A non-visual proof that higher homotopy groups are abelian

Shintaro Fushida-Hardy 381B Sloan Hall, Stanford University, CA

This document proves that homotopy groups $\pi_n(X)$ are abelian, for $n \ge 2$. Often this result is proven with just a picture, so this is for those souls who desire a proof without any drawings whatsoever.

Contents

1	Introduction	1
2	Eckmann-Hilton argument	1
3	Higher homotopy groups are abelian	2

1 Introduction

The most popular proof that homotopy groups $\pi_n(X)$ are abelian (for $n \geq 2$) is entirely visual. The idea is that the non-trivial parts of the domains of maps $f, g : \mathbb{S}^n \to X$ can be "shrunk down" so that there is enough space to slide [f] over [g]. Then [f][g] = [g][f]. While this can be made rigourous, it can also be dissatisfying. For this reason, we give an entirely algebraic proof that homotopy groups are abelian, using the Eckmann-Hilton argument.

2 Eckmann-Hilton argument

The Eckmann-Hilton argument is the following result from algebra.

Theorem 2.1. Let \times and \otimes be two unital binary operations on a set X. Suppose

$$(a \times b) \otimes (c \times d) = (a \otimes c) \times (b \otimes d)$$

for all $a, b, c, d \in X$. Then \times and \otimes are in fact the same operation, and are commutative and associative.

Proof. We first show that \times and \otimes have the same unit. Let 1_{\times} and 1_{\otimes} denote their respective units. Then

$$1_{\times} = 1_{\times} \times 1_{\times} = (1_{\times} \otimes 1_{\otimes}) \times (1_{\otimes} \otimes 1_{\times}) = (1_{\times} \times 1_{\otimes}) \otimes (1_{\otimes} \times 1_{\times}) = 1_{\otimes} \otimes 1_{\otimes} = 1_{\otimes}.$$

We hereafter write 1 to denote the shared unit. Next we use this to prove that \times and \otimes are really the same operation. Let $a, b \in X$. Then

 $a \times b = (a \otimes 1) \times (1 \otimes b) = (a \times 1) \otimes (1 \times b) = a \otimes b.$

It remains to show that \times is commutative and associative. For commutativity, observe that

$$a \times b = (1 \otimes a) \times (b \otimes 1) = (1 \times b) \otimes (a \times 1) = b \otimes a = b \times a.$$

Finally for associativity, let $a, b, c \in X$. Then

$$(a \times b) \times c = (a \times b) \times (1 \times c) = (a \times 1) \times (b \times c) = a \times (b \times c).$$

Remark. This result can be considered an algebraification of the "sliding over" argument, if we write $a \times b$ as ab, and $a \otimes b$ as $\frac{a}{b}$.

3 Higher homotopy groups are abelian

We use the Eckmann-Hilton argument to prove that higher homotopy groups are abelian. First let us recall the relevant definitions.

Definition 3.1. Let (X, x) be a path connected pointed space. The underlying set of $\pi_n(X)$ is the collection of homotopy classes of maps

$$f: \mathbb{S}^n \to X,$$

(where \mathbb{S}^n is also pointed.) Equivalently, $\pi_n(X)$ consists of homotopy classes of maps

$$f:[0,1]^n\to X$$

for which $\partial [0,1]^n$ is mapped onto x.

Proposition 3.2. The set $\pi_n(X)$ forms a group (called the *n*th homotopy group of X) when equipped with the following product: let $[f], [g] \in \pi_n(X)$. Then define $[f] \star [g]$ to be the homotopy class of the map $f \star g$ defined by

$$(f \star g)(t_1, \dots, t_n) = \begin{cases} f(2t_1, t_2, \dots, t_n) & t_1 \in [0, 1/2] \\ g(2t_1 - 1, t_2, \dots, t_n) & t_1 \in [1/2, 1]. \end{cases}$$

Observe that \star is unital, where the unit is the homotopy class of the constant map $[0,1]^n \mapsto x$. To use the Eckmann-Hilton argument, we define an alternative binary operation.

Definition 3.3. Let $[f], [g] \in \pi_n(X)$. Then define $[f] \times [g]$ to be the homotopy class of the map $f \times g$ defined by

$$(f \times g)(t_1, \dots, t_n) = \begin{cases} f(t_1, 2t_2, t_3, \dots, t_n) & t_2 \in [0, 1/2] \\ g(t_1, 2t_2 - 1, t_3, \dots, t_n) & t_2 \in [1/2, 1]. \end{cases}$$

It is clear that this operation is also unital, with the same unit. To make use of the Eckmann-Hilton argument, it remains to prove that for any f, g, h, k,

$$([f] \times [g]) \star ([h] \times [k]) = ([f] \star [h]) \times ([g] \star [k]).$$

The left hand side is defined to be the homotopy class of

$$(f \times g) \star (h \times k)(t_1, \dots, t_n) = \begin{cases} f(2t_1, 2t_2, t_3, \dots, t_n) & t_1 \le 1/2, t_2 \le 1/2\\ g(2t_1, 2t_2 - 1, t_3, \dots, t_n) & t_1 \le 1/2, t_2 \ge 1/2\\ h(2t_1 - 1, 2t_2, t_3, \dots, t_n) & t_1 \ge 1/2, t_2 \le 1/2\\ k(2t_1 - 1, 2t_2 - 1, t_3, \dots, t_n) & t_1 \ge 1/2, t_2 \ge 1/2 \end{cases}$$

The right hand side is the homotopy class of

$$(f \star h) \times (g \star k)(t_1, \dots, t_n) = \begin{cases} f(2t_1, 2t_2, t_3, \dots, t_n) & t_1 \leq 1/2, t_2 \leq 1/2 \\ h(2t_1 - 1, 2t_2, t_3, \dots, t_n) & t_1 \geq 1/2, t_2 \leq 1/2 \\ g(2t_1, 2t_2 - 1, t_3, \dots, t_n) & t_1 \leq 1/2, t_2 \geq 1/2 \\ k(2t_1 - 1, 2t_2 - 1, t_3, \dots, t_n) & t_1 \geq 1/2, t_2 \geq 1/2. \end{cases}$$

For fixed f, g, h, k, these are not only homotopic, but exactly the same map! Either way, since these two maps are homotopic, the premise for the Eckmann-Hilton argument is satisfied. It follows that \star is commutative, so higher homotopy groups are abelian.

Remark. This proof makes it clear why the fundamental group need not be abelian, even though higher homotopy groups are. We simply do not have enough space in [0, 1] to carry out the same argument.

Remark. This proof was genuinely algebraic, no messy homotopies needed to be defined to establish that higher homotopy groups are abelian.