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Abstract. We give a proof outline of the topological 4-dimensional Poincaré conjecture.
Specifically, we describe how the h-cobordism theorem (i.e. proof of Poincaré conjecture)
for high dimensions fails in dimension 4, and introduce Casson handles to patch the proof.

1. Review of high dimensions

We begin by recalling the proof outline for the h-cobordism theorem. This was the focus
of last week’s talk by Judson.

Theorem 1.1. Let Mn, Nn be simply connected closed manifolds, n ≥ 5. Let (W,M,N)
be an h-cobordism from M to N . Then W is a cylinder; i.e. W ∼= M × [0, 1].

Proof. We give a proof outline:

(1) Choose a handle decomposition of M .
(2) For algebraic reasons, handles can be rearranged so that they occur in algebraically

cancelling pairs. That is, attaching spheres of k handles algebraically intersect belt
spheres of k − 1 handles once.

(3) By the Whitney trick, the algebraic intersections can be upgraded to geometric
intersections. Now the handles can actually be cancelled!

(4) After cancelling all handles, a cylinder remains.

�

The key ingredient of the proof is the Whitney trick. Unfortunately this only holds
in dimension at least 5. The Whitney trick relies on the Whitney embedding theorem,
that embeddings An → B2n+1 are dense in the space of (smooth) maps An → B2n+1. In
particular, embeddings are dense in the space of maps D2 → B5, but not necessarily in
the space of maps D2 → B4. Indeed, embeddings of disks into 4-manifolds are generally
not dense.

Remark. It’s important to be careful about where we’re considering the embedding/Whit-
ney disk. The k-handles of the cobordism W are attached at height k, given a Morse
function on W . The level set Wk is an n-dimensional manifold, even though W is n + 1
dimensional. The attaching sphere of the k-handle and belt sphere of the (k − 1)-handle
both occur at height k, and the Whitney disk must embed in this level set as well.
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2. A four dimensional programme

In dimension 4, we wish to carry out the same programme as above. The biggest difficulty
is embedding disks. If we can figure out how to eliminate self-intersections of immersed
disks and obtain embedded disks even in the 4-dimensional setting, then the same proof
as in higher dimensions will carry through, and we’ll obtain an h-cobordism theorem for
4-dimensional manifolds.

It turns out that by introducing a topological (but not smooth) notion of handles that
we can “easily embed” we can solve the problem. We now state the theorem and describe
the proof outline.

Theorem 2.1. Let M4, N4 be simply connected closed manifolds, and W an h-cobordism
between them. Then there is a homeomorphism W ∼= M × [0, 1].

Proof. We give a proof outline:

(1) Deal with all k-handles with small k or large k, as in the high dimensional case.
This leaves us with 3-handles and 2-handles, which meet along 2-dimensional belt
spheres and 2-dimensional attaching spheres.

(2) Choose a pair of intersection points between the attaching and belt spheres. By
drawing arcs in each of the two spheres between intersection points, we bound
an immersed disk D in W2. We want to apply the Whitney trick to D, but we
can’t. We’re instead going to a series of moves to the immersed disk to push all
the badness to infinity.

(3) Miraculously, after pushing the badness to infinity, everything actually works out
anyway in the topological category. This is essentially the disk embedding theorem
(1984, combining work of Casson, Freedman, and Quinn). This means we have
an analogue of the Whitney trick, and we can topologically cancel the remaining
handles to produce a cylinder.

�
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3. Casson handles

In this section we introduce Casson handles. Historically these were introduced in the
early 70s by Casson. He called them flexible handles because they’re easier to embed than
standard handles:

Theorem 3.1 (Casson, 73). Let (M,∂M) be a simply connected 4-manifold with bound-
ary. Let f1, . . . , fn : D2 → M be immersions whose boundaries are disjoint embeddings.
Moreover, assume that for i 6= j, fi · fj = 0, and that there exist “dual spheres” for each
fi. By dual spheres, we mean classes ai ∈ H2(M ;Z) such that ai · fi = 1 but ai · fj = 0 for
i 6= j.

Then there exist Casson handles C1, . . . , Cn such that

(1) there are proper homotopy equivalences (Ci, Ci ∩ ∂M)→ (D2 × R2, S1 × R2),
(2) each Ci ∩ ∂M is an open tubular neighbourhood of the circles fi(∂D

2), and
(3) each fi is homotopic rel boundary to a map into Ci.

This already looks like some sort of 4-dimensional Whitney trick analogue: we’re replac-
ing our immersed disk with something embedded - but unfortunately these objects we’re
embedding are a little bit elusive.

Theorem 3.2 (Freedman, 82). Any Casson handle is homeomorphic to a thickened disk
D2 × R2. In particular, Casson handles are genuine topological 2-handles with core a
topologically embedded 2-disk.

So what exactly is a Casson handle? We discuss this next.

Definition 3.3. Casson handles are the union of topological spaces obtained by carrying
out certain procedures an infinite number of times! (To understand what Casson handles
are, we spend the rest of this section describing certain moves in 4 dimensions.)

3.1. Creating self intersections. Warm up: suppose K is an immersed circle in R2.
Locally, away from double points, K looks like R embedded in R2. We can add a double
point by utilising the direction normal to R to add a kink.

Now suppose S is a surface immersed in a 4-manifold. Locally, away from double points,
S looks like R2 embedded in R4. We actually think of this as (R× R,R3 × R), where the
second R term is parametrised by t. Now as we increase t, we pinch R at a point and start
to twist it. At a certain value of t the twisting copy of R intersects itself creating a double
point. We then keep twisting and eventually remove the pinch, getting back to standard
R in R3. This procedure adds a single double point, which can have positive or negative
sign depending on the direction of twisting.
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3.2. Removing self intersections. Suppose we have a double point p in an immersed
surface S that we wish to remove. There exists a loop γ in S that starts at p along one
branch of the double point and returns back to p along the other.

Warm up: assume our curve γ bounds an embedded disk. Then, somewhere along the
curve γ, we can add a self intersection as above, and choose the intersection to have opposite
sign to the pre-existing one at p. Now the Whitney trick applies, and both intersections
can be removed.

In reality, our curve γ probably won’t bound an embedded disk. What we want is the
following:

(1) We have a closed 4-manifold M and an immersed surface S in M . We also consider
a loop γ in M , lying on the image of S.

(2) We want a disk in M − S whose boundary is the loop γ.
(3) If M − S isn’t simply connected, we can find a loop that doesn’t bound any disk,

and push the loop into the boundary of M − S.

In summary, for an arbitrary loop to bound an embedded disk, we certainly need the
complement to be simply connected. We now describe how to achieve this:
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3.3. Finger moves. We now describe finger moves which are a method to remove certain
commutators from the fundamental group of the complement M − S.

(1) Suppose β is a loop around S, and α is any loop in M − S. We can push part of
α to be parallel to S, which decomposes α into α1 and α2. Here α1 is the part of
α parallel to S and α2 is an arc from S to itself, through M − S.

(2) A finger move consists of pushing S along α2 until it eventually gets pushed back
into S, creating two intersection points.

• This has the effect of killing the commutator [β, α−1βα]. This is because we can
embed a torus as follows:
(1) The manifold M near one of the new double points looks like D2 ×D2, with

branches of S given by D2×0 and 0×D2. In these coordinates, the complement
D2 × D2 − S contains a torus S1 × S1. (This is immediate because the only
points we’re removing from D2 ×D2 have 0 in one of their coordinates.)

(2) By construction, we actually have that β is S1 × {−1}. On the other hand,
conjugating by α, we get the other circle 1× S1. These are the meridian and
longitude of the torus embedded in M − S. Since the fundamental group of
the torus is commutative, β and α−1βα must commute in π1(T

2) and thus in
π1(M − S).

• This unfortunately increases the number of self intersections by two. It’s a tradeoff!

3.4. Casson handles. We’re now ready to introduce Casson handles. The idea is to
replace a failed Whitney disk with a slightly less bad failed Whitney disk and continue to
infinity.

Warm up: working with disks, rather than handles. (I.e. the non-thickened version.)

(1) Consider an immersed disk (D, ∂D) ⊂ (M,∂M). If we start out with M simply
connected, then M −D is actually a perfect group. (This means the group has no
non-trivial abelian quotients.) (Why is this true? Does it follow from the Wirtinger
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presentation?) In a perfect group, every element is a commutator, and taking
enough finger moves, we can assume the complement M −D is simply connected.

(2) Consider a self intersection p of D. We want to eliminate this, so we consider a
loop γ from p to itself, eminating from one branch and returning along the other.
This loop bounds an immersed disk: if the self intersections of this disk can be
removed, then so can the original self intersection!

(3) Effectively we’ve “pushed the problem away” a little bit. We now perform a se-
quence of finger moves until the complement of the new surface unioned with disks
has simply connected complement.

(4) Now we repeat this infinitely many times. We keep adding new immersed disks,
and then carrying out finger moves to purge the fundamental group.

Now we actually define Casson handles by working in the thickened setting.

(1) Suppose we have an immersed thickened disk (D2 × D2,S1 × D2) ⊂ (M,∂M).
Essentially, this is a 2-handle that’s allowed to intersect itself.

(2) The self intersections are plumbings. Locally two points in the thickened disk have
neighbourhoods D1×D2 and D2×D2 inside D2×D2. These neighbourhoods glue
together by swapping factors; D1 ×D2 ∼ D2 ×D2.

(3) We now follow the the infinite procedure of adding additional immersed disks to
try to resolve double points - but instead of gluing in disks, we’ll add thickened
disks. Technically we should think about framings here!

(4) As we build the iterated chaos handle, we want to remove boundaries so that the
end result is an open set in M . This means with every immersed disk we glue in,
we delete the D2 × S1 from the boundary, and only keep the part of the boundary
that gets glued to the preeixsting disk.

The result is an open set in set in M , anchored to ∂M , which we call a Casson handle.

Theorem 3.4 (Casson, 73). Casson handles are homotopic to D2 × R2 rel boundary.

Theorem 3.5 (Freedman, 81). Casson handles are homeomorphic to D2 × R2.
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In particular, topologically, Casson handles are real handles.

Example. We won’t prove any of this, but I’ll provide some evidence as to why this might
be true. Consider a loop γ in a Casson handle. Any loop exists in the handle after a finite
number of iterations, and the next iteration kills its homotopy class. This means Casson
handles are simply connected.

Remark. Casson handles need not be diffeomorphic to real handles. We draw an example.
In particular, we can’t prove the smooth four dimensional Poincaré conjecture.

4. Four dimensional h-cobordism theorem

Theorem 4.1. Let W be an h-cobordism between M4 and N4, all pieces simply connected.
Then there is a homeomorphism W ∼= M × [0, 1], and in particular M and N are homeo-
morphic.

Proof. (1) We first must find a topological handle decomposition of W . This is highly
non-trivial, proved by Quinn in 1982. (Recall that Morse theory is inherently a
smooth theory.)

(2) Given our handle decomposition, we eliminate 0 and 5-handles, and trade 1-handles
for 3-handles, and trade 4-handles for 2-handles. The result consists of a handle
decomposition ofW consisting exactly of 2-handles and 3-handles. By using handle-
slides and handle-creations, all of the 2 and 3-handles are pairwise paired to have
their belt and attaching spheres algebraically intersect exactly once.

(3) Let W2 be the union of all the 2-handles. The 3-handles are glued to W2 along the
boundary component M2. In M2, we generate Casson handles along immersed disks
(which are created when we want to use the Whitney trick). Since Casson handles
are actually genuine topological 2-handles, the Whitney trick applies topologically,
so all the 2-handles and 3-handles in W cancel each other.

(4) Since all handles have been eliminated, the cobordism is a cylinder.
�

7



5. Four dimensional Poincaré conjecture

Theorem 5.1. Topological homotopy 4-spheres are topological 4-spheres

Proof. We must first argue that the cone of a topological homotopy 4-sphere is a topological
manifold. I’m not sure why this is true!

If we start with a smooth (or piecewise linear) homotopy 4-sphere, then the cone is a
piecewise linear manifold (and therefore a topological manifold). Next, we remove a 5-
ball from around the vertex of the cone. This creates a topological h-cobordism from a
4-sphere to the homotopy 4-sphere, so by the h-cobordism theorem, homotopy 4-spheres
are spheres. �
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