011 it is true for three-strand pretzel knots and knots with bridge
number 2. A possible family of counterexamples has been suggested. The converse is
known to be true.

Proposition 6.3.3. Let F be a genus g Seifert surface for a slice knot K in S3. There is
a basis for H1(F ;Z) such that the Seifert matrix in this basis has the form(

0 P
Q R

)
consisting of g × g blocks of integers.

A proof is given in Lickorish. An immediate corollary is a useful necessary condition
for sliceness:

Theorem 6.3.4. If K is a slice knot, then the Conway-normalised Alexander polynomial
is of the form f(t)f(t−1), where f is a polynomial with integer coefficients.

Proof. Consider a Seifert matrix A =

(
0 P
Q R

)
. Then

det(t1/2A− t−1/2AT ) = det

(
0 t1/2P − t−1/2QT

t1/2Q− t−1/2P T t1/2R− t−1/2RT

)
= −det(t1/2P − t−1/2QT ) det(t1/2Q− t−1/2P T )

= det(tP −QT ) det(t−1P −QT ).

Theorem 6.3.5. If K is a slice knot, then its signature (and Tristram-Levine signature)
vanish.

Proof. This follows from inspecting the Seifert matrix A with the designated form.

Which knots are slice? One way this can be determined is by considering the knot to
be a level set of a Morse function on the disk. Without loss of generality, the disk has only
critical points of index 0 and 1. A critical point of index 0 is bounded by an unknot. A
critical point of index 1 is represented in a link diagram by moving between the following
two local configurations in figure 6.1: Using this process, we can show that the square knot
31 + 31 is slice. More generally, all knots of the form K +K are slice.
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Figure 6.1: Change in level sets for index 1 critical points

Definition 6.3.6. Oriented knots K0 and K1 are concordant if K0 + rK1 is slice.

To see that concordance is an equivalence relation, we can phrase it in terms of cobor-
disms.

Theorem 6.3.7. Oriented knots K0 and K1 are concordant if and only if they bound
S1 × [0, 1] embedded in S3 × [0, 1], such that S1 × 0 = K0 and S1 × 1 = K1.

Theorem 6.3.8. The knot concordance group, denoted C, is the group

C = {concordance classes of oriented knots}.

This is a group under the operation of taking connected sums. The unknot is the
additive inverse.

Remark. Isotopy is stronger than concordance, which is stronger than homotopy. To see
that these are strict, note that slice knots are exactly the members of the concordance
class of the unknot. Since non-trivial slice knots exist, isotopy is strictly stronger than
concordance. On the other hand, not all knots are slice, so concordance is strictly stronger
than homotopy.

Theorem 6.3.9. Given any slice knot K, there exists a ribbon knot R such that K +R is
ribbon.

Recall that every ribbon knot is slice, but it is not currently known if every slice knot
is ribbon.

Definition 6.3.10. The slice genus g∗(K) of a knot K is the minimum genus of an oriented
surface F locally-flatly embedded in B4 with boundary K.

It is immediate that the 4-genus of a knot is a lower bound of the genus, and any slice
knot has vanishing 4-genus. The previous theorem generalises as follows:

Theorem 6.3.11. Let K be a knot. Then

|σω(K)| ≤ 2g∗(K).
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In fact, the 4-ball genus is a lower bound of the unknotting number!

Theorem 6.3.12. Let K be a knot. Then

g∗(K) ≤ u(K).

Proof. The idea is that every crossing change corresponds to the addition or removal of the
genus of an oriented surface bound by the knot. Earlier we noted that passing an index 1
critical point of a Morse function on a slice surface corresponds to changing un-crossings
as in figure 6.1. Changing a crossing can be achieved by two such moves, so each crossing
change adds or removes genus. It follows that at least g∗(K) crossing changes are required
to obtain a genus-0 surface, so g∗(K) ≤ u(K).

Remark. We have now obtained two lower bounds for the unknotting number of a knot:

• If the rth Alexander polynomial of K is not a unit, r ≤ u(K).

• |σω(K)| ≤ 2g∗(K) ≤ 2u(K).

6.4 Exercises

Exercise 6.4.1. (Lickorish 8.8) Prove that the unknotting number of 82 is 2.

Solution: It is easy to see that the unknotting number is at most 2, by reversing two of
the crossings in the usual diagram of 82.

A Seifert matrix of the Seifert surface of 82 obtained from the Seifert algorithm is

A =



1
−1 1

−1 1
−1 1

−1 1
−1 −1

 .

Then the 5 × 5 minor of tA − AT (in the top right) is 1, so the second Alexander ideal
of 82 is trivial. This shows that we cannot use the “rth Alexander polynomial” bound.
Instead, using A, we compute the signature of 82. With A as above, A + AT has five
positive eigenvalues and one negative eigenvalue, so σ(82) = 4. But then g∗(82) ≥ 2. Since
the 4-genus is a lower bound of the uncrossing number, this gives u(82) ≥ 2. 4

Exercise 6.4.2. (Lickorish 8.9) Prove that the unknotting number of the sum of n copies
of the trefoil is n.
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Solution: The trefoil knot has Seifert matrix

A =

(
1 1
0 1

)
.

Therefore

σi(31) = σ((1− i)A+ (1 + i)AT ) = σ

(
2 1− i

1 + i 2

)
= 2.

More generally, a Seifert matrix for the connected sum of n copies of the trefoil is given by
An =

⊕
nA. The signature of (1− i)An + (1 + i)ATn is then

∑
n σ((1− i)A+ (1 + i)AT ) =∑

n σ(31) =
∑

n 2 = 2n. It follows that u(#n31) ≥ σi(#n31)/2 = 2n/2 = n.
To make this inequality an equality, simply observe that the connected sum of n trefoils

can be made into an unknot by uncrossing any crossing in each copy of 31 in the diagram. 4
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Chapter 7

Branched covers and the Goeritz
matrix

7.1 Covering spaces and the determinant of a link

Recall that in the chapter concerning the Alexander polynomial, we introduced the infinite
cyclic cover X∞ → X of the link complement X. This is infinite cyclic in the sense that
the Deck transformations of X∞ are Z = 〈t〉.

Any loop in X with linking number 0 with L corresponds to a loop which has algebraic
intersection number 0 with a Seifert surface F of L. By the construction of X∞, we see
that a loop in X lifts to a loop in X∞ if and only if the loop has linking number 0 with L.

If L is a knot, by the second to last theorem in the first chapter, we have that H1(X) is
cyclic, and generated by a meridian of L. Moreover, given any curve C in X, [C] ∈ H1(X)
is lk(C,L). Therefore p∗π1(X∞) is the kernel of the natural map π1(X) → H1(X). By
Hurewicz, the kernel is also the commutator subgroup of π1(X).

Definition 7.1.1. The cyclic double cover of X is X̂2 → X induced from X∞ by modding
out by 〈t2〉.

Of course, X̂2 can be obtained by gluing two copies of Y , where Y is X cut along a
Seifert surface F . Unlike the infinite cyclic cover, a loop in X lifts to a loop in X̂2 if and
only if it has linking number zero mod 2 with L.

Definition 7.1.2. The cyclic double cover of S3 branched over L is constructed as follows:

1. Let X̂2 → X be the cyclic double cover of X = S3 − L.

2. Any component Li of L has a tubular neighbourhood N in S3, homeomorphic to a
solid torus. A longitude lifts to a loop in X̂2, and the square of a meridian lifts to a
loop in X̂2 (since the square has linking number 0 mod 2 with Li).
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3. ∂N can be identified with S1 × S1, parametrised by longitude and meridian. The
restriction of X̂2 → X to ∂N is given by (z1, z2) 7→ (z1, z

2
2).

4. This map extends to a map on X̂2 tp−1∂N (S1 × D2) → X t∂N (S1 × D2) by the
formula (z1, z2) 7→ (z1, z

2
2). This is a branched cover, as it is a 2:1 covering map on

X, but degenerates to a 1:1 map over Li.

5. For each of the n components of L, glue a solid torus to X̂2. Similarly glue n solid
tori into X. We obtain a double cover X2 → S3, but branched over L.

Note that the construction is independent of the orientation of L, since Z/2Z cannot
detect orientation. The above construction automatically generalises to m : 1 branched
covers for any m.

Definition 7.1.3. The group of a cover p : E → X is p∗π1(E).

Theorem 7.1.4. Let X2 be the cyclic double cover of S3 branched over L. Suppose A is
a Seifert matrix of L (given some orientation). Then A + AT presents H1(X2;Z) as a
Z-module.

Observe that this result parallels the earlier result that H1(X∞;Z) is presented by
tA−AT as a Z[t, t−1]-module.

Corollary 7.1.5. Let X2 be the cyclic double cover of S3 branched over L. The order of
H1(X2) is

|H1(X2)| = | det(A+AT )| = |∆L(−1)|.

Proof. Since H1(X2) is a finitely presented abelian group, it’s a direct sum of cyclic groups.
The corresponding presentation matrix M is diagonal. Each diagonal entry is the order
of the corresponding summand, so the determinant of M is the order of H1(X2). (We use
the convention that an infinite group has order 0 to ensure that everything is well defined).
The determinant of any two square presentation matrices differ by ±1, so we obtain the
first equality. The second equality is immediate from the homological definition of the
Alexander polynomial.

Remark. Recall that for any K we can write

∆K(t) = a0 + a1(t−1 + t) + · · · .

For a knot K, ∆K(1) = ±1, so ∆K(−1) is necessarily an odd integer. It follows from the
above formula that H1(X2) is always finite whenever X2 is a cyclic double cover branched
over a knot.

Definition 7.1.6. The determinant of a link is the invariant |∆L(−1)|.

By the previous corollary, the determinant is the size of the first homology group of the
double cover of S3 branched over L. Currently it isn’t clear that this is a useful invariant,
but we soon see that the determinant is very easy to compute via Goeritz matrices.
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7.2 Gordon-Litherland form and Goeritz matrix

In an earlier chapter we introduced the Seifert form

α : H1(F ;Z)×H1(F ;Z)→ Z,

defined to count the linking number of loops with push-offs of other loops, with orienta-
tions induced from F . We now introduce the Gordon-Litherland form GF : H1(F ;Z) ×
H1(F ;Z)→ Z which is well defined for all surfaces with boundary a link (rather than just
oriented surfaces). The idea is to push-off in “both directions” and count linking numbers.

Let L ⊂ S3 be a link, and F any surface embedded in S3 with boundary L. (F need
not be orientable.) F admits a fibre bundle p : E → F with fibre I, where E is a tubular
neighbourhood of F in S3, and locally a product of F with I. This induces a “boundary
bundle” with fibre ∂I = {−1, 1}. The total space of this induced bundle is the orientable
double over of F , which we denote by F̃ .

Definition 7.2.1. Let L ⊂ S3 be a link, and F any surface embedded in S3 with boundary
L. Let p : F̃ → F be the orientable double cover of F , embedded in S3. The Gordon-
Litherland form is the map

GF : H1(F ;Z)×H1(F ;Z)→ Z

defined by GF ([f ], [g]) = lk(p−1f, g).

In the case where F is orientable, p−1f consists of two loops, i+f and i−f (in the
notation used when defining the Seifert form). If F is not orientable, p−1f consists of a
single loop.

Remark. The cyclic double cover X̂2 of X = S3 − L can be constructed by gluing two
copies of S3−F together, where F is any (not necessarily orientable) surface with boundary
L. Similarly we can then define the cyclic double cover X2 of S3 branched over L.

Theorem 7.2.2. Let L ⊂ S3 be a link, and F a surface embedded in S3 with boundary L.
Any matrix representing the Gordon-Litherland form is a presentation matrix for H1(X2).

Conversely, we noted earlier that A+AT presents H1(X2), where A is a Seifert matrix.
It is clear that A+AT presents GF when F is orientable, from our earlier remark that p−1f
then consists of two loops, i+f and i−f .

Definition 7.2.3. The Goeritz matrix for a link is constructed as follows:

1. Let D be a connected diagram of a link L. Give D a chessboard colouring. Let
R0, . . . , Rn be the white regions of D.

2. At any crossing c, there is an associated sign ζ(c). If a white region is on the left
before an underpass, ζ(c) = 1. Otherwise ζ(c) = −1.
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3. A pre-Goeritz matrix is an (n+ 1)× (n+ 1) matrix defined by

gij =
∑

ζ(c)

where the sum is taken over crossings where regions Ri and Rj meet, for i 6= j.

The diagonal terms are defined by

gii = −
∑
j 6=i

gij .

4. The Goeritz matrix is an n × n matrix obtained by deleting a column and corre-
sponding row. By convention we delete the column and row indexed by 0, to obtain
an n× n matrix gij : 1 ≤ i, j ≤ n.

Theorem 7.2.4. Any Goeritz matrix for a link diagram D (associated to the white regions)
represents, with respect to some basis, the Gordon-Litherland form GF , where F is the
surface obtained from the black regions of the colouring of D.

Corollary 7.2.5. The determinant of L is equal to |detG|, where G is any Goeritz matrix
for L.

Since G is easy to write down, it can be a useful invariant.

Example. By comparing various knot polynomials, it has been established that the trefoil
and figure 8 knots are distinct. However, one “technically easy” way to see this is by
comparing determinants.

A pre-Goeritz matrix for the trefoil knot is

P =

(
−3 3
3 −3

)
.

Therefore a Goeritz matrix is G = (−3), so that |detG| = 3 = det 31.
On the other hand, a pre-Goeritz matrix for the figure-8 knot is

P =

−3 2 1
2 −3 1
1 1 −2

 .

Therefore |detG| = 5 = det 41. It follows that the trefoil and figure 8 knots are distinct.
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Chapter 8

Arf invariant

8.1 Quadratic forms and the classical Arf invariant

Let V be a finite dimensional vector space over a field k, not of characteristic 2. Let
B : V × V → k be a symmetric bilinear form. Fixing a basis {e1, . . . , en} of V , B can be
expressed as a symmetric matrix with entries bij .

Now given any vector x = (x1, . . . , xn), we have

B(x, x) =
n∑
i=1

biix
2
i + 2

∑
i<j

bijxixj .

This is a polynomial in n entries, homogeneous of degree 2. Therefore we call this a
quadratic form. More formally, the above is map satisfying the following homogeneity
property:

B̃ : V → k, B̃(ax) = a2B̃(x).

Moreover, it is easy to verify that

B(x, y) =
1

2
(B̃(x+ y)− B̃(x)− B̃(y)).

Definition 8.1.1. Let k be a field, and V a finite dimensional vector space over k. A
quadratic form is a map ϕ : V → k such that ϕ(ax) = a2ϕ(x) for all x ∈ V, a ∈ k, and such
that

(x, y) 7→ ϕ(x+ y)− ϕ(x)− ϕ(y)

is a symmetric bilinear form. ϕ is said to be non-degenerate if the associated bilinear form
is non-degenerate.

Remark. When k is not of characteristic 2, the data of a symmetric bilinear form is
equivalent to that of a quadratic form: a bilinear form B determines a quadratic form ψ
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by B(x, x) = ψ(x). Conversely, B is recovered from ψ by

B : (x, y) 7→ 1

2
(ψ(x+ y)− ψ(x)− ψ(y)).

Remark. When k is of characteristic 2, the property ϕ(ax) = a2ϕ(x) for all x ∈ V, a ∈ k is
implied by the requirement that ϕ(x+y)−ϕ(x)−ϕ(y) be bilinear. Explicitly, by bilinearity,

0ϕ(x) = 0 = ϕ(x+ 0y)− ϕ(x)− ϕ(0y) = ϕ(0y).

On the other hand, it is immediate that 1ϕ(x) = ϕ(1x).

Definition 8.1.2. Let ϕ : V → Z/2Z be a non-degenerate bilinear form. Then ϕ is either
of type I or type II, which we now describe.

1. Since ϕ is non-degenerate, the associated symmetric bilinear formB is non-degenerate.
Over Z/2Z, this is equivalently a skew-symmetric bilinear form, and hence B can be
expressed in a symplectic basis {e1, f1, . . . , en, fn}. That is,

B =

n⊕
i=1

(
0 1
1 0

)
,

where V is 2n-dimensional. In this basis, we have

ϕ(x1e1 + y1f1 + · · · ) =
n∑
i=1

x2
iϕ(ei) +

n∑
i=1

y2
i ϕ(fi) +

n∑
i=1

xiyi.

2. We now attempt to remove the square terms. Suppose ϕ(ei) is non-zero, and ϕ(fi) =
0. Then replace {ei, fi} with

{gi, hi} = {ei + fi, fi}

in a new basis. This is also symplectic, and we have

x2
i + xiyi = x′iy

′
i

where
∑

i x
′
igi + y′ihi =

∑
i xiei + yifi. Therefore we can eliminate any square terms

that do not appear in pairs.

3. Suppose ϕ(ei), ϕ(fi), ϕ(ej), ϕ(fj) are all non-zero. Define a new basis for V in which
we replace {ei, fi, ej , fj} with

{gi, hi, gj , hj} = {(ei + ej + fi), (ei + ej + fj), (ei + fi + fj), (ej + fi + fj)}.

Then we obtain another symplectic basis, and square terms have been removed:

x2
iϕ(ei) + x2

jϕ(ej) + y2
i ϕ(fi) + y2

jϕ(fj) + xiyi + xjyj = x′iy
′
i + x′jy

′
j ,

where
∑

i x
′
igi + y′ihi =

∑
i xiei + yifi. This establishes that pairs of non-vanishing

squares can be cancelled against other non-vanishing pairs of squares.
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4. By eliminating pairs in the above fashion, and reordering the symplectic basis if
required, any ϕ can be expressed in either of the following ways:

ϕ(x1e1 + · · ·+ ynfn) = x1y1 + · · ·+ xnyn

ϕ(x1e1 + · · ·+ ynfn) = x1y1 + · · ·+ xnyn + x2
n + y2

n.

If ϕ can be written in the former way, ϕ is of type I. If ϕ can be written in the latter way,
ϕ is of type II.

Definition 8.1.3. The Arf invariant of a non-degenerate quadratic form ϕ : V → Z/2Z,
denoted c(ϕ), is defined by

c(ϕ) =

{
0 if ϕ is of type I

1 if ϕ is of type II.

Proposition 8.1.4. Let ϕ : V → Z/2Z be a non-degenerate quadratic form. The following
values are equal:

1. The Arf invariant c(ϕ) of ϕ.

2. The value 0 or 1 attained more often by ϕ as it ranges over the 22n elements of V .

3. The value
∑n

i=1 ϕ(ei)ϕ(fi) where {e1, f1, . . . , en, fn} is any symplectic basis.

Proof. We first show that 1 and 2 are equal.
Let V be of dimension 2n. We proceed by induction on n to show that if ϕ is of type

I, then the value 1 is attained by ϕ 22n−1− 2n−1 times, and if ϕ is of type II, 1 is attained
22n−1 + 2n−1 times.

Suppose n = 1, and ϕ is of type I. Then ϕ attains 1 once. On the other hand, if ϕ is
of type II, it attains 1 three times. This verifies the base case.

Next suppose that type I quadratic forms on V 2k attain 1 22k−1 − 2k−1 times. Let ϕ
be a type I quadratic form on V 2(k+1). Then ϕ induces a type I quadratic form ϕ′ on V 2k

by forgetting the first two coordinates. If the first two coordinates of x are both 1, then
ϕ(x) = 1 provided that ϕ′(x′) = 0. This happens 22k−1 + 2k−1 times. If either of the
first two coordinates of x are 0, then ϕ(x) = 1 provided that ϕ′(x′) = 1. This happens
3(22k−1 − 2k−1) times. In total, we have

22k−1 + 2k−1 + 3(22k−1 − 2k−1) = 22(k+1)−1 − 2(k+1)−1,

as required. Similarly a straight forward calculation verifies the result for ϕ of type II.
A similar inductive proof shows that 2 is equal to 3.
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8.2 The Arf invariant for links

Definition 8.2.1. We say that a link L is proper if lk(Li, L−Li) is even for any component
Li of L.

Suppose L is an oriented link, with Seifert surface F . Then a quadratic form

q : H1(F ;Z/2Z)→ Z/2Z

can be defined by q(x) = α(x, x) mod 2, where α is the Seifert form. The symmetric
bilinear form

(x, y) 7→ q(x+ y)− q(x) = q(y)

is represented by A − AT , and counts the intersection number of transverse curves. In
general this bilinear form is degenerate, but indices a non-degenerate form on the quotient
H1(F ;Z/2Z)/H1(∂F ;Z/2Z). Suppose L is a proper link. Then

q([Li]) = lk(L−i , L) = lk(Li, L− Li) = 0 mod 2.

It follows that q induces a well defined quadratic form on H1(F ;Z/2Z)/H1(∂F ;Z/2Z).

Definition 8.2.2. Let L be an oriented proper link. The Arf invariant A(L) is the Arf
invariant of the quadratic form

q : H1(F ;Z/2Z)/i∗H1(∂F ;Z/2Z)→ Z/2Z

described above. Here i denotes the inclusion ∂F → F , the Arf invariant is independent
of the choice of F .

Proposition 8.2.3. The Arf invariant satisfies the following properties:

1. A(01) = 0.

2. A(L1 + L2) = A(L1) +A(L2).

3. If L and L′ are proper links differing at a single point as shown in figure 8.1, they
have the same Arf invariant.

Property 2 above follows from algebra: given quadratic forms ϕ and ψ, c(ϕ ⊕ ψ) =
c(ϕ) + c(ψ).

Recall that a method of proving that a knot is slice is by taking a knot diagram and
applying the move shown in figure 6.1 (which is just figure 8.1 with orientations) to reduce
it to a collection of unlinked unknots. This suggests that the Arf invariant may not only
be an invariant of links up to isotopy, but maybe even concordance. We see later in an
exercise that this is indeed the case.
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Figure 8.1: Arf invariant invariance

Theorem 8.2.4. Let L be any oriented link. Then

V (L)(i) =

{
(−
√

2)#L−1(−1)A(L) if L is proper

0 otherwise.

Remark. This is an interesting result because it sheds light on why knot theorists struggled
to extend the definition of the Arf invariant to links which are not proper.

Proof. We give a proof strategy. Recall that the Jones polynomial is characterised by

• V (01) = 1, and

• t−1V (L+)− tV (L−) + (t−1/2 − t1/2)V (L0) = 0.

Therefore to prove that the Arf invariant satisfies the claimed identity, it suffices to show
that for Â(L) = (−

√
2)#L−1(−1)A(L),

• Â(01) = 1, and

• Â(L+) + Â(L−) +
√

2Â(L0) = 0.

The proof proceeds by case work, by verifying this formula for L+, L− proper and L0 not
proper, and so on. This can all be achieved by using the third property of the Arf invariant
in the previous proposition.

The Arf invariant also relates to the Alexander polynomial in a clean way:

Theorem 8.2.5. Let K be a knot. Then A(K) ≡ a2(K) modulo 2, where a2(K) is the
coefficient of z2 in the Conway polynomial ∇K(z). Moreover,

A(K) =

{
0 if ∆K(−1) ≡ ±1 mod 8

1 if ∆K(−1) ≡ ±3 mod 8.

Proof. This follows from the observation that A(L+) − A(L−) ≡ lk(L0) modulo 2, when
L+ is a knot. Note that lk(L0) denotes the linking number of the two components of L0.
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Since L+ and L− have one component, they are automatically proper. On the other
hand, L0 is proper if and only if lk(L0) is even. If L0 is proper, then by the third property
in the previous proposition, A(L0) = A(L+) = A(L−). Therefore

A(L+)−A(L−) ≡ 0 ≡ lk(L0) mod 2.

Similarly in the case where L0 isn’t proper, then one can show that exactly one of A(L+)
and A(L−) vanish. Therefore

A(L+)−A(L−) ≡ 1 ≡ lk(L0) mod 2.

But, recalling the properties of the Conway polynomial, we also have a2(L+) − a2(L−) =
lk(L0). This proves the first part of the proposition.

For the second part, write ∆K(−1) = ∇K(−2i). (This holds in the Conway normalisa-
tion.) Then ∆K(−1) ≡ 1− 4a2(K) modulo 8. This completes the proof.

Remark. Recall that |∆K(−1)| is the determinant of K. This shows that the Arf invariant
of a knot can be determined from the determinant.

Corollary 8.2.6. Let K be a slice knot. Then A(K) = 0.

Proof. By the Fox-Milnor condition, ∆K(t) = f(t)f(t−1) for some polynomial f . In partic-
ular, ∆K(−1) = f(−1)2. Moreover, ∆K(−1) is odd. Therefore |∆K(−1)| is the square of
an odd integer, which is necessarily ±1 modulo 8. The result now follows from the previous
theorem.

Theorem 8.2.7. Two knots are said to be pass equivalent if their diagrams are related by
a sequence of pass moves. Every knot is pass equivalent to either the trefoil or the unknot.
Moreover, the trefoil and unknot are not pass equivalent. If K is pass equivalent to the
unknot, it has Arf invariant zero. If K is pass equivalent to the trefoil, it has Arf invariant
one.

8.3 Exercises

Exercise 8.3.1. (Lickorish 10.2) Determine, directly from a Seifert matrix, the Arf invari-
ant of a pretzel knot P (p, q, r), where p, q, r are odd integers.

Solution: Recall that a Seifert matrix for P (p, q, r) is given by

A =
1

2

(
p+ q q + 1
q − 1 q + r

)
,
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by choosing an appropriate basis {f1, f2} of simple closed curves in the “canonical” Seifert
surface. Using the Seifert matrix we can compute the determinant of the knot:

∆P (p,q,r)(−1) = det(A+AT ) = det

(
p+ q q
q q + r

)
= pq + pr + qr.

The Arf invariant is now determined by the value of pq + pr + qr mod 8.
For example, the trefoil knot is the P (1, 1, 1) pretzel knot, so pq + pr + qr = 3 modulo

8. It follows that A(31) = 1. On the other hand, the pretzel knot P (−2, 3, 7), also called
the Fintushel–Stern knot, has pq + pr + qr = −6 − 14 + 21 = −1 modulo 8, so its Arf
invariant is zero. 4

Exercise 8.3.2. (Lickorish 10.3) Prove that cobordant knots have the same Arf invariant.

Solution: Here cobordant means concordant. Recall that K1 and K2 are concordant if and
only if K1 + rK2 is slice. Then A(K1 + rK2) = 0. Since the Arf invariant is additive,
it follows that A(K1) = A(rK2). Finally we note that the Alexander polynomial detects
neither reflections nor reversals, so ∆rK2

= ∆K2 . By the previous theorem, it follows that

A(rK2) = A(K2). Therefore the Arf invariant is a concordance invariant. 4

65



Chapter 9

Knot groups

In the chapter concerning the Alexander polynomial, we introduced the knot group of a
knot K;

π1(S3 −K).

We then described the Wirtinger presentation and how to determine the Alexander poly-
nomial from it via Fox’s free differential calculus. In this chapter we further explore the
knot group.

9.1 A knot group is a K(G, 1)

In this section we show that knot groups are Eilenberg Mac Lane spaces. We begin by
stating two important theorems from the study of 3-manifold topology.

Theorem 9.1.1 (The loop theorem). Let M be a 3-manifold with boundary. Suppose
i∗ : π1(∂M) → π1(M) is not injective. Then there is an embedding e : D2 → M with
e−1(∂M) = ∂D2 such that e : ∂D2 → ∂M is not homotopic to a constant map.

Theorem 9.1.2 (The sphere theorem). Let M be an orientable 3-manifold. Suppose
π2(M) 6= 0. Then there is a (smooth) embedding S2 → M that represents a non-trivial
element of π2(M).

We now apply these theorems to the study of knots.

Lemma 9.1.3. Let K be a non-trivial knot, and X = S3−K. Then i∗ : π1(∂X)→ π1(X)
is an inclusion.

Proof. Suppose conversely that π1(∂X)→ π1(X) is not injective. Then by the loop theo-
rem, there is an embedding e : D2 → X so that ∂D2 maps into the torus ∂X, so that ∂D2

represents a non-trivial element in π1(∂X).
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We show that e(D2) can be perturbed to give a Seifert surface of K, which shows that
K is unknotted. On one hand, e(∂D2) represents a non-trivial element of H1(∂X). On the
other hand, ∂D2 bounds D2 in X, so it must be trivial in H1(X). Since the only simple
closed curve representing a non-trivial element of the kernel of H1(∂X) → H1(X) is is a
longitude of K, ∂D2 is a longitude of K. The result follows.

Corollary 9.1.4. A knot K is the unknot if and only if π1(S3 −K) is infinite cyclic.

Proof. If K is the unknot, the Wirtinger presentation of π1(S3 −K) is 〈x〉 ∼= Z.
Conversely, suppose K is not the unknot. Then by the previous lemma, there is an

injection Z2 ∼= π1(∂X) → π1(X), where X is the complement of K. Therefore π1(X)
cannot be cyclic.

Theorem 9.1.5. Fix a knot K, and X = S3 −K. Let G be the group π1(X). Then X is
a K(G, 1).

Recall that a K(G,n) is a path connected space X such that πn(X) = G, and all other
homotopy groups vanish.

Proof. It is clear that X is path connected. It remains to show that all higher homotopy
groups vanish.

First we prove that π2(X) is trivial. This follows from the sphere theorem and Schönflies
theorem. If X has non-trivial second homotopy group, by the sphere theorem, it admits an
embedding of S2 representing a non-trivial element of π2(X). By the Schönflies theorem,
the image of S2 cuts X into two components. Since the knot K is connected, it can only
lie in one component, so S2 must be null-homotopic in the other component. This is a
contradiction.

Next we prove that πn(X) is trivial for n ≥ 3. We proceed as follows:

1. Lift higher homotopy groups to the universal cover.

2. Show that every homology group of the universal cover vanishes.

3. Conclude from Hurewicz’s theorem that all homotopy groups of the universal cover
vanish, and deduce that πn(X) is trivial for all n ≥ 3.

1. Let X̃ denote the universal cover of X. Then for n ≥ 2, πn(X) is trivial if and only if
πn(X̃) is trivial. This can be seen from the homotopy long exact sequence.

2. It’s clear that H2(X̃) vanishes from the previous result. It’s also clear that Hn(X̃)
vanishes for n ≥ 4, since X̃ is a 3-manifold. Since X̃ is a universal cover of a connected
space, it is connected and simply connected, so H0(X) and H1(X) are also trivial. Finally
note that the universal cover X̃ is non-compact, since π1(X) is non-trivial. By Poincaré
duality, the top homology of any non-compact connected manifold vanishes, so H3(X̃) is
also trivial. In summary we’ve shown that all homology groups of X̃ vanish.
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3. By Hurewicz’s theorem, the first non-zero homology group and first non-zero ho-
motopy group occur in the same dimension. Since all homology groups of X̃ vanish, so
must all homotopy groups. Recall that for n ≥ 2, πn(X) is trivial if and only if πn(X̃).
Therefore for n ≥ 2, πn(X) is trivial.

This completes the proof that the only non-trivial homotopy group of X is π1(X) = G,
and X is also connected. Therefore X is a K(G, 1).

The main result of this section can be interpreted as the homotopy type of S3 −K is
determined by π1(S3 −K). However, different knots can have the same knot groups.

Proposition 9.1.6. The invariant π1(S3 −K) of a knot K does not distinguish all knots.

Example. If K1 and K2 are knots, then K1 + K2 and K1 + rK2 have homotopic knot
complements. However, knots are in general not equivalent. For example, the square knot
and granny knot.

However, the following theorem holds:

Theorem 9.1.7. Let K1,K2 be knots, and µi, λi meridians and longitudes of Ki. Suppose
there is an isomorphism between π1(S3−K1) and π2(S3−K2) which sends [µ1] to [µ2] and
[λ1] to [λ2]. Then K1 and K2 are equivalent.

Moreover, the following two theorems tell us that for prime knots, we can drop the
condition on meridians and longitudes.

Theorem 9.1.8. If K1 and K2 are prime knots with isomorphic knot groups, then their
knot complements are homeomorphic.

Theorem 9.1.9. If K1 and K2 are unoriented knots in S3 and there is an orientation
preserving homeomorphism between their complements, then K1 and K2 are equivalent as
unoriented knots.

9.2 Alexander polynomial revisited

Recall the following process for determining the Alexander polynomial of a knot via the
knot group:

1. Let K be a knot, and G = π1(S3 −K). Let P = 〈x1, . . . , xn | r1, . . . , rm〉 be a finite
presentation of G. (For example, obtained as the Wirtinger presentation of K.)

2. Calculate the Jacobian
J(P )ij = ∂xjri

of the presentation, where ∂xj is the Fox derivative.
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3. Replacing each xi with t, we obtain a matrix JT (P ) with entries in Z[t]. In fact,
JT (P ) is an Alexander matrix in the sense that the rth elementary ideals of JT (P )
are the rth Alexander ideals.

4. In particular, the Alexander polynomial is the generator of the smallest principal
ideal containing the minors of the largest square blocks of JT (P ).

Recall that the rth elementary ideals of JT (P ) do not depend on the choice of presentation
P . This shows that all of the information of the Alexander polynomial is contained in the
knot group. Of course, this is expected, since the knot group determines the homotopy
type of the knot complement, and the Alexander polynomial is computed via the homology
of (a cover of) the knot complement.

Next we describe how this can be extended to links, in a way that actually improves
the Alexander polynomial.

1. Let L be a link, and G = π1(S3 − L). Let

P = 〈x1
1, . . . , x

1
n1
, x2

1, . . . , x
c
nc | r1, . . . , rm〉

be a finite presentation of G, Obtained as the Wirtinger presentation of L. Then each
generator belongs to one of the c components of L, as labelled in the superscript.

2. Consider a surjection ` : {1, . . . , c} → {1, . . . , ν}. This defines a “colouring” of the
components, and gives rise to an Alexander polynomial in ν variables.

3. Compute the Jacobian J(P ) of the presentation P using Fox derivatives. Replace
each instance of xik in J(P ) with t`(i). This gives a matrix JT (P ) with entries in
Z[t1, . . . , tν ].

4. An Alexander polynomial in ν variables is then obtained by computing the greatest
common divisor of the first minors of JT (P ).

Remark. Rather than computing all of the minors of JT (P ), one can simply compute the
minor obtained by deleting any row and the jth column, and then divide the result by
t`(j) − 1. This works because of the redundancy in the Wirtinger presentation of a link
group.

Theorem 9.2.1. If p, q, r are odd integers with |p|, |q|, |r| distinct and greater than 1, then
P (p, q, r) is not equivalent to its reverse.

We do not give a proof here, but this result can be obtained by studying the knot groups.
More precisely, one can write down the Wirtinger presentation for knot group, and if the
knot is reversible, there must exist an automorphism of the knot group sending meridians
to inverse meridians and words to their inverses. It can be shown that this is not possible.
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9.3 Exercises

Exercise 9.3.1. (Exercise to myself) Compute a three variable Alexander polynomial
for Borromean rings, as well as the one-variable Alexander polynomial, and make some
comparisons.

Solution: First we compute a 3-variable Alexander polynomial for the Borromean rings.
We begin this by writing down a Wirtinger presentation for its link complement:

π1(S3 − L) = 〈x1, x2, y1, y2, z1, z3 | x1y1x
−1
1 y−1

2 , y2x2y
−1
1 x−1

2 , z1x1z
−1
1 x−1

2 , . . . , z2y2z
−1
1 y−1

2 〉.

Using Fox calculus, the Jacobian of this presentation is

J =


1−x1y1x−1

1 0 z1 −x2z2x−1
1 0 0

0 y2−y2x2y−1
1 x−1

2 1 0 0

x1 −y2x2y−1
1 0 0 1−y1z1y−1

1 0

−x1y1x−1
1 y−1

2 1 0 0 0 z2−z2y2z−1
1 y−1

2

0 0 1−z1x1z−1
1 0 y1 −z2y2z−1

1

0 0 0 x2−x2z2x−1
1 z−1

2 −y1z1y−1
1 z−1

2 1

.
Mapping x1, x2 7→ t1, y1, y2 7→ t2, and z1, z2 7→ t3, we have

JT =



1− t2 0 t3 −t3 0 0
0 t2 − 1 1 0 0
t1 −t1 0 0 1− t3 0
−1 1 0 0 0 t3 − 1
0 0 1− t1 0 t2 −t2
0 0 0 t1 − 1 −1 1

 .

The minors of the above matrix are

±(t1 − 1)2(t2 − 1)(t3 − 1),±(t1 − 1)(t2 − 1)2(t3 − 1),±(t1 − 1)(t2 − 1)(t3 − 1)2.

Therefore the three-variable Alexander polynomial is (t1 − 1)(t2 − 1)(t3 − 1) (up to multi-
plication by a unit in Z[t±1

i ]).
Next we compute the 1-variable Alexander polynomial for Borromean rings, using the

incidence matrix approach. An incidence matrix for the Borromean rings (with two columns
corresponding to adjacent regions deleted) is the following:

A =



1 0 1 0 0 1
−1 −1 −t 0 0 0
t 1 0 0 t 0
−t 0 0 0 −1 −1
0 0 0 t 1 t
0 0 −1 −1 0 −t

 .
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The Alexander polynomial is therefore detA = (t− 1)4. This is as expected: for link with
at least two components, the multivariable and single-variable Alexander polynomials are
related by one additional factor of (t− 1). Explicitly,

∆L(t) = ∆L(t, . . . , t)(t− 1),

where ∆L(t1, . . . , tn) is a multivariable Alexander polynomial. 4

Exercise 9.3.2. (Exercise to myself) Does the sphere theorem hold in higher dimensions?

Solution: Consider the manifold Xn = Sn−2 × S2 for n ≥ 5. We prove that this manifold
is a counter example to the higher dimensional analogue of the sphere theorem.

First we note that πn−1(Xn) 6= 0. This is because

πn−1(Xn) ∼= πn−1(Sn−2)× πn−1(S2) 6= 0.

The second inequality comes from the fact that πn−1(Sn−2) is non-trivial (by calculations
of stable homotopy groups).

Next we show that any embedding of Sn−1 in Xn represents the trivial element in
πn−1(Xn). We make use of the following result: if the first homology of an n-manifold has
no 2-torsion, then any compact connected submanifold of codimension 1 is separating. The
homology groups of Xn are as follows:

Hi(Xn) =

{
Z i ∈ {0, 2, n− 2, n}
0 otherwise.

Since the first homology vanishes, any compact connected codimension 1 submanifold sep-
arates Xn. In particular, any embedding of Sn−1 separates Xn.

By the definition of a connected sum, this embedding of Sn−1 realises Xn as a connected
sum of compact oriented n-manifolds A and B. Then for i ∈ {0, n}, Hi(A) = Hi(B) = Z.
For 0 < i < n, it follows from the Mayer-Vietoris sequence that

Hi(Xn) = Hi(A)⊕Hi(B).

Since H2(Xn) = Z, without loss of generality, H2(A) = 0. By Poincaré duality and
Hn−2(Xn) = Z, it follows that Hn−2(B) = Z and Hn−2(A) = 0. Therefore A is a homology
sphere. Finally because π1(Xn) is trivial, A is a simply connected homology sphere. By
Whitehead’s theorem A is then a homotopy sphere, and by the Poincaré conjecture, it is
homeomorphic to Sn. Therefore Sn−1 contracts to a point on the “A side” of its embedding
in Xn. This completes the counter example.

Note that our proof doesn’t hold for S2×S2 without some more work. However, in that
case it can be resolved by using the intersection form, and we obtain the same conclusion. 4
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Exercise 9.3.3. (Lickorish 11.8) Show that the genus of the (p, q) torus knot is (p−1)(q−1)
2 .

Solution: We first show that the genus is at least (p − 1)(q − 1)/2. This follows from a
calculation of the Alexander polynomial. Using Fox calculus, we see that

∆Tp,q =
(1− t)(1− tpq)
(1− tp)(1− tq)

.

Therefore the breadth of the Alexander polynomial is pq + 1− p− q = (p− 1)(q− 1). But
recall the bound

2g(Tp,q) ≥ breadth ∆Tp,q .

Therefore the genus of Tp,q is at least (p− 1)(q − 1)/2.
Conversely, to show that the genus is at most (p − 1)(q − 1)/2, we exhibit a Seifert

surface with this genus. Draw the standard diagram of the torus knot Tp,q, and orient each
of the p strands in the same direction. Then the Seifert algorithm gives a Seifert surface
with:

f = p disks, c = q(p− 1) crossings, n = 1 boundary component.

Therefore the genus of the corresponding surface is

(2 + c− f − n)/2 = (p− 1)(q − 1)/2.

4
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Chapter 10

Applying knots to 3-manifolds

One of the powers of knot theory is that it sheds a lot of light on the study 3-manifolds.
In this chapter we explore applications of knot theory to 3-manifolds. First we show that
knots genuinely give rise to all possible 3-manifolds (via surgery along embedded knots in
S3). Next we use this idea to construct invariants of 3-manifolds from the Jones polynomial.

10.1 All 3-manifolds arise from knots

To study 3-manifolds, we begin by studying automorphisms of surfaces. The following
lemma shows that studying these automorphisms should shed light on 3-manifold topology:

Lemma 10.1.1. Suppose U, V are 3-manifolds with homeomorphic boundaries, and that
h0, h1 : ∂U → ∂V are isotopic homeomorphisms. Then U th0 V and U th1 V are homeo-
morphic.

Two homeomorphisms are said to be isotopic if they are homotopic, and the homotopy
is a homeomorphism at each t. The collection of all isotopy classes of automorphisms of
a manifold forms a group under composition, called the mapping class group. We write
Mod(M) to denote the isotopy classes of orientation preserving automorphisms of M , and
Mod±(M) to denote the isotopy classes of all automorphisms of M .

Definition 10.1.2. A Dehn twist is an automorphism of a surface F isotopic to the
following map T :

• Let A ⊂ F be an embedded annulus S1 × [0, 1].

• Define T : F → F to be the identity on Σ−A.

• Define T by T (eiθ, t) = (ei(θ−2πt), t) on A.

An important result from the theory of mapping class groups of surfaces is that the
mapping class group is finitely generated by Dehn twists.
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Theorem 10.1.3 (Dehn-Lickorish theorem). For g ≥ 0, the mapping class group Mod(Sg)
is generated by finitely many Dehn twists about non-separating simple closed curves.

Here Sg denotes the closed surface of genus g. Excellent exposition on the mapping
class group (and the above result) is available in Farb and Margalit [FM12]. In fact, the
following improvement can be made:

Theorem 10.1.4 (Wajnryb). For g ≥ 3, the mapping class group of Sg (or Sg with one
boundary component) is finitely presented by 2g + 1 generators (corresponding to Dehn
twists). The relations are described in [FM12].

For subsequent purposes, we don’t need such powerful results. The following result is
proven in a more elementary manner in Lickorish, but we prove it using the above theorem
because it’s so much shorter to write out!

Proposition 10.1.5. Let F be a surface with boundary. Let p1, . . . , pn be disjoint simple
closed curves in the interior of F , the union of which doesn’t separate F . Let q1, . . . , qn be
another such family of disjoint simple closed curves. Then there is an automorphism h of
F generated by Dehn twists such that hpi = qi for each i.

Proof. We do not need to prove that h is generated by Dehn twists, since this follows from
the Dehn-Lickorish theorem. It remains to prove that any h sending pi to qi exists. This
follows from the change of coordinates principle which is also described in [FM12].

By the classification of surfaces, F cut along {pi} and F cut along {qi} (which we
denote by Fp and Fq) are homeomorphic. In fact, since the boundary components corre-
sponding to the pi are pairwise disjoint, they can be inductively mapped to the boundaries
corresponding to the qi by orientation preserving homeomorphisms. Moreover, these can
be chosen to descend to an automorphism of F sending each pi to qi.

This proposition applies to a surgery classification of 3-manifolds.

Definition 10.1.6. A handlebody of genus g is an orientable 3-manifold that is a 3-ball
with g 1-handles attached.

A handle is visually similar to a connected sum with a solid torus. Formally, an r
handle is defined as follows:

• Let M be an n-manifold. Let e : ∂Dr×Dn−r → ∂M be an embedding. This is called
the framing of the attaching sphere ∂Dr × 0.

• M with an r-handle attached is the space

M tf (Dr ×Dn−r).

A result from Morse theory is that every 3-manifold can be decomposed into a pair of
handlebodies, called a Heegaard splitting.
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Theorem 10.1.7. Let M be a closed connected orientable 3-manifold. Then M admits a
Heegaard splitting. That is, M = Hg ∪H ′g, where Hg, H

′
g are handlebodies of genus g, and

Hg ∩H ′g = ∂Hg = ∂H ′g = Sg.

The main theorem of this section is the following result:

Theorem 10.1.8. Any closed connected orientable 3-manifold M is obtained from S3 by a
finite sequence of 1-surgeries. (That is, finitely many disjoint copies of S1×D2 are replaced
with D2 × S1.)

Remark. S3 bounds a 4-manifold, namely the 4-ball D4. Replacing S1×D2 with D2×S1

corresponds to attaching a 2-handle D2 × D2 to D4. (The attaching sphere is S1 × 0.)
Therefore the 3-manifold bounds a 4-dimensional handlebody.

Proof. We give a proof sketch. Let M be a closed connected orientable 3-manifold. We
prove the following result: there exists a finite collection of disjoint solid tori T ′1, . . . , T

′
N

in M and T1, . . . , TN in S3 such that M −
⋃

intT ′i and S3 −
⋃

intTi are homeomorphic.
Fix a Heegaard splitting Hg ∪H ′g = M . The two handlebodies Hg, H

′
g are glued along

a homeomorphism h : ∂Hg → ∂H ′g. Fix curves p1, . . . , pg in ∂Hg which are each “looped
through a hole in Hg” so that they are non-separating disjoint simple closed curves each
bounding a disk. Similarly fix q1, . . . , qg in ∂H ′g which are each “looped around a hole in
H ′g”. By the earlier proposition relating to the change of coordinates principle, there is
a homeomorphism h′ : ∂Hg → ∂H ′g sending each pi to qi. Moreover, Hg th′ H ′g is the
3-sphere.

We now have two homeomorphisms, h and h′, with which we can glue the surfaces.
Define h(pi) = q′i for each i. Then the q′i are disjoint simple closed curves on H ′g. Again by
the previous proposition, there is a automorphism Φ : H ′g → H ′g sending each q′i to qi, and
in particular Φ is generated by Dehn twists. Since Dehn twists are supported on annuli, by
deleting sufficiently many solid tori from M and S3, Φ restricts to the identity map. Then
the restrictions of h and h′ to the corresponding domains and codomains are isotopic, so
gluing surfaces along either homeomorphism gives homeomorphic 3-manifolds.

The theorem can be improved. The copies of S1 × D2 that are replaced in S3 are
neighbourhoods of links. To uniquely determine the the 3-manifold obtained from surgery
along a link, we simply have to specify the link along with a framing. This is an integer,
namely the self-linking number of each component given the parametrisations of S1 ×D2.

By a result of Kirby, any two framed links describing the same 3-manifold are related
by Kirby moves and Reidemeister moves. (Note that such framed links are called surgery
diagrams.) The Kirby moves are of the following two types:

• Type 1: addition or removal of an unknotted component to the diagram, with framing
±1.
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• Type 2: replacing components C1, C2 with C1 + C ′2, C2 (where C ′2 is a push-off of
C2), and giving C1 + C ′2 an updated framing.

A type 1 move is called a blow up or blow down and corresponds to a connected sum with
±CP2 (in the underlying 4 manifold whose boundary is our 3-manifold of interest). A type
2 move corresponds to a handle slide, namely sliding the attaching sphere of one handle
over another.

In the same way that ambient isotopy classes of links can be understood with link
diagrams related by Reidemeister moves, we can understand closed connected orientable
3-manifolds by surgery diagrams related by Reidemeister moves and Kirby moves.

10.2 The origin of quantum SUq(2) invariants

In this section we give a non-rigorous introduction to quantum SUq(2) invariants of 3-
manifolds. This is largely based on [Wit13]. In the next section, we will see how these
arise from knot theory.

Quantum field theory can be formalised in terms of a path integral. The basic ingredient
is an expression

A(ϕ0, ϕ1) =

∫
Φ0=ϕ0,Φ1=ϕ1

eiS[Φ]D[Φ].

On the left, A(ϕ0, ϕ1) is the probability amplitude for a state to evolve from ϕ0 to ϕ1. The
right side is an integral taken over all field configurations with boundary data ϕ0 and ϕ1.
Within the integrand, we have some measure D[Φ], and an action S[Φ]. This is not well
defined: the integral is taken over some typically infinite dimensional space, so there is no
reason to expect a measure D[Φ] to exist.

Based on this formalism for amplitudes, also called quantum propagators, we can also
compute correlation functions of observables. Specifically, if Oi are observables, then their
correlation function is given by the path integral∫

eiS[Φ]
∏
i

Oi(Φ)D[Φ].

A quantum field theory is therefore determined by the action functonal, and the space on
which fields exist. (That is, the underlying manifold on which we consider bundles - fields
are sections of these bundles.)

Example. A famous quantum field theory is Chern-Simons theory. The Chern-Simons
functional is defined by

CS(A) =

∫
M

tr(A ∧ dA+
2

3
A ∧A ∧A)
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where A is a connection one-form defined on an oriented compact 3-manifold M . Witten
showed that path integrals using the Chern-Simons functional can actually be computed
(although lacking in mathematical rigour since we don’t really know what the underlying
measure is, as remarked earlier). Specifically, it was established that

V n−1
K (q) =

∫
eikCS(A)trρn(HolK(A)) dA,

where:

• V n
K(q) is the coloured Jones polynomial of K, evaluated at q. Thus V 1

K is the usual
Jones polynomial, and V n

K is the Jones polynomial of an n-cable link.

• The variable q is equal to e
2πi
n+k . By fixing n and letting k vary, this gives an infinite

number of points, and hence determines the n-coloured Jones polynomial.

• The integral is taken over connection 1-forms on SU(2)-bundles over S3, modulo
gauge.

• As remarked earlier, CS(A) is the Chern-Simons functional.

• The “observable” trρn(HolK(A)) consists of three parts.

– given our choice of K, HolK(A) is the holonomy of the connection form A about
the knot K.

– ρn : SU(2)→ End(V ) is an irreducible representation of dimension n. (There is
a unique such ρ for each n.)

– The observable is then the trace of the matrix ρn(HolK(A)).

• The measure is elusive!

On one hand, this doesn’t formally make sense because it isn’t clear how to integrate over a
space of connection forms. However, this formalism gives rise to an invariant of the sphere;
the base space over which we consider connection forms. We could just as well replace this
with another oriented 3-manifold to obtain another function. That is, this construction
gives a heuristic for an invariant of 3-manifolds which ties into knot theory. This is what
we call the quantum SUq(2) invariant, or Witten-Reshetikhin–Turaev invariant. We now
describe how to rigorously obtain the invariant from knot theory.

10.3 Quantum SUq(2) invariants from knot invariants

Since we can express closed connected orientable 3-manifolds by surgery diagrams, which
are just link diagrams decorated with integers, it should be possible to extend link invariants
to 3-manifold invariants. The extra condition is to verify invariance under Kirby moves.
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Proposition 10.3.1. The equivalence class of the linking matrix of a surgery diagram is
a 3-manifold invariant.

A linking matrix of M is the square symmetric matrix Aij = lk(Li, Lj), where Li are the
components of a surgery diagram of M . (The self-linking number lk(Li, Li) is the framing
of each component.) To prove that the matrix is an invariant of M , we simply note that it
is a presentation matrix for the first homology of M . (Therefore the equivalence class of
the matrix in the sense of equivalences of presentation matrices) is an invariant of M .

Remark. This invariant is boring! The first homology is already understood in less round-
about ways.

Next we aim to describe Witten’s so-called quantum SUq(2) invariants via knot theory.
The main machinery that must be developed is linear skein theory.

Definition 10.3.2. Let F be an oriented surface (possibly with boundary), and fix a
complex number A. To define a linear skein of F , fix a finite number of points (possibly
zero) on the boundary of F . A link diagram is defined to be a union of arcs and closed
curves (with crossing data), so that any arcs necessarily have endpoints on specific points
of ∂F . Conversely, every specified point must be the endpoint of an arc. Two diagrams
are considered the same if they differ by a homeomorphism of F fixing ∂F pointwise.

The linear skein of F , denoted S(F ), is the vector space over C of formal linear sums
of unoriented link diagrams in F , modulo the relations

• D t trivial closed curve = (−A2 −A−2)D,

• = A +A−1 .

Remark. The definition above is clearly inspired by the Kauffman bracket, and will even-
tually provide the quantum invariant we wish to construct. Therefore our eventual invariant
can be thought of as a modification of the Jones polynomial.

Example. S(R2) ∼= C. To see this, fix any A, and consider

v =
n∑
i=1

λiDi ∈ S(R2).

By the second relation above, all crossings can be inductively removed, so that v is expressed
as a sum of scalar multiples of unlinks. But any given unlink with m components is just a
complex multiple of U by the first relation, where U is a diagram of the unknot. Therefore
we can write v = λU for some λ ∈ C. This shows that S(R2) is a one dimensional vector
space over C. Conversely, it is at least one dimensional, since U is non-zero. Therefore
S(R2) ∼= C as required.
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Example. S(S2) ∼= C. An isomorphism between S(R2) and S(S2) is induced by the
inclusion of R2 into S2 = R2 ∪ {∞}.

Example. S(S1 × [0, 1]) ∼= C[α]. Here S1 × [0, 1] is a surface with boundary, but we
don’t distinguish any points in the boundary so that the diagrams consist of unions of
closed curves. It can be shown that a basis of S(S1 × [0, 1]) consists of curves encircling
the cylinder. That is, {α0, α1, α2, . . .}, where αi denotes the diagram with i simple closed
curves encircling the cylinder.

There is a well defined product S(S1× [0, 1])×S(S1× [0, 1])→ S(S1× [0, 1]) which can
be thought of as gluing F to itself along boundary components. Then αiαj = αi+j , and
S(S1 × [0, 1]) equipped with this product becomes a commutative algebra. Moreover, it is
then clear that S(S1 × [0, 1]) ∼= C[α].

Example. S(D2, 2n) ∼= TLn. Here TLn denotes the nth Temperley-Lieb algebra. A basis
for S(D2, 2n) consists of all diagrams with no crossings and no closed curves. (There are(

2n
n

)
/(n+ 1) such diagrams.) We denote D2 with a square, with n distinguished points on

the right edge and n on the left. Again the “gluing surfaces” operation gives a bilinear
product (though not commutative). The identity element 1 is n parallel arcs from left to
right. TLn is generated by n elements 1, e1, . . . , en as an algebra. (Each ei consists of the
first i− 1 and last n− i− 1 points on each side of D2 joined by horizontal arcs, with the
points i, i+ 1 on each side joined by arcs with endpoints on the same edge.)

To better understand the Temperley-Lieb algebra, we introduce the Jones-Wenzl idem-
potent f (n) ∈ TLn. This is also called the magic element, and appears in many arguments
regarding the Temperley-Lieb algebra.

Since f (n) belongs to S(D2, 2n), it can be placed in the place. The n endpoints of arcs
on either end of f (n) can be joined together in the canonical way by looping the endpoints
over the “top” of the diagram (given a left and right of the diagram in D2). This is the
image of f (n) under a canonical linear map TLn → C, and the image is denoted by ∆n.

Definition 10.3.3. The Jones-Wenzl idempotent f (n) ∈ TLn is characterised by the fol-
lowing properties, given that A4 ∈ C is not a kth root of unity for k ≤ n.

• f (n)ei = 0 = eif
(n) for i ∈ {1, . . . , n− 1}.

• f (n) − 1 is generated by {e1, . . . , en−1}.

• f (n)f (n) = f (n).

• ∆n = (−1)n(A2(n+1) −A−2(n+1))/(A2 −A−2).

A proof is not given here, but we explore the last bullet point. Consider placing (D2, 2n)
in an annulus and joining the n points on each side around the annulus to obtain a map
TLk → S(S1 × [0, 1]) = C[α] for each k ∈ {0, . . . , n}. The image of f (k) under this map is
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some polynomial Sk(α) in α. By idempotence of f , one can show that this polynomial is
given recursively by

Sk+1(α) = αSk(α)− Sk−1(α).

The initial conditions are determined by f (0) being the empty diagram, and f (1) = 1.
Therefore S0(α) = α0 and S1(α) = α. This is called the Chebyshev polynomial. By
composing the map TLn → S(S1 × [0, 1]) with the canonical map S(S1 × [0, 1]) → S(R),
we obtain the map f (n) → ∆n which can be verified to satisfy the desired relation above
via the recurrence relation of Sk.

Definition 10.3.4. The Chebyshev polynomial Sn is defined by

Sn+1(x) = xSn(x)− Sn−1(x), S0(x) = 1, S1(x) = x.

This immediately satisfies two important properties:

Sn(x) = (−1)nSn(−x), (t− t−1)Sn(t+ t−1) = tn+1 − t−(n+1).

Definition 10.3.5. For any r ∈ Z, define ω ∈ S(S1 × [0, 1]) by

ω =
r−2∑
n=0

∆nSn(α).

This is one of the final ingredients for defining our quantum SUq(2) invariants. Again
we remark that Sn(α) is the image of f (n) under the canonical map TLn → C[α], and ∆n

is the image of f (n) under the map TLn → C.

Definition 10.3.6. Let D be a diagram of n ordered components. An n-ary multilinear
map

〈−, . . . ,−〉D : S(S1 × [0, 1])n → S(R2)

is defined as follows:

• Consider an immersed annular neighbourhood Ai of each component ci of D. Any
self-intersections of Ai inherit the crossing data from ci. Moreover, any Ai typically
intersects some Aj , at which point they again inherit crossing data from D.

• Given an ith diagram in S(S1 × [0, 1]), consider the image of this diagram under the
above immersion. Record any new crossing data.

Example. Let U+ and U− be oriented planar figure-8 diagrams (with a positive crossing
and negative crossing respectively). Then 〈α〉U± corresponds to taking a diagram α and
applying a “global type 1 Reidemeister move”.
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Theorem 10.3.7. Let M be a closed oriented 3-manifold with surgery diagram D. Let
b+ be the number of positive eigenvalues and b− the number of negative eigenvalues of the
linking matrix of D. If A is a primitive 4rth root of unity (for r ≥ 3), the expression

〈ω, . . . , ω〉D〈ω〉−b+U+
〈ω〉−b−U−

is the quantum SU(2) invariant of M .

Proof. We do not give a proof, but briefly describe the basic ideas. We require the above
expression to be invariant under Reidemeister moves and Kirby moves of D. The first term
〈ω, . . . , ω〉D is invariant under type 2 moves, i.e. handle slides. The additional two terms at
the end add invariance under type 1 Kirby moves (blow ups and blow downs) (analogously
to the way we multiply the Kauffman bracket by the writhe to obtain invariance under
type 1 Reidemister moves). Reidemeister moves correspond to isotopies of D, under which
the expression is also invariant.
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