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This document contains notes on algebraic topology - during my reading course with
Ciprian Manolescu in Spring 2020, he noticed that I didn’t really know any algebraic
topology/homotopy theory beyond the first couple of chapters of Hatcher! After conclud-
ing the reading course (on knot theory and 3-manifolds) we decided that I should learn
some more algebraic topology, as it is fundamental to topology as a whole. In the first
chapter, we introduce classifying spaces for vector bundles and principal G-bundles. In the
second chapter we try to improve our classifications of vector bundles by introducing char-
acteristic classes (and solve several exercises). We continue the trend of delving into vector
bundles by studying K-theory in the third chapter, with an emphasis on the Bott period-
icity theorem and classification of division algebras. This was my first experience with an
extraordinary cohomology theory! Next we investigate another generalised (co)homology
theory, namely cobordism theory. Finally we study some additional tools that can help us
understand both K-theory and cobordism theory (and extraordinary cohomology theories
in general): equivariant cohomology and the Atiyah-Hirzebruch spectral sequence. We give
examples of calculations involving each of these. The primary sources are listed at the start
of each chapter.
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Chapter 1

Classifying spaces

Fibre bundles (and in particular vector bundles) appear throughout maths, so we want
some way of classifying bundles over a given space X. Given a topological group G, we
will construct the classifying space BG, and show that isomorphism classes of principal
G-bundles over X are in natural bijective correspondence with homotopy classes of maps
X → BG. In this chapter, we start by recalling general definitions for fibre bundles and
fibrations. We then look at the special cases of vector bundles and principal bundles, before
constructing classifying spaces and establishing the main result mentioned above. Finally
we will study some examples. This chapter is primarily sourced from [Kot12, Mit06, Coh98].

1.1 Fibrations and fibre bundles

The most general notion we consider is a fibration. Most diagrams we consider will involve
fibrations or cofibrations. Covering spaces and fibre bundles are also examples of fibrations.

Definition 1.1.1. A fibration p : E → B is a map satisfying the homotopy lifting property.
That is, any homotopy f : A× I → B lifts to f̃ : A× I → E.

As a consequence of this definition, the fibre of any two points in B are homotopy
equivalent. Therefore we speak of the fibre F of a fibration, and write

F
i−→ E

p−→ B

where p is the fibration and i is an inclusion. Although not all maps are fibrations, we can
approximate all maps by fibrations.

Proposition 1.1.2. Let f : X → Y be any map between topological spaces. There
exists a fibration f̃ : X̃ → Y which approximates f in the sense that there is a homotopy
equivalence h : X → X̃ such that the following diagram commutes:
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X̃

X Y.

f̃
h

f

Proof outline. Define X̃ := {(x, γ) ∈ X × Y I such that γ(0) = f(x).} Here Y I is the space
of all paths I = [0, 1] → Y equipped with the compact-open topology. This is called the
mapping path space of f . Define f̃ : X̃ → Y by

f̃ : (x, γ) 7→ γ(1).

We claim without proof that this map is a fibration. Next we define h : X → X̃ by

h : x 7→ (x, γx),

where γx is the constant path γx(t) = f(x). It is clear that the above diagram commutes,
because (f̃ ◦ h)(x) = f̃(x, γx) = γx(1) = f(x). Finally, to see that h is a homotopy
equivalence, define g : X̃ → X by

g : (x, γ) 7→ x.

One can show that h ◦ g and g ◦ h are homotopic to the identity.

The mapping path space introduced in the above proof is a canonical choice for X̃,
which also gives us a canonical choice of fibre.

Definition 1.1.3. Let f : X → Y be a map. We have the following commutative diagram:

Ff Ef

X Y.

p

i

f̃
h

f

The map f̃ : Ef → Y is a fibration, where Ef is the mapping path space defined by

Ef := {(x, γ) ∈ X × Y I : γ(0) = f(x)}.

Ef is homotopic to X, so f̃ can be seen as a fibration that approximates f . Ff denotes

the homotopy fibre of f , which is the pullback of the above diagram, and the fibre of f̃ .
Explicitly, we have

Ff := {(x, γ) ∈ X × Y I : γ(0) = f(x), γ(1) = y0},

where y0 is a base point of Y . The map p is the projection onto the first coordinate, and i
is the inclusion map.
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The most important theorem concerning fibrations is that they extend to a long exact
sequence. Recall that given a pointed space X, the loop space of X, denoted ΩX, is the
space of pointed maps from S1 into X equipped with the compact-open topology.

Let F → E → B be a fibre sequence (i.e. p : E → B is a fibration, with fibre F ).
Replacing the fibre sequence with Fp → Ep → B, one can show that i : Fp → Ep is itself a
fibration, with fibre ΩB. To see why the fibre is ΩB, we simply write it out explicitly:

i−1((e0, γ)) = {(e0, γ) : γ(0) = f(e0) = b0 = γ(1)} ∼= {γ ∈ BI : γ(0) = γ(1) = b0} = ΩB.

Given a map f : X → Y , we also have a canonical map f ′ : ΩX → ΩY defined by

f ′ : γ → f ◦ γ.

Combining these constructions actually gives a long fibre sequence, as described in the
following theorem.

Theorem 1.1.4. Let F → E → B be a fibre sequence. Then there is a long fibre sequence

· · · → Ω2B → Ω1F → Ω1E → Ω1B → F → E → B.

By a long fibre sequence, we mean that any two consecutive maps define a fibre sequence.

Corollary 1.1.5. If F → E → B is a fibre sequence, there is an associated long exact
sequence of homotopy

· · · → πn+1(B)→ πn(F )→ πn(E)→ πn(B)→ πn−1(F )→ · · · .

Proof outline. We induce a long exact sequence

· · · → [S0,Ωn+1B]0 → [S0,ΩnF ]0 → [S0,ΩnE]0 → [S0,ΩnB]0 → · · · .

Recall that [X,Y ] denotes the homotopy classes of maps from X to Y , and here we have
used [X,Y ]0 to denote the classes of based maps. By Eckmann-Hilton duality, we have

[S0,ΩnX]0 = [ΣnS0, X]0 = [Sn, X]0 = πn(X),

where ΣY denotes the suspension of Y . The result follows.

This is a key result which we wish to apply in many scenarios, an in particular in the
context of bundles. It turns out that under mild conditions, bundles are indeed fibrations
and we have a long exact sequence of homotopy groups.

Definition 1.1.6. A fibre bundle is the data (π,E,B, F ), where π is a locally trivial
surjection π : E → B of topological spaces. E is called the total space, and B the base space,
and F the fibre space. Locally trivial means that for any b ∈ B there is a neighbourhood U
of b so that π−1(U) ⊂ E is homeomorphic to F ×U , and the following diagram commutes:
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π−1(U) U × F

B.

π
proj

Definition 1.1.7. A morphism of fibre bundles F : (π,E,B) → (π′, E′, B′) is a pair
(fE , fB) such that the following diagram commutes:

E E′

B B′.

π

fE

π′

fB

We often write π : E → B, or even just E, to denote a fibre bundle. A morphism of
fibre bundles is often denoted by f : E → E′.

Remark. The collection of fibre bundles forms a category, with morphisms as defined
above. Fixing a base space gives a subcategory.

Next we observe that for both fibrations and fibre bundles, we have pullbacks.

Definition 1.1.8. Let π : E → B be a fibre bundle, and f : A → B continuous. The
pullback bundle π′ : f∗(E)→ A is defined to be the pullback of the diagram E → B ← A.
Explicitly, define

f∗(E) = A×B E = {(a, e) ∈ A× E : f(a) = π(e)},

and consider the diagram

f∗(E) E

A B.

proj1

proj2

π

f

Then the arrow on the left defines the pullback bundle.

Remark. More generally, given a fibration π : E → B and a continuous map f : A→ B,
the pullback of E → B ← A also defines a fibration f∗(E)→ A.

In fact, fibre bundles of interest are fibrations!
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Theorem 1.1.9. Let π : E → B be a fibre bundle. If B is paracompact, then π is
a fibration. (Recall that a space is paracompact if every open cover has a locally finite
subcover.)

This means that for B paracompact, a fibre bundle gives rise to the long exact sequence
of homotopy. In particular, whenever B is a manifold, the long exact sequence of homotopy
is induced.

Remark. Because of the above theorem, fibre bundles are sometimes called locally trivial
fibrations.

Finally we introduce the sections. In any category, a section of a map f : A → B is
some map σ : B → A such that f ◦ σ = idB. This applies in the context of fibre bundles,
which are defined to be surjections.

Definition 1.1.10. Let π : E → B a fibre bundle, and U ⊂ B a subspace. Then Γ(U,E)
denotes the local sections σ : U → E of π. The global sections σ : B → E are simply
denoted by Γ(E).

In the next section we see that not all bundles admit global sections.

1.2 Vector bundle and principal bundle basics

In the previous section, we laid out the most general definitions of relevance. In practice,
we are interested in settings with more structure, which generally manifests in the choice
of fibre. In this section, we explore the case where F is a vector space (which gives rise to
vector bundles), and the case where F consists of G-torsors (which gives rise to principal
G-bundles).

Both of the above scenarios arise by fixing a group of automorphisms for the fibre,
called the structure group, and requiring bundle morphisms to preserve the structure.

Definition 1.2.1. Let G be a topological group, and (π,E,B, F ) a fibre bundle. Suppose
G acts continuously and faithfully on F by left multiplication (so that F ⊂ Homeo(F )).
A G-atlas for (π,E,B, F ) is an atlas of local trivialisations {(Uk, ϕk)} of E → B so that
whenever Ui ∩ Uj is nonempty,

ϕi ◦ ϕ−1
j : (Ui ∩ Uj)× F → (Ui ∩ Uj)× F

is given by
ϕi ◦ ϕ−1

j : (x, f) 7→ (x, gij(x)f).

Here gij : Ui ∩ Uj → G is a continuous map called the transition function.
Two G-atlases are equivalent if their union is a G-atlas, and a G-bundle is a fibre

bundle as above equipped with an equivalence classes of G-atlases. The group G is called
the structure group of G.
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Using the notion of a G-bundle, we can define vector bundles and principal G-bundles.
Namely, a vector bundle is a G-bundle with structure group GL(n, k) for some field k,
while a principal G-bundle is a G-bundle whose G-action is free and transitive. In general
a vector bundle is not a principal G-bundle and vice versa. We now explore these two
concepts in some more depth.

Definition 1.2.2. A vector bundle is a fibre bundle π : E → B with fibre a vector space
V and structure group GL(V ).

More concretely, we require the local trivialisations π−1(U) ∼= U × V to restrict to
vector space isomorphisms π−1(b) ∼= V (where U is a neighbourhood of b). The rank of a
vector bundle is the dimension of V . A rank 1 vector bundle is often called a line bundle.

A morphism of vector bundles is a bundle morphism which restricts to linear maps on
fibres.

Example. The cylinder is a trivial (real) line bundle over S1, while the Möbius strip is a
non-trivial line bundle over S1.

Example. Consider CPn, the space of one dimensional subspaces of Cn+1. The tautological
line bundle is the projection map π : S → CPn onto the second coordinate, where S is the
subspace of Cn+1 × CPn consisting of pairs (x, [x]). Morally this is like the quotient map
Cn+1 − {0} → CPn. This applies to RPn, and more generally to any Grassmannian.

Many operations on vector spaces are functorial, giving rise to analogous constructions
on vector bundles:

� Each vector bundle E has a corresponding dual bundle E∗, whose fibre is the dual
vector space. Formally, if E → X is a vector bundle, define E∗ → X to be the
collection of pairs (x, ϕ) where x ∈ X and ϕ ∈ (Ex)∗. The transition functions of E∗

are defined to be the dual functions of the inverses of transition functions of E.

� Given a vector bundle E → B and continuous map A → B, the pullback bundle
f∗(E)→ A is a vector bundle.

� Given vector bundles E1 → B1 and E2 → B2, the product map E1 × E2 → B1 ×B2

defines a vector bundle.

� Fix vector bundles E1 → B and E2 → B, and consider their product bundle as above.
The Whitney sum bundle denoted E1 ⊕ E2 → B is the pullback bundle of E1 × E2

over the diagonal map B → B × B. Alternatively, the Whitney sum bundle can be
constructed explicitly by declaring the transition functions of E1 ⊕ E2 to be direct
sums of the individual transition functions.

� Fix vector bundles E1 → B and E2 → B. The tensor product bundle E1 ⊗ E2 is
defined similarly, with fibre the tensor products of fibres of E1 and E2.
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� Fix vector bundles E1, E2 → B. The Hom bundle Hom(E1, E2) → B is the vector
bundle whose fibre at x is the space of linear maps from E1x to E2x. The sections
of Hom(E1, E2) are in bijective correspondence with vector bundle homomorphisms
from E1 to E2 over X.

Observe that the space of sections Γ(E) of a vector bundle is naturally a vector space, by
pointwise addition. Therefore every vector bundle admits sections, since they all admit the
zero-section. On the other hand, we also know that there exist non-trivial vector bundles
(such as the Möbius strip). We will soon see that principal G-bundles admit sections if
and only if they are trivial bundles, so this shows that a vector bundle is not generally a
principal G-bundle. Without further ado, we discuss principal G-bundles.

Definition 1.2.3. Let G be a topological group, and π : P → B a fibre bundle. Suppose
G acts continuously on P (on the right). Then π is said to be a principal G-bundle if G
acts freely and transitively on the fibres of π, and if π has an atlas of G-equivariant local
trivialisations.

Explicitly, the G-equivariant condition is saying that for any g, if h(p) = (u, f), then
h(pg) = (u, fg) = (u, f)g = h(p)g, where h is shown in the diagram below:

π−1(U) U × F

B

h

Remark. Since G acts continuously, freely, and transitively on the fibres of π, each fibre
must be homeomorphic to G. However, there is no canonical choice of identity for the
fibres, so the fibres are equipped with a G-torsor structure rather than a group structure.
(Analogously, consider affine space instead of a vector space.)

Remark. A principal G-bundle is in particular a G-bundle. By identifying F with G, the
principal G-bundle structure determines a left action on fibres as required.

We required that local trivialisations of a principal G-bundle are G-equivariant. This
applies to morphisms of principal G-bundles as well.

Definition 1.2.4. Let P,Q → B be principal G-bundles. A morphism of principal G-
bundles is a G-equivariant morphism of fibre bundles P → Q. More explicitly, we require
f(pg) = f(p)g, where f : P → P ′ is a morphism of fibre bundles P, P ′.

The property of being a morphism of principal G-bundles is actually highly restrictive:
every morphism is an isomorphism. We then use this result to show that a principal
G-bundle is trivial if and only if it has a section.
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Proposition 1.2.5. Every morphism of principal G-bundles P,Q→ B is an isomorphism.

Proof. Let f : P → Q be a morphism of principal G-bundles. Locally (by choosing a G-
equivariant local trivialisation) we can write f(b, g) = (b, f(b)g) where f(g) ∈ G. Therefore,
locally f−1 : Q → P is given by f−1(b, g) = (b, f(b)−1g). Gluing together a G-atlas, the
local isomorphisms stitch together to a global isomorphism.

Corollary 1.2.6. A principal G-bundle is a trivial bundle if and only if it admits a global
section.

Proof. Clearly a trivial bundle admits a global section (by just choosing a constant section).
Conversely, suppose P → B admits a section σ. Define f : B × G → P by f(b, g) =
σ(b)g. This is a morphism of principal G-bundles, so by the previous proposition, it is an
isomorphism.

This result establishes that neither vector bundles nor principal bundles are generalisa-
tions of the other. However, they are related through the associated bundle construction.
Namely, we establish the following:

� Given a principal G-bundle π : P → B, and any space F on which G acts on the left
by automorphisms, there is an associated bundle

P ×G F → B

which is a G-bundle with fibre F . In particular, if F is a vector space and G acts
linearly, the associated bundle is a vector bundle.

� Conversely, any fibre bundle E with structure group G arises as the associated bundle
of a principal G-bundle. In the context of E a vector bundle, the corresponding
principal G-bundle is called the frame bundle of E.

We now explore these in more detail. If ρ : G→ Aut(F ) is a left action, and π : P → B is
a principal G-bundle, the product P × F has a canonical right action defined by

G→ Aut(P × F ), (p, f)g = (pg, ρ(g−1)f).

This defines a fibre bundle over B in the obvious way, but it has fibre G×F . Therefore to
obtain a fibre bundle with fibre F , we mod out by the G action:

P ×G F = (P × F )/G
πF−−→ B, πF ([p, f ]) = π(p).

Definition 1.2.7. Given a principal G-bundle π : P → B and a left action ρ : G→ Aut(F )
on some space F , the associated bundle to P is

P ×G F → B

constructed above. The associated bundle has structure group G, and is trivial if P is
trivial.
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Example. Let P → B be a principal GL(n,R)-bundle. Let F = Rn. Then F has a
canonical left action by GL(n,R). The associated bundle construction gives a GL(n,R)-
bundle (i.e. a vector bundle)

E = P ×GL(n,R) F → B

with fibre F . Then P → B is called the frame bundle of E, since a local section corresponds
to a local trivialisation (i.e. a frame) of E. In particular, a global trivialisation of P
determines a global frame for E.

Finally, we formalise the converse statement (but do not give a proof).

Proposition 1.2.8. Suppose π : E → B is a fibre bundle with fibre F and structure group
G. Then there exists a principal G-bundle P → B such that E = P ×G F .

1.3 Classifying spaces

Next we want to classify bundles in some way. We do this using classifying spaces. Given
a group G, we construct a space BG so that homotopy classes of maps X → BG are in
natural bijective correspondence with isomorphism classes of principal G-bundles over X.
This gives a corresponding classification for vector bundles.

We take for granted the following non-trivial result:

Theorem 1.3.1. Let p : E → B be a fibre bundle with fibre F . Let f0, f1 : X → B be
homotopic maps. Suppose B is normal and paracompact. Then the corresponding pullback
bundles are isomorphic.

This is non-trivial because of the weak conditions on B. Often in the literature the
result is proven for B a CW complex.

Remark. Hereafter, we assume all spaces are CW complexes.

As a corollary of the previous theorem, we obtain a well defined map as follows:
Let π : P → B be a principal G-bundle, with B connected. Then every homotopy class

of maps X → B determines a unique principal G-bundle by pullback. Therefore, there is
a well defined map

[X,B]→ {Principle G-bundles over X}.
The hope is to find some “universal” π : P → B so that the above map is a bijection for
any X. It turns out that these exist!

Theorem 1.3.2. Let G be a topological group. There exists a principle G-bundle EG →
BG such that the pullback map

[X,BG]→ {Principle G-bundles over X}

is a bijection for any space X. Moreover, BG is unique up to homotopy type. Such a
bundle is called a universal bundle, and BG a classifying space.
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Before outlining how the theorem works, we describe a classification of vector bundles.
Fix a space X, and k = R,C. We write Vectnk(X) to denote the set of all isomorphism

classes of k-vector bundles over X, of rank n. The Whitney sum defines an operation

Vectnk(X)×Vectmk (X)→ Vectn+m(X),

which turns Vectk(X) =
⊕

n Vectnk(X) into an abelian monoid. The K-theory Kk(X) of X
is defined to be the completion of Vectk(X) into an abelian group. The standard notation
is to write

K(X) := KC(X), KO(X) := KR(X).

Here the K, introduced by Grothendieck, is short for Klasse, as we think of K(X) as the
isomorphism classes of vector bundles over X. The O (from the real case) denotes the
orthogonal group.

We now formalise the notion of a K-theory by describing the completion.

Proposition 1.3.3. Let M be an abelian monoid. There exists an abelian group G(M),
unique up to isomorphism, and a monoid homomorphism ι : M → G(M) such that any
morphism M → N of monoids extends uniquely to a morphism G(M) → N of monoids.
In other words, for any f as in the diagram below, there exists a unique f̃ making the
diagram commute.

M G(M)

N

f

ι

f̃

The abelian group G(M) is called the Grothendieck completion of M , and can be thought
of as the smallest group containing M .

Proof outline. As with most universal properties, the proof of the result is a construction.
We outline the objects in the construction but do not prove that they work.

Let F (M) denote the free group generated by elements of M , and define

G(M) =
F (M)

(a⊕ b− (a+ b))
.

Here ⊕ denotes the group operation of F (M), and + the monoid operation of M . There
is a canonical inclusion M → G(M). This satisfies the universal property.

Definition 1.3.4. Let X be a space, and Vectk(X) the space of classes of k-vector bundles
over X as above. The (complex and real) K-theories of X are defined by

K(X) := G(VectC(X)), KO(X) := G(VectR(X)).
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The K-theory of a space classifies the vector bundles. We compute some examples.

Example. Let X be a point. Then every vector bundle of rank n is isomorphic, and is
the trivial bundle. Therefore Vectk(X) = N. The K-theory of X is now Z.

Next suppose X is a circle. Then a real vector bundle of rank n over X is determined
up to isomorphism by orientability. Therefore VectnR(X) = Z/2Z for each n. Inspecting
the Whitney sum, we find that VectR(X) has monoid presentation 〈a, b | a2 = b2〉. The
Grothendieck completion is the corresponding group presentation, so that

KO(S1) = Z ∗2Z Z.

In fact, by classifying vector bundles over a given space, we simultaneously classify
vector bundles over all homotopic spaces! Applying the first theorem of this section to
vector bundles, we have the following:

Proposition 1.3.5. If f, g : A → B are homotopic maps, and p : E → B is a vector
bundle, the pullback bundles f∗(E) and g∗(E) are isomorphic as vector bundles.

Note that the same result holds when we replace vector bundles with principalG-
bundles. As an application, we have the following:

Corollary 1.3.6. If f : A→ B is a homotopy equivalence, then Kk(B) = Kk(A) for any
field k.

Proof. Let g : B → A be such that f ◦ g ∼ idB and g ◦ f ∼ idA. Fix n ∈ N. There are
induced maps

f∗ : Vectnk(B)→ Vectnk(A), g∗ : Vectnk(A)→ Vectnk(B).

But f ◦ g is homotopic to idB, so by the previous proposition,

E = id∗B(E) = (f ◦ g)∗(E) = (g∗ ◦ f∗)(E)

for any vector bundle E ∈ Vectnk(B). Similarly f∗ ◦ g∗ is the identity map. It follows that
f∗ is an isomorphism. By the universal properties of the direct sum and Grothendieck
completion, this extends to an isomorphism on K-theories.

Rather than going into K-theory any further, by using classifying spaces, we will classify
real or complex vector bundles of a fixed rank.

Remark. We hereafter right PrinG(X) to denote the isomorphism classes of principle
G-bundles over X.
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By the associated bundle construction, there is a natural bijection

Vectnk(X)←→ PrinGL(n,k)(X).

Therefore Vectnk(X) is classified by the classifying space BGL(n, k). In the next section
we will explore examples such as the above.

The most important theorem concerning classifying spaces and universal bundles is
that they are determined by homotopy type. The following result gives existence:

Theorem 1.3.7. Let E → B be a principal G-bundle, with E contractible. Then E → B
is a universal bundle, and B is a classifying space.

We do not prove the theorem, but notice that it is analogous to universal covers. We
recall that a universal cover is any covering space which is simply connected. The proof
that E → B is a universal bundle follows from the same obstruction theory results.

Alternatively, existence of classifying spaces can be proven using Brown’s representabil-
ity theorem:

Proposition 1.3.8. Let F : HoCW→ Set be a contravariant functor. (HoCW denotes
the homotopy category of pointed connected CW complexes.) Then if F satisfies the
following two properties, F is representable.

1. F maps coproducts to products. That is, wedge sums get mapped to cartesian
products.

2. F maps homotopy pushouts to weak pullbacks. Equivalently, if W ∈ HoCW is
covered by subcomplexes U, V , and u ∈ F (U), v ∈ F (V ) restrict to the same element
in F (U ∩ V ), then there exists w ∈ F (W ) which restricts to each of u and v.

Note that F is said to be representable if there exists B ∈ HoCW such that F (−) = [−, B].

This immediately implies the existence of classifying spaces. The first condition is
satisfied because any two principal G-bundles over a bases B1 and B2 glue to give a
principal G-bundle over their wedge sum. The second condition is even more intuitive,
as it is exactly a gluing condition for sheaves, and sections of bundles are sheaves.

This shows existence, but we also note that universal bundles are unique up to homo-
topy.

Proposition 1.3.9. Let E1 → B1, E2 → B2 be universal principal G-bundles. Then there
is a bundle map as in the following diagram, where h is a homotopy equivalence.

E1 E2

B1 B2.
h
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Proof. This result follows essentially from the definition of a universal bundle (and is
analogous to all uniqueness results of objects defined via universal properties). The map
h above, and a map g in the opposite direction can be constructed, and the pullbacks of
the compositions are necessarily the identity map on bundles. Therefore f is a homotopy
equivalence.

The previous results were not particularly constructive, so we give an outline for how
one can generally construct a universal bundle.

Proof outline of the construction of the universal bundle and classifying space. Let G be a
topological group. For each n, define

EGn = ?nG,

where A?B denotes the join, A?B := A×B×I/ ∼, where we identify (a, b1, 0) ∼ (a, b2, 0)
and (a1, b, 1) ∼ (a2, b, 1). (This can be thought of as taking the disjoint union of A and
B and drawing a line between any point in A and any point in B.) Each EGn is (n− 1)-
connected, as well as naturally being equipped with the diagonal G action. The direct
limit

EG := lim
→
EGn

is then aspherical, and is still equipped with a G action. Therefore EG→ BG = EG/G is
a universal bundle.

The classifying space “map” B : G 7→ BG is actually a functor. That is, given f ∈
[G,H], we can functorially define a homotopy class Bf ∈ [BG,BH].

Proposition 1.3.10. The classifying space map is a functor.

Proof. Let G and H be topological groups. We must show that there is a map B :
Hom(G,H)→ [BG,BH] such that

� B(ϕ ◦ ψ) = Bϕ ◦Bψ,

� B(idG) = idBG.

Let ϕ : G → H be a homomorphism. This induces a map ϕ : G → Homeo(H) by left
multiplication. This is not a group automorphism, but it preserves the H-torsor structure.
Therefore the associated bundle EG ×ϕ H is a principal H-bundle over BG. This is in
correspondence with a unique map Bϕ in [BG,BH]. This is how we define our map
Hom(G,H)→ [BG,BH].

Now we verify that our map satisfies the desired properties. Let G
ϕ−→ H

ψ−→ K be
group homomorphisms. Then

(EG×ϕ H)×ψ K ∼= ((EG×H)/ ∼ϕ)×K)/ ∼ψ .
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The equivalence relations on the right are

(x, y) ∼ (xg, ϕ(g−1)y), ([x, y], z) ∼ ([x, y]h, ψ(h−1)y).

Rewriting the above as a single equivalence relation, we have

(x, y, z) ∼ (xg, ϕ(g−1)yh, ψ(h−1)z).

Equivalently, we can write (xg, 1, ψ(ϕ(g−1)y)z). This establishes an isomorphism

(EG×ϕ H)×ψ K ∼= EG×ψ◦ϕ K.

ThereforeBψ◦Bϕ = B(ψ◦ϕ) as required. On the other hand, we have that EG×GG ∼= EG,
so BidG = idBG as required.

One last general result we investigate is how classifying spaces relate to products. Given
two topological groups, their product admits the product topology, but also the product
group structure, giving rise to a new topological group.

Proposition 1.3.11. Let G,H be topological groups. Then

B(G×H) = BG×BH.

Proof. B(G × H) can be constructed from an aspherical space E(G × H) with a G × H
action, by

B(G×H) = E(G×H)/G×H.
On the other hand, we have universal bundles EG→ EG/G = BG and EH → EH/H =
BH. Since EG and EH are aspherical, and the homotopy groups of products are the
products of homotopy groups, EG × EH is aspherical. Moreover, it is equipped by a
canonical G×H action, under which

EG× EH/G×H = BG×BH.

Since this is a universal bundle, B(G×H) ∼ BG×BH as required.

So far everything has been rather abstract, so in the next section we look at some
concrete examples.

1.4 Examples of classifying spaces

So far everything has been abstract, but now we give examples. In particular, we will
investigate principal circle bundles (i.e. principal U(1)-bundles) and more generally U(n)-
bundles. These will classify complex vector bundles. We will also study principal O(n)-
bundles, which classify real vector bundles. On the other hand, we can restrict the base
space and vary the gauge group: by studying principal G-bundles over Sn, we will obtain
some results concerning the homotopy of classifying spaces.
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Proposition 1.4.1. The classifying space for the circle group is

BU(1) = CP∞.

To understand this proposition, we begin with a brief detour into direct limits. Ab-
stractly, these are defined using universal properties in any arbitrary category. However,
we describe direct limits more concretely as we concern ourselves with topological spaces.

Definition 1.4.2. Let X1 → X2 → X3 → · · · be a collection of topological spaces, with
fi : Xi → Xi+1. The direct limit is defined to be

lim
→
Xi :=

∐
i

Xi/ ∼

where ∼ is the equivalence relation of “eventually equal”, i.e. xj ∼ xi if (fj−1◦· · ·◦fi)(xi) =
xj . This set is equipped with the final topology with respect to the canonical functions
ϕi : Xi → lim→Xi.

Example. Each sphere has an inclusion into higher dimensional spheres. For example, we
can identify Sn+1 = ΣSn, and define Sn → ΣSn to be the canonical inclusion. This defines
a directed system, from which we define

S∞ = lim
→

Sn.

Suppose f, g : Sn → S∞. Then these maps factor through Sn+1, but Sn+1 is n-connected.
Therefore πn(S∞) is trivial. But it follows that S∞ is aspherical! (I.e. all homotopy groups
vanish.) Since S∞ is a CW-complex, S∞ is equivalently contractible.

Since S∞ is contractible, maybe we can use it to understand circle bundles! Indeed, S1

acts freely on S∞, since S1 acts freely on each Sn, and the action descends to S∞ via the
quotient. Therefore we obtain a universal bundle

S∞ → S∞/S1.

The space S∞/S1 can be determined by considering dimension-wise quotients. Concretely,
notice that S2k−1 is homotopic to Ck − {0}. Each complex line in Ck − {0} is given by a
copy of C − {0}, which is homotopic to S1. One can show that the homotopies agree so
that

S2k−1/S1 = (Ck − {0})/(C− {0}) = CPk.

In the limit, we have S∞/S1 = CP∞. This shows that the classifying space of the circle
group is CP∞, and the universal bundle is S∞ 7→ CP∞.

Remark. The classifying space BU(1) = CP∞ is a K(Z, 2). Therefore we observe that
πn(U(1)) = πn+1(BU(1)). We show later that this is a general property.
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The fact that CP∞ is an Eilenberg-Mac Lane space leads to some even better results.
We showed that principal G-bundles are representable in the sense that there exists BG
such that

[−, BG] = PrinG(−).

Recall from cohomology theory that Eilenberg-Mac Lane spaces represent singular coho-
mology:

Proposition 1.4.3. Let G be an abelian group. Then singular cohomology with coeffi-
cients in G is represented by Eilenberg-Mac Lane spaces:

[−,K(G,n)] = Hn(−;G).

Therefore for any space X, we have

PrinU(1)(X) = [X,BU(1)] = [X,K(Z, 2)] = H2(X;Z).

Moreover, isomorphism classes of principal U(1)-bundles determines an isomorphism class
of complex line bundles by the associated bundle construction. Therefore we have a canon-
ical isomorphism

c1 : Vect1
C(X)→ H2(X;Z).

The isomorphism c1 is exactly the first Chern class: we have shown that the first Chern
class completely determines complex line bundles. In the next chapter, we will define and
explore various characteristic classes (incluing the Chern classes).

On the theme of circles, we will next investigate general principal G-bundles over fixed
spherical base spaces. By the general theory, we have

πn(BG) = [Sn, BG] = PrinG(Sn).

That is, principal G-bundles over Sn are classified by the nth homotopy group of BG. It
turns out that a general result is that

πn(G) = πn+1(BG)

for each n, as we now show.

Proposition 1.4.4. Let G be a topological group. Then

πn(G) = πn+1(BG).

It follows that that looping the classifying space returns the original space up to weak
homotopy:

ΩBG ∼ G.

Finally, if G is discrete, then BG is a K(G, 1).
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Proof. To show that πn(G) = πn+1(BG), we use the long exact sequence of homotopy
associated to a fibration. That is, we have an exact sequence

· · · → πn+1(BG)→ πn(G)→ πn(EG)→ πn(BG)→ πn−1(G)→ · · · .

But EG is aspherical, so each πn(EG) vanishes. The first claim follows.
Next we use Eckmann-Hilton duality to observe that

πn(ΩBG) = [Sn,ΩBG] = [ΣSn, BG] = [Sn+1, BG] = πn+1(BG) = πn(G).

Therefore ΩBG is weakly homotopic to G. In particular, if G is a CW complex, then they
are homotopic.

Finally note that if G is discrete, then π0(G) = G, and πn(G) = 0 for all higher n.
Therefore BG is a K(G, 1).

Corollary 1.4.5. PrinG(Sn) ∼= πn−1(G). In particular, if Sn = S1, then isomorphism
classes of principal bundles over S1 are determined by the number of components of G.
This verifies our earlier example where the computed the real and complex K-theories the
circle.

Our first example classified principal U(1)-bundles. We now extend to U(n) for any n.

Proposition 1.4.6. BGL(n,C) ∼ BU(n) = Gr(n,C∞), so in particular

VectnC(X) ∼= [X,Gr(n,C∞)].

Remark. The case with n = 1 agrees with the first example of this section.

Proof. The conclusion is immediate, provided we prove the first claim. The homotopy
equivalence of BGL(n,C) and BU(n) follows from the homotopy equivalence of GL(n,C)
and U(n). The latter homotopy equivalence is given by the Gram-Schmidt process.

For the second equality, we begin by constructing EU(n). Rather than constructing
the space as a direct limit, it is easier to think in terms of an infinite dimensional Hilbert
space. For our first example, S∞ could have been defined as

S∞ = {x ∈ H : ‖x‖ = 1},

where H is an infinite dimensional complex Hilbert space. Then U(1) acts by scalar
multiplication (i.e. the diagonal action). This gives an equivalent bundle to the one
constructed at the start of this section. More generally, we consider

EU(n) = {(x1, . . . , xn) ∈ Hn : 〈xi, xj〉 = 1}.

This is the space of all orthonormal n-frames in Hn, and has a canonical action of U(n)
(again by multiplication). The space of all frames is aspherical, and we have

EU(n)/U(n) = Gr(n,C∞).
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An analogous result holds for real vector bundles, which we do not prove:

Proposition 1.4.7. BGL(n,R) ∼ BO(n) = Gr(n,R∞), so in particular

VectnR(X) ∼= [X,Gr(n,R∞)].

Example. In the line-bundle case, we have a better grasp of the topology of Gr(n,R∞).
That is,

Vect1
R(X) ∼= [X,Gr(1,R∞)] = [X,RP∞].

But RP∞ is a K(Z/2Z, 1). Therefore by the earlier theorem on Eilenberg-Mac Lane spaces,
we have a canonical isomorphism

w1 : Vect1
R(X)→ H1(X;Z/2Z).

Therefore real line bundles over a space are determined by the first cohomology! The
isomorphism here is called the first Stiefel-Whitney class. In the next section we will
explore this characteristic class, together with the Chern class and others.

Remark. By the associated bundle construction, we have an isomorphism

PrinZ/2Z(X) ∼= H1(X;Z/2Z).

That is, double covers of a space are determined by the first mod 2 cohomology. The
orientable double cover of X is exactly the principal Z/2Z-bundle corresponding to 0 ∈
H1(X;Z/2Z).

While these classifying spaces have been fun, we can quickly see that higher dimen-
sional real and complex vector bundles have only been classified up to a rather strange
space: Gr(n,R∞) in the real case, and Gr(n,R∞) in the complex case. To obtain a finer
understanding of vector bundles, we introduce characteristic classes in the next chapter.

To finish this chapter, we calculate and/or study some examples.

Example. What is B(Z/2Z)? This was looked at earlier in the general case of real vector
bundles.

Z/2Z has a free action on S1 by swapping antipodes. Similarly this extends to any
Sn by swapping antipodes, and in particular to S∞. But S∞ is contractible! Therefore
E(Z/2Z) = S∞, and B(Z/2Z) = S∞/(Z/2Z) = RP∞.

Example. What is BS1? As derived earlier, this is CP∞, and can be obtained as a quotient
of the unit sphere in C∞. In this case, the action of S1 on the unit sphere is given by the
diagonal action of multiplication.
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Example. What is BSU(2)? This is similar to the previous two examples! SU(2) is
homeomorphic to S3, and can be described as the unit quaternions! Therefore the unit
sphere in H∞ is again the infinite sphere, but now a diagonal multiplication action is given
by SU(2). The classifying space is given by

S∞/ SU(2) = HP∞,

the quaternion projective space.

Example. What is B(Z/nZ)? We can view Z/nZ as a subgroup of S1. Therefore Z/nZ
acts freely on the infinite sphere S∞ ⊂ C∞. The quotient is the infinite lens space; an
analogue of the three dimensional lens space: B(Z/nZ) = L∞(3). In general these lens
spaces exist in all odd dimensions.

Example. What is BZ? Since Z acts freely on R in the expected way, BZ = S1.

These are some common examples we might consider, but a more practical question is
the following: sure we can classify principal G-bundles, but what about about arbitrary
fibre bundles?

Recall a proposition from earlier: if π : E → B is a fibre bundle with fibre F and
structure group G, there exists a principal G bundle P → B such that E = P ×G F .
For π : E → B an arbitrary fibre bundle, the structure group is Homeo(F ) or Diffeo(F ).
Therefore by the associated bundle construction, to understand all fibre bundles over a
space with given fibre F , it remains to understand BHomeo(F ) and BDiffeo(F ). For certain
F such as Z/nZ, S, and S2, this space is understood. In general it is infinite dimensional
and difficult to understand! Much effort is currently being directed into understanding
these spaces.
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Chapter 2

Characteristic classes

In the previous chapter we introduced classifying spaces, which give a classification of prin-
cipal G-bundles and vector bundles in terms of a set theoretic bijection. Next we will aim
to obtain a better understanding of classifying spaces, by introducing characteristic classes.
These are functors from categories of vector bundles or principal G-bundles into a coho-
mology theory, which measure “twistedness”. More formally, we find that characteristic
classes must vanish for a bundle to be trivial, and two bundles must have the same char-
acteristic class if they are isomorphic. We first investigate characteristic classes in general,
before focussing on the four most important types: the Stiefel-Whitney class, Chern class,
Pontryagin class, and Euler class. This chapter largely follows [Coh98, Kot12, Hat03].

2.1 Characteristic classes in general

As mentioned earlier, a characteristic class is a functor from categories of vector bundles
or principal G-bundles into a cohomology theory. In fact the clearest way to interpret
characteristic classes is as natural transformations.

Definition 2.1.1. Let G be a topological group. Fix a cohomology theory HoCW→ Set,
X 7→ H∗(X). This is a contravariant functor. Similarly, X 7→ PrinG(X) is a contravariant
functor. A characteristic class is a natural transformation

c : PrinG(−) 7→ H∗(−).

Explicitly, given a map f : A → B in HoCW, we require the following diagram to
commute:

PrinG(B) H∗(B)

PrinG(A) H∗(A).

f∗

c

f∗

c
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The map f∗ on the left is the pullback bundle map, and the map on the right is the usual
induced map on cohomology.

Remark. A priori the coefficients of the cohomology theory, or the cohomology theory
itself, is not prescribed - this definition is very general! Usually we use singular cohomology.

The same definition applies to vector bundles:

Definition 2.1.2. A characteristic class for vector bundles over a field k is a natural
transformation Vectk(−)→ H∗(−).

Example. In the previous chapter we established a set theoretic bijection

PrinU(1)(B) ∼= [B,K(Z, 2)] ∼= H2(B;Z).

Explicitly, the maps are given as follows: given f : B → K(Z, 2), the corresponding
principal U(1)-bundle is f∗(S∞). The map PrinU(1)(B)→ [B,K(Z, 2)] is

P 7→ f, where f is such that f∗(S∞) = P.

The map [B,K(Z, 2)] → H2(X;Z) is also given canonically: f : B → K(Z, 2) is mapped
to f∗(u), where u ∈ H2(K(Z, 2);Z) = Hom(G,G) is the distinguished identity element.

Define c1 : PrinU(1)(−)→ H2(−;Z) to be the composition of the above two maps. We
show that c1 is a natural transformation. Fix ϕ : A → B, and a principal U(1)-bundle
P → B. We must show that

ϕ∗(c1(P → B)) = c1(ϕ∗(P → B)).

On the left hand side, we have

ϕ∗(c1(P → B)) = ϕ∗(f∗u),

where f : B → K(Z, 2) satisfies f∗(S∞) = P . But now

ϕ∗(f∗u) = (f ◦ ϕ)∗u,

and f ◦ ϕ satisfies (f ◦ ϕ)∗(S∞) = ϕ∗(f∗(S∞)) = ϕ∗(P ). Therefore

(f ◦ ϕ)∗u = c1(ϕ∗(P → B)).

This shows that
c1 : PrinU(1)(−)→ H2(−;Z)

is a characteristic class. (We call this the first Chern class, as mentioned in the previous
chapter.) Moreover, we have natural isomorphisms

Vect1
C(−) ∼= PrinGL(1,C)(−) ∼= PrinU(1),
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so that
c1 : Vect1

C(−)→ H2(−;Z)

is a natural transformation. We will extend this to c : VectC(−)→ H2(−;Z).
The same reasoning applies to the case of U(1) replaced with O(1) = Z/2Z. This gives

rise to the first Stiefel-Whitney class

w1 : Vect1
R(−)→ H1(−;Z/2Z).

The two most important properties of characteristic classes are that they are obstruc-
tions to two vector bundles or principal G-bundles being isomorphic, and in particular an
obstruction to a bundle being trivial.

Proposition 2.1.3. Let c be a characteristic class. Then

� two (vector/principal) bundles E1, E2 → B are isomorphic only if c(E1) = c(E2), and

� E1 → B is trivial only if c(E1) = 0 (for values of c(E1) living in non-zero degrees).

The first claim is immediate from the definition, since characteristic classes are defined
on isomorphism classes! The second claim comes from naturality: the trivial bundle is ob-
tained as a pullback of a bundle over a point, and by the dimension axiom of a cohomology
theory together with naturality, c(E1) must then vanish in non-zero degrees.

It is now natural to ask how many characteristic classes there are. Perhaps they don’t
even exist! This has a surprisingly easy answer.

Theorem 2.1.4. Let R be a commutative ring. Define CharG(R) to be the set of charac-
teristic classes

PrinG(−)→ H∗(−;R).

Given any space X, H∗(X;R) is a ring, with addition given by the usual sum in coho-
mology, and multiplication by the cup product. Moreover, this induces the structure of a
commutative ring on CharG(R) pointwise.

There is an isomorphism of rings

Φ : CharG(R)→ H∗(BG;R).

Proof. This is a direct application of Yoneda’s lemma. Recall that there is a natural
isomorphism

[−, BG] ∼= PrinG(−).

Therefore

CharG(R) = Nat(PrinG(−), H∗(−;R)) ∼= Nat(Hom(−, BG), H∗(−;R)) ∼= H∗(BG;R)

where the last isomorphism is exactly the Yoneda lemma. (We have written Hom(−;BG)
to denote [−, BG] to emphasise that [X,Y ] is exactly the set of morphism X → Y in the ho-
motopy category.) Concretely, one can show that Φ(c) = c(EG) realises the isomorphism,
where EG→ BG is the universal bundle.
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This shows that characteristic classes are tractable in some sense. Next we investigate
some very important examples.

2.2 The Stiefel-Whitney class

We established in the previous chapter that real line bundles over a space B are classified
by a map

w1 : Vect1
R(B)→ H1(B;Z/2Z).

But each real line bundle is obtained by pulling back a universal bundle:

f∗(R∞) R∞

B BO(1) = RP∞

p

f

By naturality of characteristic classes, w1 : Vect1
R(B)→ H1(B;Z/2Z) is obtained by pulling

back the universal class

w1 : Vect1
R(BO(1))→ H1(BO(1);Z/2Z).

In fact, by the last theorem of the previous section, w1 is given by some element of
H1(BO(1);Z/2Z). Wrapping this into a definition, we have the following:

Definition 2.2.1. RP∞ has cohomology ring Z/2Z[a], with generator a ∈ H1(RP∞;Z/2Z).
This generator is called the first Stiefel-Whitney class. Given a real line bundle E → B
with classifying map f : B → RP∞, f∗(a) ∈ H1(B;Z/2Z) is the first Stiefel-Whitney class
of E.

The Stiefel-Whitney classes generalise this to higher degrees in cohomology, as we
generalise our gauge group from O(1) to O(n). Since

H∗(BO(1);Z/2Z) = H∗(RP∞;Z/2Z) = Z/2Z[a],

we have that

H∗(BO(1)n;Z/2Z) = H∗(
∏
n

RP∞;Z/2Z) = Z/2Z[a1, . . . , an].

Definition 2.2.2. Let k = R,C be understood. For each n ∈ N and j ∈ N ∪ {∞}, we
write γjn to denote the tautological line bundle

γjn : kj+1 − {0} → Gr(n, kj+1).

In particular, γ1
1 denotes the tautological line bundle over the real or complex projective

line.

25



With this definition, we can construct rank n real vector bundles ⊕nγ∞1 , which have a
classifying map

fn : (RP∞)n → Gr(n,R∞).

This induces a map

f∗n : H∗(Gr(n,R∞);Z/2Z)→ H∗((RP∞)n;Z/2Z) = Z/2Z[a1, . . . , an].

It turns out that f∗n is injective, and its image is the free algebra generated by elementary
symmetric functions σ1, . . . , σn.

Theorem 2.2.3. The cohomology of BO(n) is a polynomial ring

H∗(BO(n);Z/2Z) = Z/2Z[σ1, . . . , σn], σi ∈ H1(BO(n);Z/2Z).

Each σi ∈ H i(BO(n);Z/2Z) is termed the ith Stiefel-Whitney class.

We do not give a proof of this fact, but it can be proven using the Leray-Hirsch theorem
which we also state without proof. (A proof is available in Hatcher’s Algebraic topology.)

Theorem 2.2.4 (Leray-Hirsch). Let π : E → B be a fibre bundle with fibre F . Let R be
a principal ideal domain. Let i : F → E be an inclusions of a fibre. Suppose H∗(F ;R) is
a finitely generated free R-module, and there exists c1, . . . , cN ∈ H∗(E;R) whose pullbacks
i∗ci to each fibre form a basis for H∗(F ;R), then H∗(E;R) is a free H∗(B;R) module.
Moreover, there is an isomorphism

H∗(B;R)⊗R H∗(F ;R)
∼=−→ H∗(E;R)

given by
∑
bji
∗(cj) 7→

∑
π∗(bj)cj.

Definition 2.2.5. Given a vector real bundle E → B of rank n, there is a classifying map
f : B → BO(n). The ith Stiefel-Whitney class of E is defined by wi(E) = f∗(σi), where
σi ∈ H1(BO(n);Z/2Z) are generators (Stiefel-Whitney classes) of H∗(BO(n);Z/2Z) =
Z/2Z[σ1, . . . , σn]. The total Stiefel-Whitney class of E is the polynomial

w(E) := 1 + w1(E) + · · ·+ wn(E).

Proposition 2.2.6. The Stiefel-Whitney classes satisfy the following properties:

1. Naturality: For any map A→ B, and vector bundle E → B, w(f∗(E)) = f∗(w(E)).

2. Normalisation: if (R2 − {0})→ RP1 is the tautological line bundle, then w1(E) = a,
for a ∈ H1(RP1;Z/2Z) a generator.

3. Rank: For E → B an arbitrary vector bundle of rank n, w0(E) = 1 ∈ H0(B), and
for i > n, wi(E) = 0.
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4. Product formula: for vector bundles E,F → B, w(E ⊕ F ) = w(E) ^ w(F ). More
explicitly, for each i,

wi(E ⊕ F ) =
∑
j≤i

wj(E) ^ wi−j(F ).

Proof. The first three properties are all immediate. The naturally and rank conditions
are part of the definition. As for normalisation, H1(RP1;Z/2Z) ∼= Z/2Z, and we know
that isomorphism classes of vector bundles over RP1 are in bijective correspondence with
H1(RP1;Z/2Z). The trivial vector bundle corresponds to 0, while the tautological vector
bundle corresponds to the generator a.

The non-trivial fact that needs proving is the product formula. Recall that BO(n) =
Gr(n,R∞). Let pn : BO(n) × BO(m) → BO(n) be the projection map, and similarly for
pm. Recall the tautological bundles γ∞n : EO(n) → BO(n) and similarly for m. These
define a rank n+m bundle

p∗nγ
∞
n ⊕ p∗mγ∞m : EO(n)⊕ EO(m)→ BO(n)×BO(m)

with classifying map
f : BO(n)×BO(m)→ BO(m+ n).

(This is really saying that the structure group O(n+m) reduces to O(n)×O(m) for this
sum bundle.) The classifying map induces a commutative diagram

BO(1)n ×BO(1)m BO(1)n+m

BO(n)×BO(m) BO(n+m)

hn×hm

f̃

hn+m

f

Here hk is the classifying map of the product bundle ⊕ki=1γ
∞
1 : EO(1)n → BO(1)n. The

map f̃ is the natural homeomorphism.
We noted earlier that H∗(BO(1)n;Z/2Z) = Z/2Z[a1, . . . , an], and that hn induces an

inclusion
h∗n(H∗(BO(n);Z/2Z)) = Z/2Z[σ1, . . . , σn] ⊂ Z/2Z[a1, . . . , an],

where σi are elementary polynomials in the ai. By the Kunneth formula, dualising the
diagram gives

H∗(BO(1)n)×H∗(BO(1)m) H∗(BO(1)n+m)

H∗(BO(n))×H∗(BO(m)) H∗(BO(n+m)),

f̃∗

h∗n×h∗m

f∗

h∗n+m
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where all cohomology is in Z/2Z. The top map is an isomorphism, and the map on the
right is an inclusion. Therefore f∗ is also an inclusion. Writing

H∗(BO(n+m)) = Z/2Z[σ1, . . . , σn+m] ⊂ H∗(BO(1)n)×H∗(BO(1)m),

each σi must be expressed as a product of the elementary symmetric polynomials τi and
ηi generating H∗(BO(n)) and H∗(BO(m)) respectively. This forces

f∗(σi) =
∑
i=j+k

τj ^ ηk.

We now apply this to arbitrary sum bundles. Let E,D → B be vector bundles of rank n
and m. These have classifying maps fE and fD. The sum bundle E ⊕ D has classifying
map fE⊕D. Recall the classifying map f : BO(n)×BO(m)→ BO(n+m).

Let f1 × f2 : B → BO(n) × BO(m) be the canonical map. Then f ◦ (f1 × f2) : B →
BO(n+m) corresponds to the vector bundle E ⊕D (under the natural bijection of maps
into classifying spaces and vector bundles). Therefore f ◦ (f1 ⊕ f2) is homotopic to fE⊕D.
By naturality, this gives

wi(E ⊕D) = f∗E⊕D(σi) = (fE × fD)∗
( ∑
i=j+k

τj ^ ηk

)
=
∑
i=j+k

wj(E) ^ wk(D).

Proposition 2.2.7. The Stiefel-Whitney classes are determined uniquely by naturality,
normalisation, rank, and the product formula.

Proof. Let E → B be a real vector bundle of rank n. Then there is a map f : B → BO(n)
such that E = f∗(γ∞n ). By naturality, w(E) = f∗(w(γ∞n )), so it suffices to determine
w(γ∞n ). But recall that we have an inclusion

h∗ : H∗(BO(n);Z/2Z) ↪→ H∗(BO(1)n;Z/2Z),

and that h∗(γ∞n ) = ⊕ni=1p
∗
i γ
∞
1 . Therefore, again by naturality, it suffices to determine

w(⊕ni=1p
∗
i γ
∞
1 ). But by the product formula, it suffices to determine w(γ∞1 ). By the rank

axiom,
w0(γ∞1 ) = 1, wi(γ

∞
1 ) = 0, i ≥ 2.

Therefore only w1(γ∞1 ) ∈ H1(RP1;Z/2Z) is not yet constrained. However, by the normal-
isation axiom, this must be non-zero. Since H1(RP1;Z/2Z) = Z/2Z, there is a unique
non-zero element a. This shows that w1(γ∞1 ) is uniquely determined.

Finally we consider some general properties of the Stiefel-Whitney class. One such
general property expresses the first Steifel-Whitney class of any real vector bundle in terms
of its determinant bundle.
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Proposition 2.2.8. Let E → B be a real vector bundle of rank n. Then its determinant
bundle is detE = ΛnE → B. We have

w1(E) = w1(detE).

Proof. Let f : B → BO(n) be the classifying map of E. Then w(E) = f∗(w(γ∞n )). By the
splitting principle we have an inclusion

h∗ : H∗(BO(n);Z/2Z)→ H∗(BO(1)n;Z/2Z),

so that h∗(w(γ∞n )) = w(⊕ni=1p
∗
i γ
∞
1 ) where pi are projection maps BO(1)n → BO(1). By

the Whitney sum formula, this gives

w1(E) = f∗(w1(⊕ni=1p
∗
i γ
∞
1 )) = f∗(

n∑
i=1

w1(γ∞1 )).

But
∑

nw1(γ∞1 ) = w1(⊗nγ∞1 ) = w1(Λnγ∞n ), giving the desired result.

We observed near the end of the previous chapter that w1 detects orientability. Explic-
itly, we mentioned that the orientable double cover of a manifold X is the principal bundle
corresponding to H1(X;Z/2Z). More generally, we have the following result:

Proposition 2.2.9. Let E → B be a vector bundle. Then E is orientable if and only if
w1(E) = 0.

Proof. An orientation corresponds to a reduction of the structure group from O(n) to
SO(n).

Let E → B be a real vector bundle of rank n. Consider the short exact sequence of
groups

SO(n)→ O(n)
det−−→ O(1).

This induces an exact sequence on classifying spaces, which in turn induces an exact se-
quence

[X,BSO(n)]→ [X,BO(n)]→ [X,BO(1)].

The classifying map f : X → BO(n) lifts to a classifying map X → BSO(n) if and only
its image vanishes in [X,BO(1)] = H1(BO(1);Z/2Z) = Z/2Z. We have a commutative
diagram

[BO(n), BO(n)] [BO(n), BO(1)] = H1(BO(n);Z/2Z)

[X,BO(n)] [X,BO(1)] = H1(X;Z/2Z).

f∗

det∗

f∗

det∗
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We want to show that w1(E) = 0 if and only if det∗ f = 0.
Consider the identity map idBO(n) ∈ [BO(n), BO(n)]. Then det∗ idBO(n) is the classi-

fying map of the determinant bundle of the universal bundle over BO(n). By the previous
proposition, together with the correspondence

[B,BO(1)] −→ H1(B;Z/2Z), [classifying map f of E → B] 7→ w1(E),

we have

det∗idBO(n) = [classifying map of det γ∞n → B] = w1(det γ∞n ) = w1(γ∞n ).

By the definition of the Stiefel-Whitney class of an arbitrary vector bundle of rank n, we
then have

w1(E) = f∗w1(γ∞n ) = f∗det∗idBO(n).

By commutativity of the diagram, we can alternatively write

w1(E)det∗f
∗idBO(n) = det∗f.

Therefore w1(E) vanishes if and only if det∗f vanishes. By exactness of the sequence
introduced at the start of the proof, this is the statement that f : X → BO(n) lifts to a
class X → BSO(n) if and only if w1(E) = 0.

Remark. In particular, a manifold is orientable if and only if w1(TM) = 0.

The last property we investigate is additivity of the first Stiefel-Whitney class for line
bundles. This is in fact a corollary of the previous result.

Proposition 2.2.10. Let E1, E2 → B be line bundles. Then

w1(E1 ⊗ E2) = w1(E1) + w1(E2).

Proof. For E1, E2 line bundles, we can take O(1) = {1,−1}, with fibre R. Then clutching
functions h1, h2 for E1 and E2 are given by multiplication by 1 or −1 on each overlap of
local trivialisations.

Now w(E1 ⊕ E2) = 0 if and only if E1 ⊕ E2 is orientable. But this holds if and only if
h1 ⊗ h2 ∈ SO(1) = {1}. Equivalently, at any point, we require both h1 and h2 to have the
same sign. Therefore both h1 and h2 have image in SO(1), or neither do. That is, both
w(E1) and w(E2) are 0 or 1. Since 1 + 1 and 0 + 0 are the unique ways of writing 0 as a
sum of two numbers mod 2, we are done.
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2.3 The Chern class

The Chern class is essentially the complex analogue to the Stiefel-Whitney class. All results
we state now have the same proofs as in the Stiefel-Whitney case, so no proofs are given
here.

Theorem 2.3.1. There is a canonical inclusion

H∗(BU(n);Z) = Z[σ1, . . . , σn] ⊂ Z[a1, . . . , an] = H∗(BU(1)n;Z),

where the ai are generators of H1(BU(1);Z), and σi is the ith elementary symmetric
polynomial in the ai. The inclusion is induced by the classifying map BU(1)n → BU(n) of
the rank n complex vector bundle ⊕ni=1γ

∞
1 .

Definition 2.3.2. Let E → B be a complex vector bundle of rank n. The ith Chern class
of E is defined by

ci(E) = f∗(σi) ∈ H2i(B;Z),

where f : B → BU(n) is the classifying map of E. The total Chern class is defined to be

c(E) = 1 + c1(E) + · · ·+ cn(E) ∈ H∗(B;Z).

Theorem 2.3.3. The Chern class is uniquely determined by the following axioms:

1. Naturality: For any map A→ B, and vector bundle E → B, c(f∗(E)) = f∗(c(E)).

2. Normalisation: if γ1
1 is the tautological complex line bundle over CP1, then c1(E) = a,

for a ∈ H1(CP1;Z) a generator.

3. Rank: For E → B an arbitrary complex vector bundle of rank n, c0(E) = 1 ∈ H0(B),
and for i > n, ci(E) = 0.

4. Product formula: for complex vector bundles E,F → B, c(E ⊕ F ) = c(E) ^ c(F ).
More explicitly, for each i,

ci(E ⊕ F ) =
∑
j≤i

cj(E) ^ ci−j(F ).

We now explore some additional properties of the Chern class. Analogously to the
Stiefel-Whitney classes, we have the following three properties:

Proposition 2.3.4. Let E → B be a complex vector bundle. Then

� c1(detE) = c1(E).

� The structure group U(n) of E reduces to an SU(n) structure if and only if c1(E) = 0.
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� If E1, E2 are line bundles, then c1(E1 ⊗ E2) = c1(E1) + c1(E2).

Proofs are analogous to ones we saw in the Stiefel-Whitney case. However, we introduce
and prove two more properties.

Proposition 2.3.5. Let E∗ denote the dual of a complex vector bundle E → B. Then
ci(E

∗) = (−1)ici(E).

Proof. We again use the splitting principle. First we prove the special case of a line bundle,
and then extend to the general case. Let L→ B be a complex line bundle. Then there is
a natural isomorphism Hom(L,L) ∼= L ⊗ L∗ of vector bundles. But Hom(L,L) → B is a
trivial line bundle, because it admits the global section σ(x) = (x, id), and this induces a
global trivialisation. Therefore L⊗ L∗ is trivial. But now

0 = c1(L⊗ L∗) = c1(L) + c1(L∗),

so c1(L∗) = −c1(L).
Next for the general case, suppose E → B is a complex vector bundle of rank n. By

the splitting principal, there is a space A and f : A → B such that the pullback bundle
f∗(E) is a Whitney sum bundle of line bundles, and f∗ : H∗(B;Z)→ H∗(A;Z) is injective.
Write f∗(E) = L1 ⊕ · · · ⊕ Ln. Now

f∗(c(E)) = c(f∗(E)) = c(L1 ⊕ · · · ⊕ Ln) =

n∏
i=1

(1 + c1(Li)).

Similarly, we have

f∗(c(E∗)) =
n∏
i=1

(1− c1(Li)).

Therefore, using the fact that f∗ is injective, expanding these formulae give ci(E
∗) =

(−1)ici(E) as required.

Proposition 2.3.6. Let E be a complex vector bundle of rank n. Then it is also a real
vector bundle of rank 2n. With this interpretation, we have

w2i(E) = ci(E) mod 2, w2i+1(E) = 0.

Proof. We prove this by showing that the the Stiefel-Whitney classes satisfy the definition
of the Chern class (reduced mod 2). That is, we define

c′i = w2i ∈ H2i(−,Z/2Z)

for each i, and show that c′ satisfies the axioms of naturality, normalisation, rank, and the
product formula. Then c′i is necessarily the reduction of ci, mod 2.

32



Naturality, rank, and the product formula are all immediate. Therefore it remains to
prove the normalisation axiom. Consider the tautological bundle

γ1
1 : (C2 − {0})→ CP2.

We later show that the top Chern class of a complex vector bundle is the Euler class, and
this also reduces to the top Stiefel-Whitney class mod 2. Therefore c1(γ1

1) mod 2 = e(γ1
1)

mod 2 = w2(γ1
1). In particular w2(γ1

1) is non-zero, so the result follows. Of course we
haven’t even defined the Euler class at this stage! The Euler class will be introduced at
the start of the next section.

2.4 Applications of the Stiefel-Whitney and Chern classes

The Stiefel-Whitney class is an obstruction to embedding (and in fact immersing) manifolds

in larger manifolds. As an example, we show that RP2k cannot be immersed in Rm for
m < 2k+1− 1. Recall that Whitney famously proved that all n manifolds can be immersed
in R2n−1! Therefore this shows that Whitney’s immersion theorem gives a tight bound.

Suppose Nn is a smooth immersed submanifold of Mm. Then

νN ⊕ TN = TM,

where νN is the normal bundle of N . By the product formula, we have

w(νN)w(TN) = w(TM).

But writing w(νN) = 1 +w0(νN) + · · · , any non-zero wi(νN) forces the rank of νN to be
at least i (by the rank axiom). This forces m−n ≥ i. Therefore N can be immersed in M
only if M has dimension at least i more than N ! We now give an explicit example.

Example. w(γn1 ) = 1 + a, where a ∈ H1(RPn;Z/2Z) ∼= Z/2Z is the generator. It follows
that

w(TRPn) = (1 + a)n+1 ∈ H∗(RPn;Z/2Z)

as we now show. (Note that the class an+1 is zero by cohomological restrictions.) We claim
without proof that

TRPn ⊕ ε1 = ⊕n+1γ
n
1 ,

where ε1 is a trivial line bundle. By the product formula, the claim follows. In particular,
this means that

wi(TRPn) =

(
n+ 1

i

)
ai ∈ H i(RPn).

Now suppose RPn is immersed in Rm for some m. By the product formula, this gives

(1 + a)n+1w(νRPn) = w(TRPn)w(νRPn) = w(TRm) = 1.
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Therefore we have an explicit formula for w(νRPn), namely 1/(1 + a)n+1. Computing
(1 + a)n+1 gives

(1 + a)n+1 = 1 + a+ a2k

provided that n = 2k. We study this specific example. But now

(1 + a+ a2k)(1 + a+ a2 + · · ·+ a2k−1) = 1 ∈ H∗(RPn;Z/2Z),

using the fact that H i(RP2k) vanishes for i > 2k. This means that

w(νRP2k) = 1 + a+ a2 + · · ·+ a2k−1.

In particular, w2k−1(νRP2k) 6= 0, so by the rank axiom, νRP2k must have rank at least

2k − 1. In other words, dimRm − dimRP2k ≥ 2k − 1. Therefore RP2k cannot be immersed
in Rm for m < 2k+1 − 1 as required.

We noted at the start that if a characteristic class on a vector bundle vanishes, then the
bundle is trivial. While this is not strictly an application, we note here that the converse
does not hold.

Example. Consider the standard embedding of Sn in Rn+1. Then the normal bundle to
Sn is a trivial line bundle ε1. Therefore

w(TSn) = w(TSn)w(ε1) = w(TSn)w(νSn) = w(TRn+1) = w(εn+1) = 1.

Hence the tangent bundles of all spheres have trivial Stiefel-Whitney class.

2.5 The Euler class

In the previous section we promised that we’d introduce the Euler class, which was used
to prove that the top Chern and top Stiefel-Whitney classes were equal mod 2. We do
this now. The main ingredient required for the definition of the Euler class is the Thom
isomorphism theorem.

Definition 2.5.1. Let p : E → B be a real vector bundle of rank n. Each fibre is
isomorphic to Rn, so by taking a one-point compactification of each fibre, we obtain an
n-sphere bundle S(E) → B. We can further quotient S(E) by B so that all of the newly
added points are identified. This is the Thom space T (E).

Remark. If B is compact, then T (E) is the one-point compactification of E.

Theorem 2.5.2. Let p : E → B be a real orientable vector bundle of rank n. Then for all
k there is an isomorphism

Φ : Hk(B;Z)→ H̃k+n(T (E);Z).

(The right side is reduced cohomology.)
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This is a global generalisation of the suspension isomorphism H̃k(X,A) ∼= H̃k+n(Sn ∧
X,A). The theorem can be stated without reference to Thom spaces by the following
calculations:

Observe that T (E) = S(E)/B, so that H̃n(T (E)) = Hn(S(E), B). Next consider the
triple B ⊂ (S(E) − E0) ⊂ S(E). Here B ⊂ S(E) − E0 be embedding B as the “points
at infinity”, while E0

∼= B is the zero section of S(E). By the long exact sequence in
homology, we have

· · · → Hn−1(S(E)− E0, B)

→ Hn(S(E), S(E)− E0)→ Hn(S(E), B)→ Hn(S(E)− E0, B)→ · · · .

But S(E)−E0 deformation retracts to B, so Hn(S(E), S(E)−E0) ∼= Hn(S(E), B)! By the
excision theorem, each Hn(S(E), S(E) − E0) is isomorphic to Hn(E,E − E0). Therefore
the Thom isomorphism theorem can be stated by making use of an isomorphism

H̃n(T (E);Z) ∼= Hn(E,E − E0;Z).

We do this now:

Theorem 2.5.3. Let p : E → B be an oriented vector bundle. Then there exists a unique
class u ∈ Hn(E,E − E0;Z), such that for any fibre F , the restriction of u to a class in
Hn(F, F − 0;Z) is the orientation class of F . Moreover, for each k,

Hk(E;Z)→ Hk+n(E,E − E0;Z), x 7→ x ^ u

is an isomorphism. The class u is called the Thom class. If E is not oriented, the theorem
remains true with Z replaced with Z/2Z.

Since the projection p : E → B induces an isomorphism p∗ : H∗(B) → H∗(E) in
cohomology, the Thom isomorphism Φ : Hk(B;Z) → Hk+n(E,E − E0;Z) is given by
b 7→ p∗(b) ^ u.

Using this map, we can define the Euler class.

Definition 2.5.4. Let p : E → B be an oriented real vector bundle of rank n. Let
u ∈ Hn(E,E − E0;Z) be the Thom class. The Euler class of E, denoted by e(E), is the
image of u under the map

Hn(E,E − E0;Z)→ Hn(E;Z)→ Hn(B;Z)

induced by the inclusion B ↪→ E.

Proposition 2.5.5. The Euler class is a characteristic class.
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Proof. We must show that e : VectR(−) → H∗(−) is a natural transformation. In other
words, if p : E → B is a real vector bundle of rank n, and f : A → B is a map, then
e(f∗(E)) = f∗(e(E)) ∈ Hn(f∗(E);Z).

For now, suppose the Thom class is natural: f∗(u(E)) = u(f∗(E)). Consider the
following diagram:

H̃n(T (E)) H̃n(T (f∗E))

Hn(B) Hn(A)

i∗

f∗

i∗

f∗

This diagram commutes, because each of the arrows is induced by maps i and f which
commute. (Note that i and f really denote two maps each.) The image of u(E) by first
mapping down and then to the right is f∗(e(E)). The image of u(E) by first mapping to the
right and then down is i∗(f∗(u(E))). But we assume f∗(u(E)) = u(f∗(E)) ∈ H̃n(T (f∗E)),
so that i∗(f∗(u(E))) = i∗(u(f∗E)) = u(f∗E). Therefore

f∗(u(E)) = u(f∗(E))

as required.
It remains to verify that f∗(u(E)) = u(f∗(E)), i.e, that the Thom class is natural. Let

f : A → B be as above. There exist (unique) Thom classes u(E) and u(f∗E). By the
definition of the pull-back bundle, f∗ : Hn(E,E −E0)→ Hn(f∗E, f∗E − f∗E0) sends the
orientation class of each fibre to the orientation class. Therefore uniqueness ensures that
f∗u(E) = u(f∗E). This completes the proof.

As with the Chern and Stiefel-Whitney classes, the Euler class satisfies several analogous
axioms.

Proposition 2.5.6. Let p : E → B be a real vector bundle of rank n. The Euler class
satisfies the following properties:

� Naturality: if f : A→ B, then e(f∗(E)) = f∗(e(E)).

� Normalisation: If E admits a non-vanishing section, then e(E) = 0.

� Whitney sum formula: if E′ → B is another oriented real vector bundle, then e(E ⊕
E′) = e(E) ^ e(E′).

� Orientation: if E is E equipped with the opposite orientation, then e(E) = −e(E).
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Proof. We have already established naturality, and the orientation condition is immediate.
It remains to verify normalisation and the sum formula.

Suppose E admits a non-vanishing section. We have a composition

B
σ−→ (E − E0) ↪→ E

p−→ B

which is actually the identity map. This induces maps

Hn(B)
p∗−→ Hn(E)

ϕ−→ Hn(E − E0)
σ∗−→ Hn(B).

Recall that e(E) is defined to be the image of u(E) under the composition

Hn(E,E − E0)
ψ−→ Hn(E)

i∗−→ Hn(B),

and i∗ is the inverse of p∗ (since i∗ is induced by the inclusion of B into E as the zero
section). But now

(ϕ ◦ p∗)(e(E)) = (ϕ ◦ ψ)(u(E)) = 0,

since ϕ ◦ ψ = 0 from the long exact sequence of relative cohomology. Therefore

e(E) = (σ∗ ◦ ϕ ◦ p∗)(e(E)) = σ∗(0) = 0.

It now remains to prove the Whitney sum formula. Let E1 → B1 and E2 → B2 be
oriented real vector bundles of rank n and m. Then I claim the Thom class u(E1 ×E2) is
given by u(E1)⊗ u(E2) ∈ Hn(T (E1))⊗Hm(T (E2)) ∼= Hn+m(T (E1 × E2)).

The isomorphism Hn(T (E1))⊗Hm(T (E2)) ∼= Hn+m(T (E1×E2)) is given by the Thom
isomorphism theorem. To see that u(E1 × E2) = u(E1) ⊗ u(E2), it suffices to show that
u(E1)⊗ u(E2) induces the orientation class on each fibre, and then the result follows from
the uniqueness of the Thom class. On each fibre, u(E1) ⊗ u(E2) restricts to ux ⊗ uy for
(x, y) ∈ B1 ×B2. The fibres of T (E1) are homeomorphic to Sn, and the fibres of T (E2) to
Sm. Tracing the isomorphisms, one can show that

ux ⊗ uy ∈ Hn(Sn)⊗Hm(Sm) ∼= Hn+m(Sn ∧ Sm) = Hn+m(Sn+m)

is orientation class. It follows from the definition of the Euler class that

e(E1 × E2) = e(E1)⊗ e(E2).

(Technically there may be sign difficulties: we cautiously write e(E1×E2) = (±1)nme(E1)⊗
e(E2). Then the only issue is if n,m are odd. But in these cases, we show in the a subse-
quent proposition that the right hand side has order two!)

The Whitney sum bundle is obtained as a pullback: this is the special case with B :=
B1 = B2, where we pull back both sides of the equation to Hn+m(B;Z) by means of the
diagonal embedding B → B1 ×B2. Then we have

e(E1 ⊕ E2) = e(E1) ^ e(E2).
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In the above proof, we promised that we would prove the following fact:

Proposition 2.5.7. Let E → B be an oriented vector bundle of odd rank. Then e(E) has
rank 2.

Proof. If E has odd rank, ι : E → E defined by (x, v) 7→ (x,−v) is an orientation reversing
automorphism of E. Therefore e(E) = −e(E) = −e(E) by the naturality and orientation
axioms.

We observed that all characteristic classes of complex vector bundles can be expressed
as polynomials of Chern classes. Since a complex vector bundle is itself an oriented real
vector bundle, the Euler class of a complex vector bundle should be determined by the
Chern classes. We see that this is indeed the case, and the analogous relationship holds
with Stiefel-Whitney classes as well. (The proof is not included.)

Proposition 2.5.8. Let p : E → B be an oriented real or complex vector bundle. In the
former case, the reduction of e(E) mod 2 gives the top Stiefel-Whitney class. In the latter
case, e(E) is exactly the top Chern class.

Finally we mention two important results, the first of which we state without proof,
which gives the Euler class a more geometric interpretation.

Theorem 2.5.9. Let p : E → M be a real vector bundle of rank n, with M a smooth
manifold of dimension d. Let σ : M → E be a smooth section that transversely intersects
the zero section E0. Then Z = E0 ∩ σ(M) is a submanifold of M with codimension n,
representing a homology class [Z] ∈ Hd−n(M ;Z). The Euler class e(E) is the Poincaré
dual of [Z].

Using this characterisation, we can understand compute a very well known invariant
using the Euler class of the tangent bundle. Namely, the Euler class of the tangent bundle
of an orientable manifold evaluated on the fundamental class is the Euler characteristic of
the manifold. To prove this result, we make use of the Poincaré Hopf index theorem. First
we must introduce some definitions.

Definition 2.5.10. Let X,Y be closed connected oriented manifolds of dimension m.
Orientations correspond exactly to choices of generator [X] and [Y ] for Hm(X), Hm(Y ).
A map f : X → Y induces a homomorphism f∗ : Hm(X) → Hm(Y ). The degree of f is
defined by

f∗([X]) = deg(f)[Y ].

Now suppose V is a vector field on a closed oriented manifold M . Then at any p ∈ M ,
there is a disk D ⊂M such that p ∈M is the only zero of V |M . (Note that p need not be
a zero!) There is a canonical map ϕ : D ∼= Sm−1 → Sm−1 defined by ϕ(x) = V (x)/‖V (x)‖.
The degree of (V, p) is defined by

deg(V, p) = degϕ.
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With this definition out of the way, we can introduce the celebrated Poincaré-Hopf
index theorem.

Proposition 2.5.11 (Poincaré-Hopf). Let M be a closed manifold, and V a vector field
(i.e. a section of TM) with isolated zeroes. Then∑

V (p)=0

deg(V, p) = χ(M)

where χ(M) is the Euler characteristic of M .

We now give a proof outline of an important application of the Euler class:

Theorem 2.5.12. Let M be a closed oriented n-manifold. The Euler characteristic of M
is given by the pairing

χ(M) = 〈e(M), [M ]〉.

Proof. Recall from earlier that e(TM) is Poincaré dual to [Z], where Z = V (M) ∩M is
the transverse intersection of the zero section M with a vector field V . This means that
e(M) _ [M ] = [Z]. But now if 1 ∈ Z = H0(M ;Z), we have

〈e(M), [M ]〉 = 〈1 ^ e(M), [M ]〉 = 〈1, e(M) ∩ [M ]〉 = 〈1, [Z]〉 = [V (M)] · [M ].

The expression on the right is the signed count of intersections of V (M) and M , which we
can alternatively write as

∑
V (p)=0 I(V, p), where I(V, p) is the sign of the intersection of

V and M at p. One can show that I(V, p) = deg(V, p), so the desired result follows from
the Poincaré-Hopf theorem.

2.6 The Pontryagin class

The last characteristic class we introduce is the Pontryagin class. In the same way that
the Euler class gives an integral refinement of the Stiefel-Whitney class in a specific degree
(top degree), the Pontryagin class gives integral refinements for other specific degrees.
Concretely, we complexify the vector bundle, and declare the Pontryagin class to be the
corresponding Chern class. We now provide details.

Definition 2.6.1. Let E → B be a real vector bundle. The complexification of E, denoted
by EC, can be defined to be the tensor bundle E ⊗C→ B where the C factor comes from
the trivial vector bundle B×C→ B. Equivalently, it can be defined to be the sum bundle
E ⊕ E → B equipped with a complex structure: J : E ⊕ E → E ⊕ E, J(x, y) = (−y, x).

We now define the Pontryagin class:
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Definition 2.6.2. Let p : E → B be a real vector bundle. The ith Pontryagin class is
defined by

pi(E) = (−1)nc2i(EC) ∈ H4i(B;Z).

To motivate this definition, we show that the odd Chern classes c2i+1 of the complex-
ification can be understood in terms of Stiefel-Whitney classes of E. Therefore the only
new information is introduced from the even Chern classes, c2i(EC).

Proposition 2.6.3. Let p : E → B be a real vector bundle. Then for any i, 2c2i+1(EC) = 0.
In particular, it is determined by the Stiefel-Whitney classes of E.

Proof. Let EC be the complexification E ⊗ C. The conjugate bundle is given by E ⊗ C.
The map x⊗ z 7→ x⊗ z is an isomorphism of complex vector bundles, so EC and EC have
the same Chern classes. But by a general property of Chern classes, we also know that
ci(EC) = (−1)i(EC). Therefore

ci(EC) = (−1)ici(EC).

This proves that for i odd, ci(EC) has order two. But then it is uniquely determined by its
reduction mod 2 in H2i(B;Z/2Z). Such a characteristic class is necessarily a polynomial
is Stiefel-Whitney classes of EC. As a real vector bundle, this is a sum-bundle E ⊕ E, so
by the Whitney sum formula, ci(EC) is a polynomial in Stiefel-Whitney classes of E.

Next we describe how the Pontryagin class relates to other characteristic classes.

Proposition 2.6.4. For a real vector bundle E → B, pi(E) maps to w2i(E) ^ w2i(E)
under the reduction H4i(B;Z) → H4i(B;Z/2Z). Moreover, for an orientable real 2n-
dimensional vector bundle E → B, the Euler class satisfies

pn(E) = e(E) ^ e(E).

Proof. The first of these properties is immediate from the definition. That is, c2i(EC)
reduces mod 2 to w4i(E ⊕ E), and by the Whitney sum formula, this is given by

w4i(E ⊕ E) = w2i(E) ^ w2i(E) + 2
∑

j<k,j+k=4i

wj(E) ^ wk(E) = w2i(E) ^ w2i(E).

The result with the Euler class takes a bit more work - the proof can be found in Hatcher’s
notes on characteristic classes.

2.7 Exercises

Exercise 2.7.1. (Hatcher’s K-theory) Show that every class in H2k(CP∞) can be realised
as the Euler class of a vector bundle over CP∞ that is a sum of complex line bundles.
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Solution. Recall that CP∞ is a K(Z, 2). We first look at the case of α ∈ H2k(CP∞;Z) for
k > 1. Then H2k(CP∞;Z) is trivial! But the trivial class in degree 2k is the Euler class of
the trivial bundle CP∞ × Ck.

Next consider the case of α ∈ H2(CP∞) = Z. Then α = ±n for some non-negative
integer n. Define given a vector bundle γ, define γ−n = (γ∗)⊗n, and γn = γ⊗n. Since the
first Chern class of a complex line bundle is additive with respect to the tensor product,
we have

α = c1(γα)

provided that c1(γ) = 1. For this, we simply take γ to be the tautological bundle over
CP∞.

Exercise 2.7.2. An important relation satisfied by Stiefel-Whitney classes is Wu’s for-
mula:

Sqi(wj) =

i∑
t=0

(
j + t− i− 1

t

)
wi−t ^ wj+t.

Prove Wu’s formula in the special case of

Sq1(wj) =

1∑
t=0

(
j + t− 2

t

)
w1−t ^ wj+t = w1 ^ wj + (j − 1)wj+1.

Solution. For notational brevity, we write u ^ v = uv. By the splitting principal and
naturality of Steenrod squares and Stiefel-Whitney classes, we work in

H∗(BO(1)n;Z/2Z) = Z/2Z[u1, . . . , un],

so that wj maps to the jth symmetric polynomial in the ui. That is,

wj =
∑

1≤k1<···<kj≤n
uk1 · · ·ukj .

Then
Sq1(wj) =

∑
1≤k1<···<kj≤n

Sq1(uk1 · · ·ukj ).

We now isolate a term Sq1(uk1 · · ·ukj ). Inductively applying the Cartan formula, together

with the fact that Sq1(uk) = u2
k, gives

Sq1(uk1 · · ·ukj ) = uk1 Sq1(uk2 · · ·ukj ) + u2
k1uk2 · · ·ukj = · · · = (uk1 + · · ·+ ukj )uk1 · · ·ukj .

In particular,

Sq1(wj) =
∑

1≤k1<···<kj≤n
(uk1 + · · ·+ ukj )uk1 · · ·ukj .
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We now compare the right hand side to the following expression:

(uk1 + · · ·+ ukn)
∑

1≤k1<···<kj≤n
uk1 · · ·ukj = w1wj .

By grouping terms, this can be written as

w1wj = (uk1 + · · ·+ ukn)
∑

1≤k1<···<kj≤n
uk1 · · ·ukj

=
∑

1≤k1<···<kj≤n
(uk1 + · · ·+ ukj )uk1 · · ·ukj

+
∑

1≤k1<···<kj≤n

( ∑
k 6∈{k1,...,kj}

uk

)
uk1 · · ·ukj

= Sq1(wj) + (n− j)
(
n

j

)
/

(
n

j + 1

) ∑
1≤k1<···<kj+1≤n

uk1 · · ·ukj+1

= Sq1(wj)− (j − 1)wj+1.

The last line requires some further clarification: notice that

(n− j)
(
n

j

)
=

(n− j)n!

j!(n− j)!
=

(j + 1)n!

(j + 1)!(n− (j + 1))!
= (j + 1)

(
n

j + 1

)
.

But working mod 2, we have j + 1 = j − 1 = −(j − 1). This establishes the chain of
equalities above. Finally by rearranging the first and last lines, we have

Sq1(wj) = w1wj + (j − 1)wj+1

as required.

Exercise 2.7.3. (Hatcher’s K-theory) Show that c2i+1(EC) = β(w2i(E)w2i+1(E)) where
β denotes the Bockstein homomorphism associated to

0→ Z→ Z→ Z/2Z→ 0.

Solution. Fix a real vector bundle E → B. Consider the following commutative diagram:

0 Z Z Z/2Z 0

0 Z/2Z Z/4Z Z/2Z 0.

×2

mod 2

mod 2

mod 4 id

×2 mod 2

We apply the cohomology functor H∗(B;−) to the above diagram, to obtain the following
commutative diagram, whose rows are exact:
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· · · H4i+1(B;Z/2Z) H4i+2(B;Z) H4i+2(B;Z) · · ·

· · · H4i+1(B;Z/2Z) H4i+2(B;Z/2Z) H4i+2(B;Z/4Z) · · ·

β

id

×2

mod 2 mod 4

β2 ×2

Here β is the Bockstein homomorphism as given in the exercise statement, while β2 is
the Bockstein homomorphism corresponding to the exact sequence 0→ Z/2Z→ Z/4Z→
Z/2Z→ 0.

We are finally ready to consider c2i+1(EC) ∈ H4i+2(B;Z). First recall that c2i+1(EC)
mod 2 = w4i+2(EC) ∈ H4i+2(B;Z/2Z). Next since EC = E ⊕E as real vector bundles, by
the Whitney sum formula,

c2i+1(EC) mod 2 = w2i+1(E)2.

When we introduced the Pontryagin class, we showed that c2i+1(EC) has order 2. (Recall
that we only considered even-degree Chern classes to define Pontryagin classes.) Since the
mod 2 map doesn’t destroy 2-torsion, c2i+1(EC) is the unique lift of w2i+1(E)2 with the
same order as w2i+1(E)2.

To show that c2i+1(EC) = β(w2i(E)w2i+1(E)), it suffices to show that it is a lift of
w2i+1(E)2, and that it has the same order as w2i+1(E)2. For the former, since the left
square in the previous diagram commutes, it suffices to show that β2(w2i(E)w2i+1(E)) =
w2i+1(E)2. But β2 is actually just the first Steenrod square, Sq1. By the special case of
Wu’s formula proved in the previous exercise, together with the Cartan formula,

β2(w2iw2i+1) = w1w2iw2i+1 + (2i− 1)w2
2i+1 + w1w2iw2i+1 + (2i)w2iw2i+2

= w2
2i+1.

Therefore β(w2i(E)w2i+1(E)) reduces mod 2 to w2
2i+1 as required. Finally, since β has

domain H4i+1(B;Z/2Z), the order of β(w2i(E)w2i+1(E)) divides 2. If w2
2i+1 is non-trivial,

β(w2i(E)w2i+1(E)) is necessarily non-trivial, and must have order 2. If w2
2i+1 is trivial,

then again by commutativity β(w2i(E)w2i+1(E)) must be trivial (since if it had order 2,
then its image under the mod 2 map would be non-trivial). Therefore β(w2i(E)w2i+1(E))
is indeed the unique lift of w2i+1(E)2 of the same order, which is c2i+1(EC).

Exercise 2.7.4. (Hatcher’s K-theory) For an oriented (2k+ 1)-dimensional vector bundle
E show that e(E) = β(w2k(E)) with β as in the preceding exercise.

Solution. The proof is essentially the same as for the previous exercise, so we only provide
an outline. Consider the diagram

· · · H2k(B;Z/2Z) H2k+1(B;Z) H2k+1(B;Z) · · ·

· · · H2k(B;Z/2Z) H2k+1(B;Z/2Z) H2k+1(B;Z/4Z) · · ·

β

id

×2

mod 2 mod 4

β2 ×2

43



We know from general theory that e(E) ∈ H2k+1(B;Z) reduces modulo 2 to w2k+1(E).
Moreover, since 2k + 1 is odd, e(E) has order dividing 2. Therefore as in the previous
proof, e(E) is the unique lift of w2k+1(E) with the same order as w2k+1(E). As in the
previous proof, it now suffices to show that

β(w2k) mod 2 = β2(w2k) = w2k+1.

Since β2 = Sq1, by Wu’s formula we have

β2(w2k) = w1w2k + (2k − 1)w2k+1 = w2k+1.

This is because 2k − 1 ≡ 1 mod 2, and w1 vanishes by orientability.

Exercise 2.7.5. Show that TRPn ∼= Hom(γn1 , γ
n
1
⊥). Conclude that TRPn ⊕ ε1 = ⊕n+1γ

n
1 .

Solution. We first establish some notation. Let

E = {([u], v) ∈ RPn × Rn+1 : v ∈ [u]}.

Then the tautological bundle over RPn is γn1 : E → RPn induced from the trivial bundle.
Moreover, we define

E⊥ = {([u], v) ∈ RPn × Rn+1 : v ⊥ u}.

Again there is an induced bundle γn⊥1 : E⊥ → RPn. The fibre Ex of γn1 over a point x is
the line Lx in Rn+1 determined by x. Similarly the fibre E⊥x of γn⊥1 over any point x is L⊥x .

Recall that there is a double cover p : Sn → RPn defined by identifying antipodal
points. We use this to study TRPn in terms of TSn. On one hand, we know that

TSn = {(x, v) ∈ Rn+1 × Rn+1 : ‖x‖ = 1, x · v = 0}.

The derivative Dp : TSn → TRPn sends (x, v) and (−x,−v) to the same vector in TRPn.
Since the double cover is a local diffeomorphism, Dp(x) is an isomorphism at each x ∈ Sn.
Therefore

TRPn = {{(x, v), (−x,−v)} : x, v ∈ Rn+1, ‖x‖ = 1, x · v = 0}.

Given x, a pair {(x, v), (−x,−v)} is of course uniquely determined by v. But now define ` :
Lx → L⊥x by `(tx) = tv, where Lx = span{x} ⊂ Rn+1. This is a linear map in Hom(Lx, L

⊥
x ),

and conversely any such linear map determines a unique pair {(x, v), (−x,−v)}. Thus
TxRPn ∼= Hom(Lx, L

⊥
x ) ∼= Hom(Ex, E

⊥
x ), and as x is allowed to vary, we have

TRPn ∼= Hom(γ1, γ
⊥
1 ).

But now ε1 denotes a trivial line bundle. We claim that

TRPn ⊕ ε1 = ⊕n+1γ
n
1 .
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Recall that any real vector bundle is isomorphic to its dual, by choosing a global metric
g and sending (x, v) to (x, g(v,−)). Next note that ε1 can be taken to be the trivial
Hom-bundle Hom(γn1 , γ

n
1 )→ RPn. Therefore

TRPn ⊕ ε1 = Hom(γn1 , γ
n⊥
1 )⊕Hom(γn1 , γ

n
1 )

= Hom(γn1 , γ
n⊥
1 ⊕ γn1 )

= Hom(γn1 , εn+1)

= ⊕n+1(γn1 )∗ = ⊕n+1γ
n
1 .

Remark. The above reasoning applies to complex projective space as well:

TCPn ⊕ ε1 = ⊕n+1γ
n
1

where γ is the tautological bundle over CPn.

Exercise 2.7.6. Compute the Stiefel-Whitney and Chern classes of RPn and CPn respec-
tively. Which real and complex projective spaces are parallelisable?

Solution. We provide details for the Stiefel-Whitney class calculations, but only state the
Chern class calculations as they are analogous. By the Whitney sum formula, we have

w(TRPn) = w(TRPn)w(ε1) =
∏
n+1

w(γn1 ) = (1 + a)n+1,

where w1(γn1 ) = a is the non-trivial element of Z/2Z = H1(RPn;Z/2Z). Therefore by the
binomial formula,

wi(TRPn) =

(
n+ 1

i

)
ai.

In fact, the same result holds for Chern classes:

ci(TCPn) =

(
n+ 1

i

)
bi, 〈b〉 = Z = H2(CP2;Z).

For a RPn to be parallelisable, we require all of its Stiefel-Whitney class to be trivial. From
our calculation, this means we need

(
n+1
i

)
≡ 0 for 1 ≤ i ≤ n. By combinatorics, this is

exactly when n = 2k − 1 for some k. The same argument applies to CPn. (Note that these
are necessary but not sufficient conditions. It turns out that the only parallelisable real
projective spaces are in dimensions 1, 3, 7.)

Exercise 2.7.7. Which products of spheres are parallelisable?
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Solution. We prove that Sn × Sm is parallelisable if and only if at least one of n,m is odd.
First suppose that one of n,m is odd. Without loss of generality, assume n is odd. Then

Sn has Euler characteristic zero. Since χ(Sn) = 〈e(TSn), [Sn]〉, and [Sn] is the generator of
Hn(Sn;Z), this means e(TSn) vanishes. Thus TSn admits a non-vanishing section. This
gives a decomposition

TSn = E ⊕ ε1
where E → Sn is a real vector bundle of rank n− 1, and ε1 is the trivial line bundle.

We can write T (Sn×Sm) as p∗1TSn⊕ p∗2TSm where p1 : Sn×Sm → Sn is the projection
map and analogously for p2. But then we have

T (Sn × Sm) = p∗1TSn ⊕ p∗2TSm

= p∗1(E ⊕ ε1)⊕ p∗2TSm

= p∗1E ⊕ (ε1 ⊕ p∗2TSm)

= p∗1E ⊕ εm+1

= (p∗1TSn ⊕ ε1)⊕ εm−1

= εn+1 ⊕ εm−1 = εn+m.

This proves that if at least one of n, m are odd, then Sn×Sm is parallelisable. Conversely,
suppose both n and m are even. Then

χ(Sn × Sm) = χ(Sn)χ(Sm) = 2 · 2 6= 0.

Since the Euler characteristic is non-trivial, the Euler class of T (Sn×Sm) is non-trivial, so
it is a non-trivial bundle. This proves the converse.

Exercise 2.7.8. Which spheres are parallelisable?

Solution: This is difficult! It appears I need the Bott periodicity theorem to answer this
question. This will be explored in the following chapter! 4

Exercise 2.7.9. (Ciprian) Find a G-bundle which is not a principal G-bundle.

Solution. We proved earlier that a principal G-bundle is trivial if and only if it admits a
global section. On the other hand, any vector bundle admits a global section (namely the
zero section). Therefore a non-trivial vector bundle is an example of a G-bundle which is
not principal.

For example, R is a Lie group, and the mobius strip is a non-trivial R-bundle over S1.
Similarly R2 is a Lie group, and TS2 is a non-trivial R2-bundle over S2.

We can also recreate this with discrete groups: For example, consider Z/nZ for n at
least 3. Then one can define a non-trivial Z/nZ bundle over the circle by permuting n− 1
points in Z/nZ as we wrap around S1, but leaving one point p unchanged. Then a global
section is given by σ(x) = (x, p), but the bundle is non-trivial. Therefore it cannot be a
principal Z/nZ-bundle.
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Exercise 2.7.10. (Ciprian) Given homogeneous polynomials pi of degree di in n + 1
variables, for i = 1, . . . , n− 2, let

S = S(d1, ..., dn−2) = {[z0 : z1 : · · · : zn] ∈ CPn : pi(z0, . . . , zn) = 0, ∀i}.

One can show that for generic pi, the subset S is a smooth, simply connected, four-
dimensional submanifold of CPn, and that its diffeomorphism type depends only on the
degrees di, not on the particular polynomials pi. The manifold S is called the complete
intersection surface of multidegree (d1, . . . , dn−2).

(a) Compute the Chern class of S.
(b) Compute the Euler characteristic and signature of S.
(c) Show that S is spin if and only if

∑
di − (n+ 1) is even.

Solution. (a) We wish to understand the tangent bundle of S in terms of its normal bundle
and the tangent bundle of CPn. Suppose M1,M2 ⊂ X are submanifolds intersecting
transversely. Then N(M1 ∩M2) = NM1 ⊕ NM2. Since S is obtained as the intersection
of n− 2 submanifolds

Mi = {[z0 : z1 : · · · : zn] ∈ CPn : pi(z0, . . . , zn) = 0},

it suffices to understand NMi for some i to determine NS.
Recall that isomorphism classes of line bundles are in one to one correspondence with

their first Chern classes (and NMi is a line bundle over Mi). But then e(NMi) = c1(NMi),
and e(NMi) is Poincaré dual to [Mi∩σ(Mi)] where σ(Mi) is a generic section of NMi. This
is really just the self intersection [Mi ·Mi]. By algebraic geometry, for Mi a hypersurface
determined by a degree di polynomial in CPn, this can be shown to be di[Mi · CPn−1]∗,
where multiplication by di uses the Z-module structure of H2(Mi;Z). In particular, it
follows that

c(NMi) = 1 + di[Mi · CPn−1]∗.

But now since NS is the direct sum of the NMi restricted to S, we have

c(NS) =
n−2∏
i=1

(1 + di[Mi · CPn−1]∗|S) =
n−2∏
i=1

(1 + diη)

where η = [S · CPn−1]∗. On the other hand, it is already understood that c(TCPn) =
(1 + b)n+1 where b ∈ H2(CPn;Z) is the generator, [CPn−1]∗. Therefore

c(TCPn|S) = (1 + [CPn−1]∗|S)n+1 = (1 + η)n+1.

It follows that

c(TS)

n−2∏
i=1

(1 + diη) = (1 + η)n+1.
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Since S is a 4-manifold, we can write c(TS) = 1 + c1(TS) + c2(TS) by the rank axiom. On
the other hand, we have

n−2∏
i=1

(1 + diη) =
n−2∑
j=0

σjη
j

where σj is the jth elementary polynomial in d1, . . . , dn−2. The last term expands by the
binomial theorem, giving

(1 + η)n+1 =

n∑
j=0

(
n+ 1

j

)
ηj .

Note that the ηn+1 term dies by rank considerations. Collecting these three expressions
we have

(1 + c1(TS) + c2(TS))
n−2∑
j=0

σjη
j =

n∑
j=0

(
n+ 1

j

)
ηj .

This forces

c1(TS) = c1(TCPn|S)− c1(NS) = (n+ 1)η − σ1η = (n+ 1− d1 − · · · − dn−2)η

and

c2(TS) = c2(TCPn|S)− c2(NS)− c1(NS)c1(TS)

=
n(n+ 1)

2
η2 − σ2η

2 − σ1η(n+ 1− d1 − · · · − dn−2)η

=

(
n(n+ 1)

2
− (n+ 1)(d1 + · · ·+ dn−2) +

(
σ2 +

∑
i

d2
i

))
η2.

(b) We now use the above identity to determine the Euler characteristic and signature of
S. The Euler characteristic is given by

χ(S) = 〈c2(TS), [S]〉.

Using the expression for c2(TS) obtained above gives

χ(S) =

(
n(n+ 1)

2
− (n+ 1)(d1 + · · ·+ dn−2) +

(
σ2 +

∑
i

d2
i

))
〈η2, [S]〉.

It remains to determine 〈η2, [S]〉. This can be shown to be d1 + · · · dn−2 by using the earlier
result that the self intersection of each Mi is di times the intersection of Mi with CPn−1.
For notational brevity, we write D to denote the sum of the di. Then

χ(S) = D
n(n+ 1)

2
−D2(n+ 1) +D(D2 − σ2).
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For example, if each di = 1, then we have

χ(S) = (n− 2)
n(n+ 1)

2
− (n− 2)2(n+ 1) + (n− 2)

(n− 2)(n− 1)

2
= 3

independent of n!
Next we determine the signature of S. By the Hirzebruch signature theorem, σ(S) =

1
3〈p1(TS), [S]〉, where p1 is the first Pontryagin class. By definition, the Pontryagin class
is given by

p1(TS) = −c2(TS ⊗ C) = −c2(TS ⊕ T ∗S) =

2∑
i=0

ci(TS) ^ c2−i(T
∗S).

Since ci(TS) = (−1)ici(T
∗S), this gives p1(TS) = c2

1(TS) − 2c2(TS). In our case, a
calculation gives

p1(TS) =
n(n− 1)

2
−D(n+ 1) + σ2.

In particular, the signature of S is given by

1

3
〈p1(TS), [S]〉 =

D

3

(
n+ 1−

∑
i

d2
i

)
.

(c) An orientable manifold M is spin if and only if w2(TM) vanishes. In this case S is
orientable, so S is spin if w2(TS) vanishes. Since the second Stiefel-Whitney class is the
mod 2 reduction of c1(TS), S is equivalently spin if and only if c1(TS) is even. We showed
above that c1(TS) = (n+ 1−D)η, so S is spin if and only if D− (n+ 1) is even, which is
what we wanted to show.

Finally, a remark that was not requested in the exercise statement: the homeomorphism
class of a closed simply connected smooth 4-manifold X is determined by e(TX), p1(TX),
and w2(TX). We calculated each of these invariants above, and so we have shown that
the homeomorphism class of the surface S is independent of the choice of polynomials
(depending only of n and di).
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Chapter 3

K-theory

3.1 Basic definitions

In the previous two chapters, we studied vector bundles using classifying spaces and char-
acteristic classes. In each case, bundles are studied for a given dimension. In K-theory,
we study all k-vector bundles (independent of dimension) over a given space X at the
same time (by associating to X a certain ring called the K-theory of X). K-theory is the
prototypical example of a generalised cohomology theory, namely a theory in which the
cohomology of a point is not necessarily concentrated in degree 0. The primary sources for
this chapter are [Coh98, Hat03].

We recall some definitions from earlier in these notes:
Given an abelian monoid, its completion is an abelian group as described in the following

proposition. It is the smallest abelian group containing the given monoid.

Proposition 3.1.1. Let M be an abelian monoid. There exists an abelian group G(M),
unique up to isomorphism, and a monoid homomorphism ι : M → G(M) such that any
morphism M → N of monoids extends uniquely to a morphism G(M) → N of monoids.
In other words, for any f as in the diagram below, there exists a unique f̃ making the
diagram commute.

M G(M)

N

f

ι

f̃

The abelian group G(M) is called the Grothendieck completion of M , and can be thought
of as the smallest group containing M .

Definition 3.1.2. Fix a space X, and k = R,C. Recall that the Whitney sum defines an
operation

Vectnk(X)×Vectmk (X)→ Vectn+m(X),
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which turns Vectk(X) =
⊕

n Vectnk(X) into an abelian monoid. The K-theory Kk(X) of
X is defined to be the Grothendieck completion of Vectk(X). The standard notation is to
write

K(X) := KC(X), KO(X) := KR(X).

We think of K(X) as being the space of isomorphism classes of complex vector bundles
over X. There is a reduced version, which is defined to be the space of stable isomorphism
classes of complex vector bundles:

Definition 3.1.3. Fix a space X, and k = R,C. Two vector bundles E1, E2 → X are said
to be stably isomorphic if there exist trivial bundles ε1 and ε2 such that E1⊕ ε1 ∼= E2⊕ ε2.
The reduced K-theory K̃k(X) of X is defined to be the group of stable isomorphism classes
of k-vector bundles over X, under Whitney sum. The standard notation is to write

K̃(X) := K̃C(X), K̃O(X) := K̃R(X).

Proposition 3.1.4. The reducedK-theory is really a group (without requiring the Grothendieck
completion).

Proof. The reduced K-theory is easily seen to be an abelian monoid under the Whitney
sum. It remains to prove that inverses exist.

This is true provided that the base space X is compact and Hausdorff. The approach is
to first show that any vector bundle E → X is a subbundle of a trivial bundle X×kn → X
for some n. We then use this to find a complement of E inside X × kn.

Let {Ui} be a finite open cover of X, so that each Ui is also the chart of a local
trivialisation fi : π−1(Ui) → Ui × km of X. (This can be done by compactness.) Next
since X is paracompact and Hausdorff, we can find a partition of unity {ϕi} subordinate
to {Ui}. We use this to extend fi to a global bundle morphism E → X × km, by

e 7→ ϕi(π(e))fi(e).

This map is not injective, since for any fibre π(F ) 6∈ Ui, all points in F map to the same
point in X × km. To remedy this, we glue together all of the ϕifi to give a map into the
direct sum bundle:

E → X ×
(⊕

i

km
)

= X × kn.

Since at least one ϕi is non-zero above any x ∈ X, this map is injective. Therefore E is a
subbundle of X × kn.

Next we use partitions of unity again to recall that any vector bundle admits a Riem-
manian metric. In particular, X × kn admits a metric. The orthogonal complement of E
in X × kn is another vector bundle, and it satisfies E ⊕ E⊥ = X × kn = εn.

Therefore E ⊕ E⊥ is stably isomorphic to the zero bundle ε0. We have shown the
existence of inverses as required.
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Proposition 3.1.5. Given a space X, the abelian group K(X) is naturally a ring. The
multiplicative structure is induced from tensor products of vector bundles. The class of
the trivial line bundle is the multiplicative unit.

With this established, we have an alternative definition of K̃(X) which also induces a
multiplicative structure. Consider the map

r : K(X)→ K(x0)

which sends each class to its restriction to x0. This is easily seen to be a ring homomor-
phism. Moreover, ker r can be identified with K̃(X).

Proposition 3.1.6. K and K̃ are contravariant functors (from topological spaces, in
particular compact manifolds, to rings). The map is induced by pullbacks.

Proof. For K̃ the result is immediate, since it is literally the space of stable isomorphism
classes of vector bundles. For K, we must use the universal property. The corresponding
diagram looks like this:

Vectk(Y ) Kk(Y )

Vectk(X) Kk(X)

f∗

iY

ĩXf∗

iX

The vertical map on the right is a group homomorphism (which exists and is unique). One
can show that it is a ring homomorphism.

Finally for K-theories to really be useful, we need some ways to relate K-theories
beyond just the functorially induced map. One such example is the exterior product.

Definition 3.1.7. Let X1, X2 be spaces. Then there are canonical projections pi : X1 ×
X2 → Xi. By means of pullback, any vector bundle over Xi defines a vector bundle over
X1 × X2. In particular, a pair of vector bundles (E1, E2) over X1 and X2 respectively
defines a vector bundle over X1 ×X2 by

(E1, E2) 7→ p∗1(E1)⊗ p∗2(E2).

This induces a map
µ : K(X1)⊗K(X2)→ K(X1 ×X2)

called the exterior product.

Proposition 3.1.8. The exterior product is a ring homomorphism.

52



Proof. The tensor product K(X1) ⊗K(X2) is a ring, with multiplication defined by (a⊗
b) · (c⊗ d) = ac⊗ bd. We show that µ is multiplicative. Let a⊗ b, c⊗ d ∈ K(X1)⊗K(X2).
Then

µ((a⊗ b)(c⊗ d)) = µ(ac⊗ bd)

= p∗1(ac)⊗ p∗2(bd)

= p∗1(a)⊗ p∗1(c)⊗ p∗2(b)⊗ p∗2(d)

= (p∗1(a)⊗ p∗2(b))⊗ (p∗1(c)⊗ p∗2(d)) = µ(a⊗ b)⊗ µ(c⊗ d).

As short hand, we write
a ∗ b := µ(a⊗ b).

We now state our last theorem for this section.

Theorem 3.1.9. The exterior product

µ : K(X)⊗K(S2)→ K(X × S2)

is an isomorphism. More explicitly, taking H to be the canonical line bundle over S2 = CP1,
there is a natural ring homomorphism Z[H]/(H − 1)2 → K(S2). Then

µ : K(X)⊗ Z[H]/(H − 1)2 → K(X × S2)

is an isomorphism.

This is in fact the core of the Bott periodicity theorem, and takes a lot of work to prove.
We give a very brief outline here.

� Suppose E → S2 is a vector bundle. We can decompose S2 as D2 tS1 D2. Then E
restricts to trivial bundles over each copy of D2. Therefore the only data required to
specify E → S2 is a clutching function S1 → GLn(C).

� We now generalise this construction: let E → X be a vector bundle. Let f be
an automorphism of the product bundle E × S1 → X × S1. Then the data (E, f)
determines a vector bundle [E, f ] obtained by gluing trivial bundles E×D2 → X×D2

along X × S1 by f . We call f a clutching function.

� f : X × S1 → X × S1 is said to be a Laurent polynomial clutching function if it is of
the form

f(x, z) =
∑
|i|≤n

ai(x)zi,

where ai : E → E restricts to linear maps on each fibre. One can show that every
vector bundle [E, f ] is isomorphic to [E, `] where ` is a Laurent polynomial clutching
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function. Moreover, any two homotopic Laurent polynomial clutching functions are
homotopic via a Laurent polynomial clutching function. The main idea in the proof
of this fact is to find appropriate coefficient functions ai. These are obtained by a
familiar formula from Fourier analysis:

an(x) =
1

2π

∫ 2π

0
f(x, eiθ)e−inθ dθ.

� We have reduced clutching functions to Laurent polynomial clutching functions.
These further reduce to polynomial clutching functions by writing ` = z−mq for
sufficiently large m. Then [E, `] ∼= [E, q]⊗H−m, so to understand [E, `] it suffices to
understand [E, q].

� Next we reduce polynomial clutching functions to linear clutching functions. If q is
a polynomial clutching function of degree at most n, one can show that

[E, q]⊕ [nE, 1] ∼= [(n+ 1)E,Lnq],

where Lnq is a linear clutching function. This is really a linear algebra fact that can
be established on fibres.

� It remains to understand clutching functions a(x)z + b(x). It turns out that given
[E, a(x)z + b(x)], there is a splitting E ∼= E+ ⊕ E− with

[E, a(x)z + b(x)] ∼= [E+, 1]⊕ [E−, z].

� We are finally ready to proceed with the proof that

µ : K(X)⊗ Z[H]/(H − 1)2 → K(X × S2)

is an isomorphism. We must show surjectivity and injectivity. For surjectivity, using
the reductions above, any [E, f ] over X × S2 can be written as

[E, f ] = ((n+ 1)E)+ ∗H−m + ((n+ 1)E)− ∗H1−m − nE ∗H−m.

To show that µ is injective, we must define a map ν : K(X×S2)→ K(X)⊗Z[H]/(H−
1)2 so that νµ = id. It turns out that the map

µ : [E, z−mq] = ((n+ 1)E)− ⊗ (H − 1) + E ⊗H−m

works.
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3.2 K-theory as cohomology, and the Bott periodicity theo-
rem

K-theory is often referred to as the prototypical generalised cohomology theory. We de-
scribe this notion now, in two steps.

Proposition 3.2.1. Let A ↪→ X be an inclusion. Then the composition A → X → X/A
induces an exact sequence

K̃(X/A)→ K̃(X)→ K̃(A).

Moreover, this further induces a long exact sequence

· · · K̃(ΣX)→ K̃(ΣA)→ K̃(X/A)→ K̃(X)→ K̃(A).

Proof. For the first part, we must show that

im q∗ = ker i∗.

We break this down into two smaller arguments: namely, showing that i∗ ◦ q∗ = 0 (i.e.
im q∗ ⊂ ker i∗), and showing that ker i∗ ⊂ im q∗. For the former, notice that the following
diagram commutes:

A X

A/A X/A

i

q′ q

i′

Therefore
i∗ ◦ q∗ = (q ◦ i)∗ = (i′ ◦ q′)∗ = q′∗ ◦ i′∗.

But A/A has the homotopy type of a point, so all vector bundles over A/A are trivial.
In particular, all vector bundles are stably trivial, so K̃(A/A) is trivial! Therefore i′∗ has
trivial image, and the composition i∗ ◦ q∗ must be trivial.

For the other direction, suppose E → X lives in the kernel of i∗. This means the
restriction of E to a bundle over A is stably trivial. Without loss of generality, we can take
E to be trivial over A. Let h : p−1(A)→ A×kn be the trivialisation. We have a projection
map

E → X → X/A

which is not a vector bundle, since the fibre over the point A in X/A is A× kn rather than
kn. However, using h, we can define a projection map

E/h→ X/A
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where E/h is the quotient of E by the relation h−1(x, v) ∼ h−1(y, v) for all x, y ∈ A.
Moreover, E/h is a vector bundle provided that E/h is trivial in a neighbourhood of A/A.
This is indeed true, since if E → X is trivial over A, then it is trivial over a neighbourhood
of A which deformation retracts onto A.

Consider the following diagram:

E E/h

X X/A

q′

p p′

q

Our goal is to show that E → X (which lies in ker i∗) is in fact in the image of q∗. To this
end, we show that E = q∗(E/h). This follows from the fact that q′ defines an isomorphism
on fibres in the above commutative diagram.

This completes the proof that A ↪→ X → X/A induces an exact sequence

K̃(X/A)→ K̃(X)→ K̃(A).

Next we extend this result to give a long exact sequence. This is a rather quick argument,
which relies on the following fact: if A ⊂ X is contractible, then the quotient map X → X/A
induces an isomorphism K̃(X/A)→ K̃(X). In particular, cones of spaces are contractible!
Consider the following sequence of inclusions, where the vertical maps are quotients.

A X X ∪ CA (X ∪ CA) ∪ CX ((X ∪ CA) ∪ CX) ∪ C(X ∪ CA) · · ·

X/A ΣA ΣX

To extend the diagram to the right, we add the cone over the space in the preceding
inclusion. The vertical quotient is then the quotient by this cone. One can show that for
any spaces Y, Z, there are homeomorphisms as shown in the following sequence:

Y → Y ∪ CZ → (Y ∪ CZ) ∪ CY
CY

∼= ΣZ ∼=
Y ∪ CZ

Y
.

Therefore by the result proved above, we have an exact sequence

K̃((Y ∪ CZ)/Y )→ K̃(Y ∪ CZ)→ K̃(Y ).

But now by the italicised fact, the vertical map induces an isomorphism of reduced K-
theories. Therefore we have an exact sequence

K̃((Y ∪ CZ) ∪ CY )→ K̃(Y ∪ CZ)→ K̃(Y ).
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By taking Y2 = Y ∪ CZ, and Z2 = Y , we immediately obtain an exact sequence

K̃(((Y ∪ CZ) ∪ CY ) ∪ C(Y ∪ CZ))→ K̃((Y ∪ CZ) ∪ CY )→ K̃(Y ∪ CZ).

Inductively we obtain a long exact sequence. By using the italicised fact, each of the
unions of cones can be replaced with an appropriate suspension, giving the desired long
exact sequence.

Example. Consider the sequence

A→ A ∨B → B.

This induces an exact sequence of reduced K-theories

K̃(B)→ K̃(A ∨B)→ K̃(A).

This is a split short exact sequence, as sections and retractions of the two maps above are
induced by the dual sequence B → A ∨B → A. Therefore we have an isomorphism

K̃(A ∨B) ∼= K̃(A)⊕ K̃(B).

Proposition 3.2.2. There is a reduced version of the external product,

β : K̃(X)⊗ K̃(Y )→ K̃(X ∧ Y ).

Proof. The reduced external product will arise as a restriction of both the domain and
codomain as in the following diagram:

K(X)⊗K(Y ) (K̃(X)⊗ K̃(X))⊕ K̃(X)⊕ K̃(Y )⊕ Z

K(X × Y ) K̃(X ∧ Y )⊕ K̃(X)⊕ K̃(Y )⊕ Z

∼=

∼=

The map on the right respects the factorisation, with the restrictions to K̃(X), K̃(Y ), and
Z all given by identity maps. The reduced external product is obtained by removing these
factors. We do not prove the result, but give an example calculation.

The smash product is the quotient

X ∧ Y =
X × Y
X ∨ Y

.

By the long exact sequence of reduced K-theory, we have an exact sequence

K̃(X ∧ Y )→ K̃(X × Y )→ K̃(X ∨ Y ) ∼= K̃(X)⊕ K̃(Y ).
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The second map admits a section:

K̃(X)⊕ K̃(Y )→ K̃(X × Y ), (a, b) 7→ p∗1a+ p∗2b.

In particular, the last map is surjective, so the exact sequence extends on the right by zero.
Extending the above sequence to the left, we also have

K̃(Σ(X × Y ))→ K̃(Σ(X ∨ Y )) ∼= K̃(ΣX)⊕ K̃(ΣY )→ K̃(X ∧ Y ).

Similarly to above, the first map admits a section. This means the map

K̃(ΣX)⊕ K̃(ΣY )→ K̃(X ∧ Y )

is the zero map. In summary we have a short exact sequence

0→ K̃(X ∧ Y )→ K̃(X × Y )→ K̃(X)⊕ K̃(Y )→ 0

where the second non-trivial map splits. Therefore the above is a split short exact sequence,
giving K̃(X × Y ) ∼= K̃(X ∧ Y )⊕ K̃(X)⊕ K̃(Y ). Next we recall that

K̃(X × Y ) = ker i∗, i∗ : K(X × Y )→ K(x) ∼= Z.

This is itself part of a split short exact sequence, so that

K(X × Y ) ∼= K̃(X ∧ Y )⊕ K̃(X)⊕ K̃(Y )⊕ Z.

At the end of the previous section, we mentioned the fundamental product theorem,
namely that µ : K(X) ⊗K(S2) → K(X × S2) is an isomorphism. We next rephrase this,
and adapt it to the reduced exterior product.

Theorem 3.2.3. There is a natural ring homomorphism Z[H]/(H − 1)2 → K(S2). Here
H represents the canonical line bundle over CP1 ∼= S2; the aforementioned morphism is the
observation that (H−1)2 = 0. Combining this with the exterior product, we have a natural
map

µ : K(X)⊗ Z[H]/(H − 1)2 → K(X × S2).

This is an isomorphism for X compact and Hausdorff.
In reduced K-theory, this gives an isomorphism

β : K̃(X)→ (Σ̃2X), β : a 7→ (H − 1) ∗ a.

Theorem 3.2.4 (Bott periodicity theorem).

K̃(Sn) =

{
0 n odd

Z n even.
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Proof. This follows from the fact that Σ2Sn = Sn+2. Therefore it suffices to compute the
reduced K-theories of S0 and S1. (For the purposes of K-theory), we take vector bundles
to be locally trivial but to not necessarily have constant rank. In practice this means that
any vector bundles over a connected space have a well defined rank, but vector bundles
over a disconnected space need not have a rank. In particular, stable isomorphism classes
of vector bundles over a two point space (i.e. S0) do not have ranks, but they have well
defined differences of ranks between the two fibres. Therefore K̃(S0) ∼= Z.

On the other hand, every vector bundle over S1 is trivial, so the group of stable iso-
morphism class of vector bundles over S1 is the trivial group, giving K̃(S1) ∼= 0. Now the
theorem follows from the isomorphism

K̃(Sn) ∼= K̃(Σ2Sn) ∼= K̃(Sn+1).

An application of this is that it tells us about the homotopy groups ofBU = lim→BU(n)!
In particular, we can compute some homotopy groups of U(n). We first determine the ho-
motopy groups of BU . To this end, note that

[X,BU ] ∼= K̃(X).

Therefore by plugging inX = Sn, we can compute the homotopy groups ofBU . Specifically,

πn(BU) =

{
0 n odd

Z n even.

But now we know that πn(BU) = πn−1(U), so this tells us the homotopy groups of the
direct limit U = lim→ U(n). Finally we recall that there is a fibration U(n)→ U(n+ 1)→
U(n + 1)/U(n) ∼= S2n+1. Since S2n+1 is 2n-connected, this shows that there is a stable
range in which πk(U(n)) ∼= πk(U(n+ 1)), specifically when k ≤ 2n− 1. Therefore we have
the following table:

π0 π1 π2 π3 π4 π5 π6 π7 π8 π9 · · ·

U(1) 0 Z 0 0 0 0 0 0 0 0 · · ·

U(2) 0 Z 0 Z ? ? ? ? ? ? ?

U(3) 0 Z 0 Z 0 Z ? ? ? ? ?

U 0 Z 0 Z 0 Z 0 Z 0 Z · · ·
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There is a real analogue to this theorem, in which we compute the homotopy groups of the
orthogonal group. (This is the real Bott periodicity theorem.) Specifically,

πk(O) =



Z/2Z k ≡ 0 mod 8

Z/2Z k ≡ 1 mod 8

0 k ≡ 2 mod 8

Z k ≡ 3 mod 8

0 k ≡ 4 mod 8

0 k ≡ 5 mod 8

0 k ≡ 6 mod 8

Z k ≡ 7 mod 8,

where O = lim→O(n).
Finally we go back to K-theory has a cohomology theory. We proved earlier that given

a sequence A→ X → X/A of spaces, we have a long exact sequence

· · · → K̃(ΣX)→ K̃(ΣA)→ K̃(X/A)→ K̃(X)→ K̃(A).

To turn this into a cohomology theory, we define

K̃−n(X) := K̃(ΣnX).

By the Bott periodicity theorem, there are isomorphisms K̃n(X) → K̃n−2(X) for any X
and n. We can extend the K-theory to positive n using this isomorphism. The long exact
sequence of cohomology forms a loop as follows:

K̃1(X/A) K̃1(X) K̃1(A) ∼= K−1(A)

K̃0(A) K̃0(X) K̃0(X/A).

There is also an unreduced version of the groups K̃i(X), giving rise to a generalised coho-
mology theory. We define

Kn(X) := K̃n(X+),

where X+ = X ∪ {∗} for some disjoint point ∗. Then we have K0(X) = K(X) and
K̃1(X) = K1(X). Moreover, we again have a long exact sequence (which induces a loop):

K1(X,A) K1(X) K1(A)

K0(A) K0(X) K0(X,A).

Specifically K0(A) and K0(X) have an additional Z component, while the rest of the
groups are equal to their reduced counterparts.

60



3.3 Bott periodicity: applications and examples

We’ve computed the K-theory of spheres via the Bott periodicity theorem, so next we use
this to compute the K-theory of projective space.

Theorem 3.3.1. Kq(CPn) =

{
Zn+1 q even

0 q odd.

This follows immediately from a more general result, obtained by calculating the K-
theory inductively by building the space a cell at a time.

Proposition 3.3.2. Let X be a finite cell complex with n cells, in which all cells have
even dimension. Then K0(X) = Zn, and K1(X) = 0.

Proof. We proceed by induction. Let

X1 ↪→ X2 ↪→ · · · ↪→ Xn = X

be a chain of cell complexes which build up to give X. (The subscript denotes the number
of cells in each Xi.) For the base case, note that X1 has the homotopy type of a point.
Therefore K̃(X1) = 0, from which it follows that K0(X1) = Z. On the other hand,
K1(X1) = K̃1(X1) = K̃(ΣX1) = 0, since ΣX1 again has the homotopy type of a point.
This proves the base case.

For the inductive step, fix i and suppose K0(Xi) = Zi,K1(Xi) = 0. Then Xi+1 is
obtained by adding an even dimensional cell to Xi, so Xi+1/Xi

∼= S2mi for some mi. The
long exact sequence of K-theory now gives the following exact loop:

K1(S2mi) K1(Xi+1) K1(Xi)

K0(Xi) K0(Xi+1) K0(S2mi).

By the Bott periodicity theorem and inductive hypothesis, this can be written as

0 K1(Xi+1) 0

Zi K0(Xi+1) Z.

Therefore K1(Xi+1) = 0 and K0(Xi+1) = Zi+1. This completes the inductive step.

Next we study one of the most famous applications of the Bott periodicity theorem: the
classification of real division algebras (as well as a classification of parallelisable spheres).
This follows from a result on the Hopf invariant using Adams operations. We give a proof
outline now:
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1. First we axiomatically define the Adams operations Ψk : K(X)→ K(X) and outline
their construction. These provide additional structure to K-theory. These satisfy
some important properties, which are implied by the splitting principal for K-theory.

2. Next we introduce the Hopf invariant in K-theoretic terms. This is an integer h
assigned to a map S4n−1 → S2n. We use the Adams operations to prove that the
Hopf invariant of any such map can be equal to ±1 only if n = 2, 4, 8.

3. Next we introduce the notion of an H-space. We show that Rn admits a division alge-
bra structure only if Sn−1 is an H-space. Similarly, we show that Sn−1 is parallelisable
only if it is an H-space.

4. To tie everything together, we prove that non-trivial even-dimensional spheres are
not H-spaces. Next given an odd dimensional sphere S2n−1, we prove that if it is
an H-space, then S2n is the codomain of a map with Hopf invariant 1. This proves
that the only spheres that could be H-spaces are S0,S1, S3, and S7. (We will see
that each of these really are H-spaces.) It follows that the only real division algebras
are a subset of {R1,R2,R4,R8}. Similarly the only possible parallelisable spheres are
S0,S1, S3,S7.

5. Finally we note that each of R1,R2,R4,R8 are indeed division algebras, and each of
S0,S1, S3,S7 are parallelisable.

1. We now define and construct the Adams operations.

Definition 3.3.3. The Adams operations are ring homomorphisms Ψk : K(X) → K(X)
(for non-negative integers) characterised by the following properties:

1. Naturality: Ψkf∗ = f∗Ψk for all maps f : X → Y .

2. Normalisation: Ψk(L) = Lk if L is a line bundle.

In addition, the Adams operations satisfy the following properties:

3. Product formula: Ψk ◦Ψ` = Ψk`.

4. Ψp(α) = αp mod p for p prime.

These are a type of power operation, similar to the Steenrod squares. The idea is that
Ψk(α) will be to Λk(α) what the power sum

∑
aki is to σk(ai), for some roots ai of a

polynomial. Here the Λ refers to the exterior power. As the constructions suggests, Adams
operations exist at the generality of λ-rings which are rings admitting an exterior-power
type operation.
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To define the Adams operations we define an auxiliary function (which is the λ-structure
on K(X).) Let K(X)[[t]] denote the ring of formal power series with coefficients in K(X).
Define

λt : Vect(X)→ K(X)[[t]], λt([E]) =
∞∑
k=0

[ΛkE]tk.

Here [ΛkE] denotes the isomorphism class of the kth exterior power of E. Note that the
constant term is always the unit: [Λ0E] = 1. Therefore

λt(E) = 1 + tP (t) ∈ 1 + tK(X)[[t]].

This has inverse 1− tP (t) + t2P (t)2 − t3P (t)3 + · · · ∈ K(X)[[t]]. Thus, more generally, we
define

λt : K(X)→ K(X)[[t]], λt([E − F ]) = λ([E])λ([F ])−1.

Next we define the total Adams operation using the λ-operation:

Ψt : K(X)→ K(X)[[t]], Ψt(E) = rank(E)− t d

dt
log λ−t(E).

(The second term uses the formal logarithmic derivative.) We write this as

Ψt(E) =
∞∑
k=0

Ψk(E)tk,

and the Ψk(E) are the kth Adams operations.
To prove that the Adams operations are uniquely determined by the first two properties,

as well satisfying the subsequent two properties, one can use the splitting lemma for K-
theory.

Proposition 3.3.4 (Splitting lemma). Let E → X be a vector bundle, with X compact
Hausdorff. There exists a compact Hausdorff space F (E) and a map p : F (E) → X such
that p∗ : K∗(X)→ K∗(F (E)) is injective, and p ∗ (E) splits as a sum of line bundles.

We do not prove this result, but it follows from a K-theoretic Leray-Hirsch theorem.
We will also omit the proof of uniqueness of the Adams operations, or that they satisfy the
additional claimed properties, but these proofs are straight forward. They are analogous
to proofs using the splitting principal with characteristic classes.

2. Next we introduce the Hopf invariant. The goal is to use the Adams operations to
prove that the Hopf invariant is ±1 only for maps with codomain S2,4,8.

Definition 3.3.5 (Hopf invariant). Let f : S4n−1 → S2n be a continuous map. We can
glue a disk D4n to S2n along f , to obtain a space Cf . The quotient Cf/Sn is then S4n.
Therefore we have an exact sequence

0 = K̃1(S2n)→ K̃0(S4n)
p∗−→ K̃0(Cf )

i∗−→ K̃0(S2n)→ K̃1(S4n) = 0.
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This is a short exact sequence! Let

α = p∗(∗2n(H − 1)) ∈ K̃(Cf ),

β ∈ i∗−1(∗n(H − 1)) ∈ K̃(Cf ).

Note that, from the Bott periodicity theorem, the reduced exterior products of 2n and n
copies of H − 1 respectively are canonical generators of K̃0(S4n) and K̃0(S2n), where H is
the canonical line bundle over S2. The Hopf invariant of f is the integer h such that

β2 = hα.

To see that this is well defined, first we note that such an h exists by exactness: we
know that β2 maps to 0 in K̃(S2n). We must also show that the definition is invariant under
the choice of β. Suppose β′ is another element of K̃(Cf ) that maps to ∗n(H − 1). Then
β−β′ ∈ ker i∗, so there exists m such that β′ = β+mα. But now (β+mα)2 = β2 + 2mαβ
since α2 = 0. But α maps to 0 in K̃(S2n), so αβ does too. Therefore by exactness there
exists some integer k such that kα = αβ. But now

kαβ = αβ2 = α(hα) = hα2 = 0.

Therefore
k(2mαβ) = 2m · 0 = 0.

If k is non-zero, this implies that 2mαβ = 0. If k is zero, then again 2mαβ = 2m(kα) = 0.
In either case, this proves that

β′2 = (β +mα)2 = β2 + 2mαβ = β2.

Therefore the Hopf invariant is well defined.
The most important ingredient in the classification of real division algebras and paral-

lelisable spheres is the following proposition:

Theorem 3.3.6 (Adam). If a map f : S4n−1 → S2n has Hopf invariant ±1, then n = 1, 2,
or 4.

We now give the proof of Adam’s theorem in several parts. The first lemma is purely
number theoretic, the second concerns the behaviour of Adams operators on even dimen-
sional spheres, and the third part is the main body of the proof which relies on the previous
two lemmas.

Lemma 3.3.7. Suppose 2n divides 3n − 1. Then n ∈ {1, 2, 4}.

Proof. We give a proof by induction. Specifically, we prove the following: Let n = 2`(2m+
1). Then the highest power of 2 dividing 3n − 1 is 2 for ` = 0, and 2`+2 for positive `.
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Base case 1: if ` = 0, then n = 2m+ 1. Therefore

3n − 1 = 3(9m)− 1 ≡ 3(1m)− 1 ≡ 2 mod 4.

Therefore 21 divides 3n − 1, but no higher power of 2 does.
Base case 2: if ` = 1, then n = 2(2m+ 1). Therefore

3n − 1 = 32(2m+1) − 1 = (32m+1 − 1)(32m + 1).

By base case 1, the highest power of 2 dividing the first factor 32m − 1 is 1. On the other
hand,

32m+1 + 1 = 3(9m) + 1 ≡ 3(1m) + 1 ≡ 4 mod 8.

Therefore the highest power of 2 dividing 32m+1 + 1 is 22. Altogether, this gives that
23 = 21+2 is the highest power of 2 diving 3n − 1.

Inductive step: let ` > 0, and suppose that the highest power of 2 dividing 3n − 1
is 2`+2. Now we pass from ` to 2`, which is equivalently passing from n to 2n. Then
32n−1 = (3n−1)(3n+1). Since n is even, 3n+1 ≡ 2 mod 4. Therefore the highest power
of 2 dividing the first factor is 2`+2, while the highest power dividing the second factor is
21. Combining these proves the base case.

This completes the induction - but why does it prove the lemma? Suppose that 2n

divides 3n − 1. By the induction, the highest power of 2 dividing 3n − 1 is 2`+2. Therefore
n ≤ `+ 2. But now we know that 2` ≤ 2`m = n ≤ `+ 2, so

2` ≤ `+ 2.

This is only possible for ` ≤ 2. Therefore n ≤ 4. These cases can be manually checked: if
n = 3, then 8 does not divide 26. Therefore n ∈ {1, 2, 4} as required.

Next we study the structure of Adams operations on the K-theory of spheres. We find
that they end up exactly being powers!

Lemma 3.3.8. The Adams operations restrict to maps Ψk : K̃(X) → K̃(X). Moreover,
for X an even-dimensional sphere S2n, we have

Ψk(γ) = knγ.

Proof. The Adams operations give natural maps K(X) → K(X) and K(x0) → K(x0)
given x0 ∈ X. We can define K̃(X) to be the kernel of K(X) → K(x0). By naturality of
Ψk, there is an induced map Ψk : K̃(X)→ K̃(X).

Now we study some properties of this induced Adams operation on reduced K-theory.
Recall that the external product K̃(X) ⊗ K̃(Y ) → K̃(X ∧ Y ), (γ, δ) 7→ γ ∗ δ was defined
by p∗1(γ)p∗2(δ), where pi are projection maps from X × Y to X and Y . Using naturality of
Ψk and this definition, it can be shown that

Ψk(γ ∗ δ) = Ψk(γ) ∗Ψk(δ).
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Finally we show that Ψk(γ) = knγ, for γ ∈ K̃(S2n). We proceed by induction. For the
base case, i.e. when n = 1, recall that α = H − 1 is a generator of K̃(S2) where H is the
class of the canonical line bundle. Therefore it suffices to show that Ψk(α) = kα. This is
a straight forward calculation using the axiomatic properties of Adams operations:

Ψk(α) = Ψk(H − 1) = Hk − 1 = (1 + α)k − 1 = 1 + kα− 1 = kα.

Note that we used that αn = 0 for n ≥ 2. For the inductive step, we use the isomorphism
K̃(S2)⊗ K̃(S2n−2)→ K̃(S2n) from the Bott periodicity theorem. Assume the result holds
for K̃(S2n−2). Then by the previous result that Ψk(γ ∗ δ) = Ψk(γ) ∗Ψk(δ), we have

Ψk(α ∗ β) = Ψk(α) ∗Ψk(β) = kα ∗ kn−1β = knα ∗ β.

By the Bott periodicity theorem, each γ ∈ K̃(S2n) is of the form α ∗ β, so this completes
the proof.

We are finally ready to prove the main result. We re-state the result here.

Theorem 3.3.9 (Adams). If a map f : S4n−1 → S2n has Hopf invariant ±1, then n = 1, 2,
or 4.

Proof. Recall that we defined a space Cf to be S2n with a disk D2n glued along f . Recall
further that the Hopf invariant is the integer h such that

β2 = hα,

where β maps to the generator of K̃(S2n), and α is the image of the generator of K̃(S4n),
given the exact sequence

K̃(S4n)→ K̃(Cf )→ K̃(S2n).

By naturality of the Adams operations, the previous proposition immediately gives

Ψk(α) = k2nα, Ψk(β) = knβ + µkα,

where µk is an integer that has yet to be determined.
Recall that ΨkΨ` = Ψk` = Ψ`Ψk. In particular, Ψ2Ψ3 = Ψ3Ψ2. Therefore applying

these operations to β, we have

(Ψ2Ψ3)(β) = Ψ2(3nβ + µ3α) = 3n2nβ + 3nµ2α+ 4nµ3α,

(Ψ3Ψ2)(β) = Ψ3(2nβ + µ2α) = 2n3nβ + 2nµ3α+ 6nµ2α,

Since these must be equal, dropping the β term and factoring out the α, we must have

3n(3n − 1)µ2 = (6n − 3n)µ2 = (4n − 2n)µ3 = 2n(2n − 1)µ3.
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We have yet to assume that f has Hopf index ±1. We use this premise now: if f has Hopf
index ±1, then β2 = ±α. But we know that Ψ2(β) = β2 mod 2 by a general property of
Adams operations. By our premise this gives Ψ2(β) = α mod 2. On the other hand, we
have Ψ2(β) = 2nβ + µ2α. It follows that

2nβ + µ2α ≡ α mod 2.

Equivalently, µ2 is odd. Since 3n(3n − 1)µ2 = 2n(2n − 1)µ3, it must be the case that 2n

divides 3n(3n − 1)µ2. We’ve shown that µ2 is odd, and 3n is always odd, so we must have
2n | (3n−1). This happens only if n ∈ {1, 2, 4} by the earlier number theoretic lemma.

3. Now we introduce H-spaces, and show that:

Rn admits a division algebra structure ⇒ Sn−1 admits an H-space structure.

Sn−1 is parallelisable ⇒ Sn−1 admits an H-space structure.

Later we will show that Sn−1 is an H-space only if Sn is the codomain of a map with Hopf
index ±1! The classification of real division algebras and parallelisable spheres will follow.

Definition 3.3.10. An H-space is a topological unital magma. That is, a topological
space X together with a continuous binary operation X×X → X with a two-sided identity
element (but not associative, and does not necessarily have inverses).

Proposition 3.3.11. If Rn has a division algebra structure, then Sn−1 admits an H-space
structure.

Proof. Consider Sn−1 as the unit sphere in Rn. Define

Sn−1 × Sn−1 → Sn−1, u · v = uv/‖uv‖,

where uv is understood to be the product using the division algebra structure. This is well
defined and continuous. Moreover, the unit of the division algebra structure gives the unit
in of the H-space structure.

Proposition 3.3.12. If Sn−1 is parallelisable, then it admis an H-space structure.

Proof. If Sn−1 is parallelisable, there exist vector fields v1, . . . , vn−1 such that v1(x), . . . , vn−1(x)
defines a basis of Rn−1

x at every x ∈ Sn−1. This copy of Rn−1
x embeds in Rn as a subspace in

a canonical way. By the Gram-Schmidt process, we can assume {x, v1(x), . . . , vn−1(x)} de-
fines an orthonormal basis of Rn for every x. Moreover, by a global change of coordinates,
we can take {e1, v1(e1), . . . , vn−1(e1)} to be the standard basis for Rn.

For each x ∈ Sn−1, let αx ∈ SO(n) be the map sending the standard basis to x, v1(x), . . . , vn−1(x).
Then we define a map

Sn−1 × Sn−1 → Sn−1, (x, y) 7→ αx(y).

This is again continuous. In fact, it is an H-space structure since αx(e1) = x by definition
(of αx), and αe1(x) = x since αe1 is also the identity by definition.
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We have established that (the difficult direction of) the classification of real division
algebras and parallelisable spheres will follow from a classification of spheres that are H-
spaces.

4. We are entering the final stages of the proof! We have established the double arrows
below, and it remains to prove the dotted arrow.

Rn is a division algebra =⇒ Sn−1 is an H-space ⇐= Sn−1 is parallelisable

n ∈ {1, 2Z}, and for n even there is a map S2n−1 → Sn with Hopf index ±1.

n ∈ {2, 4, 8}

Assume Sn−1 is an H-space. We must prove two things: first that n is even (or 1), and
next the existence of a map S2n → Sn with Hopf index ±1 given that n is even.

We work through this result step by step.

Proposition 3.3.13. If Sn−1 is an H-space, either n = 1 or n is even.

Proof. If n = 1, S0 ∼= Z/2Z which is an H-space when given the discrete topology. For
n > 1, assume for a contradiction that there is an H-space structure

µ : S2k × S2k → S2k

with k ≥ 1. By the Bott periodicity theorem, there exists γ, α, β such that

K(S2k) ∼= Z[γ]/〈γ2〉, K(S2k × S2k) ∼= Z[α, β]/〈α2, β2〉.

The map µ∗ sends γ to some combination m1α + m2β + m3αβ where the mi have yet to
be determined. In fact, we now show that m1 = m2 = 1.

There exists e ∈ S2k which is a 2-sided identity of µ. Let i : S2k → S2k × S2k be the
inclusion into S2k × {e}. This gives a (non-exact) sequence

K(S2k)
µ∗−→ K(S2k × S2k)

i∗−→ K(S2k).

In fact, the composition µ ◦ i is the identity, so the above sequence also composes to give
the identity. The map i∗ sends α to γ and β to 0. But we know that γ = i∗(µ∗γ) =
i∗(m1α+m2β +m3αβ) = m1γ, so it must be the case that m1 = 1. Similarly, considering
the inclusion S2k → {e} × S2k shows that m2 = 1.

But now γ2 = 0, so it must be the case that µ∗(γ2) = 0. However, we instead have that

µ∗(γ2) = (α+ β +m3αβ)2 = 2αβ 6= 0.

This is a contradiction, so the only possible H-spaces are Sn−1 for n ∈ {1, 2Z}.
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Now to finish relating the notion of H-spaces to Hopf indices, we must show that
whenever Sn−1 is an H-space (for n = 2k), there is a map S4k−1 → S2k with Hopf index
±1. We now explain how we construct this map, before computing its Hopf index.

Definition 3.3.14. Let f : Sn−1×Sn−1 → Sn−1. We define the associated map f̂ : S2n−1 →
Sn−1 as follows:

� Decompose S2n−1 as

∂(Dn ×Dn) = (∂Dn ×Dn) t∂Dn×∂Dn (Dn × ∂Dn)

= (Sn−1 ×Dn) tSn−1×Sn−1 (Dn × Sn−1).

� Decompose Sn as Dn
+ tSn−1 Dn

−.

� The map f̂ will be an extension of f : for (x, y) ∈ Sn−1 ×Dn, define f̂+ by

f̂+(x, y) = |y|g(x, y/|y|) ∈ Dn
+.

For (x, y) ∈ Dn × Sn−1, define f̂ by

f̂−(x, y) = |x|g(x/|x|, y) ∈ Dn
−.

Then f̂+ and f̂− are continuous, and agree on overlaps. Therefore they glue to give
a map f̂ : S2n−1 → Sn.

We finally show that the map associated to an H-space structure has Hopf index ±1.

Proposition 3.3.15. Let µ : S2n−1 × S2n−1 → S2n−1 be an H-space structure. Then
µ̂ : S4n−1 → S2n has Hopf index ±1.

Proof. To prove this result, we use a giant commutative diagram. We start by introducing
the spaces and maps one by one.

� Recall that, to define the Hopf index of µ̂ : S4n−1 → S2n, we introduce an auxiliary
space Cµ̂ defined by gluing a copy of D4n to S2n along µ̂. There is a map

K̃(Cµ̂)× K̃(Cµ̂)→ K̃(Cµ̂)

which is simply the product map.

� Next we consider relativeK-theory. The subspaceD2n
− of S2n is of course a subspace of

Cµ̂. Modding out Cµ̂ by D2n
− is a homotopy equivalence, and induces an isomorphism

on reduced K-theories. The same result holds for D2n
+ . Therefore there is a canonical

isomorphism

K̃(Cµ̂, D
2n
− )⊗ K̃(Cµ̂, D

2n
+ )

∼=−→ K̃(Cµ̂)× K̃(Cµ̂).
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� The previous two maps will define two edges of a commutative square. We define the
other two edges. Recall the reduced external product

K̃(X)⊗ K̃(Y )→ K̃(X ∧ Y ).

Taking X = Cµ̂/D
2n
− and Y = Cµ̂/D

2n
+ , the external product induces a map

K̃(Cµ̂, D
2n
− )⊗ K̃(Cµ̂, D

2n
+ )→ K̃(Cµ̂,S2n).

Finally a map K̃(Cµ̂,S2n)→ K̃(Cµ̂) is induced by the quotient Cµ̂ → Cµ̂/S2n.

� Next we consider a somewhat non-trivial map. We have a map D2n×D2n = D4n →
Cµ̂ induced by µ̂. When we quotient Cµ̂ → Cµ̂/D

2n
− , only the boundary ∂(D2n×D2n)

is being killed. Therefore there is an induced map (D2n × D2n)/(∂D2n × D2n) →
Cµ̂/D

2n
− . This defines a map

Φ∗ : K̃(Cµ̂, D
2n
− )→ K̃(D2n ×D2n, ∂D2n ×D2n).

There are analogous maps with domain K̃(Cµ̂, D
2n
+ ) and K̃(Cµ̂,S2n), giving maps

Φ∗ ⊗ Φ∗ : K̃(Cµ̂, D
2n
− )⊗ K̃(Cµ̂, D

2n
+ )→ K̃(D2n ×D2n, ∂D2n ×D2n)

⊗ K̃(D2n ×D2n, D2n × ∂D2n),

Φ∗ : K̃(Cµ̂,S2n)
∼=−→ K̃(D2n ×D2n, ∂(D2n ×D2n)).

Notice that the second map is really induced by the identity map on S4n, so it is an
isomorphism.

� Again to turn this into a second commutative square, we require a map

K̃(D2n ×D2n, ∂D2n ×D2n)⊗ K̃(D2n ×D2n, D2n × ∂D2n)

→ K̃(D2n ×D2n, ∂(D2n ×D2n)).

Once again, such a map is provided by the reduced exterior product.

In summary, we have established the existence of the following commutative diagram
(where D denotes D2n, and S denotes S2n):

K̃(Cµ̂)⊗ K̃(Cµ̂) K̃(Cµ̂)

K̃(Cµ̂, D−)⊗ K̃(Cµ̂, D+) K̃(Cµ̂,S)

K̃(D ×D, ∂D ×D)⊗ K̃(D ×D,D × ∂D) K̃(D ×D, ∂(D ×D)).

Φ∗⊗Φ∗

∼=

Φ∗,∼=
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We begin by getting a better grasp on the bottom horizontal map. I claim that it is an
isomorphism - we will see this from the Bott periodicity theorem. By the excision theorem,
there is an isomorphism

K̃(D ×D, ∂D ×D)→ K̃(D × {e}, ∂D × {e}).

Similarly we obtain an isomorphism on the second factor of the tensor product in the
bottom left of the diagram. But now K̃(D × {e}, ∂D × {e}) is just K̃(S2n), while K̃(D ×
D, ∂(D×D)) = K̃(S4n). By the Bott periodicity theorem, the bottom map factors through
isomorphisms as

K̃(Cµ̂)⊗ K̃(Cµ̂) K̃(Cµ̂)

K̃(Cµ̂, D−)⊗ K̃(Cµ̂, D+) K̃(Cµ̂,S)

K̃(D ×D, ∂D ×D)⊗ K̃(D ×D,D × ∂D) K̃(D ×D, ∂(D ×D))

K̃(D × {e}, ∂D × {e})⊗ K̃({e} ×D, {e} × ∂D).

Φ∗⊗Φ∗

∼=

Φ∗,∼=

∼= ∼=

We are now ready to proceed with the proof. Consider the diagram

K̃(S4n)
p∗−→ K̃(Cµ̂)

i∗−→ K̃(S2n).

We wish to show that
β2 = ±α,

where β is a lift of a generator of K̃(S2n), and α is the image of a generator of K̃(S4n). To
this end, fix a generator a of K̃(S2n)⊗ K̃(S2n) = K̃(D×{e}, ∂D×{e})⊗ K̃({e}×D, {e}×
∂D). By definition, this lifts to β ⊗ β in the top left of the diagram. On the other hand,
a maps to a generator of K̃(S4n) ∼= K̃(Cµ̂,S). By definition, this maps to ±α in the top
right of the diagram. Therefore

β2 = ±α

as required.

This completes the proof that Sn−1 is an H-space only if Sn−1 is the zero sphere, or Sn
is the codomain of a map with Hopf index ±1. Several pages ago we showed that the only
spheres which are codomains of maps with Hopf index ±1 are S2,S4, and S8. Therefore,
we have proven that:

If Sn−1 is an H-space, then n ∈ {1, 2, 4, 8}.
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We also proved earlier that if Rn is a division algebra, then Sn−1 is an H-space. Similarly
if Sn−1 is parallelisable, then Sn−1 is an H-space. Therefore:

If Rn is a division algebra, then n ∈ {1, 2, 4, 8}.

If Sn is parallelisable, then n ∈ {0, 1, 3, 7}.

5. Finally we must show that each of R1,R2,R4,R8 are really division algebras, and
that S0, S1,S3, S7 are really parallelisable.

The former is classical. R is a field. R2 ∼= C which is also a field. The former are
both vector spaces over R as well, so they are division algebras. R4 ∼= H, the quaternions.
Finally, R8 ∼= O, the octonions.

For the parallelisability of spheres, note that S0 is trivially parallelisable. S1 ∼= U(1)
and S3 ∼= SU(2), which are both Lie groups. Therefore they are parallelisable. Finally,
for S7, we cannot use the Lie group trick (we will soon see that S7 is not a Lie group!)
However, we use the octonions to show that S7 is parallelisable.

Identify S7 with unit octonions,

S7 = {a+ bl : a, b ∈ H, |a|2 + |b|2 = 1}.

Seven global vector fields are given by

v1(x) = ix, v2(x) = jx, v3(x) = kx, v4(x) = lx, v5(x) = ilx, v6(x) = jlx, v7(x) = klx.

One can further show that these are orthogonal, so they form a global frame! That is, TS7

admits a global trivialisation.
This completes our classification of division algebras and parallelisable spheres:

Rn admits a division algebra structure if and only if n ∈ {1, 2, 4, 8}.

Sn is parallelisable if and only if n ∈ {0, 1, 3, 7}.

To finish off this section, we remark that while S0, S1,S3, and S7 are the unique paral-
lelisable spheres, only S0,S1, and S3 are Lie groups:

Proposition 3.3.16. Amongst spheres, the only Lie groups are S0,S1, and S3.

Proof. A reasonably elementary proof can be given independent of the parallelisability
result. (By the above result, it suffices to show that S7 is not a Lie group to prove above
proposition. However, we will give a self contained proof.)

The proof outline is as follows:

1. Suppose Sn is a Lie group for some n. Show that it cannot be abelian if n > 1. Note
that S0 and S1 are abelian Lie groups.
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2. Suppose M is a closed non-abelian Lie group. Show that H3(M) is non-trivial.
Deduce that for n > 1, only S3 could be a Lie group. Note that S3 is indeed a Lie
group.

1.First suppose Sn is abelian. Then its Lie algebra is isomorphic to Rn with a trivial Lie
bracket. The Lie group Rn under addition also has Lie algebra Rn with the trivial bracket,
so it must be the universal cover of Sn (by the correspondence between Lie algebras and
Lie groups). But for n > 1, Sn is its own universal cover! Therefore n ≤ 1.

On the other hand, S0 = Z/2Z and S1 = U(1) are clearly abelian Lie groups. This is
part of a more general result that every connected abelian Lie group is a product of circles
and lines (i.e. is of the form Tn × Rm.

2. Next we suppose G is a closed non-abelian Lie group. Its Lie algebra admits an
inner product 〈−,−〉 which is invariant under the adjoint action. We define a map

t(x, y, z) = 〈[x, y], z〉.

This is multilinear, and clearly changes sign when x and y are swapped. In fact, one can
show that it is totally antisymmetric! That is, t is a 3-form (which is often called the
Cartan 3-form. Note that t is not the 0-form, since we can choose x and y with [x, y]
non-zero (by the requirement that G be non-abelian). Therefore

t(x, y, [x, y]) = 〈[x, y], [x, y]〉 = ‖[x, y]‖2 ≤ 0,

so t is not the 0-form.
We have defined 3-form on TeM , and using left translation onG, this extends to a 3-form

on G. By definition, this is left invariant. One can also show that it is right invariant, so it
is biinvariant. But every biinvariant form is closed, so t defines an element in H3

de Rham(G).
In particular, the third de Rham cohomology is non-trivial! This is isomorphic to singular
cohomology, so we must have H3(G,Z) 6= 0.

In the specific case of G = Sn, this is only possible for n = 3. Conversely, S3 really is a
Lie group because S3 = SU(2).

3.4 K-theory versus singular cohomology

In this section, we introduce the Chern character to establish a rigorous relationship be-
tween K-theory and singular cohomology.

Consider the total Chern class c(E) = 1+c1(E)+c2(E)+· · · of a vector bundle E → B.
This is an element of H∗(B). Therefore is a map VectC → H∗(B) defined by the total
Chern class. By the Whitney sum formula, we also have c(E⊕F ) = c(E)∪ c(F ). But this
is somewhat problematic - since H∗(B) and K(B) are both rings, ideally we would have a
ring homomorphism from K(B) to H∗(B). However, c takes sums in K(B) to products in
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H∗(B). To remedy this, we aim to create a map ch satisfying ch(E⊕F ) = ch(E) + ch(F ).
Essentially we want to exponentiate the total chern class. Recalling that

ex =
∞∑
i=0

xi

i!
,

we require some notion of a power. This takes us back to Adams operations! In the previous
section we defined Adams operations using logarithmic derivatives, but we mentioned that
Adams operations are to Exterior powers what

∑
aki is to σk(ai). By using logarithmic

derivatives, we obtain the most elementary definition of Adams operations. However, by
using the splitting lemma for K-theory and Newton polynomials we can obtain a slightly
more intuitive definition (which we will also compare to the definition of the Chern character
ch).

Recall that σk(t1, . . . , tn) denotes the kth elementary symmetric polynomial in n vari-
ables. One can show that there exists polynomials sk called the Newton polynomials so
that

sk(σ1, . . . , σk) = tk1 + · · ·+ tkn.

Therefore sk(σ1, . . . , σk) is essentially a k-th power operation. We now give an alternative
definition of Adams operations. By the splitting lemma for K-theory and naturality of
Adams operations, it suffices to define Adams operations on Whitney sums of line bundles.
We declare that Ψk(L1 ⊕ · · · ⊕ Ln) = sk(λ1, . . . , λk) where λi = σi(L1, . . . , Ln).

To define the Chern character, we instead consider sk(c1, . . . , ck). Recall that one
construction of ci(E) is in terms of pulling back ci of a Whitney sum of line bundles! And
for a Whitney sum, we define ci(L1 ⊕ · · · ⊕Ln) to be the ith symmetric polynomial in the
generators of H∗(BU(1)n;Z). Using the definition of ex as given above, we combine these
power operations as

ch(E) =
∑
k≥0

sk(c1(E), . . . , ck(E))/k!

where s0 is defined to return the rank of E.

Proposition 3.4.1. ch : K(X) → H∗(X;Q) is a ring homomorphism (where we take
H∗(X;Q) to mean the direct product of individual cohomology groups).

Proof. By the definition of K(X) as the Grothendieck closure of VectC(X), it suffices to
show that ch : VectC(X) → H∗(X;Q) is a ring homomorphism. This is not hard to do
from the explicit definition.

Since K-theory is 2-periodic, we define K∗(X) = K0(X) ⊕ K1(X). (Similarly for
reduced K-theory). The main result with Chern characters is the following theorem, which
states that torsion free parts of K-theory and singular cohomology agree!
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Theorem 3.4.2. Let X be a finite cell complex. Then

ch : K∗(X)⊗Q→ H∗(X;Q)

is an isomorphism of rings.

Proof. We give a proof outline. First one can show that ch : K̃(S2n) → H̃2n(S2n;Q) is
injective, with image the subgroup H̃2n(S2n;Z) ⊂ H̃2n(S2n;Q). This follows inductively
by using the Bott periodicity theorem (since the result is trivial for the zero sphere). From
here, we have an isomorphism ch : K0(X) ⊗ Q → Heven(X;Q) whenever X is an even
dimensional sphere. One can define a map K1(X) ⊗ Q → Hodd(X;Q) since odd rational
singular cohomology is isomorphic to even rational singular cohomology of the suspension!
This is trivially an isomorphism for even dimensional spheres.

Next to achieve the result for a general space X, we use induction. A finite cell complex
K ′ is obtained by gluing a cell to a subcomplex K, and then K ′/K is a sphere. This induces
a short exact sequence. The iductive step follows from the short five-lemma.

While this shows that torsion free parts of K-theory agree with that of singular coho-
mology, we have yet to exhibit an example of a space whose (integral) K-theory disagrees
with its singular cohomology. Note that we computed K-theory for spheres and complex
projective space. These were

� K0(S2n) = Z⊕ Z,K1(S2n) = 0. Therefore K∗(S2n) = Z⊕ Z = H∗(S2n).

� K0(S2n+1) = Z,K1(S2n+1) = Z. Therefore K∗(S2n) = Z⊕ Z = H∗(S2n).

� K0(CPn) = Zn+1,K1(CPn) = 0. Therefore K∗(CPn) = Zn+1. On the other
hand, CPn has singular cohomology Z, 0,Z, 0, . . . , 0,Z up to dimension 2n, so that
H∗(CPn) = Zn+1 as well!

There we wish to find a space so that either its K-theory is torsion free, or its singular
cohomology is torsion free. An example is given by Lie groups - the proof is outside the
scope of what I’m about to type, but one can show that K(G) is always torsion free for G
a simply connected Lie group. However, one can find Lie groups whose integral singular
cohomology have torsion.

A more manageable example is the real projective plane, RP2. None the less, the K
theory of RP2 is actually difficult to compute! In a later chapter concerning equivariant
cohomology we will introduce required machinery to compute the K-theory of RP2.
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Chapter 4

(Co)bordism theory

In this chapter we develop yet another significant (co)homology theory - namely (co)bordism
theory. Via the Pontryagin-Thom construction, we relate cobordism to stable homotopy.
In particular, the framed cobordism group associated to a point is isomorphic to the stable
homotopy groups of spheres. We will also compute several low dimensional examples. As
with the previous chapters, several sources will be used, but the primary source is [Mil01].

4.1 Unoriented bordism as a homology theory

Closed n-manifolds M1 and M2 are said to be cobordant (or bordant) if there is a compact
(n+ 1)-manifold N with boundary ∂N = M1 tM2. The terminology is derived from bord,
which is French for boundary. Notice that M1 t M2 is the boundary of N , while N is
the coboundary of M1 tM2. This is why we usually say cobordism rather than bordism.
Hereafter we will use the term bordism as we are developing a homology theory. We use
cobordism in the contravariant setting.

In this section we will develop unoriented bordism as a homology theory. This cor-
responds to “bordism without structure”, and in the following section we will consider
additional structure as well as the Pontryagin-Thom construction, and cobordism as a
cohomology theory. More concretely, we will define the notion of a G-bordism, and we
will observe that unoriented bordism is O-bordism, oriented bordism is SO-bordism, and
framed bordism 1-bordism. As mentioned above, we will not delve into this generality for
now and simply consider unoriented bordism.

Definition 4.1.1. Let M be a closed n-manifold. Then M is null-bordant if there a
compact (n + 1)-manifold N with boundary ∂N = M . Two n-manifolds M and M ′ are
bordant if M tM ′ is null-bordant.

One can show that bordism is an equivalence relation. Disjoint union descends to a
well defined operation on bordism classes. Under this operation, the class of null-bordant
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n-manifolds is a two sided identity. Moreover, every manifold is bordant to itself, so every
bordism class has order two (and in particular an inverse) under disjoint union. It follows
that the collection of bordism classes of n-manifolds forms a group.

Definition 4.1.2. For each n, Nn = {closed n-manifolds}/bordism is an abelian group
under disjoint union called the unoriented bordism group. It is also denoted by ΩO

n (for
reasons which will become clear later).

Since every element in the unoriented bordism group has order 2, it is actually a Z/2Z-
vector space.

Example. N0 = Z/2Z.
Every closed 0-manifold is a finite collection of points. Therefore closed 0-manifolds

are classified by cardinality. On the other hand, every compact 1-manifold is a disjoint
union of arcs and circles. The boundary of each arc has cardinality two. Therefore a zero
manifold M is null-bordant if and only if it has parity 0. The above claim follows.

Example. N1 = 0.
Every closed 1-manifold is a disjoint union of circles, so these are again classified by

cardinality. Let Sn denote the 1-manifold of n disjoint circles. Then S2 − (tnD2) is a
compact 2-manifold with boundary Sn. Therefore all closed 1-manifolds are null-bordant,
proving our claim.

Example. N2 = Z/2Z.
Every closed 2-manifold is a disjoint union of manifolds of the form #nT or #nT#RP2,

where T denotes the 2-torus. It is immediate that all manifolds of the form #nT are
null-bordant (as they bound the boundary-connected-sums of n solid tori). Therefore all
disjoint unions of them belong to a single bordism class, the zero class. We claim that
the bordism class of a 2-manifold depends on the parity of the number of disjoint-union
components with a factor of RP2. (That is, whenever RP2 occurs an even number of times,
the manifold is null-bordant. Otherwise it is not null-bordant, and belongs to a unique
other bordism class.)

Let M be a closed 2-manifold. Write M = ti#niT#miRP2, where mi is 0 or 1 for
each i. Suppose 2a of the mi are non-zero, for some integer a. We now construct a
compact 3-manifold N with boundary M . For each j ≤ a, let Pj be the projective cylinder
RP2× [0, 1]. This is a 3-manifold with boundary RP2tRP2. Assign each i with mi non-zero
to a boundary component of the Pj . Let Qni denote the boundary connected sum of ni
solid tori. For each i with mi non-zero, take the boundary connected sum of Qni with the
boundary component of Pj corresponding to i. The disjoint union of all of these manifolds
is a compact manifold with boundary M as required.

We have shown that whenever there is an even number of RP2 factors, a surface is
null-bordant. It follows that any two closed surfaces with an odd number of RP2 factors
also belongs to the same bordism class, since their disjoint union then has an even number
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of RP2 factors. Therefore to show that N2 = Z/2Z it remains to show that RP2 is not
null-bordant. We use a well known result that all closed odd dimensional manifolds have
Euler characteristic zero. Suppose for a contradiction that M is a compact 3-manifold
with boundary RP2. Then gluing a double of M to itself along its boundary, we obtain
a closed odd dimensional manifold M ′. But now χ(M ′) = χ(M) + χ(M) − χ(RP2), so
χ(RP2) = 2χ(M). This is absurd, since χ(RP2) = 1.

In the last example, we cited the fact that closed odd dimensional manifolds have trivial
Euler characteristic. This can be proven using Morse theory as follows. Let M be a closed
manifold with odd dimension n. Let f : M → R be a Morse function. By the Morse
inequalities,

χ(M) =
n∑
i=0

(−1)iNi,

where Ni is the number of index i critical points of f . Now consider the Morse function
−f . For each i, −f has Nn−i critical points of index i. Since n is odd,

χ(M) =
n∑
i=0

(−1)iNn−i = −
n∑
i=0

(−1)iNi = −χ(M).

Hence χ(M) = 0 as required.
Examples in higher dimensions get more difficult! We will compute these using the

Pontryagin-Thom construction in the following section.
If (W,M1,M2) is a cobordism of m-manifolds, and (V,N1, N2) is a cobordism of n-

manifolds, then W × V is a cobordism from M1 × N1 to M2 × N2. Therefore there is
map

Nn ⊗Nm → Nn+m, [M ]⊗ [N ] 7→ [M ×N ].

This turns N∗ =
⊕

nN into a graded ring, called the bordism ring.
So far we have defined individual bordism groups and the bordism ring. However, this

looks nothing like a homology theory! We want a way of assigning bordism groups to any
given space.

Definition 4.1.3. Let X be a space, and f : M → X a continuous map from a closed
smooth n-manifold M . The pair (M,f) is called a singular manifold. We say that singular
manifolds (M1, f1) and (M2, f2) are bordant if there is a bordism W from M1 to M2, and
there is a continuous map F : W → X which restricts on the boundaries of W to f1 and
f2. The unoriented bordism group of X is then defined to be

Nn(X) := {singular n-manifolds M → X}/bordism.

Remark. We immediately see that the bordism groups Nn are given by Nn(∗), i.e. Nn is
the unoriented bordism group of the one point space.
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Example. We saw earlier that N1 = N1(∗) was trivial. However, N1(S1) is non-trivial.
Consider the singular manifold (S1, id). We show that this is not null-bordant, and hence
does not belong to the trivial class in N1(S1).

Suppose for a contradiction that there is a 2-manifold Σ with boundary S1, and a map
F : Σ → S1 which restricts to the indentity on ∂Σ. This is equivalent to a retraction
r : Σ → ∂Σ, but the existence of such a map is forbidden by the retraction theorem (a
generalisation of Brouwer’s fixed point theorem).

To turn bordism into a homology theory, we still need a notion of relative homology:
Nn(X,A). In particular, the bordism group Nn(X) should be isomorphic to Nn(X, ∗).

Definition 4.1.4. Let (X,A) be a pair of spaces with A ⊂ X. Let M be a compact
manifold. We say that (M,f) is a singular manifold if f : M → X, and f(∂M) ⊂ A.

Let (M1, f1), (M2, f2) be singular n-manifolds. Since these might have boundary, a
bordism W from M1 to M2 is now taken to be a compact (n+ 1)-manifold with boundary
M ′ ∪M1 ∪M2, where M ′ can be thought of as a bordism from ∂M1 to ∂M2. We also
require a map F : W → X which extends f1 and f2. Formally, a bordism is the data of
(W,F ) such that

� ∂W = M ′ ∪M1 ∪M2.

� ∂M ′ = ∂M1 t ∂M2, M ′ ∩Mi = ∂Mi.

� F |Mi = fi, where F : W → X.

� F (M ′) ⊂ A.

The relative unoriented bordism group is then

Nn(X,A) = {singular n-manifolds M → (X,A)}/bordism.

In general the pair (W,F ) is not a singular manifold! That would force f(Mi) ⊂ A,
which makes things too trivial to be interesting.

Remark. Consider the pair (X, ∗). Any singular manifold sends its boundary to ∗, so
it factors through a closed singular manifold. Similarly any cobordism factors through a
cobordism in the non-relative sense. Therefore Nn(X, ∗) = Nn(X).

We are almost ready to turn this into a homology theory. It remains to describe some
maps!

� Let i : A → X be the inclusion map. Then any singular manifold f : M → A
determines a singular manifold i∗f : M → A → X. This describes the induced map
on bordism:

i∗ : Nn(A)→ Nn(X).
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� Let f : M → X be a singular manifold. Then it is also a singular manifold of (X,A),
since the boundary of M trivially maps into A (that is, the boundary of M is empty).
This describes the induced map

j∗ : Nn(X)→ Nn(X,A).

� Let f : M → (X,A) be a singular manifold. Then f |∂M : ∂M → A is a singular
manifold of one less dimension. This describes the connecting homomorphism

d∗ : Nn(X,A)→ Nn−1(A).

One can show that this gives a long exact sequence

· · · → Nn+1(X,A)→ Nn(A)→ Nn(X)→ Nn(X,A)→ Nn−1(A)→ · · · .

The first observation is that this is a generalised homology theory as it does not satisfy
the dimension axiom. That is, the homology of a point is not concentrated in degree 0.
We saw earlier that

N0(∗) = Z/2Z,N1(∗) = 0,N2(∗) = Z/2Z.

In the next section we will formally encounter bordism groups with additional structure,
but oriented bordism is easy to describe without the additional formalism. Therefore we
introduce it here, and compute a few low dimensional examples.

Definition 4.1.5. Let M1,M2 be closed oriented n-manifolds. They are oriented bordant
if there is an oriented compact (n + 1)-manifold W such that ∂W = M1 t (−M2). The
group of oriented cobordism classes of n-manifolds is denoted by Ωn, or ΩSO

n .
Analogously to the unoriented case, singular oriented manifolds give rise to oriented

cobordism groups of spaces: Ωn(X). These give rise to a homology theory.

Example. Ω0 = Z.
Recall that 0-manifolds are classified by cardinality. Oriented 0-manifolds are further

classified by a choice of sign for each component. Thus oriented 0-manifolds are in bi-
jective correspondence with pairs (m,n) of non-negative integers (with m the number of
positively signed points, and n the number of negatively signed points). A 0-manifold is
null-cobordant if and only if m−n = 0, in which case each positively signed point is paired
with a negatively signed point, and this gives an oriented 1-manifold. It follows that two
oriented 0-manifolds are cobordant if and only if they have the same difference m − n.
Ω0 = Z.

Example. Ω1 = 0.
This is analogous to the unoriented case. Every oriented closed 1-manifold is a disjoint

union of oriented circles, but these are all easily seen to be null-bordant (as they bound
disks).
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Example. Ω2 = 0.
Oriented closed 2-manifolds are exactly connected sums of tori and their disjoint unions.

These all bound disjoint unions of boundary connected sums of solid tori, and are therefore
null bordant.

Example. Ω3 = 0.
This follows from the surgery classification of oriented 3-manifolds (e.g. given at the end

of my knot theory notes). Namely, every closed connected oriented 3-manifold is obtained
by a finite sequence of 1-surgeries on the 3-sphere. (Explicitly, at each step a copy of
S1 ×D2 is removed and replaced with D2 × S1. But now consider a 4-ball D4 bound by
S3. With each surgery, replacing S1 ×D2 with D2 × S1 corresponds to gluing a 2-handle
to D4. Therefore every connected oriented closed 3-manifold bounds a four dimensional
handlebody. It follows that all closed oriented 3-manifolds bound an oriented 4-manifold
(and are hence null bordant).

Example. Ω4 = Z.
This is a little more difficult! We will not really compute it, but we will show that there

is a surjection σ : Ω4 → Z. Recall that for an oriented closed 4-manifold, the cup product
induces a symmetric unimodular bilinear form called the intersection form. The signature
of this form is an invariant of the manifold, which we also call the signature and denote by
σ(M). We first claim that the signature of oriented 4-manifolds is and oriented bordism
invariant.

Suppose that M1 and M2 are bordant oriented closed 4-manifolds. Then M := M1 t
(−M2) is null bordant. If we can show that σ(M) = 0, it follows that σ(M1) = σ(M2).
Our proof outline is as follows:

1. Let W be the oriented compact 5-manifold with boundary M . Let i : M →W be the
inclusion. We show that the restriction of the intersection form QM to i∗(H2(W ;R))
is trivial.

2. Next we show that dimH2(M) = 2 dim i∗(H2(W ;R)).

3. Finally we write H2(M ;R) = P⊕N , where P is the subspace on which QM is positive
definite, and N is the subspace on which QM is negative definite. Using the previous
two results, we show that dimP = dimN , so the signature of M is 0.

1. Let i∗a, i∗b be arbitrary elements of i∗(H2(W ;R)). To show that QM (i∗a, i∗b) = 0, it
suffices to show that 〈QM (i∗a, i∗b), [M ]〉 = 0. Using naturality of fundamental classes and
so on, a calculation gives

〈QM (i∗a, i∗b), [M ]〉 = 〈i∗(a ^ b), [M ]〉
= 〈i∗(a ^ b), δ∗[W,M ]〉
= 〈δ∗i∗(a ^ b), [W,M ]〉 = 〈0, [W,M ]〉.
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2. We know that dimH2(M ;R) = dim ker(δ∗) + dim ker(δ∗)⊥. By exactness, we can
write ker(δ∗) = im(i∗) = i∗(H2(W ;R)). On the other hand, by Poincaré duality, we
have ker(δ∗)⊥ ∼= ker(i∗)

⊥. Now from the universal coefficient theorem, one can show that
ker(i∗)

⊥ ∼= im(i∗).
3. Finally write H2(M ;R) = P ⊕N as above. If dimP 6= dimN , then at least one of

them (say P ) has dimension greater than i∗(H2(W ;R)). Then P intersects i∗(H2(W ;R))
along a subspace of positive dimension, contradicting 1. Thus dimP = dimN as required,
so σ(M) = 0.

This shows that there is a well defined map σ : Ω4 → Z. To see that it is surjective, it
suffices to notice that CP2 has signature 1.

4.2 G-Bordism and the Pontryagin-Thom construction

So far we have computed Nn for n ≤ 2 and Ωn for n ≤ 4. To compute higher bordism
groups, we use the Pontryagin-Thom construction. In this section we will also define the
notion of a G-bordism, unifying oriented and unoriented bordism under a more general
theory.

To define G-bordisms, we require the notion of stable normal bundles. We also describe
some notation: a bundle in general will be denoted by a symbol such as ξ. The total space,
base space, and projection map will usually be denoted by E(ξ), B(ξ), and πξ.

Definition 4.2.1. Let M be an n manifold, and i : M → Rn+k an embedding. The
normal bundle of M is the quotient bundle ν = NM = i∗(TRn+k)/TM . The normal
bundle depends on the embedding, but any two normal bundles are stably isomorphic.
The stable normal bundle of M is the stable isomorphism class of a normal bundle of
M → Rn+k.

When no additional structure is prescribed, the stable normal bundle is classified by
a homotopy class in [M,BO]. An unoriented cobordism W can be embedded in Rn+k,
and its stable normal bundle is a class in [W,BO]. Thus unoriented cobordism can be
considered to be orthogonal cobordism, which explains the notation ΩO

∗ .

Definition 4.2.2. We now define the notion of a G-structure on a manifold. Let Gn be
a sequence of groups with maps Gn → Gn+1 and representations Gn → O(n). Suppose
moreover that each square

Gn Gn+1

O(n) O(n+ 1)

commutes. The stable normal bundle of a manifold M is classified by a homotopy class ν of
maps [M,BO]. A G-structure on M is a lift of ν to a class ν̃ in [M,BG] where BG→ BO
is the fibration induced by the Gn → O(n).
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Example. An SO structure on a manifold is an orientation of its (stable) normal bun-
dle. Therefore oriented bordism groups arise by considering exactly manifolds with SO-
structures. In the following discussion we formalise what this means for general G.

Definition 4.2.3. Let (M, ν̃) be a G-manifold. (M, ν̃) is null bordant if there is a compact
manifold W embedded in Rn+k × R+ such that

� ∂W = W ∩ (Rn+k × {0}) ∼= M .

� The above intersection is transverse.

� The classifying map of the normal bundle of W lifts as in the following diagram:

M BG

W BO.

ν̃

f

f̃

A G-manifold (M, ν̃) has a negative, defined by embedding M × [0, 1] in Rn+k × R+ as
above, inducing a G-structure on M×[0, 1], and restricting to M×{0}.This turns bordisms
of G-manifolds into a group, which we call the G-bordism group, and denote by ΩG

∗ .
More generally the above construction can be repeated with singular G-manifolds

(M,f, ν̃) with f : M → X, which gives rise to G-bordism groups ΩG
∗ (X).

Example. Unoriented bordism groups are exactly O-bordism groups, so

N∗(X) = ΩO
∗ (X).

Oriented bordism groups are obtained by ensuring that all stable normal bundles are
oriented, so they correspond to SO-bordism groups:

Ω∗(X) = ΩSO
∗ (X).

We can also restrict to U(n) ↪→ O(2n), which gives bordisms of almost complex manifolds
called complex bordisms, or U -bordisms:

ΩU
∗ (X).

Finally we introduce the framed bordism group. This consists of bordisms with trivial
normal bundle,

Ωframed
∗ (X) = Ω1

∗(X).

The key theorem for this section is the Pontryagin-Thom construction.
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Theorem 4.2.4. Given some G, there is an isomorphism

ΩG
∗ (X) ∼= MG∗(X) := π∗(MG ∧X+)

of graded rings.

We do not prove the statement, but describe the construction of MG and the isomor-
phism in the forwards direction.

Recall the construction of the Thom space given a vector bundle: if p : E → B is
a real vector bundle of rank n, each fibre is isomorphic to Rn, and so can be one-point-
compactified. This gives an n-sphere bundle S(E) → B. S(E) can be further quotiented
so that all newly added points are identified - this is the Thom space, T (E). Notice that if
B is compact, then T (E) is the one point compactification of E.

Generally given a vector bundle ξ, we write T (ξ) to denote the Thom space (of the total
space) of the vector bundle. The Thom construction is a covariant functor, and satisfies
T (ξ × ζ) = T (ξ) ∧ T (ζ).

We now describe the Pontryagin-Thom construction. Let (M,f, ν̃) be a singular G-
manifold in X. Fix an embedding i : M ↪→ Rn+k. Then ν̃ : M → BGk classifies the
normal bundle. That is, we have the commuting diagram

E(ν) = ν̃∗EGk EGk

M BGk
ν̃

We also have a map f : M → X. The product of the above vector bundle with the 0-vector
bundle over X gives a diagram

E(ν) EGk ×X

M BGk ×X
(ν̃,f)

Write ξk to denote the bundle EGk → BGk. Then by functoriality, we have a map

T (ν)→ T (ξk × 0).

Notice that the 0-bundle over X has Thom space X+, the one point compactification
of X. On the other hand, there is an embedding from E(ν) into Rn+k (which can be
thought of as a tubular neighbourhood). Since one point compactification of embeddings
is a contravariant functor, this gives a map Sn+k → T (ν). In summary, we have a map

Sn+k → T (ξk) ∧X+.
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In particular, we have a homotopy class in πn+k(MGk ∧ X+), we have written MGk to
denote T (ξk). What is the effect of stabilisation? One can show that that extending the
embedding to Rn+k+1 gives a map Sn+k+1 → MGk+1 ∧X+, which commutes with a map
ΣSn+k → ΣMGk∧X+. In summary, a singular G-manifold (M,f, ν̃) determines an element
of

(MG)n(X) := lim
k
πn+k(MGk ∧X+) = πn(MG ∧X+).

This is the Pontryagin-Thom construction; a map

ΩG
n (X)→ πn(MG ∧X+).

What does this look like for certain examples of G? We begin by investigating the case
when G is the trivial group; this should be the easiest example.

Example. Fix G to be the trivial group. Then the universal bundle EG → BG is the
trivial bundle of one point spaces, and MG = T (EG) is the one point extension of EG.
Since EG is already compact, this corresponds to gluing an additional isolated point, soMG
is the two point space S0. By the Pontryagin-Thom construction, we have isomorphisms

Ωframed
n (X) ∼= πst

n (S0 ∧X).

In particular, when X is trivial, this gives

Ωframed
n

∼= πst
n (S0) = lim

k
πn+k(Sk).

We can use this to calculate some stable homotopy groups of spheres! Let’s try to compute
πs1 := πst

1 (S0) ∼= Ωframed
1 . A framing of the stable normal bundle of a closed 1-manifold is

equivalent to a framing of its tangent bundle. It suffices to understanding the cobordism
class of each framing of TS1 embedded in R2. There are two possible framings (think
of the tangent vectors being clockwise or anticlockwise). However, these are really the
same as we can flip R2 upside down in R3. To show that Ωframed

1 is non-trivial, we must
show that S1 is not null-bordant. In fact, by the previous argument, this also shows that
Ωframed

1
∼= Z/2Z. To see that S1 is not framed null-bordant, suppose for a contradiction

that it is. The framing of its tangent space is then a restriction of the framing of the
tangent space of some surface in R3 with boundary S1. But any such framing “cannot
rotate” (to ensure global triviality), while the framing of S1 rotates around the boundary.
This is of course just a visual sketch and not a proof! It follows that πs1 = Z/2Z, and in
particular π4(S3) = Z/2Z.

As a final remark, we are also now equipped to define cobordism theory as a cohomology
theory. By the Pontryagin-Thom construction, we have an isomorphism

ΩG
n (X) ∼= πn(MG ∧X+) = lim

k
πn+k(MGk ∧X+) = lim

k
[Sn+k,MGk ∧X+].
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We can define a dual (contravariant) theory by moving the factor of X+ in the right
expression. Namely, the nth Cobordism group is given by

Ωn
G(X) = lim

k
[Sk−n ∧X+,MGk] = lim

k
[Σk−nX+,MGk].

Example. Consider X to be the one point space. Then [Σk−nX+,MGk] = [Sk−n,MGk].
On the other hand, [Sn+k, X+∧MGk] = [Sn+k,MGk]. This shows that ΩG

∗ (X) and Ω∗G(X)
differ only by grading! Therefore bordism and cobordism are interchangable. (This is no
longer true if X is not a one point space.)
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Chapter 5

Equivariant cohomology

In this chapter we introduce ordinary equivariant cohomology, which is an equivariant
cohomology that simultaneously generalises group cohomology and singular cohomology.
This is also called Borel cohomology, or just equivariant cohomology. In particular, we
discuss a case of the celebrated localisation theorem of equivariant cohomology. After this,
we will explore another type of equivariant cohomology - namely equivariant K-theory.
In the earlier section on K-theory we remarked that computing the K-theory of RPn
was actually beyond our capabilities! However, the machinery of equivariant K-theory
will allow us to do this. In these notes the primary source for equivariant cohomology is
[Bot98], while the primary source for equivariant K-theory is [Seg68].

5.1 Equivariant cohomology fundamentals

In this section we develop the definitions and machinery of equivariant cohomology and
investigate some examples. In ordinary (singular) cohomology or homology, we learn in-
formation about a space based purely on its topology. However, many topological spaces
have some symmetry (i.e. admit group actions). The idea of equivariant cohomology is to
incorporate this symmetry into the cohomology theory in the hope that it will tell us more
about the space. Moreover, it turns out that a sort of converse holds: knowing equivariant
cohomological information about X says a lot about the possible group actions it admits.
Without further ado, here are some definitions!

Definition 5.1.1. Let X be a space and G a group. An action of G is a group homomor-
phism G → Aut(X). Equivalently, it is a map X × G → X such that x · e = x for all x,
and x · (gh) = (x · g) · h for all x.

The group action is said to be free if x · g = x implies that g is the identity. In this
instance, the equivalence classes of the relation x ∼ y defined by x ·g = y for some g inherit
a lot of structure from X. This quotient space is denoted by X/G.
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When X is a smooth manifold and G is a compact group acting freely on X, the
quotient X/G is itself a smooth manifold, and the map X → X/G is a principal G-bundle
over X/G.

What happens when the action of G is not free? The quotient space will no longer have
the principal G-bundle over it, and quite frankly a lot of things break. For this reason we
introduce the homotopy quotient.

If p is a single point, an action of any group G on p can be defined to be the trivial
action. This is incredibly non-free! But EG (introduced back in the chapter on classifying
spaces) has the same homotopy type as p, while also admiting a natural free action of
G. Then EG → EG/G = BG is the “homotopy quotient” of the one point space. This
extends more generally for any space X.

Definition 5.1.2. Let X be a space and G a group action on X. Then EG admits a
free action of G, which further induces the free diagonal action on X × EG. Notice that
X ×EG has the same homotopy type as X! The homotopy quotient of X, denoted X//G
or XG, is the quotient

X × EG→ (X × EG)/G = X ×G EG = XG.

This is actually all we need to define before introducing equivariant cohomology!

Definition 5.1.3. The equivariant cohomology of a space X with a group action G is the
singular cohomology of the homotopy quotient of X:

H∗G(X) = H∗(XG).

Remark. The homotopy quotient XG comes equipped with a natural principal G-bundle
as written above. This can alternatively be thought of as the pullback of the universal
bundle EG→ BG by the map f : XG → BG defined by modding out by X.

Example. Suppose G is the trivial group. Then EG and BG are trivial, and XG is just
X! Therefore equivariant cohomology with G trivial returns ordinary cohomology.

Next suppose X is a trivial space. Then XG is equal to BG, so H∗G(X) = H∗(BG). This
is exactly the group cohomology of G! Therefore equivariant cohomology is a simultaneous
generalisation of singular cohomology for a space and group cohomology.

Proposition 5.1.4. Suppose G acts freely on a space X. Then H∗G(X) = H∗(X/G).

This theorem justifies that the homotopy quotient is really a generalisation of the
quotient of a free action to general actions.

Proof. Consider the map p : XG → X/G with fibre EG. Since EG is contractible, by a
classical result, there is an isomorphism of cohomology H∗(XG) ∼= H∗(X/G). The former
is exactly the equivariant cohomology!
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Proposition 5.1.5. Let G act on a space X. Suppose K C G acts freely on X. Then
X/K admits a G/K action, and

H∗G(X) ∼= H∗G/K(X/K).

This theorem hints at the fact that equivariant cohomology is concentrated at fixed
points of an action.

Proof. The space EG × E(G/K) is contractible and admits a free G action (namely the
diagonal action). Therefore we have XG = X ×G (EG × E(G/K)). But now we have a
fibre bundle

X ×G (EG× E(G/K))→ X ×G E(G/K)

with fibre EG. By the same result used in the previous theorem, it follows that H∗(XG) =
H∗(X ×G E(G/K)). But on the right hand side, we have X ×G E(G/K) = (X/K)×G/K
E(X/G) = (X/K)G/K . This completes the proof that

H∗G(X) = H∗(XG) = H∗((X/K)G/K) = H∗G/K(X/K).

For G the trivial group, we showed earlier that H∗G(X) = H∗(X). But what if G is a
non-trivial group that acts trivially on X?

Proposition 5.1.6. Let G act trivially on X. Then H∗G(X) ∼= H∗(X) ⊗ H∗(BG). In
particular, H∗G(X) is a free H∗(BG) module.

Proof. If G acts trivially, then XG = X ×G EG = X ×BG, so the result follows from the
Künneth formula.

Proposition 5.1.7. Suppose K < G acts on Y . Define X := G ×K Y . This admits a
canonical G action, and H∗G(X) = H∗K(Y ).

Proof. Notice that G ×K Y = (G × Y )/K. We define the G action to be trivial on the
second component. Now

XG = (G×K Y )×G EG = Y ×K EG = Y ×K EK = YK .

The central equality is because K acts freely on EG, and EG is contractible. Therefore
”EG is an EK”.

Example. We now compute the equivariant cohomology of several spheres with S1-actions.
First, we consider the S1 action on S1 itself. This is free, so the equivariant cohomology is
given by

H∗S1(S1) ∼= H∗(S1/S1) = H∗(pt).
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Thus S1 has trivial equivariant cohomology.
S1 also admits an action on S2, by rotation. This is immediately less tractable as

the action is not free. We do not compute this for now, as it is beyond our capabilities.
However, we will later use the Leray spectral sequence to attempt the calculation.

Finally we look at the S1 action on S3 defining the Hopf fibration. This is again free,
and S3/S1 = S2. Therefore H∗S1(S3) = H∗(S2).

Loosely speaking, the localisation theorem states that the equivariant cohomology is
concentrated near the fixed points of a group action. Observe that the free actions above
had easily computable equivariant cohomology, but the action of S1 on S2 (which has two
fixed points) was elusive. We can carry out the calculation using the localisation theorem.
The localisation theorem is stated in terms of de Rham theory, so before stating and
proving this result, we must develop equivariant de Rham theory. (Of course, de Rham
cohomology of a smooth manifold is isomorphic to singular cohomology of the manifold
with real coefficients, so this is really an alternative model for the same theory.)

We give a brief recapitulation of de Rham theory. Let M be a smooth manifold. Then
TM denotes its tangent bundle, and T kM denotes the k-fold tensor product bundle of
TM with itself. This contains the symmetric and antisymmetric tensor bundles SkM
and ΛkM as subbundles. Sections τ ∈ Γ(T kM) are called k-tensor fields, or just tensors,
and a particularly important class of tensor fields are precisely the antisymmetric ones:
ω ∈ Γ(ΛkM) = Ωk(M) are called differential k-forms.

There is a notion of differentiation d : Ωk(M)→ Ωk+1(M) called the exterior derivative.
This defines the de Rham complex

C∞(M) = Ω0(M)→ Ω1(M)→ · · · → Ωn(M),

where dimM = n. The homology of this sequence is the de Rham cohomology.
One of the main reason differential forms are important is because they are exactly

what we can integrate. For M compact and oriented, there is a natural map

Hn(M)→ R, ω 7→
∫
M
ω.

This can be interpreted as a map Hn(M)→ H0(pt), and this interpretation generalises to
integration over fibres of a bundle E → B.

Let π : E → B be a fibre bundle. Then a homomorphism π∗ : H∗(E) → H∗−f (B) is
induced which “integrates over the fibres”. Here f is the dimension of the fibre. This is
not generally a ring homomorphism, although it is additive. We can consider H∗(E) as a
module over H∗(B), by defining u · v := u ^ π∗(v). Then π∗ is a module homomorphism.

Now we consider a special case. We have a natural map MG → BG which defines
a fibration. Integration of the fibres gives a map π∗ : H∗G(M) → H∗(BG). This is the
Weil-Cartan model of equivariant cohomology.
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We now make things a little more specific! We are generally interested in the case
where G is a compact connected Lie group. In this instance, the following theorem shows
that the cohomology of a G is captured entirely by its Lie algebra g:

Theorem 5.1.8. For G a compact and connected Lie group there is an isomorphism

H∗(Ω∗(g∗))→ H∗(Ω∗G) = H∗(G).

We will soon use this result to further develop the Cartan model of equivariant coho-
mology.

Proof. Here we have written H∗(Ω∗(g∗)) and H∗(Ω∗G) to denote the homolologies of the
complexes Ω∗(g∗) and Ω∗G. Ω∗(g∗) consists of the left invariant differential forms on G.
There is an inclusion i : Ω∗(g∗) → Ω∗G which induces the forwards map. On the other
hand, we can construct a map Ω∗G→ Ω∗(g∗) by averaging forms over G (by compactness).
This map is a left inverse of i. To see that it also a right inverse, it remains to show that
all classes in H∗(G) are left-invariant. This follows from connectedness.

This result hints that maybe EG → BG can also be understood infinitesimally! This
is indeed the case. Writing [−]G to denote the G-invariant subspace, we can define

Ωi
G(M) =

⊕
j

[Sj(g∗)⊗ Ωi−2j(M)]G.

These form a complex with dG : Ωi
G(M)→ Ωi+1

G (M) defined as follows: fix a basis {ξa} of
g, and let {fa} be its dual basis. Then

dG(F ⊗ σ) := F ⊗ dσ −
∑
a

faF ⊗ ιξaσ.

This definition is inspired by the Cartan formula for the Lie derivative. We are now ready
to describe the final form of the Cartan model for equivariant cohomology.

Theorem 5.1.9. The equivariant cohomology H∗G(M) is the cohomology of the complex

0→ Ω0
G(M)

dG−−→ Ω1
G(M)

dG−−→ Ω2
G(M)→ · · · .

Proof. We give only a proof sketch. First, one observes that the de Rham complex of
MG = M ×G EG = (M × EG)/G is embedded in the de Rham complex of M × EG as
G-invariant subspaces. Therefore we find the de Rham complex of M × EG, and restrict
to the invariant part. The de Rham complex of the first factor is just Ω∗(M), but we must
determine Ω∗(EG) in simpler terms. One can show (e.g. in Bott’s notes cited at the start
of the chapter) that Ω∗(EG) is the Koszul complex W := S∗(g∗)⊗ Λ∗(g∗). This gives

H∗G(M) = H∗(M ×G EG) ∼= H∗([Ω(M)⊗W ]G).

The desired isomorphism now follows from the underlying algebra.
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5.2 Leray spectral sequence

The Leray spectral sequence is one of the original spectral sequences, invented (or discov-
ered, if you prefer) before we even knew how to formalise spectral sequences. In modern
times, the Leray spectral sequence is considered a special case of the Grothendieck spectral
sequence. None the less, we will not discuss the Leray spectral sequence in that generality,
and simply state the result here. After developing this machinery we will apply it in a
calculation of the equivariant cohomology of the 2-sphere.

Definition 5.2.1. Fix an abelian category (such as the category of modules over a ring).
A cohomological spectral sequence is a collection of three sequences:

� For each r ≥ 0, an object Er called the rth page.

� Maps dr : Er → Er satisfying d2
r = 0, called boundary maps.

� Isomorphisms of Er+1 with the homology H(Er) of Er with respect to dr.

Generally the isomorphism is implicit, with Er+1 := H(Er).

We will further assume that each Er is bigraded:

Er =
⊕
p,q∈Z

Ep,qr .

The boundary maps are taken to have bidegree (r,−r + 1). That is, each dr restricts to
maps

dr : Ep,qr → Ep+r,q−r+1
r .

If we further assume Ep,qr = 0 for p, q < 0, we obtain a first quadrant spectral sequence.

Proposition 5.2.2. A first quadrant spectral sequence as above eventually stabilises. That
is, for any (p, q), there exists r such that Ep,qr = Ep,qr+1 = Ep,qr+2 · · · . This stationary object
is denoted by Ep,q∞ .

Proof. Suppose r ≥ max(p + 1, q + 2). Recall that dr has bidegree (r,−r + 1). But now
Ep,qr+1 is the quotient

ker dr : Ep,qr → Ep+r,q−r+1
r

im dr : Ep−r,q+r−1
r → Ep,qr

.

By our choice of r, q − r + 1 ≤ q − (q + 2) + 1 ≤ −1. Therefore Ep+r,q−r+1
r is trivial, so

the kernel (in the numerator of the quotient) is all of Ep,qr . Similarly the image (in the
denominator) can be shown to be trivial, so Ep,qr+1 = Ep,qr .

To state Leray’s theorem on spectral sequences, we introduce two filtrations of the
spectral sequence.
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Definition 5.2.3. A filtration on an module M is a decreasing sequence of submodules
M = M0 ⊃M1 ⊃M2 ⊃ · · · . The associated graded module, denoted by GM , is the direct
sum of succcessive quotients

GM = M0/M1 ⊕M1/M2 ⊕M2/M3 ⊕ · · · .

Notice that a spectral sequence E =
⊕

p,q E
p,q has two natural filtrations - namely by

p and by q. Formally, the filtration by p is

Fp =
⊕
i≥p

⊕
q

Ei,q.

The filtration by q is

F ′q =
⊕
i≥q

⊕
p

Ep,i.

This means that F0 = E, but F1 is missing the first “column” of each page, F2 the first
two “columns” and so on. The associated graded module is obtained by direct sums of
each column. We are now ready to state Leray’s theorem. The proof is not included, but
can be found in Weibel’s classic text on homological algebra (as the Grothendieck spectral
sequence).

Theorem 5.2.4. Let π : E → B be a fibre bundle, with fibre F . Suppose B is simply
connected. Assume (for each n) that Hn(F ) is free of finite rank. Then there exists a
spectral sequence E satisfying the following:

1. Ep,q2 = Hp(B)⊗Hq(F ).

2. Ep,q2 ⇒ Hp+q(E). More precisely, the filtration Dp by p of the second page induces a
filtration Dp ∩Hn(E) on Hn(E) whose successive quotients are Ep,n−p∞ .

As an application, we will use this to compute some equivariant cohomology!

Example. Let S1 act on S2 by rotations. We will determine H∗S1(S2). There is a fibration

S2 → S2 ×S1 ES1 → ES1/S1 = BS1.

By definition we know that H∗S1(S2) = H∗(S2 ×S1 ES1), and in chapter 1 we showed that
BS1 = CP∞. The corresponding Leray spectral sequence is a spectral sequence (E, d) with

� Ep,q2 = Hp(S2)⊗Hq(CP∞) = Z[x]
(x2)
⊗ Z[y], where x and y have degree 2.

� Ep,q2 ⇒ Ep,q∞ , and Hn
S1(S2) =

⊕
p+q=nE

p,q
∞ .
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...

3

2 x xy xy2 xy3 xy4 · · ·

1

0 1 y y2 y3 y4 · · ·

0 1 2 3 4 5 6 7 8 · · ·

Figure 5.1: Second page of the Leray spectral sequence.

To make the next argument clearer, we draw the second page of the spectral sequence:
Recall that on the rth page, the boundary maps dr have bi-degree (r,−r+1). In particular
the two components of the bi-degrees have different parities for each r. Therefore any dr
mapping in or out of a non-zero term in the second page must be trivial (as all non-zero
terms occur with both components having even degree). It follows that Ep,qr = H(Er) =
Er−1. In particular, Ep,q∞ = Ep,q2 . But now H2n

S1 (S2) = E2n,0
2 ⊕ E2n−2,2

2 = xyn−1Z ⊕ ynZ,
and the equivariant cohomology of S2 in odd degrees vanish. Overall we have

H∗S1(S2) = Z[y]⊕ xZ[y].

5.3 Localisation theorem

The most important result in equivariant cohomology is the localisation theorem. We
will state a general form along with a “Cartan model form”. First we must recall what
localisation even means! The general form is taken from Tom Dieck’s Transformation
groups.

Definition 5.3.1. Let R be an arbitrary unital ring. A subset S of R is said to be
multiplicative if S is closed under multiplication and contains unity. The localisation of R
at S, denoted S−1R, is the ring obtained by inverting all elements of S. Formally, it is the
ring satisfying the following universal property: there is a canonical map ψ, and given any
f : R→ T sending all elements of S to units, there is a unique lift g as in the diagram.

R S−1R

T

f

ψ

g

Intuitively, the localisation can be thought of as zooming into the parts of R in S, which
kills information. (E.g. zooming into the surface of a sphere, things look flat - killing the
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curvature information). As a result the information remaining in S−1R is the information
of R less the information of S.

Definition 5.3.2. Let M be an R-module, and S ⊂ R multiplicative. Then the localisation
of M at S, S−1M , is M ⊗R S−1R.

We now list some elementary properties of localisations.

Proposition 5.3.3. � Localisation R 7→ S−1R is a functor.

� Infact, localisation is an exact functor: if A → B → C is exact, then S−1A →
S−1B → S−1C is exact.

� Localisation commutes with colimits (also known as direct limits).

Suppose A ⊂ X is a subspace, with G acting on both A and X. The inclusion A→ X
induces a homomorphism H∗G(X) → H∗G(A). The H∗G(X), H∗G(A) can be thought of as
H∗G(pt) = H∗(BG)-modules. Therefore given any S ⊂ H∗(BG) multiplicative, we have an
induced map

S−1H∗G(X)→ S−1H∗G(A).

The localisation theorem concerns when this induced map is an isomorphism. Finish this
section later.

5.4 Equivariant K-theory

The equivariant cohomology theory developed above for ordinary cohomology also applies
to K-theory! We outline the construction now.

To define equivariant K-theory, we must define a notion of equivariant vector bundles
over a G-space. (By a G-space, we mean a space X equipped with a group action by G.)

Definition 5.4.1. Let G act on X (so that X is a G-space). By a G-vector bundle on X,
we mean a map π : E → X such that

� E is a G-space, and π is a G-map. (That is, g(π(ξ)) = π(gξ).)

� π : E → X is a complex vector bundle.

� For any g, the action g : Ex → Egx is a linear map.

Example. Suppose X is equipped with the trivial g action. Then π(ξ) = π(gξ) for all g
and all ξ. Thus each g defines an element of (Ex). Equivalently, a G-vector bundle is a
family of representations G→ (Ex) where Ex is parametrised by x ∈ X and vary smoothly.

More specifically, suppose X is the one point space. Then KG(X) is the completion of
the space of all complex representations of G! This is called the representation ring of G,
denoted by R(G).
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Example. Suppose X is a smooth manifold, and a Lie group G acts on X. Then TX ⊗C
is a G-vector bundle (by acting trivially on the second component and canonically on the
first).

For simplicitly we assume hereafter that all groups G are compact. We are now already
ready to define equivariant K-theory:

Definition 5.4.2. The space of all G-vector bundles over a G-space X forms a monoid.
The Gröthendieck completion of this monoid is denoted by KG(X), and is called the
equivariant K-theory of X. As with usual K-theory, this can be intuitively thought of as
consisting of formal differences EG − FG of G-vector bundles over X.

It is not yet clear why this defines a theory analogous to ordinary equivariant cohomol-
ogy. Can we interpret KG(X) as K(X ×GEG) or something similar? It turns out that we
almost can but not quite!

Proposition 5.4.3. Define KBor
G (X) := K(XG), where XG = X ×G EG. Then there is a

canonical map
KG(X)→ KBor

G (X),

but this is not generally an isomorphism.

Proof. The projection map X × EG → X defines a map KG(X) → KG(X × EG) by
pullback. But G acts freely on X × EG, so KG(X × EG) ∼= K((X × EG)/G) (as we will
very shortly prove!) This defines the map KG(X)→ K(X ×G EG) = KBor

G (X).
To see that the above map is not generally an isomorphism, fix X to be the one

point space. Then KG(X) = R(G), while KBor
G (X) = K(BG). These are not isomorphic

whenever G is a non-trivial group. Why? Let’s ask Ciprian!

In the above proof, we made use of a fact that we like to believe is true without
verification! We state and prove this fact now.

Proposition 5.4.4. Let G act freely on a space X. Then KG(X) = K(X/G). More
generally, if N is a normal subgroup of G acting freely on X, then KG(X) = KG/N (X/N).

Proof. Consider the projection X → X/G. This induces a map p∗ : K(X/G)→ K(X). In
fact, pulling back a vector bundle over X/G to a bundle over X automatically turns the
bundle into a G-bundle! So the induced map can be further refined to p∗ : K(X/G) →
KG(X).

Now suppose G acts freely on X. Then if E → X is a G-bundle, there is an induced
bundle E/G→ X/G. In this case, the map E 7→ E/G is inverse to p∗! Therefore p∗ is an
isomorphism.
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Proposition 5.4.5. In the case where G acts trivially on X, there is a natural isomorphism

R(G)⊗K(X)→ KG(X).

This is reminiscent of the correspond theorem for ordinary equivariant cohomology, in
which H∗G(X) ∼= H∗(BG)⊗H∗(X) for trivial G actions.

Next we develop some properties of equivariant K-theory that are reminiscent of the
usual K-theory introduced in an earlier chapter. Namely, equivariant K-theory is also a
cohomology theory! To this end we also introduce reduced equivariant K-theory.

Definition 5.4.6. Let G act on a space X. The stable isomorphism classes of G-vector
bundles over X form a ring called the reduced equivariant K-theory of X, denoted K̃G(X).

Following the same construction as usual K-theory, the sequence of inclusions of G-
spaces

A→ X → X ∪ CA

induces an exact sequence of reduced equivariant K-theories

K̃G(X ∪ CA)→ K̃G(X)→ K̃G(A).

Moreover, taking suspensions, we have a long exact sequence

· · · → K̃G(Σ(X ∪ CA))→ K̃G(ΣX)→ K̃G(ΣA)→ K̃G(X ∪ CA)→ K̃G(X)→ K̃G(A).

We introduce the notation K̃−qG (X) = K̃G(ΣqX), and K̃−qG (X,A) = K̃G(Σq(X ∪ CA)).

This gives a cohomology theory K̃∗G(X).
As with the usual K-theory, the above reduced cohomology theory has an unreduced

version. This is K∗G defined by

Kn
G(X) = K̃n

G(X+), Kn
G(X,A) = K̃n

G(X+, A+),

where X+ and A+ are the spaces X ∪ {∗} and Y ∪ {∗}.
Again, analogously to usual K-theory, if A is a closed G-contractible subspace of a

G-space X, then KG(X/A) is isomorphic to KG(X). This implies the following result:

Proposition 5.4.7. If A is a closed G-subspace of a locally compact G-space X, then the
natural map

Kn
G(X −A)→ Kn

G(X,A)

is an isomorphism.

Next we state the equivariant periodicity theorem.
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Theorem 5.4.8. K−qG (X) is naturally isomorphic to K−q−2
G (X). The map is given by

multiplication by a certain element of K−2
G (∗). In particular, by defining K1

G := K−1
G , the

long exact sequence of equivariant K-theory reads

K0
G(X,A) K0

G(X) K0
G(A)

K1
G(A) K1

G(X) K1
G(X,A).

So far we have just been establishing results that are analogous to results form usual
K-theory of equivariant (ordinary) cohomology. We finish with one of the most important
results from equivariant K-theory; one which has yet to be mentioned in a more specific
form!

Theorem 5.4.9. Let X be a locally compact space, and E → X a G-vector bundle. There
is an isomorphism K∗G(X)→ K∗G(E) called the Thom isomorphism.

Notice that E is not compact! K∗G(E) is defined to be the equivariant cohomology of
vector bundles with compact support. Equivalently, it can be defined as the equivariant
cohomology of the Thom space T (E). We will not prove this theorem, but loosely speaking
the isomorphism can be considered multiplication by (1 − L)n, where n is the rank of E
and L is the tautological bundle over the projectivisation of E.

This concludes our general study of equivariant K-theory. We finish with an example
- namely, by using equivariant K-theory, we compute the usual K-theory of RPn.

Example. Let Z/2Z act on Sn in the usual way. (That is, the non-trivial element swaps
each point in Sn with its antipode.) This a free action of Z/2Z on Sn, and

Sn/(Z/2Z) = RPn.

By the general theory, we now know that KZ/2Z(Sn) = K(RPn). We will use the long exact
sequence of equivariant K-theory to compute KZ/2Z(Sn).

K0
Z/2Z(Dn+1,Sn) K0

Z/2Z(Dn+1) K0
Z/2Z(Sn)

K1
Z/2Z(Sn) K1

Z/2Z(Dn+1) K1
Z/2Z(Dn+1,Sn).

Suppose n is odd. Since D is G-contractible, we have Ki
Z/2Z(Dn+1) ∼= Ki

Z/2Z(∗). For

i = 0, we have Ki
Z/2Z(∗) = KZ/2Z(∗) ∼= R(Z/2Z) ⊗ K(∗) ∼= R(Z/2Z). Now R(Z/2Z) is

determined by the images of the generator of Z/2Z. The only constraint is that it has
order 2, so R(Z/2Z) = Z[x]/(x2 − 1).
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More formally, consider the map Z[x] → R(Z/2Z) defined by sending x to the sign
representation Z/2Z → (C), and n ∈ Z to the trivial representation Z/2Z → (Cn). This
extends uniquely to a ring homomorphism Z[x]→ R(Z/2Z) whose kernel is (x2 − 1).

Thus we have shown that K0
Z/2Z(Dn+1) = Z[x]/(x2 − 1). Next we study K1

Z/2Z(Dn+1).

Again this is isomorphic to K1
Z/2Z(∗) ∼= K̃1

Z/2Z(∗) ∼= K̃Z/2Z(I). Here I is the interval, which

is the suspension of a point. The Z/2Z action is the unique non-trivial symmetry of I.
This has a G-contraction to a point. Therefore

K1
Z/2Z(∗) ∼= K̃Z/2Z(∗) ∼= 0.

The last isomorphism comes from the fact that all Z/2Z-vector bundles over a point are
stably isomorphic, corresponding to x2 = 1 in the previous (non-reduced) calculation.

Next we investigate the two relative K-theories. Notice that KZ/2Z(Dn+1,Sn) consists
of formal differences of Z/2Z-vector bundles over Dn+1 which are trivial on Sn. But
KZ/2Z(Rn+1) consists of formal differences of Z/2Z-vector bundles which are compactly
supported. Therefore by appropriate radial scaling, we can identify KZ/2Z(Dn+1, Sn) ∼=
KZ/2Z(Rn+1). Moreover, Rn+1 is isomorphic to Cm for some m, with the isomorphism
preserving the Z/2Z structure (since n was chosen to be odd). This is just a Z/2Z-vector
bundle over a point! By the Thom isomorphism, this gives KZ/2Z(Dn+1, Sn) ∼= KZ/2Z(∗).
Applying this calculation to the previous two calculations for Ki

Z/2Z(∗), the long exact
rectangle evaluates to

Z[x]/(x2 − 1) Z[x]/(x2 − 1) K0
Z/2Z(Sn)

K1
Z/2Z(Sn) 0 0.

To determine K0
Z/2Z(Sn), we must understand the map Z[x]/(x2 − 1) → Z[x]/(x2 − 1).

This consists of several maps being composed, but the one non-trivial map comes from
the Thom isomorphism KZ/2Z(∗) → KZ/2Z(Cm). This map is multiplication by (1 − x)m.
Therefore the image of this map is the ideal (1 − x)m. By exactness, this is the kernel of
the subsequent map Z[x]/(x2− 1)→ KZ/2Z(Sn). This map is necessarily surjective, so the
first isomorphism theorem gives

KZ/2Z(Sn) ∼=
Z[x]

(x2 − 1, (1− x)m)
.

We can re-write this as Z[y]/(y2 − 2y, ym). Elements of this ring are of the form ay + b.
We now right this as an abelian group (ignoring the ring structure). The coefficient b is
not constrained. However, we also have

0 = ym = 2ym−1 = 22ym−2 = · · · = 2m−1y.
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Therefore a is constrained modulo 2m−1. As a group, we have

K0(RPn) = K0
Z/2Z(Sn) = Z⊕ Z/2m−1Z.

Next we calculate K1(RPn) = K1
Z/2Z(Sn). This time the map K1

Z/2Z(Sn) → Z[x]/(x2 − 1)
is injective, so the domain is isomorphic to its image. By exactness, this is isomorphic to
the kernel of Z[x]/(x2− 1)→ Z[x]/(x2− 1) given by multiplication by (1− x)m. A similar
calculation to above shows that the kernel is isomorphic to Z. Therefore

K1(RPn) = Z.

In summary for n odd, K0(RPn) = Z⊕ Z/2m−1Z, and K1(RPn) = Z.
For n even, we would like to say that K0(RP2m)K0

Z/2Z(S2m) = K1
Z/2Z(S2m−1) =

K1(RP2m−1) and bootstrap off the odd dimensional calculations. However, this does not
hold because the suspension of S2m−1 does not give S2m with the antipodal action; but
rather an action of Z/2Z with two fixed points. The computation for even dimensions
again requires the long exact sequence.
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Chapter 6

Atiyah-Hirzebruch spectral
sequence

In this final section, we introduce an important tool used in the calculation of generalised
(co)homology theories, namely the Atiyah-Hirzebruch spectral sequence. Will will use this
to compute examples of K-theories and bordism groups (which are the two generalised
(co)homology theories we have encountered in these notes).

6.1 AHSS in general

We start by recalling the Leray spectral sequence from the previous chapter:

Theorem 6.1.1. Let π : E → B be a fibre bundle, with fibre F . Suppose B is simply
connected, and each Hn(F ) is free of finite rank. Then there is a spectral sequence E
satisfying

� Ep,q2 = Hp(B)⊗Hq(F ).

� Ep,q2 ⇒ Hp+q(E).

The maps dr on the rth page are taken to have bidegree (r,−r + 1).

This theorem has rather strict premises - for one, it applies only to fibre bundles. The
more standard generality of this theorem is the Serre spectral sequence.

Theorem 6.1.2. Let F → E → B be a Serre fibration. (That is, it has the homotopy lifting
property with respect to CW complexes.) There is a Serre spectral sequence E satisfying

� Ep,q2 = Hp(B;Hq(F )).

� Ep,q2 ⇒ Hp+q(E).
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Technically we must be a little careful: in general Hp(B;Hq(F )) denotes the cohomol-
ogy of B with coefficients in the local system Hq(F ). If B is simply connected, the local
system Hq(F ) is guaranteed to be constant.

Finally, the Atiyah-Hirzebruch spectral sequence (AHSS) is a further generalisation of
the Serre spectral sequence, applying to not only to ordinary cohomology but also to
generalised cohomology theories.

Theorem 6.1.3. Let F → E → B be a Serre fibration of finite type (i.e. the spaces are
CW complexes with finitely many cells). Let K be a generalised cohomology theory. Then
there is an Atiyah-Hirzebruch spectral sequence E satisfying

� Ep,q2 = Hp(B;Kq(F )).

� Ep,q2 ⇒ Kp+q(E).

We do not prove this result (that is, we do not give a construction of the spectral
sequence). However, we will investigate two examples! The most significant application
is that every space X trivially has a fibration pt → X → X, and the Atiyah-Hirzebruch
spectral sequence then gives the generalised cohomology of X in terms of the ordinary
cohomology of X, with coefficients the generalised cohomology of a point.

6.2 AHSS applied to K-theory and cobordism theory

In the previous chapter, we computed the K-theory of CPn and RP2n+1, the former fol-
lowing directly from the long exact sequence of K-theory and the latter using equivariant
K-theory. Next we will give calculations using the AHSS. The first step is to find appro-
priate fibrations.

Consider pt → CPn → CPn. Then the second page of the corresponding Atiyah-
Hirzebruch spectral sequence is Hp(CPn;Kq(pt). The K theory of a point is given by

Kq(pt) =

{
Z q even

0 q odd.
.

Therefore for q odd, the entries on the second page vanish. For q even, we have the integral
cohomology of CPn, namely

Hp(CPn;Z) =

{
Z 0 ≤ p ≤ n, p even

0 else.
.

Overall this gives the second page as in the following figure: The differential on the rth page
has bidegree (r, 1−r), so by the same argument used with the Leray spectral sequence in the
previous chapter, we find that Ep,q2 = Ep,q∞ . By inspection, it follows that K0(CPn) = Zn+1,
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...
...

...
...

2 Z Z · · · Z

1

0 Z Z · · · Z

-1

-2 Z Z · · · Z
...

...
...

...

0 1 2 3 · · · 2n− 1 2n 2n+ 1 2n+ 2 · · ·

Figure 6.1: Second page of the Atiyah-Hirzebruch spectral sequence for CPn.

while K1(CPn) = 0. Notice that the spectral sequence is periodic in the vertical direction.
This demonstrates Bott periodicity.

Next we wish to study the K-theory of RPn. There are two cases to consider - n odd
and n even. Since we focused on the odd case earlier, we will again repeat the odd case now
to create a better contrast. We use the fibration pt → RP2k+1 → RP2k+1. We know the
integral cohomology of RP2k+1: Z in the bottom and top degrees, Z/2Z for even middle
degrees, and 0 elsewhere. The corresponding second page of the Atiyah-Hirzebruch spectral
sequence is given in the following diagram. In this example it is slightly less immediate that

...
...

...
...

...

2 Z Z/2Z · · · Z/2Z Z

1

0 Z Z/2Z · · · Z/2Z Z

-1

-2 Z Z/2Z · · · Z/2Z Z
...

...
...

...
...

0 1 2 3 · · · 2k − 1 2k 2k + 1 2k + 2 · · ·

Figure 6.2: Second page of the Atiyah-Hirzebruch spectral sequence for RP2k+1.
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all differentials vanish, but again they do! The maps with non-trivial domain and codomain
are exactly those that map from some Z/2Z into Z - but any such map is automatically
trivial. It follows that the second page again collapses to the last page. However, we now
meet the extension problem for spectral sequences! The cohomology in degree n must have
successive quotients Ep,q∞ where p+ q = n. But then, for example, a first quadrant spectral
sequence whose last page has E1,0 = E0,1 = Z/2Z could have first cohomology Z/4Z or
Z/2Z ⊕ Z/2Z. Each of these are distinct as abelian groups, but are both extensions of
Z/2Z by itself.

In our specific example, we can conclude that K0(RP2k+1) and K1(RP2k+1) both have
rank 1, but K1 is torsion free while K0 has torsion of size 2k−1. While we do not know
whether the torsion is Z/2k−1Z, (Z/2Z)k−1, or something else, (meaning we have objec-
tively less information than our previous calculation in which it was shown that the torsion
is Z/2k−1Z), the work was a lot easier!

Finally we look at an example in cobordism theory. Recall that Ni(X) is the ith
unoriented bordism group of a space X. For X trivial, we computed these spaces for small
i. As soon as X is non-trivial, the calculations get a little more difficult! Consider X to be
the circle. We will compute N1(S1). To this end, we use the Atiyah-Hirzebruch spectral
sequence:

E2
p,q = Hp(S1;Nq(pt)), E∞p,q = Np+q(S1).

Recall from earlier that Nq(pt) was calulcated for small q:

N0(pt) = Z/2Z,N1(pt) = 0,N2(pt) = Z/2Z, · · · .

Since the integral cohomology of S1 is known, these together give an Atiyah-Hirzebruch
spectral sequence with the second page as in the following diagram: Therefore by “adding

...
...

...

2 Z/2Z Z/2Z 0

1 0 0 0

0 Z/2Z Z/2Z 0

0 1 2 3 · · ·

Figure 6.3: Second page of the Atiyah-Hirzebruch spectral sequence for N (S1).

up the diagonals with bidegree summing to 1” we find that N1(S1) = Z/2Z. This is a little
surprising! Why is a double cover f : S1 → S1 null bordant? This is because it bounds a
mobius strip! This geometrically shows that the map of degree 0 and the map of degree 1
should determine all bordism classes.
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