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Chapter 1

Introduction to Heegaard Floer
homology

1.1 Admin (lecture 1)

Topics in the course will include:

1. The definition of Heegaard Floer homology for 3-manifolds using pseudo-holomorphic
curves.

2. Heegaard Floer invariants for 4-manifolds.

3. Knot Floer homology and applications to concordance.

4. Methods for computing Heegaard Floer invariants.

5. Involutive Heegaard Floer homology and applications to homology cobordism.

There is no official textbook for the course; material is taken from several research articles
primarily by Ozsváth and Szabó:

� P. Ozsváth and Z. Szabó, Holomorphic disks and topological invariants for closed
three-manifolds, Annals of Math. (2) 159 (2004), no. 3, 1027-1158.

� P. Ozsváth and Z. Szabó, Holomorphic disks and three-manifold invariants: proper-
ties and applications, Annals of Math. (2) 159 (2004), no. 3 1159-1245.

� P. Ozsváth and Z. Szabó, Holomorphic triangles and invariants for smooth four-
manifolds, Adv. Math. 202 (2006), no. 2, 326-400.

� P. Ozsváth and Z. Szabó, Holomorphic disks and knot invariants, Adv. Math. 186
(2004), no. 1, 58-116.
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� P. Ozsváth and Z. Szabó, Knot Floer homology and integer surgeries, Alg. Geo. Top.
8 (2008) no. 1, 101-153.

� S. Sarkar and J. Wang, An algorithm for computing some Heegaard Floer homologies,
Annals of Math. (2) 171 (2010), no. 2 1213-1236.

� C. Manolescu, P. Ozsváth, and S. Sarkar, A combinatorial description of knot Floer
homology, Annals of Math. (2) 169 (2009), no. 2, 633-660.

� C. Manolescu, P. Ozsváth, Z. Szabó, and D. Thurston, On combinatorial link Floer
homology, Geo. Top. 11 (2007), 2339-2412.

� K. Hendricks, C. Manolescu, Involutive Heegaard Floer homology, Duke Math. J.
166 (2017), no. 7, 1211-1299.

The following survery articles may be helpful:

� Ozsváth-Szabó, An introduction to Heegaard Floer homology, in Floer homology,
gauge theory, and low dimensional topology, 3-27, AMS, 2006.

� Ozsváth-Szabó, Lectures on Heegaard Floer homology, in Floer homology, gauge the-
ory, and low dimensional topology, 29-70, AMS, 2006.

� Ozsváth-Szabó, Heegaard diagrams and holomorphic disks, in Different faces of ge-
ometry, 301-348, Kluwer/Plenum, New York, 2004.

� C. Manolescu, An introduction to knot Floer homology, in Physics and mathematics
of link homology, 99-135, Contemp. Math. 680, AMS, 2016.

� J. Hom, A survery on Heegaard Floer homology and concordance. J. Knot Theory
Ramifications 26 (2017), no. 2, 1740015, 24 pp.

Prerequisites: algebraic and differential topology (such as Math 215A, 215B), including
knowledge of characteristic classes and Morse theory. Symplectic geometry (Math 257A)
is recommended but not required.

1.2 Big aims of topology and Floer homology

The primary goal of topology is to classify topological objects. The most fundamental of
these are manifolds. What are all of the manifolds (of each dimension) up to homeomor-
phism? What are the smooth manifolds? What are the oriented, closed, connected smooth
manifolds?

� Dimension 0: any connected, oriented, closed smooth manifold is a point.
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� Dimension 1: any such manifold is a circle.

� Dimension 2: any such manifold is a surface of genus g, for some g P N.

� Dimension 3: connected, oriented, closed smooth manifolds are classified by the ge-
ometrisation theorem (Thurston-Hamilton-Perelman). Essentially any such 3-manifold
Y 3 can be cut along copies of S2 and T2 into fundamental “geometric pieces” of 8
types. Of these, 7 are well understood, and the most interesting case corresponds
to hyperbolic geometry - 3 dimensional hyperbolic geometry is not yet completely
understood.

� Dimensions at least 5: these are understood by surgery theory for π1 “ 1, by the
work of Milnor, Smale, ... in the 60s.

This leaves dimension 4, in which there are still very many questions! (This was the primary
focus of the topics course from the previous quarter.) So how do we try to classify smooth
manifolds in four dimensions? One approach is gauge theory! For example, Yang-Mills and
Seiberg-Witten gauge theory. These give rise to invariants of 4-manifolds that can detect
exotic smooth structures.

For example, we can find 4-manifolds X and X 1 which are homeomorphic, but such
that SW pXq ‰ SW pX 1q, where SW pXq P Z is the Seiberg-Witten invariant of X. But
given a 4-manifold X, can we typically compute SW pXq? This invariant is a certain count
of solutions to differential equations on the manifold, and is difficult to compute in general.
One approach is to use gluing formulae.

Figure 1.1: Decomposition of 4-manifold X.

In figure 1.1, we have decomposed a closed 4-manifold X as two simpler 4-manifolds
X1, X2 glued together along their boundary Y (which is a 3-manifold). The gluing formulae
state that

SW pXq “ xSW pX1q, SW pX2qy,

where SW pX1q P HMpY q, SW pX2q P HMpY q
˚. Here HMpY q is something called the

monopole Floer homology or Seiberg-Witten Floer homology of the 3-manifold Y , and is
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a vector space over Z{2Z (with some grading). This is an example of a Floer homology
constructed from the Seiberg-Witten equations.

There are different versions of monopole Floer homology corresponding to different
equivariant homologies, such as ~HM,zHM , and HM . In fact, these fit into an exact
triangle

¨ ¨ ¨ Ñ zHM˚pY q Ñ HM˚pY q Ñ ~HM˚pY q Ñ zHM˚pY q Ñ ¨ ¨ ¨ .

The Seiberg-Witten equations have a symmetry given by Pinp2q “ S1Y jS1 Ă C‘ jC “ H.
Given any G ă Pinp2q, we can also consider G-equivariant Seiberg-Witten Floer homology.

This is enough about monopole Floer homology - what about Heegaard Floer homology?
This is a symplectic replacement for Seiberg-Witten theory introduced by Ozsváth and
Szabó in 2001. These are again Z{2Z-vector spaces defined for a closed oriented 3-manifold
Y 3, denoted by

yHF pY q, HF`pY q, HF´pY q,yHF pY q, HF8pY q, . . . .

(Again these are all various types of Heegaard Floer homology which we will encounter
later on.) We said that they are symplectic replacements for Seiberg-Witten theory - what
does this mean?

Theorem 1.2.1.

yHF pY q – “non-equivariant Seiberg-Witten Floer homology”

(Kutluhan, Lee, Taubes, circa 2011),

HF`pY q – “S1-equivariant Seiberg-Witten Floer homology”

(Colin, Ghiggini, Honda, circa 2011).

This shows that Heegaard Floer homology recovers the same information as Seiberg-
Witten Floer homology, so why do we care? What are advantages and disadvantages of
Heegaard Floer homology?

Advantages of Heegaard Floer homology. The key advantage is that it’s easier
to compute than Seiberg-Witten Floer homology! In fact, we can use it to recover many
results in 4-manifold theory (which were originally proven using Seiberg-Witten invariants),
following this vague outline. First, Heegaard Floer homology forms a functor from the
cobordism category of 3-manifolds to graded vector spaces. More concretely, given a 4-
manifold W with boundary BW “ Y0 \ p´Y1q, we obtain maps

pFW : yHF pY0q Ñ yHF pY1q, F˘W : HF˘pY0q Ñ HF˘pY1q.

Moreover, if W is a closed 4-manifold, we can remove two copies of S3 as in figure 1.2 to
study W in terms of the induced maps above. The cobordism W1 from S3 to N induces a
map F`W1

, and the cobordism W2 from N to S3 induces a map F´W2
. Mixing these together

in a certain way, we obtain FmixpW q P Z, a “mixed invariant for 4-manifolds”.
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Figure 1.2: Using Heegaard Floer homology to study closed 4-manifolds.

Conjecture. Given a closed 4-manifold W , FmixpW q “ SW pW q.

Even though the above is still only a conjecture, enough properties of Fmix are known
that we can, for example, recover a proof of the existence of exotic smooth structures.
While Seiberg-Witten invariants of 4-manifolds are typically difficult to compute, there are
combinatorial algorithms for computing Heegaard Floer homology.

Disadvantages of Heegaard Floer homology. Less relation to differential geom-
etry! For example, in Seiberg-Witten theory it is not too difficult to show that any 4-
manifold admitting a positive scalar curvature metric has trivial Seiberg-Witten invariant.
However, this type of result is difficult in the Heegaard picture.

1.3 Applications of Heegaard Floer homology: 4-manifolds

Above we mentioned applications to 4-manifold topology by comparison with Seiberg-
Witten theory. Another application is the following question:

Open question. Let W be a smooth 4-manifold with boundary a connected manifold
Y . Given Y , what are the possibilities for H˚pW q? What are the possibilities for the
intersection form QW : H2pW ;Zq b H2pW ;Zq Ñ Z? More specifically, when is W a
homology 4-ball?

ForW to be a homology ball, we certainly need (from the homology long exact sequence)
that Y is a homology 3-sphere; H˚pY q “ H˚pS3q. This motivates the definition of the
homology cobordism group.

Definition 1.3.1. The homology cobordism group Θ3
Z consists of integral homology 3-

spheres, up to homology cobordism. This means that Θ3
Z “ tY 3oriented, H˚pY ;Zq “
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H˚pS3;Zqu{ „, where Y0 „ Y1 if and only if there is a cobordism W from Y0 to Y1 with
H˚pW,Yiq “ 0 for both i. This truly forms a group:

rS3s “ 0, r´Y s “ ´rY s, rY0#Y1s “ rY0s ` rY1s.

We care about the homology cobordism group because rY s “ 0 if and only if Y is
homology cobordant to S3, but this is exactly when Y bounds a homology 4-ball! In
summary, to understand our original question, the real task is to understand the homology
cobordism group. Much work was gone into studying the homology cobordism group, and
this has been helped by Heegaard Floer homology.

Before Floer Homology came into play, the first steps in understanding the homology
cobordism group were carried out by Rokhlin. He defined a surjective homomorphism, now
called the Rokhlin invariant,

µ : Θ3
Z Ñ Z{2Z

which was the first proof that the homology cobordism group is non-trivial. In particular,
the 3-sphere has Rokhlin invariant 0, and the Poincaré homology sphere has Rokhlin in-
variant 1. In the 70s it was conjectured that the Rokhlin invariant was an isomorphism.
However, this can be disproven by Donaldson’s diagonalisation theorem - the homology
cobordism group is infinite. More precisely, the Casson invariant (which is discussed in
my notes on homology 3-spheres) is a surjective map Θ3

Z Ñ Z, so this gives another proof
of the infinitude of Θ3

Z. It turns out that the Casson invariant is some sort of Euler char-
acteristic for Floer homology! perhaps we will touch on this eventually.

In fact, Ciprian showed (in 2013?) using his version of Seiberg-Witten Floer homology
that the homology cobordism group has no elements of order 2! This is equivalent to
the falsity of the triangulation conjecture for manifolds of dimension at least 5! That is,
there exist topological manifolds of dimension at least five that do not admit compatible
triangulations. This is also discussed in my notes on homology 3-spheres.

Where does Heegaard Floer homology come into play?

� Using HF`, one can define a surjective homomorphism

d : Θ3
Z Ñ Z.

In particular, dpP q “ 2, where P is the Poincaré homology sphere. This shows that
P does not bound a homology 4-ball (which we of course already knew from the
Rokhlin or Casson invariants). This is really telling us that the homology cobordism
group has a Z direct summand.

� In fact, using involutive Heegaard Floer homology (Hendricks-Manolescu, 2016), we
can extract even more information. involutive Heegaard Floer homology is an ana-
logue of Z{4Z-equivariant Seiberg-Witten Floer homology, where Z{4Z “ xjy sits
inside Pinp2q Ă H. Using involutive Heegaard Floer homology, it was later shown
that Θ3

Z actually has a Z8 direct summand! (Dai-Hom-Stoffregen-Truong, 2018).
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1.4 Interlude: Hungarian pronunciation

A prerequisite to studying Heegaard Floer homology is to learn some Hungarian pronun-
ciation! Much of the field was pioneered by two Hungarian mathematicians, Ozsváth and
Szabó. Here is a table of some key things to keep in mind:

Hungarian English

s sh (like shoe)

sz s (like spoon)

zs zh (like pleasure)

j y (like yeet)

c ts (like spots)

w v (like vinyl)

If we place consonants adjacently (e.g. “th”) in Hungarian, we would not read this as
thought, but as a “t” followed by an “h” (so in English this is just approximated by a
single t).

We can practice our pronunciation with some names that we might encounter:

Peter Ozsváth Zoltán Szabó András Vasy András Stipsicz András Juhász.

1.5 Applications of Heegaard Floer homology: 3-manifolds

Question. Let Y 3 be closed and oriented, and h P H2pY ;Zq. Then h can be represented
by a closed oriented (possibly disconnected) surface. What is the simplest such surface?

Suppose Σ is a surface representing h. Then we can write Σ “
Ť

Σi for each component,
so that its Euler characteristic is

χpΣq “
ÿ

χpΣiq “
ÿ

p2´ 2gpΣiqq.

Given any Σ, addition of handles will decrease χpΣq by 2, while addition of contractible
spheres will increase χpΣq by 2. One approach to interpreting the previous question is “what
is the minimum Euler characteristic of a surface representing a given second homology class,
when we account for the previous two modifications?” This is essentially the definition of
the Thurston norm.

Definition 1.5.1. Given a surface Σ, χ´pΣq “
ř

i maxt0,´χpΣiqu “ ´
ř

Σi not a sphere χpΣiq.
We define the Thurston norm of a second homology class h to be the minimum χ´pΣq, for
Σ representing h:

θphq “ minpχ´pΣq : rΣs “ hq.
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Therefore our first question can be rephrased as “given a second homology class of a 3-
manifold, what is its Thurston norm?” This can be solved using Heegaard Floer homology!
One can show that

yHF pY q “
à

sPH2pY ;Zq

yHF pY ; sq

where yHF pY ; sq are abelian groups, non-zero only for finitely many s. This description of
Heegaard Floer homology answers the originl question by the following theorem:

Theorem 1.5.2 (Ozsváth-Szabó).

θphq “ maxtxs, hy : s P H2pY ;Zq,yHF pY ; sq ‰ 0u.

Of course, one might say “hey, this doesn’t answer the question! We don’t necessarily
know what the Heegaard Floer homology of a three manifold is! Can we compute it?”
Fortunately this was solved in 2006 by Sarkar and Wang:

Theorem 1.5.3 (Sarkar-Wang, 2006). Given any 3-manifold Y , there is an algorithm to

compute yHF pY q.

1.6 Applications of Heegaard Floer homology: knots

Finally we look at applications to knot theory! Heegaard Floer homology has a knot-
theory version, introduced independently by Ozsváth-Szabó and by Rasmussen, in 2003.
Suppose K Ă Y 3 is null-homologous, with K a knot. Then the knot Floer homology of K
is denoted by {HFKpY,Kq. In particular we care about knots in S3, in which case we write
{HFKpS3,Kq. Knot Floer homology decomposes as a direct sum of some smaller pieces, in
a way that was analogous to Heegaard Floer homology (when we were writing a formula
for the Thurston norm):

{HFKpY,Kq “
à

sPZ

{HFKpS3,K, sq.

This time we can use the above decomposition to describe the genus of a knot! This is
generally considered to be a very difficult problem.

Definition 1.6.1. Let K be a knot. A Seifert surface of K is an oriented connected
surface Σ embedded in S3 with boundary K. The genus of K is the minimum genus of
Seifert surfaces of K:

gpKq :“ mintgpΣq : Σ is a Seifert surface of Ku.

The above definition makes it clear why the genus is generally difficult to compute:
knot invariants defined in terms of maximums or minimums are typically powerful but
intractible.
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Theorem 1.6.2. Let K be a knot. Then

gpKq “ maxts : {HFKpS3,K, sq ‰ 0u.

As was the case with the Thurston norm problem, to really conclude that the above
theorem solves the genus problem, we must ensure that {HFKpS3,K, sq can actually be
computed. This can indeed be done!

Theorem 1.6.3 (Manolescu-Ozsváth-Sarkar, 2006). There exists a combinatorial algo-

rithm for computing {HFK.

One of the biggest goals in knot theory was to understand the unknotting problem.
Given a diagram of a knot, how do we decide whether or not the diagram represents the
unknot? More formally, is there an algorithm to determine whether or not a given knot
projection is the unknot?

� This was solved in the affirmative in 1961 by Haken, using normal surfaces.

� A new solution is given by the above results in terms of knot Floer homology: a knot
is the unknot if and only if it has genus 0. But the genus is expressed in terms of
knot Floer homology, and this can be computed algorithmically.

Of course this gives a new proof, but it would be nice to find a solution to a problem that
has yet to be solved using non-knot Floer homology methods. A possible direction for
this is the problem of classifying slice knots. Currently there is no known algorithm for
determining whether or not a knot is slice.

Definition 1.6.4. Let K be a knot in S3. Let B4 be the 4-ball bound by S3, so that
K lies on the boundary of B4. K is said to be topologically slice if there is a locally flat
topological embedding of a disk D2 ãÑ B4, so that BD2 “ K. K is said to be slice or
smoothly slice if there is a smooth embedding D2 ãÑ B4 with BD2 “ K.

While the problem of classifying slice knots is unsolved, knot Floer homology provides
many obstructions! Examples include τ, ε, ν, ν`, υ, . . .. Of course, just listing their names
doesn’t really mean anything, but hey - there are lots of them! To understand what the
point of these obstructions are, we can recall the Rasmussen invariant s obtained from
Khovanov homology (which we constructed in the Spring 2020 topics course). Using the
s invariant, we showed for example that there are topologically slice knots which are not
slice! (Moreover, we used this to show the existence of exotic R4s!)

� Define the slice genus gspKq of a knot K to be the minimum genus of a smoothly
embedded surface Σ embedded in B4 whose boundary is K Ă BB4 “ S3.

� A knot is slice if and only if its slice genus is 0.
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� A key property of Rasmussen’s s invariant is that spKq is a lower bound for 2gspKq.
One can show that the Whitehead double of the torus knot T2,3 has Rasmussen
invariant 2, so it is not slice.

� On the other hand, the Alexander polynomial of a Whitehead double is trivial! And
a result by Freedman gives that knots with trivial Alexander polynomial are topo-
logically slice.

This derivation shows how we can use obstructions to sliceness such as the Rasmussen
invariant to begin classyfing slice knots. Later in the course we’ll encounter the knot Floer
theoretic obstructions to sliceness!

In our efforts to study 4-manifolds a few sections earlier, we naturally encountered the
homology cobordism group. The analogous object in knot theory is the concordance group,
which tells us about slice knots.

Definition 1.6.5. The knot concordance group or just concordance group is C “ tknotsu{ „,
where K0 „ K1 if K0 and K1 are concordant. That is, if there exists a smooth embedded
annulus A Ă S3 ˆ r0, 1s such that BA “ p´K0q \K1.

In particular, this means that K is concordant to the unknot if and only if K is slice.
In much the same way that the structure of the homology cobordism group Θ3

Z eludes us,
so does the structure of C.

� (Classical result, using algebraic topology) C has a Z8 direct summand.

� (Result using knot Floer homology) CTS ă C, the subgroup generated by topologically
slice knots, also has a Z8 direct summand.
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Chapter 2

Preliminaries for Heegaard and
Lagrangian Floer homology

This entire chapter is dedicated to the construction of Heegaard Floer homology. We intro-
duce all necessary background concepts, most notably some symplectic geometry results.

2.1 Outline of the construction of Heegaard Floer homology

All of the details of this brief section will be fleshed out in the next few lectures. Heegaard
Floer homology, as the name suggests, is constructed using Heegaard splittings.

� Let Y be a closed oriented 3-manifold. Then Y admits a Heegaard splitting, and
moreover a representation via a Heegaard diagram; H “ pΣg, α1, . . . , αg, β1, . . . , βgq.
(Then Y is obtained by gluing disks to Σg along the curves αi and βi on each side of
Σg, and finally filling the holes with a ball B3 for each side.)

� From Σg we obtain a manifold called its symmetric product, which happens to canon-
ically be a symplectic manifold :

SymgpΣgq “ Σˆ Σˆ ¨ ¨ ¨ ˆ Σ{Sg.

This is a 2g-dimensional manifold containing two g-dimensional submanifolds (tori)
determined by the Heegaard diagram:

Tα “ α1 ˆ ¨ ¨ ¨ ˆ αg,Tβ “ β1 ˆ ¨ ¨ ¨ ˆ βg Ă SymgpΣgq.

These tori happen to be Lagrangian submanifolds!

� (By transversality) the intersection Tα X Tβ is some finite number of points. Let
CF denote the free abelian group generated by Tα X Tβ. (CF probably stands for
Floer chain (complex).) CF admits a grading, and there are maps B : CFn Ñ CFn´1

making this a chain complex. The boundary maps count pseudo-holomorphic disks.
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� The homology H˚pCF, Bq of the Floer chain complex pCFn, Bq is exactly the Heegaard
Floer homology;

HF pY q “ H˚pCF, Bq.

2.2 Heegaard splittings and diagrams (lecture 2)

For the duration of this lecture, Y “ Y 3 denotes a closed oriented 3-manifold.

Definition 2.2.1. A Heegaard splitting of Y is a decomposition

Y “ Hg \f H
1
g,

where Hg, H
1
g are handlebodies of genus g, and f : BHg Ñ BH 1g “ Σg is a diffeomorphism

(defining how Hg is glued to H 1g).

Heegaard splittings are used to describe three manifolds using lower dimensional data,
and are useful because they always exist!

Theorem 2.2.2. Every closed oriented 3-manifold has a Heegaard splitting.

This is often proven using Morse theory, but here we give a proof using triangulations.
Recall that a triangulation is a decomposition of a manifold into simplices, and forms an
intermediate tier of structure between smooth manifolds and topological manifolds.

Definition 2.2.3. A triangulation of a topological space X is a simplicial complex K
together with a homeomorphism K Ñ X.

Proof that 3-manifolds admit Heegaard splittings. Let M be a closed orientable 3-manifold,
and T a triangulation ofM . Each vertex of T has a neighbourhood homeomorphic to 0ˆD3,
each edge a neighbourhood homeomorphic to D1 ˆD2, each face, D2 ˆD1, and each cell,
D3 ˆ 0. Taking appropriate intersections, M can be expressed as a union of these pieces
glued along their boundaries. Let the neighbourhoods of vertices and edges define Hg, and
faces and cells define H 1g. This is a Heegaard splitting of M .

This reduces the description of any closed oriented 3-manifold to descriptions of handle-
bodies and how they are glued together. But it turns out that any handlebody Hg can be
described in terms of curves on a surface Σg! Specifically, any g linearly independent sim-
ple disjoint embedded closed curves α1, . . . , αg in Σg determine a handlebody. By linearly
independent, we mean in H1pΣgq “ Z2g. Then

Hg “ Σg YDα1 Y ¨ ¨ ¨ YDαg YB
3,

where the disks and ball are as indicated in figure 2.1. The idea is that each closed curve
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Figure 2.1: Description of a handlebody by specifying curves on a surface.

uniquely determines a disk on one side of the surface (every orientable surface is 2-sided
in R3), and after filling in g disks we’re left with a cavity that can be filled with a 3-ball.

Similarly, we can specify g curves β1, . . . , βg to describe the other handlebody, H 1g, of
the Heegaard splitting. This constitutes the data of a Heegaard diagram

pΣ, α1, . . . , αg, β1, . . . , βgq.

The overall process for specifying a closed oriented 3-manifold in terms of a Heegaard
diagram (surface and embedded curves) is

Heegaard diagram ù Heegaard splitting ù 3-manifold.

Exercise. Let Y have Heegaard diagram pΣ, α1, . . . , αg, β1, . . . , βgq. Show that

H1pY q – H1pΣq{xα1, . . . , αg, β1, . . . , βgy.

Hint: Mayer-Vietoris.

We now look at some examples of Heegaard diagrams. Firstly, it is a hassle to draw
an actual surface all the time! Instead, we draw a flat diagram akin to a “fundamental
polygon” of the surface. An example of an arbitrary Heegaard diagram in its final visual
form is given in figure 2.2. The diagram on the bottom right is obtained by cutting along
the holes in Σ2. The boundary components 1 and 1 glue together with opposite orientations
to give the first hole, and similarly for 2 and 2. Finally to obtain the closed surface, the
bottom right diagram is compactified at a point at infinity.

The standard notation is to draw alpha curves in red, and beta curves in blue.

Example. The empty Heegaard diagram represents the 3-sphere. This is because it cor-
responds to a 2-sphere with no curves, and gluing 3-balls to each side of the 2-sphere gives
S3.
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Figure 2.2: Heegaard diagram in its Super Saiyan mode.

Figure 2.3: Heegaard diagram of S3.

Example. The diagram in figure 2.3 also represents a 3-sphere. This can be seen by
drawing the corresponding surface and filling in disks for the given curves and so on.

Example. The diagram in figure 2.4 represents S1ˆ S2. This can be seen by drawing two
tori side by side with the given curves on them. Gluing these tori together corresponds to
gluing the disks (from the curves) together along their boundary, so each meridian of the
torus gives a copy of S2. The torus is foliated by S1 copies of meridians, so overall we have
S1 ˆ S2.

Example. A general diagram of a genus 1 Heegaard splitting looks like 2.5. We can use a
diffeomorphism of the surface to place the α curve in standard position, and then any β is
of the form pm`qα (in homology), where gcdpp, qq “ 1. This follows from the classification
of simple closed curves on a torus.
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Figure 2.4: Heegaard diagram of S1 ˆ S2.

Figure 2.5: Heegaard diagram of Lens space Lp3, 2q.

For example, in this particular figure, we can count intersections and find that α ¨β “ 3,
while m ¨β “ 2. It follows that p “ 3 and q “ 2. The corresponding 3-manifold is the Lens
space Lpp, qq “ Lp3, 2q. A more geometric approach to Lens spaces is Lpp, qq “ S3{pZ{pZq,
where the group action is given by upz, wq “ puz, uqwq for u P Z{pZ, and S3 is parametrised
as the unit sphere in C2. More explicitly,

Lpp, qq “ tpz, wq P C2 : |z|2 ` |w|2 “ 1u{pz, wq „ puz, uqwq, u P Z{pZ.

One can verify in each example (without having to appeal to visual intuition and
simply using group presentations) that fundamental groups and homology groups are all
as expected.

2.3 Operations on Heegaard splittings and diagrams

Consider a Heegaard diagram pΣ, α1, . . . , αg, β1, . . . , βgq for a closed oriented 3-manifold
Y . What are the ways we can change the diagram and for it to still represent the same
Heegaard splitting? What are the ways we can change the diagram and for it to still
represent the same 3-manifold?

Firstly we can isotope any curves and obtain a new Heegaard diagram for the same
Heegaard splitting. A less trivial operation is that we can do handle slides without changing
the Heegaard splitting. That is, given any two α loops on a surface Σ (or any two β loops),
we can slide one over the other to obtain a new Heegaard diagram. Formally, given loops
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α1 and α2, sliding α1 over α2 corresponds to replacing α1 with α11, which is the connected
sum of α1 with a push-off of α2.

On the algebraic side, let i : Σg Ñ Hg be the inclusion map, where Hg is the handlebody
determined by loops α1, . . . , αg on Σg. The induced map i˚ : H1pΣgq Ñ H1pHgq then kernel
xα1, . . . , αgy. Then a handle slide corresponds to a change of basis of ker i˚.

In fact, it turns out that isotopies and handleslides give all possible Heegaard diagrams
for a given Heegaard splitting! This is formalised in the following theorem.

Theorem 2.3.1. Any two collections of linearly independent simple closed curves on a
surface Σ representing the same handlebody are related by a sequence of handleslides and
isotopies. In particular,

tHeegaard splittingsu – tHeegaard diagramsu{handle slides and isotopies.

The next question is: how many Heegaard splittings does a given closed oriented 3-
manifold have? It turns out that all Heegaard splittings are related by stabilisation. The
cleanest definition of stabilisation uses Heegaard diagrams, so we first give a definition in
these terms. Afterwards we will give an alternative definition which uses only the structure
of the Heegaard splitting. (Spiritually, the former is a coordinate dependent definition, and
the latter coordinate free.)

Definition 2.3.2. Let pΣ, α1, . . . , αg, β1, . . . , βgq, pΣ
1, α11, . . . , α

1
h, β

1
1, . . . , β

1
hq be Heegaard

diagrams. The connected sum of these two Heegaard diagrams is

pΣ#Σ1, α1, . . . , αg, α
1
1, . . . , α

1
h, β1, . . . , βg, β

1
1, . . . , β

1
hq.

Next, the stabilisation of pΣ, α1, . . . , αg, β1, . . . , βgq is its connected sum with the genus 1
Heegaard diagram of a 3-sphere (seen in an earlier example).

This process really corresponds to adding a handle to each handlebody of the Heegaard
splitting, in such a way that the two handles interlock to give a 3-sphere. This perspective
(although messier to formalise) is more evident in the coordinate free definition.

Definition 2.3.3. Let Y “ HgYH
1
g be a Heegaard splitting. Stabilisation is the following

procedure:

1. Attach an additional unknotted 1-handle h to Hg, to obtain Hg`1. Since Hg is a
submanifold of Y , “unkotted” is formalised by saying that the core of the 1-handle
bounds an embedded disk D2 in Y .

2. Let h1 denote a “thickening” of the embedded disk. Then hYh1YHg is homeomorphic
to Hg (since h Y h1 is just a boundary connected sum D3 with Hg). Therefore Y
decomposes as hY h1 YHg YH

1
g.
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3. By studying the boundary of h Y h1 Y Hg, we see that h1 intersects H 1g along two
disjoint disks. Therefore H 1g Y h

1 is a handlebody of genus g` 1, which we denote by
H 1g`1.

In summary we have Y “ Hg`1 Y H 1g`1, so from our genus g Heegaard splitting we can
canonically obtain a genus g ` 1 Heegaard splitting. (This process is stabilisation.)

As remarked earlier, all Heegaard splittings of the same 3-manifold are in fact related
by stabilisation and destabilisation!

Theorem 2.3.4. (Reidemeister-Singer) Any two Heegaard splittings of the same 3-manifold
are related by a sequence of stabilisations to each splitting.

Combining this with the repvious result concering the freedom of Heegaard diagrams
for a given Heegaard splitting, we have

tClosed oriented 3-man’su – tHeegaard splittingsu{stab.

– tHeegaard diagramsu{handle slides, isotopies, stab.

As a final remark before moving on to symmetric products, we introduce based Heegaard
diagrams, which are essentially Heegaard diagrams with a distinguished base point.

Definition 2.3.5. A based Heegaard diagram of a 3-manifold is the data pΣ, α1, . . . , αg, β1, . . . , βg, zq
where z is a point in Σ that does not lie on any of the curves αi, βi.

Exercise. Show that

tBased 3-manifoldsu – tBased Heegaard diagramsu{ „

where „ is stabilisation away from z, handle slides away from z, and isotopies away from
z.

The non-trivial part of this exercise is avoiding the base point. The key is to re-write
arbitrary moves in terms of those avoiding z.

2.4 Symmetric products

Recall that our goal is to construct the Heegaard Floer homology of a closed oriented 3-
manifold. The first step was to understand Heegaard diagrams of 3-manifolds. Next, given
a Heegaard diagram, we want to associate to it a symplectic manifold with distinguished
Lagrangian submanifolds. The symplectic manifold will be obtained via a symmetric prod-
uct.
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Definition 2.4.1. Let M be a manifold of dimension d. Then

SymkpMq :“
ź

k

M{Sk,

where Sk acts on
ś

kM be permuting px1, . . . , xkq P
ś

kM . Thus SymkpMq consists of
unordered k-tuples of points in M .

Remark. In general Sk does not act freely on
ś

kM , so SymkpMq is not manifold.

Example. � Sym0pMq “ pt.

� Sym1pMq “M .

� Sym2pMq has two local models: pm1,m2q with m1 ‰ m2 determines a “smooth
point”, with local model Rd ˆ Rd. Points of the form pm,mq are fixed points of
S2 “ Z{2Z, so the local model is pRd ˆ Rdq{pZ{2Zq “ Sym2pRdq.

Now we wish to understand what Sym2pRdq looks like. This is explicitly the space

Rd ˆ Rd{px, yq „ py, xq.

We can change our basis to u “ x` y, v “ x´ y. Then

Sym2pRdq “ Rd ˆ Rd{pu, vq „ pu,´vq “ Rd ˆ pRd{pZ{2Zqq.

The factor on the right can equivalently be written as CpSd´1q{pZ{2Zq, where CpXq denotes
the cone over X. But now Sd´1{pZ{2Zq is very familiar: it is the real projective space
RPd´1. In summary, we have

Sym2pRdq “ Rd ˆ CpRPd´1q.

When is this a manifold? In general it’ll have a singularity. However, exactly when
d “ 0, d “ 2, we have RPd´1 – Sd´1, so that CpRPd´1q “ CpSd´1q “ Rd. In the instances
d “ 0 or d “ 2, we have that Sym2pRdq is a manifold. This suggests that for any surface
Σ, Sym2pΣq should locally look like R4, and in particular be a manifold. This is indeed
the case, and an even better result holds.

Proposition 2.4.2. Let Σg be the oriented surface of genus g. Then SymkpΣq is a 2k-
manifold.

Proof. We must show that the local model of SymkpΣq is R2k – Ck. First, choose any
pz1, . . . , zkq P SymkpΣq. We group the matching coordinates, and write

pz1, . . . , zkq “ pw1, . . . , w1, w2, . . . , w2, . . .q,
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where there are `1 instances of w1, `2 instances of w2, and so on, and wi “ wj if and only
if i “ j. Then the local model at pz1, . . . , zkq is

Sym`1pR2q ˆ Sym`2pR2q ˆ ¨ ¨ ¨ .

It remains to show that Sym`ipR2q – Sym`ipCq is a manifold. We achieve this by con-
structing a diffeomorphism

Sym`pCq “
ź

`

C{S` Ñ C`

and its inverse map. In the forwards direction, we send the unordered tuple tz1, . . . , z`u P
ś

`pCq to the ordered tuple ps1, . . . , s`q, where si is the ith elementary symmetric poly-
nomial. By nature of these polynomials being symmetric, the map is well defined. The
inverse map is given by sending ps1, . . . , s`q to the unordered list of roots of the polynomial
t` ´ stell´1 ` ¨ ¨ ¨ ` p´1q`s`.

This establishes that SymkpΣq is a manifold, where in our context Σ is the closed
oriented surface obtained from a Heegaard splitting. We will show further that SymkpΣq
is a symplectic manifold with a view to constructing Heegaard Floer homology. But first,
we must talk about some sympletic geometry/topology!

2.5 Symplectic topology crash course

Some useful references:

� McDuff-Salamon Introduction to Symplectic Topology.

� Weinstein Lectures on Symplectic Manifolds.

� Ana Cannas da Silva Lectures on Symplectic Geometry.

Every 2-tensor T can be decomposed as T “ S`A with S symmetric, and A antisymmetric.
Explicitly, this is achieved by Spa, bq “ pT pa, bq ` T pb, aqq{2, and Apa, bq “ pT pa, bq ´
T pb, aqq{2. Since 2-tensors capture relations between two vectors on a manifold, they are
the canonical structure we’d like to equip on a manifold in order to do geometry. On one
hand, symmetric 2-tensors correspond to Riemannian geometry. The above calculation
shows that all other 2-tensor structure is captured by antisymmetric 2-tensors (i.e. 2-
forms) - and this is what corresponds to symplectic geometry.

Definition 2.5.1. Let M2n be a 2n-manifold. A symplectic form on M is a 2-tensor ω on
M satisfying the following properties:

� It is antisymmetric, i.e. ω is a 2-form: ω P Ω2pMq.

� It is closed, i.e. dω “ 0.
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� It is non-degenerate, i.e. ^nω P Ω2npMq is nowhere vanishing.

Perhaps a better motivation for symplectic structures than the one given above is to
go to the original motivation: physics. The relationship between physics and sympletic
geometry is described in detail in my course notes for Maths 257A (from Fall 2019).

We now look at some examples.

Example. If n “ 1, the underlying manifold is a surface Σ, and ω is a closed 2-form
with ^nω “ ω nowhere vanishing. This is exactly the statement that pΣ, ωq is a surface
equipped with a volume form.

Example. Consider R2n with coordinates x1, . . . , xn, y1, . . . , yn. The canonical form on
R2n is

řn
i“1 dxi^dyi. In fact, by Darboux’s theorem, this is the local model of all symplectic

manifolds!

Example. Let M be any n-manifold. Then the cotangent bundle T ˚M is a 2n-manifold,
and can be given coordinates x1, . . . , xn, ξ1, . . . , ξn. This is also canonically a symplectic
manifold, with canonical form

řn
i“1 dxi ^ dξi. This is the most important symplectic

manifold in physics - consider a physical space M with position coordinates (for example
R3). Then T ˚M consists of pairs pq, pq where q is position, and p is momentum! A
function H : T ˚M Ñ R can then be interpreted as measuring the energy of every position-
momentum pair, i.e. H is a Hamiltonian! This gives a formalism which can describe all of
classical mechanics.

What are some important submanifolds of a symplectic manifold? When restricting
a Riemannian metric (a symmetric positive-definite bilinear form) to a submanifold, it is
guaranteed to restrict as a Riemannian metric. Thus every submanifold of a Riemannian
manifold is canonically a Riemannian manifold as well. However, this does not hold for
symplectic manifolds! On one hand, some submanifolds are symplectic (upon restriction
of the symplectic form), but on the other extreme, there are submanifolds on which the
restriction of the symplectic form vanishes!

Definition 2.5.2. Let N Ă pM2n, ωq be a submanifold.

� N is said to be symplectic if the restriction ω|N is itself a symplectic form (equiva-
lently, ω|N is non-degenerate).

� N is isotropic if ω|N “ 0.

� N is Lagrangian if it is isotropic and n-dimensional.

Lagrangian submanifolds are maximal-dimensional isotropic submanifolds.

Example. Any curve on a surface pΣ, ωq. This is because any one dimensional submanifold
of a symplectic manifold can be shown to be isotropic, and a curve on a surface is also
middle-dimensional.
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Example. Let s be a section of T ˚M . If s is closed, then im s is a Lagrangian subman-
ifold of T ˚M (with the canonical form). In particular, the image of the zero-section is
Lagrangian.

Example. A non-example: consider V n Ă pR2n, ωcanonicalq, with V defined to be the tuples
px1, . . . , xn, y1, . . . , ynq satisfying x1 “ y2, but all other yi vanishing.

2.6 Riemannian-symplectic-complex 2-out-of-3

Loosely speaking, any two of three compatible Riemannian, almost-complex, and symplec-
tic structures determines the third. We must explain what is meant by an almost-complex
structure, but also what it means for these structures to be compatible.

Definition 2.6.1. Let M be a 2n-manifold.

� A symplectic structure is a closed nondegenerate 2-form.

� A Riemannian structure is a symmetric positive-definite bilinear form.

� An almost complex structure is a bundle map J : TM Ñ TM covering the identity
map on M , such that J2 “ id.

Of course, we think of J as being a generalisation of multiplication by i. We call J
an almost complex structure, since a complex structure should morally be the requirement
that transition maps of the manifold are holomorphic, which is a stronger condition.

Definition 2.6.2. Let M be a 2n-manifold, equipped with a metric g, symplectic form ω,
and complex structure J .

� We say that g and J are compatible if g “ J˚g.

� We say that ω and J are almost-compatible if ω “ J˚ω. J is tame if ωpv, Jvq ą 0 for
all v. Finally ω and J are said to be compatible if they are almost-compatible and J
is tame.

Tameness is required to ensure that gJpv, wq “ ωpv, Jwq is positive definite, and in
particular a metric. This shows that any symplectic form and almost complex form deter-
mines a canonical metric which is also compatible with the almost-complex form. Similarly,
a metric and compatible almost-complex form determines a compatible symplectic form.
Finally, g and ω induce isomorphisms rg, rω : TM Ñ T ˚M , and rg´1 ˝ rω : TM Ñ TM is a
complex structure compatible with both g and ω.

Theorem 2.6.3. Let pM, g, ω, Jq be a manifold equipped with a metric, symplectic form,
and almost-complex structure, such that g “ ωp´, J´q. Then any two of g, ω, J determine
the third.
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More generally, suppose pM,ωq is symplectic. Then there is a canonical map Θ admit-
ting a canonical section s, giving rise to the following correspondence:

t Inner products g on V . u
Θ

ÝÝÝÝÝáâÝÝÝÝÝ
s

"

Complex structures on V ,
compatible with ω.

*

Moreover, given any g, Θpgq is compatible with g. As a corollary, the space of complex
structures compatible with ω is contractible.

Conversely, suppose pM,Jq is almost-complex. Then there is a canonical map Φ ad-
mitting a canonical section s, giving rise to the following correspondence:

t Inner products g on V . u
Φ

ÝÝÝÝáâÝÝÝÝ
s

"

Symplectic structures on V ,
compatible with J .

*

The space of sympletic structures compatible with J is again contractible.

Theorem 2.6.4. Let pM,ω, Jq, pM 1, ω1, J 1q be symplectic manifolds equipped with compat-
ible complex structures. Then M and M 1 are isomorphic as symplectic manifolds if and
only if they are isomorphic as almost-complex manifolds.

This completes our crash course on symplectic topology! Proofs for everything in the
symplectic sections of these notes can be found in my 257A Fall 2019 course notes.

2.7 Almost complex structures (lecture 3)

We begin by recalling some symplectic geometry definitions from the previous class.

Definition 2.7.1. Let M2n be a manifold.

� pM,ωq is symplectic if ω is a closed non-degenerate 2-form on M .

� An almost complex structure is a section J of the endomorphism bundle of TM (i.e.
a bundle map J : TM Ñ TM) such that J2 “ id.

� J and ω are compatible if

1. ω “ J˚ω, i.e. ωp´,´q “ ωpJ´, J´q.

2. ωpv, Tvq ą 0 for all non-zero v.

In this instance, ωp´, J´q defines a metric.

At the end of the previous class, we mentioned that given a compatible triple pM, g, ω, Jq,
any two of g, ω, J determine the third. However, we didn’t really touch on a more funda-
mental result: the existence of compatible complex structures given a symplectic structure,
and the topology of the space of compatible complex structures.
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Definition 2.7.2. We write J pM,ωq to denote the space of almost complex structures on
M compatible with ω.

Proposition 2.7.3. Given any symplectic manifold pM,ωq, J pM,ωq is non-empty and
contractible.

A proof of this result was given in class. However, a more detailed proof has been
written up in my Maths 257A notes from Fall 2019, so we do not repeat the argument
here.
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Chapter 3

J-holomorphic curves and
Lagrangian Floer homology

3.1 J-holomorphic curves

The J-holomorphic curves by Gromov revolutionised symplectic geometry. They are prob-
ably best known for leading to the Gromov-Witten invariants, but they also a key ingredi-
ent in Floer homology! They are essentially just (complex) 1-dimensional curves in almost
complex manifolds.

Definition 3.1.1. A function f : C Ñ C is complex differentiable (holomorphic) if it
satisfies the Cauchy-Riemann equations;

du{dx “ dv{dy, du{dy “ ´dv{dx,

where fpx, yq “ pupx, yq, vpx, yqq.

We can re-write this as f : pR2, jq Ñ pR2, Jq from the “almost complex manifold” C to
itself. Then j and J both have matrix representation

j “ J “

ˆ

0 ´1
1 0

˙

.

On the other hand, given that fpx, yq “ pupx, yq, vpx, yqq, we have

df “

ˆ

du{dx dv{dx
du{dy dv{dy

˙

.

This gives

pdf ` J ˝ df ˝ jq “

ˆ

du{dx dv{dx
du{dy dv{dy

˙

`

ˆ

0 ´1
1 0

˙ˆ

du{dx dv{dx
du{dy dv{dy

˙ˆ

0 ´1
1 0

˙

“

ˆ

du{dx´ dv{dy dv{dx` du{dy
du{dy ` dv{dx dv{dy ´ du{dx

˙

.
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Therefore the Cauchy-Riemann equations are satisfied if and only if

df ` J ˝ df ˝ j “ 0.

Multiplying by J (or by j), this is equivalently the condition that

df ˝ j “ J ˝ df.

We observe that this is coordinate independent, and makes sense for any almost complex
manifolds!

Definition 3.1.2. Let pM, jq, pN, Jq be almost complex manifolds. The Cauchy-Riemann
equation for a map f : M Ñ N is

df ˝ j “ J ˝ df.

If f satisfies the Cauchy-Riemann equation, it is said to be (j, J)-holomorphic.

Before moving on, we introduce a little bit of notation. There is a certain calculus
(Wirtinger calculus) for complex and almost complex manifolds, in which we work with
holomorphic and antiholomorphic derivatives, denoted B and B respectively. These give rise
to a complex analogue of de Rham cohomology, known as Dolbeault cohomology (which is
again explained in my Math 257A course notes from Fall 2019). What is relevant here is
that we can define

BJf “
1

2
pdf ´ J ˝ df ˝ jq, BJf “

1

2
pdf ` J ˝ df ˝ jq.

Notice that BJ `BJ “ d; the holomorphic and antiholomorphic differentials are projections
of d onto the space of holomorphic and antiholomorphic forms. This gives a final concise
way of writing the Cauchy-Riemann equations!

Proposition 3.1.3. A map f : pM, jq Ñ pN, Jq satisfies the Cauchy-Riemann equation if
and only if

BJf “ 0.

A J-holomorphic curve, which are now ready to define, is pretty much exactly what we
expect it to be!

Definition 3.1.4. Let pM,ωq be a symplectic manifold, and J P J pM,ωq. Let pΣ, jq be
a Riemann surface. (This is equivalently an almost complex closed (real) two dimensional
manifold.) A map u : Σ ÑM is a J-holomorphic curve if BJu “ 0.

Example. A particular case of interest is J-holomorphic spheres: u : S2 Ñ pM,Jq, BJu “
0. Notice that S2 admits a canonical complex structure since S2 “ CP1.
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Definition 3.1.5. Let L Ă pM,ωq be Lagrangian (i.e. 2 dimL “ dimM and ω|L “ 0). A
map u : pD2, BD2q Ñ pM,Lq is a J-holomorphic disk if BJu “ 0.

Definition 3.1.6. Let L0, L1 Ă M be Lagrangian, and fix x, y P L0 X L1. Let u :
Rˆ r0, 1s ÑM satisfy

� up´, 0q P L0, and up´, 1q P L1.

� limsÑ´8 ups, tq “ x, limsÑ8 ups, tq “ y.

� BJu “ 0.

Then u is a J-holomorphic strip. (Sometimes these are also called J-holomorphic disks).

Remark. Why are these also called J-holomorphic disks? An alternative definition is to
instead consider a map u : pD, BDq Ñ pM,L0, L1q with two marked points 1,´1 P D Ă C
mapping to marked points x, y P L0XL1, with the top half of the boundary of D mapping
into L0 and the bottom half into L1.

Remark. 1. The points x and y can coincide! 2. Many J-holomorphic strips can be shown
to exist by the Riemann mapping theorem.

Definition 3.1.7. Finally we define time-dependent J-holomorphic strips as follows. Spec-
ify Jt P J pM,ωq, t P r0, 1s. A map u : Rˆ r0, 1s Ñ M is a time-dependent J-holomorphic
strip if it satisfies the same boundary conditions as above, but the Cauchy-Riemann con-
dition is replaced with

Bu{Bs` Jtpups, tqqBu{Bt “ 0.

Remark. In the earlier derivation of the coordinate free Cauchy-Riemann equation from
the classical Cauchy-Riemann equations, an intermediate step (which was not made ex-
plicit) is that the equations are equivalent to

Bu{Bs` JBu{Bt “ 0.

To study the space of J-holomorphic curves we desire some invariants. One such in-
variant is the energy of a curve.

Definition 3.1.8. Let u : Σ ÑM be a J-holomorphic curve. The energy of u is

Epuq :“

ż

Σ
|du|2.

Lemma 3.1.9. Epuq “
ş

Σ u
˚ω. Moreover, if Σ is a 2-sphere, then Epuq “ rωsrupΣqs.
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Proof. The second claim follows from the first. The first claim follows from this calculation:

|du|2 “ gJpdupB{Bsq, dupB{Bsqq

“ gJpdupB{Bsq,´dupjB{Btqq

“ gJpdupB{Bsq,´JdupB{Btqq

“ ωpdupB{Bsq, dupB{Btqq.

The first line is the definition of |du|2, the second expresses the complex structure on Σ, the
third is the Cauchy-Riemann equation, and the last comes from the definition of gJ .

Example. If Σ “ S2, then Epuq “ rωsrupΣqs. What if Σ is a J-holomorphic disk? Then
rws P H2pM,Lq since ω|L “ 0, and the same description as above holds using relative
homology.

3.2 Gromov compactness theorem

Heegaard Floer homology (and more generally Lagrangian Floer homology) are defined by
counting J-holomorphic strips (similarly to how Morse theory counts trajectories). Given
any space X (e.g. a space of J-holomorphic strips), for counting to make sense we require
two basic properties:

� The space must be compact.

� The space must be 0-dimensional (i.e. discrete).

We will now investigate compactness of the space of J-holomorphic curves. First, an
example shows that without additional premises, compactness will not be achieved:

Example. Let M “ S2 “ C Y t8u, equipped with the area form for its symplectic form,
and i for its complex structure. For each n, define

un : S2 Ñ S2, unpzq “ zn.

This has no limit as nÑ8! More formally, if we compare energies, we find that

Epunq “ rωsruns “ 4πn,

and this has no convergent subsequences.

Here we used the energy to formally show that the space of J-holomorphic curves is not
compact. Conversely, we might hope that energy is the only obstruction to compactness:
maybe by enforcing an energy bound, we can force compactness. This is indeed the case!
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Theorem 3.2.1 (Gromov compactness theorem: spheres). Let pM,ω, Jq be a symplectic
manifold with a compatible almost complex structure. Let un : S2 Ñ M be J-holomorphic
spheres, and suppose there is some K such that Epunq ă K for each n. Then there exists
a subsequence punj q such that unj Gromov converges to u, where u is a finite tree of J-
holomorphic spheres.

Figure 3.1: Gromov convergence of a J-holomorphic sphere.

This theorem also applies to disks and strips, with each generalisation giving slightly
more possibilities for the “thing the sequence converges to”. I.e. the boundary of the space
of J-holomorphic things gets a bit more interesting each time.

Theorem 3.2.2 (Gromov compactness: disks). Fix K ą 0, and let un : pD, BDq Ñ pM,Lq
be J-holomorphic disks. Suppose Epunq ă K. Then there is a subsequence of un that
Gromov converges to some u, where u is a finite tree of disks and spheres.

Theorem 3.2.3 (Gromov compactness: strips). Fix K ą 0, and let un : R ˆ r0, 1s Ñ
pM,L0, L1q be J-holomorphic strips. Suppose Epunq ă K for each n. Then there is a
subsequence of un that Gromov converges to some u, where u is a broken strip, possibly
with disks (in L0 or L1) and spheres forming a tree.

Rather than being in the world of the abtract, we should really be looking at examples.
The simplest case is to consider M “ C, and L0, L1 to be any paths in M .

Example. Figure 3.4 depicts a J-holomorphic strip uR Ñ M “ C. By the Riemann
mapping theorem, for each R greater than 0 (but less than the distance from x to z) there
is a holomorphic map uR sending the strip to the image shown in the figure. As R gets
smaller, the sequence converges to the broken strip shown in the bottom right of the figure.
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Figure 3.2: Gromov convergence of a J-holomorphic disk.

Figure 3.3: Gromov convergence of a J-holomorphic strip.

3.3 Moduli space of J-holomorphic curves

We’ve sorted out the issue of compactness via Gromov’s compactness theorem. However,
to count J-holomorphic curves, we need the space of such curves to be discrete. One
characterisation of discreteness is to be a 0-dimensional manifold, so as a stepping stone
we first investigate the manifold-ness of the space of J-holomorphic curves. We keep talking
about the space of J-holomorphic curves, but we have yet to explicitly state what we mean
by this. We now give a definition.

Definition 3.3.1. Let pM,ωq be a symplectic manifold, with Lagrangians L0, L1. Fix
x, y P L0 X L1. We write π2px, yq to denote the relative homotopy classes of strips with
the corresponding boundary conditions. Let Jt be a path of compatible almost complex
structures. The moduli space of Jt-holomorphic strips (in the class ϕ P π2px, yq) is defined
by

MJtpϕq “ tJt-holomorphic strips u : Rˆ r0, 1s Ñ pM,L0, L1, x, yq : rus “ ϕu{ „ .
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Figure 3.4: Example of a Gromov convergent sequence of J-holomorphic strips.

Here „ is equivalence of Jt-holomorphic strips, i.e. u „ u1 if they are biholomorphic.

It turns out that this moduli space is indeed a manifold, given mild premises!

Theorem 3.3.2. For generic Jt, MJtpϕq is a smooth manifold of dimension µpϕq, where
µpϕq is the Maslov index of ϕ (which has yet to be defined).

What do we mean by generic? This means there is a Baire subset J reg
r0,1spM,ωq Ă

Jr0,1spM,ωq “ tr0, 1s Ñ J pM,ωqu for which the property holds.

Remark. If M is a single point, and we consider J-holomorphic curves of a given genus
g and some number of marked points m, the corresponding moduli space is exactly the
moduli space of Riemann surfaces.

In the previous theorem, we referred to the Maslov index which we have yet to even
define! Rather than giving a formal definition, we will try to describe it in a more inutitive
way. Suppose u : Rˆr0, 1s Ñ pM,L0, L1q is a J-holomorphic strip. We can simultaneously
trivialise u˚TM – R2n and u˚TL0 – Rn. But now u˚TL1 cannot generally be trivialised,
instead giving a loop in the space of Lagrangian subspaces of R2n.

Exercise. Show that
π1pLagpR2nqq “ Z.

Then rγs P Z (from the isomorphism in the exercise) is the Maslov index of u. Intuitively
the Maslov index counts how many times one Lagrangian wraps around the other. This is
best seen in examples.

Example. Suppose M “ C. Then LagpR2q “ RP1. In figure 3.5 we have two examples
of J-holomorphic strips. In the first, the tangent line of L0 at x is “the y-axis”. It’s also
the y-axis at y! But to get from x to y, the tangent space completes one whole rotation in
RP1. In the second image, we have a similar situation but this time it completes two full
rotations. Therefore the Maslov index of the first strip is 1, while the Maslov index of the
second strip is 2.
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Figure 3.5: Examples of J-holomorphic strip Maslov indices.

3.4 Examples of moduli spaces of J-holomorphic curves (lec-
ture 4)

In this section we will study some examples of MJpϕq, for some fixed ϕ P π2px, yq.

Example. Figure 3.6 depicts a certain fixed choice of u (which determines a class ϕ). We
will determine MJpϕq. u is required (by the definition of a J-holomorphic strip) to send
´1 to x, and 1 to y. However, u is also a holomorphic map. Recall from complex analysis
that holomorphic maps D2 Ñ D2 are Möbius transformations:

AutpD2q “
az ` b

cz ` d
,

ˆ

a b
c d

˙

P SLp2,Rq.

Therefore automorphisms of the disk are determined by three parameters. Of these, 1 and
´1 are fixed - there is only one free parameter. Thus

MJpϕq “ R – p0, 1q.

Visually this corresponds to the choice of “where does ´i get sent to?” in the “interval”
from x to y.

Remark. There is always an R action on MJpϕq, whatever J and ϕ are. This translation
actions comes from viewing the holomorphic strip as having domain Rˆ r0, 1s. Therefore

we can instead consider xMJpϕq “ MJpϕq{R. In our above example, xMJpϕq is a single
point.

Example. Figure 3.7 depicts a more complicated example. There are qualitatively two
ways that a marked disk (or strip) can be mapped into C to form a J-holomorphic strip,
shown on the right of the diagram. We first consider the case of maps u with image as in
(a). There ` denotes the distance from x to α, travelling along first Lagrangian L0. The
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Figure 3.6: Example of u, for which MJpϕq “ R, ϕ “ rus P π2px, yq.

Figure 3.7: Example of u for which xMJpϕq “ p´`2, `1q.

parameter t is any real number in r0, `q. In this case, by the Riemann mapping theorem,
for each such t there are R many J-holomorphic strips with the designated image. (Again
this R comes from the translation action).

In the case of (b), we have the same situation but for parameters between 0 and the
length of the Lagrangian from x to β. If we call these lengths `1 and `2, then

MJpϕq “ pRˆ r0, `1qq Y pRˆ p´`2, 0sq “ Rˆ p´`2, `1q.

In particular, xMJpϕq “ p´`2, `1q.
Next we consider this example in the context of Gromov’s compactness theorem. There

are no bubbles, but we do have broken strips: while xMJpϕq “ p´`2, `1q, if we compatify
this, we have r´`2, `1s. These correspond to the two broken strips (which arise as gluing
disks together at α and β respectively) as the parameter t is sent to `1 and `2 respectively.

Notice that in the first example, dimMJpϕq “ 1, which is indeed the Maslov index
of the pair of Lagrangians as shown in the example at the end of the previous lecture.
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Similarly, in the second example, dimMJpϕq “ 2 as required.

3.5 The structure of intersections of Lagrangians

In this section we show that L0 X L1 has a grading induced by J-holomorphic strips. One
ingredient we need is a binary operation on the space of relative homotopy classes of strips,
π2px, yq.

Definition 3.5.1. Let ϕ1 P π2px, yq, and ϕ2 P π2py, zq. Then the concatenation ϕ1#ϕ2 of
ϕ1 and ϕ2 is a strip in π2px, zq, defined as follows:

� Let q : D2 Ñ D2 _D2 be the quotient map sending the arc r´i, is to a point, where
D2 is parametrised as the unit disk in C.

� Define ϕ on D2
1_D

2
2 as follows: On the left factor D2

1, ϕ|D2
1
“ ϕ1. Notice that 0 P D2

1

maps to y. Similarly, ϕ|D2
2
“ ϕ2, and 0 P D2

2 maps to y.

� Now ϕ ˝ q is a (broken) strip in π2px, zq.

Proposition 3.5.2. Energy and Maslov index are additive under concatenation:

µpϕ1#ϕ2q “ µpϕ1q ` µpϕ2q, Epϕ1#ϕ2q “ Epϕ1q ` Epϕ2q.

We are now ready to describe a grading on L0 X L1. We suppose L0 and L1 are
transverse, where Li P pM,ωq are Lagrangian submanifolds.

Proposition 3.5.3. Choose ϕ P π2px, yq (assuming the latter is non-empty). Then there
is a relative grading defined by

µpx, yq “ µpϕq P Z{NZ

for some N .

Proof. We must show that the grading is well defined in the sense that it respects the
additive structure induced by concatenation. Explicitly, we want µpx, yq`µpy, zq “ µpx, zq.
In particular, this requires µpx, xq “ 0. This is why we must mod out by NZ, as we will
see that there exists some N so that µpx, xq P NZ.

Let ϕ1, ϕ2 P π2px, yq. Then ´ϕi P π2py, xq, and

ϕ#p´ϕ1q P π2px, xq, p´ϕ2q#ϕ P π2py, yq.

These define isomorphisms

π2px, yq Ñ π2px, xq, ψ ÞÑ ψ#p´ϕ1q,
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and similarly for π2px, yq – π2py, yq. There exists some N such that impµ : π2px, xq Ñ
Zq “ NZ. By the above isomorphisms, µpx, yq is defined up to µpϕ1q ´ µpϕ2q P NZ, so
µpx, yq P Z{NZ is well defined.

In particular, we have the property

µpx, yq ` µpy, zq “ µpx, zq.

This is a relative grading.

If we fix some x0 P L0XL1, we can define an absolute grading (instead of just a relative
grading). This is defined by

grpxq “ µpx, x0q P Z{NZ.

Lemma 3.5.4. The value N above is even.

Proof. We take L0, L1 to be oriented. Then each x P L0 X L1 has an induced orientation
(sign) σpxq in Z{2Z, and µpϕq “ σpxq ´ σpyq mod 2. In particular, when x “ y, µpϕq is
even so N is even.

Remark. In general we break L0 X L1 into equivalence classes x „ y if and only if there
exists ϕ P π2px, yq. The elements of each equivalence class admit a relative grading in
Z{NZ.

3.6 Lagrangian Floer homology

We are finally ready to define Lagrangian Floer homology (which will later be used to
define Heegaard Floer homology).

Remark. Lagrangian Floer homology can be defined more generally than how we will
define it. However, our level of generality is sufficient for the purposes of Heegaard Floer
homology.

Definition 3.6.1. Here we number several premises (which we assume our manifold/La-
grangians satisfy) in order to define Lagrangian Floer homology. These premises will
continue to appear for several lectures, with the same numbering. Let L0, L1 Ă pM,ωq be
Lagrangians.

1. L0, L1 are compact.

2. L0 and L1 are transverse.

3. EitherM is compact, or it is “convex at infinity”. These ensure that no J-holomorphic
curves (whose boundaries are on a fixed compact subset) go off to infinity.
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4. For all A P π2pMq or π2pM,Liq, i “ 0, 1, we have that rωspAq “ 0. In other words,
there can be no J-holomorphic disks or spheres! Only strips.

5. Let µ : π2px, xq Ñ Z be the Maslov index. Then Epkerµq is bounded above, where
E is the energy of J-holomorphic strips. (For example, this condition is satisfied if
µ is injective.)

6. L0, L1 have spin structures. (These induce orientations on the moduli space of J-
holomorphic strips.)

Remark. The purpose of premise 6 is essentially so that we can make signed counts,
i.e. for defining integral Floer homology. For Z{2Z Floer homology, we can drop the last
premise.

Remark. The previous 5 premises all work together to ensure that Gromov compactness
holds, and that limits of strips (i.e. the boundary of the space of strips) consists only of
broken strips, and no disk or sphere bubbles.

In particular, premise 5 controls energy. Given these premises, we can now define the
Floer chain complex!

Definition 3.6.2. Let pM,ω,L0, L1q satisfy the 6 premises. The Lagrangian Floer chain
complex consists of the (graded) ring

CF˚pL0, L1q “ Zxx : x P L0 X L1y.

Note that L0 X L1 is 0 dimensional by transversality (premise 2), and hence a finite set
by combining this with premise 1. This can be further decomposed: let SpL0, L1q denote
the set of equivalence classes of points in L0 X L1, where x „ y if and only if π2px, yq is
non-empty. Then each s P SpL0, L1q gives a ring CF˚pL0, L1; sq by restricting from L0XL1

to s. Thus
CF˚pL0, L1q “

à

sPSpL0,L1q

CF˚pL0, L1, sq.

For each s P SpL0, L1q we can fix an element xs P s. This allows us to define an
absolute grading grpxq “ µpx, xsq P Z{NZ, where N depends on s. Using the gradings, we
can define a boundary map.

Definition 3.6.3. Let pM,ω,L0, L1q be as above. The boundary map of the Lagrangian
Floer chain complex is a map B : CF˚pL0, L1q Ñ CF˚´1pL0, L1q defined by

Bx “
ÿ

yPL0XL1,µpx,yq“1

ÿ

ϕPπ2px,yq,µpϕq“1

#MJtpϕq{R ¨ y

where Jt is generic, and # denotes a signed count of the succeeding 0-dimensional oriented
manifold.
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For example, the Euler characteristic of the chain complex is given by

χpCF˚pL0, L1qq “ ˘rL0s ¨ rL1s “
ÿ

xPL0XL1

p´1qgrpxq “
ÿ

xPL0XL1

σpxq.

Notice that MJt{R is finite by Gromov compactness, and µpϕq “ 1 ensuring that the
dimension is 0.

Proposition 3.6.4. B2 “ 0, so the Floer chain complex is really a chain complex.

Proof. We do not give a proof here, but this is analogous to the proof that the Morse
complex is a chain complex! See for example my notes of Morse theory.

Definition 3.6.5. The Lagrangian Floer homology of pM,ω,L0, L1q is

HF˚pL0, L1q “ H˚pCF˚pL0, L1q, Bq.

Lemma 3.6.6. HF pL0, L1q is independent of the choice of generic Jt.

3.7 Examples of Lagrangian Floer homologies (lecture 5)

Let L0, L1 Ă pM,ωq be Lagrangian, satisfying the conditions 1 through to 6 from the
previous lecture. Recall that the Lagrangian Floer complex is then well defined:

CF˚pL0, L1q “ ZxL0 X L1y, Bx “
ÿ

y

ÿ

ϕPπ2px,yq,µpϕq“1

# pMpϕq{Rq y.

From here the Lagrangian Floer homology is defined to be the homology of this complex.
Before moving on with more theory, we must compute some examples of Lagrangian Floer
homology to make sure we know what’s going on! We’ll consider four examples, as shown in
figure 3.8. Suppose M is any closed oriented surface, and L0, L1 are transverse embedded
curves. For Lagrangian Floer homology to be well defined, we require property 4 to hold,
that is,

rωspBq “ 0 for all B P π2pMq, or π2pM,Liq.

This is guaranteed provided that M has positive genus and the Li are not nullhomotopic!
Therefore the examples we consider all satisfy these properties.

Example. First we consider the top left image, example 1, from figre 3.8. The two
Lagrangians intersect at a single point x, so the corresponding chain complex is

CF˚pL0, L1q “ ZxL0 X L1y “ Zxxy.

Now it is necessarily the case that B “ 0, since there are no relative gradings that even
need to be considered when there’s only a single intersection point! Therefore

HF “ Z.
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Figure 3.8: Examples for Lagrangian Floer homology.

Example. In example 2, the two Lagrangians intersect at three points. The corresponding
chain complex is

CF˚pL0, L1q “ Zxx, y, zy.

What are the relative gradings? We first fix orientations in order to count Maslov indices.
From the figure, we see that there is a J-holomorphic strip realising ϕ P π2py, xq. Then

µpy, xq “ µpϕq “ 1.

Similarly µpy, zq “ 1. Therefore the relative grading of y is 1 higher than those of x and z
(which share the same relative grading). From here we can determine the boundary maps.
The only potentially non-trivial map is

B : Zxyy Ñ Zxx, zy.

We know by definition that

By “
ÿ

ϕPπ2py,xq,µpϕq“1

#pMpϕq{Rqx`
ÿ

ϕPπ2py,zq,µpϕq“1

#pMpϕ{Rqz.

Looking first at the x term, there is exactly one homotopy class ϕ satisfying the conditions
under the sum, and from an example at the start of the previous lecture Mpϕq{R is a single
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point. Similarly for the z term. Therefore depending on the signs of the spinc structure,
we have

By “ ˘x˘ z.

(Note that the ˘ for the two terms are independent). In either case, we have

0
B
ÝÑ Zxyy B

1

ÝÑ Zxx, zy B
2

ÝÑ 0,

with
im B “ 0, ker B1 “ 0, im B1 “ Zxx˘ zy, ker B2 “ Zxx, zy.

Therefore the first homology group is trivial, while the second is Z. Therefore

HF “ Z.

Remark. We see that the first two examples have isotopic Lagrangians, and the same
Lagrangian Floer homologies. Perhaps HF is invariant under isotopies of Lagrangians?
We see that this is not quite true in the next examples.

Example. In the third example, there are no intersections between the Lagrangians!
Therefore the Lagrangian chain complex is empty! The Floer homology is trivial:

HF “ 0.

Example. In the final example, we have CF “ Zxx, yy. Depending on signs, without
loss of generality y has a relative grading 1 above that of x. Therefore there is a single
potentially non-trivial boundary map,

BZxyy Ñ Zxxy.

This time there are two distinct homotopy classes of strips from y to x: one wraps in front
of the torus, the other behind. The space of such strips has size 1 (modulo the translation
action of R). Therefore depending on the spinc structures, we have

By “ x˘ x.

In one case, we could have By “ 0 so that all homology groups are trivial! Then HF “ Z2.
On the other hand, we could have By “ 2x. In this case, HF “ Z{2Z. In either case, we
see that HF is non-trivial!

The key difference is that examples 1 and 2 are related by Hamiltonian isotopies, while
examples 3 and 4 are related by isotopies which are not Hamiltonian.
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3.8 Hamiltonian isotopy invariance

In this section we describe what it means for two Lagrangians to be Hamiltonian isotopic.
More detailed exposition can be found in my notes on Symplectic geometry from Fall 2019.

Definition 3.8.1. LetHt : M Ñ R be a family of smooth functions, smoothly parametrised
by t P r0, 1s. Suppose ω is a symplectic form on M . By non-degeneracy of ω, there exist
vector fields XHt such that

iXHt
ω “ dHt.

This is called a (time dependent) Hamiltonian vector field. These give rise to time depen-
dent Hamiltonian flows:

dϕt
dt

“ XHt ˝ ϕt.

Then ϕ1 is called a Hamiltonian transformation of pM,ωq.

The idea is that ϕt forms an isotopy from ϕ0 to ϕ1 which preserves the symplectic
structure:

ϕ˚t ω “ ω.

Theorem 3.8.2. Let ψ be a Hamiltonian transformation of pM,ωq. Then

HF pL0, L1q – HF pL0, ψpL1qq – HF pψpL0q, L1q.

We call ϕtpLq a Hamiltonian isotopy of a Lagrangian L.

Example. Consider R2 equipped with the Hamiltonian Htpx, yq “ y. The symplectic form
on R2 is the area form dx^ dy. Now

iXHt
pdx^ dyq “ dy,

so that XHt “ B{Bx. Thus the corresponding Hamiltonian transformation ϕ1 is exactly
translation by 1 in the x direction. Therefore translations are Hamiltonian.

Example. Again consider pR2, dx^dyq. Consider the transformation that dilates R2. This
is not Hamiltonian as it does not preserve the symplectic form dx^ dy. This is immediate
because the symplectic form is the area form, and dilations literally dilate area.

More generally (even in higher dimensions) Hamiltonian transformations always pre-
serve volumes, and there is a partial converse in which isotopies preserving volumes are in
fact Hamiltonian.

42



Chapter 4

Heegaard Floer homology
definition and well-definedness

4.1 Heegaard Floer homology definition

With the aside about Hamiltonian isotopies of Lagrangians preserving Langrangian Floer
homology out of the way, we are finally ready to define Heegaard Floer homology! The
definition is not too difficult to state, but the real issue is in verifying that all conditions
from Lagrangian Floer homology are satisfied.

Let Y 3 be a closed connected oriented manifold. Choose a based Heegaard diagram

pΣ, α1, . . . , αg, β1, . . . , βg, zq, z P Σ´
ď

i

αi ´
ď

i

βi.

The symmetric product SymgpΣq is used to define the Heegaard Floer homologies HF˘.

The space SymgpΣ´ tzuq is used to define yHF . These are the first two types of Heegaard
Floer homology we will define, but there will be more later! Next we define L0 “

ś

i αi Ă
Σg ´ tzu, and L1 “

ś

i βi. These are g dimensional tori living in SymgpΣ ´ tzuq and
SymgpΣq. We will later see that these are Lagrangian submanifolds of the symmetric prod-
ucts, and the Lagrangian Floer homologies HF pL0, L1q will be defined to be the Heegaard
Floer homologies of Y 3.

We will also write Tα and Tβ to denote the tori.

Theorem 4.1.1. We have isolated submanifolds L0 “ Tα, L1 “ Tβ of SymgpΣq and
SymgpΣ ´ tzuq. The symmetric products are (canonically) symplectic manifolds, and the
Li are Lagrangian submanifolds.

Rather than giving a proof in a traditional sense, we will eventually reach the above
conclusion through some more exploratory work (following the lecture).
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Consider the thicc diagonal

∆ Ă SymgpΣq,∆ :“ ttx1, . . . , xgu : xi P Σ, xi “ xj for some i ‰ ju.

Recall that there is an Sg action on Σg, and the quotient by this action is the symmetric
product. A key point is that Sg acts freely away from ∆! Moreover, our tori Tα,Tβ are
also away from ∆. We want to find symplectic forms on SymgpΣq and SymgpΣ´tzuq, but
really we only care about what it’s doing away from ∆.

We will now find a canonical singular symplectic form on SymgpΣq, in the sense that
it is a symplectic form away from ∆ but blows up on ∆. Let j be a complex structure on
some surface Σ. This induces a complex structure Symkpjq on SymkpΣq for any k. Locally,
we have

SymkpCq – Ck

by symmetric polynomials (as described in an earlier lecture). This is super clean! Maybe
we can do the same thing with symplectic forms? Unfortunately, this dream does quite
work.

Let dA be the area form (symplectic form) on a surface Σ. The hope is that SymkpdAq is
a symplectic form on SymkpΣq. Away from ∆, SymkpΣq is just the product

ś

k Σ. Similarly,
SymkpdAq is just the product form

ś

k dA. This form is Sk invariant, and descends to a
symplectic form on SymkpΣq ´∆.

Near ∆ is another matter: locally, say for k “ 2, we have

Sym2pCq – Cˆ C{pz, wq „ pw, zq
– Cˆ pC{y „ ´yq
– Cˆ C

where we have used the change of coordinates pw, zq ù px, yq, x “ w ` z, y “ w ´ z to
parametrise C ˆ C in the middle line, but then carry out a further change in coordinates
to px, y2q to parametrise Cˆ C in the last line.

The area form on CˆC (given px, yq coordinates) is dx^ dx` dy ^ dy (up to a scalar
multiple). We will transform this into px, y2q coordinates. If we write y “ reiθ, then the
area form is rdrdθ in the y factor. Changing to y2 then gives

r2e2iθ “ ρeiτ , τ “ 2θ, ρ “ r2.

But now

rdrdθ “
1

4
dpr2qdp2θq “

dρdτ

4
“
ρdρdτ

4ρ
“

area form

4ρ
.

This is singular as ρ Ñ 0, i.e. as we approach ∆! In summary, SymkpdAq is generally a
singular symplectic form on SymkpΣq: it is symplectic almost everywhere but blows up on
∆. It turns out that this issue can be resolved, by a theorem of Perutz.
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Theorem 4.1.2. There exists an honest symplectic form on SymkpΣq which agrees with
SymkpdAq away from a neighbourhood of ∆.

In particular, the above symplectic form agrees with SymkpdAq near Tα and Tβ, the
tori obtained from the Heegaard diagram. It follows that the tori are Langrangian, since
whenever L0, L1 are Lagrangian submanifolds ofM0,M1, then their product is a Lagrangian
submanifold of M0 ˆM1. Finally we’re ready to define Heegaard Floer homology, since
we have verified that the symmetric product is really symplectic, and the tori are really
Lagrangian.

Definition 4.1.3. The hatted Heegaard Floer homology yHF pY q of a closed oriented 3-
manifold Y 3 is defined to be the Lagrangian Floer homology HF pTα,Tβq of Tα and Tβ in
SymgpΣ´tzuq, where pΣ, αi, βi, zq is a based Heegaard diagram of Y . Similarly, the signed
Heegaard Floer homology HF˘pY q of Y is defined to be the Lagrangian Floer homology
of the above tori in SymgpΣq (as opposed to SymgpΣ´ tzuq).

Remark. Largely speaking two things need to be verified to ensure that this is well defined:
first, we must verify that an arbitrary Heegaard diagram of a 3-manifold as above satisfies
all the conditions for Lagrangian Floer homology to be well defined. Second, we must
ensure that Heegaard Floer homology is independent of the choice of Heegaard diagram
for Y .

We will dedicate several lectures to verifying well-definedness. Recall the 6 necessary
conditions to define Lagrangian Floer homology: the first two automatically hold given a
Heegaard diagram of a 3-manifold. We will now verify the 3rd condition:

� Given a symplectic manifold M , to define Lagrangian Floer homology, we require
that either M is compact or “convex at infinity”. In other words, no J-holomorphic
strips escape to infinity.

For our two versions of Heegaard Floer homology, our ambient spaces are SymgpΣq and
SymgpΣ´ tzuq. The former is automatically compact since it is a quotient of a product of
compact spaces. However, the latter is not necessarily compact so we must do some work.

Let Rz “ tzu ˆ Symg´1pΣq Ă SymgpΣq. While SymgpΣq is a 2g-dimensional manifold,
the former is a codimension 2 submanifold. Observe that

Tα XRz “ Tβ XRz “ ∅, SymgpΣ´ zq “ SymgpΣq ´Rz.

Suppose u is a J-holomorphic strip in SymgpΣq, with homotopy class ϕ P π2px, yq. This
has 2-dimensional image, so it intersects Rz along a zero dimensional space! The signed
intersections rus ¨ rRzs will be denoted by nzpϕq. Now u lies in SymgpΣ´ zq if and only if
nzpϕq “ 0.

The goal is to verify that sequences of J-holomorphic strips don’t go off to infinity.
Suppose un converges to u, with each un a strip in SymgpΣ´ zq. We must verify that u is
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also a strip in SymgpΣ´ zq (i.e it does not meet z). By the above observation, we have for
each n that nzpunq “ 0. It follows that nzpuq “ 0, and positivity of complex intersections
then gives u P SymgpΣ´ zq. This verifies property 3.

Properties 4 and 5 require us to study the topology of SymgpΣq. We now take a step
back to develop some more machinery before tackling these conditions (for Lagrangian
Floer homology to be well defined).

4.2 Branched covers and the tautological correspondence

In this section we will establish the tautological correspondence between immersions into
symmetric products and bracnhed covers. This allows us to understand some properties of
J-holomorphic strips in terms of branched covers (for which a wealth of machinery exists).

Definition 4.2.1. Let p : Mm Ñ Nm be a smooth map. p is an `-fold branched cover,
branched over Zm´2 Ă N , if p|p´1pN´Zq is an `-fold cover, and near x PM with ppxq P Z,

the local model is given by px1, . . . , xm´2, zq ÞÑ px1, . . . , xm´2, z
k for some k ě 1.

Notice that the local model really determines the fact that the branch set as codimension
2.

Example. S2 Ñ S2, given by rotation: z ÞÑ zk. This is bracnhed over the north and south
pole. More generally this map can be suspended to give branched covers Sn Ñ Sn which
are branched over Sn´2.

Example. Next we will study double covers of the disk D2, branched over k points.
A double cover is precisely a principal Z{2Z-bundle. By the associated bundle con-

struction, there is an isomorphism

PrinZ{2ZpXq – H1pX;Z{2Zq.

(See my notes of algebraic topology for more on this.) But by the universal coefficient
theorem, H1pX;Z{2Zq – hompπ1pXq;Z{2Zq. Thus double covers of D2 ´ tk pointsu are
classified by maps π1pD

2´tk pointsuq Ñ Z{2Z. In particular we care about the map which
is branched over the k points - we want loops around each of the k points to map to 1 in
Z{2Z. This fixes a homomorphism, so there is a unique 2-fold branched cover of D2 over
the k points.

What does the topology of this double cover look like? The boundary of the disk is
homotopically the product of the loops around the k points. Therefore under the map
π1 Ñ Z{2Z, the boundary maps to k. It follows that the boundary lifts to a single
component (under the branched cover) when k is odd, and lifts to two components when
k is even.

This does not yet pin down the topology of the double cover - we must know its genus
as well. For this we use the Riemann-Hurwitz formula. Suppose we triangulate the base
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space, and ensure that branch points lie on vertices. Then lifting the triangulation to the
branched double cover Σ gives that

χpΣq “ rv ´ re` rf “ p2v ´ kq ´ 2e` 2f “ 2χpD2q ´ k “ 2´ k.

Therefore Σ has genus pk ´ 2q{2 for k even, and pk ´ 1q{2 for k odd.

Example. The map ΣˆSymk´1pΣq Ñ SymkpΣq is a k-fold branched cover, branched over
∆. (The map is defined in the canonical way).

The main result of this section is the tautological correspondence which allows us to
think about J-holomorphic strips as branched covers.

Theorem 4.2.2. There is a correspondence (not necessarily bijective, but canonical) as
follows:

"

(J-holomorphic) immersions
X ãÑ SymkpΣq.

*

é

#

k-fold branched cover Y Ñ X
and (J-holomorphic) map

Y Ñ Σ.

+

Remark. Why must the maps on the left be immersions? This insures well-behavedness
at the level of the tangent space, which is required to ensure that the local model on the
right corresponds to branched covers.

Proof. We will ignore the J-holomorphic part, but this is easy to verify. (In general if
X Ñ SymkpΣq satisfies property P , then X Ñ Σ will satisfy property P etc.)

For the first direction, suppose X Ñ SymkpΣq is an immersion. There is a canonical
k-fold branched cover Σ ˆ Symk´1pΣq Ñ SymkpΣq as remarked earlier. The pullback of
these two maps defines the space Y , along with the map Y Ñ X. On the other hand,
there is a projection map ΣˆSymk´1pΣq Ñ Σ, and composing this with the pullback map
Y Ñ Σˆ SymkpΣq gives the map Y Ñ Σ. See the following diagram:

Y Σˆ Symk´1pΣq Σ

X SymkpΣq

π1

For the second direction, suppose we have a map f : Y Ñ Σ and a k-fold branched
cover p : Y Ñ X. Then X Ñ SymkpΣq is defined by x ÞÑ fpp´1pxqq. Nice and easy!
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4.3 Topology of Symg
pΣq; premise 4 (lecture 6)

Using the tautological correspondence, we can study the topology of SymgpΣq and verify
that the 4th premise for Lagrangian Floer homology is satisfied. To this end, we start with
a lemma:

Lemma 4.3.1. H1pSymgpΣqq – H1pΣq.

Proof. Fix a basepoint z P Σ. Let i : Σ Ñ SymgpΣq be defined by

i : x ÞÑ tz, . . . , z, xu.

This induces a map i˚ : H1pΣq Ñ H1pSymgpΣqq. The inverse j˚ is provided by the
tautological correspondence: let S1 Ñ SymgpΣq represent an element of H1pSymgpΣqq.
This corresponds to a branched cover Y Ñ S1 and a map Y Ñ Σ, where Y is some
collection of circles. The image of this map is an element of H1pΣq, so the tautological
corresponds is the map H1pSymgpΣqq Ñ H1pΣq. This is indeed the inverse of i˚.

We can now describe the topology of SymgpΣq: for any g, we have that

π1pSymgpΣqq “ H1pSymgpΣqq “ H1pΣq “ Z2g.

Similarly, from the tautological correspondence, when g ą 2

tS2 Ñ SymgpΣqu ú
 

S2 Ð X2 Ñ Σ
(

for some X2 which establishes the same result but for second homology:

π2pSymgpΣqq “ H2pΣq.

Theorem 4.3.2. More generally, by the Dold-Thom theorem,

πipSymkpXqq – HipXq for k " 0.

Corollary 4.3.3. Premise 4 is satisfied by SymgpΣ ´ zq. That is, for all A P π2pMq or
π2pM,Liq, rωspAq “ 0 (which ensures that in Gromov compactness there is no disk or
sphere bubbling - the boundary of the moduli space of strips consists only of broken strips).
Here M denotes SymgpΣ´ zq.

Proof. We will in fact show that π2pMq and π2pM,Tαq are trivial. The former is automat-
ically trivial from the above discussion. The second comes from the following long exact
sequence:

π2pMq “ 0 Ñ π2pM,Tαq Ñ π1pTαq “ Zg ãÑ π1pMq “ Z2g.

Since the third map is an inclusion, the middle map has trivial image. On the other hand,
the first map is the zero map, so by exactness the middle map also has trivial kernel.
Therefore the first isomorphism theorem, π2pM,Tαq is trivial.

So far we have established that pSymgpΣ ´ zq,Tα,Tβq satisfies premises 1 through 4.

To prove that yHF is well defined (given a Heegaard diagram), it remains to verify premise
5 and discuss premise 6.
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4.4 Symplectic energy bounds for QHS3s; premise 5

The next goal is to prove that

Epkerppπ2px, xq
µ
ÝÑ Zqq

is bounded. This is the 5th premise to ensure that Lagrangian Floer homology “makes
sense”. In this section we will derive a topological condition which ensures that the energy
is bounded - namely for Y 3 a rational homology sphere (a QHS3). Later we will study the
more general case with positive first Betti number.

The careful reader will say “hey what’s pπ2px, xq? We haven’t even defined this!” In
general, everything with a hat will denote the analogue of the unhatted version of a concept
(from SymgpΣq) applied to SymgpΣ´ zq.

Definition 4.4.1. Let x, y P Tα X Tβ. Then

π2px, yq “ thomotopy classes of strips in SymgpΣqu,

while
pπ2px, yq “ thomotopy classes of strips in SymgpΣ´ zqu.

Let SpY q denote the equivalence classes

x „ y ô pπ2px, yq ‰ ∅.

Recall that the Floer chain complex CF˚ is generated by points in Tα X Tβ, and by
partitioning with respect to the above equivalence relation, we have a decomposition

CF˚pY q “
à

sPSpY q

CF˚pY, sq,

where CF˚pY, sq is the chain complex generated by restricting only to the points in s. This
induces a decomposition

yHF pY q “
à

sPSpY q

yHF pY, sq.

To better understand SpY q, we introduce the following path spaces:

� ΩpTα,Tβq :“ tγ : r0, 1s Ñ SymgpΣq : γp0q P Tα, γp1q P Tβu.

�
pΩpTα,Tβq :“ tγ : r0, 1s Ñ SymgpΣ´ zq : γp0q P Tα, γp1q P Tβu.

Given this terminology, we have

SpY q “ π0ppΩpTα,Tβqq, If x „ y, then pπ2px, yq – pπ2px, xq – π1ppΩpTα,Tβqq.
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The question is then: what is the topology of pΩpTα,Tβq? This can be understood from
the following Serre fibrtion:

ΩpSymgpΣ´ zqq Ñ pΩpTα,Tβq Ñ Tα ˆ Tβ,

where the first space is the loop space (and the map an inclusion), while the second map
is γ ÞÑ pγp0q, γp1qq. Using this fibration, the following identities can be computed:

Proposition 4.4.2.

SpY q – π0ppΩpTα,Tβqq – H1pY q – H2pY q

– π0pΩpTα,Tβqq.

xπ2px, yq – π1ppΩpTα,Tβqq – H1pY q – H2pY q.

π2px, yq – π1pΩpTα,Tβqq – H1pY q ‘ Z.

This proposition tells us how the topology of our 3-manifold Y can help control the
spaces pπ2px, yq and SpY q, which in turn affects the Maslov indices of the spaces and hence
the energy. Therefore we might hope to use this knowledge to at least give some conditions
for when Epkerpµqq is bounded! This is indeed the case - we now have a small interlude to
dicuss closed oriented 3-manifolds.

Let Y be a closed connected oriented 3-manifold. What can we say about its homology?
We automatically have that H0pY q “ Z by connectedness and H3pY q “ Z by orientability.
By Poincaré duality, this also gives H0pY q “ H3pY q “ Z. This leaves H1pY q “ H2pY q “
Zb1 ‘ Torsion, H1pY q “ H2pY q “ Zb1 .

� Homologically, the simplest closed connected oriented 3-manifolds satisfy H1pY q “ 0,
and this is enough to ensure that Y is an integral homology sphere, i.e. a ZHS3.

� A slightly weaker condition is to assume that the first Betti number vanishes, i.e.
H1pY q “ 0. This does not ensure that H1pY ;Zq vanishes, as it might have torsion.
However, the rational first homology vanishes. Therefore such a Y is called a rational
homology sphere, or a QHS3.

� Finally if we remove restrictions on the first Betti number, we get to the general case
of all closed connected oriented 3-manifolds.

Theorem 4.4.3. Given a Heegaard diagram for a rational homology sphere Y , the hat-
ted Heegaard Floer homology yHF pY q is well defined. (More precisely, the corresponding
pSymgpΣ,Tα,Tβqq satisfy premise 5, which is the last remaining premise to ensure that
Lagrangian Floer homology is well defined.)

Note that premise 6 is required for integral Heegaard Floer homology, but everything can
be carried out in Z{2Z if we with to gloss over the 6th premise.
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Proof. Since Y is a rational homoloy sphere, SpY q “ H1pY q is a finite group. Moreover,
xπ2px, xq – H1pY q which vanishes. Therefore the maps µ : pπ2px, xq Ñ Z automatically have
trivial kernel! Thus Epkerµq “ 0, and in particular the energy is bounded. It follows that
premise 5 is satisfied.

Moreover, recall that yHF pY, sq is Z{NZ-graded, where NZ is the image of the Maslov
grading map µ : pπ2px, xq Ñ Z. Since the domain vanishes, this has trivial image, so

NZ “ 0. Thus each yHF pY, sq is Z-graded. It follows that yHF pY q “
À

sPSpY q
yHF pY, sq is

Z-graded.
Now that we know that yHF pY q is well defined (for a fixed Heegaard diagram, and for

Y a rational homology sphere), we can look at some examples.

Example. Suppose Y is an honest 3-sphere. Then the standard Heegaard diagram has a
single intersection between the two Lagrangian tori, and SpY q is a single point. This gives
yHF pS3q “ Z.

Example. Next suppose Y is the lens space Lpp, 1q. Then the standard Heegaard diagram
has |SpY q| “ |H1pY q| “ p, since the first homology of the lens space is H1pLpp, 1qq “ Z{pZ.
This gives

yHF pY q “
à

sPSpY q

yHF pY, sq,

but each of these summands is generated by a single intersection point! Therefore (recalling
the first example from Lagrangian Floer homology), we have

yHF pY q “
à

p

Z “ Zp.

4.5 Spin and Spinc structures; premise 6

The final premise that requires addressing is premise 6: spinc structures. These are used to
induce orientations on the moduli space of J-holomorphic strips, to allow for signed counts
(which gives integral Heegaard Floer homology instead of just Z{2Z homology).

Let Mm be a Riemannian manifold. The associated bundle construction gives a prin-
cipal SOpmq-bundle, called the frame bundle, over M :

TM FrpMq

M

The fibre of this bundle above a point p is an oriented orthonormal frame of TpM . For
m ě 3, π1pSOpmqq “ Z{2Z, so that SOpmq admits a 2-fold (universal) cover called Spinpmq.
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Definition 4.5.1. A spin structure is a lift of the frame bundle to a prinipal Spinpmq-
bundle.

More specifically, it’s a bundle S as in the following diagram:

Spinpmq S

SOpmq FrpMq M

Spin structures on Lagrangians induce orientations on the moduli space of J-holomorphic
curves. Therefore if there is a spin structures over Lagrangians, Lagrangian Floer homology
is well defined over Z. For Heegaard Floer homology, our Lagrangians are tori. These have
trivial tangent bundles! Therefore spin structures exist as required, and in fact there are
2g choices. Recall that yHF pS1 ˆ S2q was either Z2 or Z{2Z depending on the choice of
orientation, i.e. the choice of spin structure on the Lagrangian tori. A convention is fixed
by the following theorem due to Ozsváth and Szabó:

Theorem 4.5.2. Fix Y 3 and choose a Heegaard diagram. There is a canonical choice of
spin strucutre such that yHF is invariant under handleslides and stabilisations, such that
yHF pS1 ˆ S2q “ Z2.

Although spin structures do not always exist, a slightly less restrictive lift of the frame
bundle is something called a spinc structure. These are explored in the 4-manifolds class
from Spring 2020, as they are crucial in defining the Seiberg-Witten invariants.

Definition 4.5.3. A spinc structure is a lift of FrpMq to a principal Spincpmq-bundle,
where

SpincpMq :“ Spinpmq ˆZ{2Z S1 “ Spinpmq ˆ S1{pa, bq „ p´a,´bq.

There is a natural map Spincpmq Ñ Spinpmq{pZ{2Zq “ SOpmq.

Theorem 4.5.4. We will not prove these, but the following results about spinc structures
hold:

1. All oriented 3 and 4 manifolds admit spinc structures.

2. Let SpincpMq denote the space of spinc structures on a manifold M . If this is non-
empty, then it is an affine space over H2pM ;Zq. (This means the difference of two
spinc structures is a well defined element of H2pM ;Zq.

3. There is a map c1 : SpincpMq Ñ H2pM ;Zq such that

c1ps` aq “ c1psq ` 2a, a P H2pM ;Zq.

The map c1 comes from the first Chern class.
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4. If a 3-manifold has no 2-torsion in H1 – H2, then c1 is injective. Therefore there is
a canonical identification

SpincpMq
c1{2
ÝÝÑ H2pMq – H1pMq.

Recall from earlier that

SpY q “ π0pΩpTα,Tβqq “ π0ppΩpTα,Tβqq – H1pY q.

Combining this with the above result, we have SpY q – SpincpY q.

We also showed earlier that yHF pY, sq is Z{NZ-graded, where NZ is the image of µ :
pπ2px, xq Ñ Z. It turns out that the image of this map can be detected without reference to
the Maslov index: for s P SpY q, let µs : H1pY q Ñ Z be defined by µsphq “ pc1psq ! hqrY s.
This map corresponds to the Maslov index via the above isomorphism! Therefore if

δpsq :“ gcdpµsphq : h P H1pY qq,

then yHF pY, sq is Z{δpsqZ´ graded.

Example. Let Y be a QHS3. Then H1 vanishes, so by the above discussion δpsq “ 0 and
yHF is Z-graded.

Example. Suppose b1 “ 1, so that H1pY q “ Z. Suppose further that there is no 2-torsion
in H1, so that SpincpMq – H1pMq. Then s P SpY q is determined by c1psq P 2Z, and
δpsq “ c1psq. It follows that

� if c1psq “ 0, then yHF is Z-graded. (Best case scenario.)

� If c1psq “ ˘2, then the homology is Z{2Z-graded. (Worst case.)

� If c1psq “ ˘4, then the homology is Z{4Z-graded and so on.

We have now established many of the necessary results to show that Heegaard Floer
homology is well defined (for a fixed Heegaard diagram). Two things remain:

1. Investigating premise 4, boundedness of energy, in the case b1pY q ą 0.

2. Investigating HF˘, which is the other type of Heegaard Floer homology we briefly
introduced.
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4.6 Energy bounds more generally; premise 5 (lecture 7)

Recall that for the Lagrangian Floer homology HF pL0, L1q to be well defined, we require
Epkerµq to be bounded, where µ : π2px, xq Ñ Z is the Maslov grading. In the context of
Heegaard Floer homology, we’ve shown that this result trivially holds if the 3-manifold has
trivial first Betti number, but we have yet to explore the general case.

We again make use of the tautological correspondence. A J-holomorphic strip u : D2 Ñ

SymgpΣq corresponds to a branched cover S Ñ D2 and some map ru : S Ñ Σ, for some S.
(Recall that we classified branched covers over disks in an earlier lecture!)

Definition 4.6.1. The domain of u, Dpuq, is defined to be the image of ru interpreted as
a 2-chain in Σ. We can further write

Dpuq “
ÿ

aiRi, ai P Z,

where the Ri (called “regions”) are connected components of Σ´
Ť

i αi ´
Ť

i βi.

One can observe that all regions of a Heegaard diagram are planar! It turns out that
Dpuq depends only on the homotopy class of u, rus P π2px, yq. Therefore there is a well
defined map

π2px, yq Ñ tZ´ linear combinations of regionsu.

Precisely, the map is defined by

ϕ ÞÑ Dpuq, u P ϕ, Dpuq “
ÿ

nzipϕqRi, zi P Ri, nzipϕq :“ #pϕ ¨ rSymg´1pΣq ˆ tziusq.

In the hatted version pπ2px, yq, the coefficient of the region containing z is 0.
Each region has a boundary consisting of segments of curves from the Heegaard dia-

gram. Under the branched cover, each region descends to a J-holomorphic strip. Lifts of
the edges Tα X upD2q and Tβ X upD2q determine the α and β edges of Dpuq. Similarly,
lifting the x and y vertices from the strip determines xi and yi intersections (corners) of
Dpuq.

More precisely, we can write BDpϕq “ BαDpϕq Y BβDpϕq, decomposing the boundary
into α and β curves. The boundaries of these curves are exactly the “corners”, and we
have BpBαDpϕqq “ BpBβDpϕqq. Moreover, in terms of singular homology, these are equal to
ř

yi ´
ř

xi.

Definition 4.6.2. A domain is periodic if BDpϕq is a sum of whole α and β curves.

If BDpϕq is a sum of whole α curves and β curves, then BpBαDpϕqq and BpBβDpϕqq must
vanish. This happens when the yi and xi are equal, i.e. when x “ y. That is, periodic
domains are domains corresponding to ϕ P π2px, xq.
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Example.

Figure 4.1: Examples of periodic domains.

Figure 4.1 shows two examples of periodic domains. Recall that these are Heegaard
diagrams of S1 ˆ S2, and they have different Lagrangian (Heegaard) Floer homologies. In
the diagram on the left, we have fixed a domain D1. This is evidently a periodic domain,
since it is bound by one whole α curve and one whole β curve. Its boundary is BD1 “ α´β.

In the second example, our α and β curves are crossing! This gives two regions. We can
give one region a positive sign and the other a negative sign. Then the resulting domain
once again is periodic, with BD2 “ α´ β.

Recall that our aim is to understand when the symplectic energy is bounded, to en-
sure that Heegaard Floer homology is well defined. More precisely, we are interested in
pπ2px, xq Ă π2px, xq, which consists of strips in SymgpΣ ´ tzuq, or equivalently strips ϕ in
SymgpΣq with nzpϕq “ 0. Then we require the kernel of the Maslov grading µ : pπ2px, xq Ñ
Z to have bounded energy: Epkerµq must be bounded. Recall that if u is a J-holomorphic
strip in kerµ, its energy is defined by Epuq “

ş

u˚ω. To say that Epkerµq is bounded, is
to say that tEpuq : u P kerµu is bounded.

Before proceeding, we again introduce some notation!

Definition 4.6.3. The set of periodic domains forms an abelian group (as it is a subgroup
of the singular 2-chains). This is denoted by Π. The periodic domains D with nzpDq “ 0
are denoted by pΠ.

Proposition 4.6.4. For any x, π2px, xq – Π and pπ2px, xq – pΠ. Therefore H1pY q‘Z – Π
and H1pY q – pΠ. (Here Y is the 3-manifold for which we consider a Heegaard diagram and
so on.)

Proof. The map pπ2px, xq Ñ pΠ is given by ϕ ÞÑ Dpϕq. Since pπ2px, xq “ H1pY q “
kertxα1, . . . , αgy ‘ xβ1, . . . , βgy Ñ H1pΣqu, any ϕ P pπ2px, xq arises from a linear combi-
nation of α and β curves that bound a 2-chain, i.e. a periodic domain. This gives the
inverse map.

Example. If Y is a rational homology sphere, then pΠ “ 0. If Y is S1 ˆ S2, then pΠ “ Z.
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We are finally ready to talk about energy! As mentioned above, we have that

Epuq “

ż

u˚ω, ω is an approximation to SymgpdAq.

Therefore it suffices to bound
ş

u˚pSymgpdAqq, which is just the area of Dpuq. If any of the
areas of Dpuq are non-zero, then taking linear combinations, the set of periodic domains
will have unbounded energy. Therefore for Heegaard Floer homology to be well defined,
naively the best we can do is to ensure that all periodic domains have zero area!

Definition 4.6.5. A Heegaard diagram is weakly admissible if there exists an area form
on Σ such that all periodic domains D (with nzpDq “ 0) have area 0.

We can make the following observations:

� If a Heegaard diagram is weakly admissible, then yHF is well defined. (In fact, this

is the only condition we need for yHF to be well defined for a Heegaard diagram of a
closed connected oriented 3-manifold, as the other premises 1 through 4 didn’t have
any restrictions!)

� If pΠ “ 0, then any Heegaard diagram is weakly admissible. (These are exactly
QHS3s.

� A diagram is weakly admissible if and only if every non-zero periodic domain with
nz “ 0 admits a region with positive multiplicity and one with negative multiplicity.

Example. In figure 4.1, the first diagram is not weakly admissible, but the second diagram
is! Notice that the weakly admissible diagram was obtained by isotoping the α and β curves
from an arbitrary (non-weakly admissible) diagram.

Now the important question is whether or not weakly admissible Heegaard diagrams are
abundant for 3-manifolds, or if this is a significant restriction. Fortunately, they exist! And
in some sense, they are all equivalent! This is captured in the following two theorems of
Ozsváth and Szabó, which we will not prove. (If I recall correctly, these proofs took like a
hundred pages!)

Proposition 4.6.6. Every Heegaard diagram can be made weakly admissible by isotopies
of α and β curves.

Proposition 4.6.7. Any two weakly admissible diagrams can be related by a sequence of
Heegaard moves (i.e. isotopies, handleslides, and stabilisations), so that every intermediate
diagram is also weakly admissible.

In summary we have the following huge conclusion!
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Theorem 4.6.8. Let Y be a closed connected oriented 3-manifold. Then yHF pY q is well
defined (for a fixed weakly admissible Heegaard diagram). It remains to check invariance
under weakly admissible Heegaard moves (which does turn out to hold).

Assuming invariance under weakly admissible Heegaard moves, we are now finally ready
to compute Heegaard Floer homology of an arbitrary closed connected oriented 3-manifold!
As an example, we will compute the Heegaard Floer homology of S1 ˆ S2.

Example. Let Y “ S1 ˆ S2. Consider the Heegaard diagram shown in the right, in
figure 4.1. This is a weakly admissible diagram, so we can use it to compute Heegaard
Floer homology. As computed in an earlier example, we have By “ 0 automatically, and
Bx “ y ´ y “ 0 by convention. This gives

yCF “ yHF “ Z‘ Z “ H˚pS1q.

We will now aim to understand this a little better, by computing the summands

yHF pY q “
à

sPSpincpY q

yHF pY, sq.

Recall that there is an isomorphism

SpincpY q Ñ H2pY q – Z, s ÞÑ c1psq{2,

because H1 has no 2-torsion. Since x „ y, only one of the spinc structures is “seen” in the
diagram - in general, yHF pY, sq “ 0 for all but finitely many s since there are only finitely

many intersection points. In our case, yHF pY, sq is non-zero for all but one s - so which
one is this?

Recall that yHF pY, sq is Z{2sZ-graded, where 2sZ is the image of µ : pπ2px, xq Ñ Z. In
our case, there are two regions D1 and D2 so that the domain shown in the diagram is
D1 ´D2. This gives

pπ2px, xq “ tnpD1 ´D2q : n P Zu,

but µpD1 ´D2q “ µpD1q ´ µpD2q “ 1´ 1 “ 0. Therefore 2sZ “ 0, and hence s “ 0. This
tells us that

yHF pS1 ˆ S2, sq “

#

H˚pS1q s “ 0

0 otherwise.

We will outline a proof of invariance of Heegaard Floer homology under weakly admis-
sible Heegaard moves, but before this we will investigate some other versions of Heegaard
Floer homology, most notably HF˘.
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4.7 Different versions of H.F. homology: HF8, HF˘.

Two of the most useful versions of Heegaard Floer homology are HF` and HF´. To define
these, we first must define HF8. This is similar to yHF , but instead of killing everything
near the basepoint of the Heegaard diagram, it keeps track of details at the basepoint.

Recall that yHF is the Lagrangian Floer homology of Tα and Tβ in SymgpΣ´zq, i.e. the
Lagrangian Floer homology of Tα and Tβ in SymgpΣq restricted to strips with nzpϕq “ 0.

More generally, for an arbitrary ϕ P π2px, yq, we need not have that nzpϕq “ 0, but
instead nzpϕq ě 0.

Definition 4.7.1. CF8 is the free ZrU,U´1s-module generated by Tα XTβ. This admits
a Maslov grading (in the same way as CF ). This forms a chain complex by the boundary
maps

B8x “
ÿ

y

ÿ

ϕPπ2px,yq,µpϕq“1

#pMpϕq{RqUnzpϕqy.

The homology of this chain complex is denoted by HF8pY q, and is a ZrU,U´1s-module.

To make sure this is well defined, we must verify that pB8q2 “ 0. This is true because
additivity of nz ensures that Unzpϕ#ψq “ UnzpϕqUnzpψq. Then the result follows from the
fact that B2 “ 0, where B denotes the boundary map from CF (used to define yHF ).

Is this really well defined? Are we satisfying the premises for Lagrangian Floer homol-
ogy?

� We must check premise 4: can we prevent bubbling of J-holomorphic strips?

� Premise 5: is the symplectic energy bounded?

Recall that π2px, xq “ π2pSymgpΣqq “ H2pΣq “ Z. Since this does not vanish, there could
exist sphere and disk bubbles on the boundary of the moduli space of J-holomorphic strips!
This is taken care of by a theorem of Ozsváth and Szabó:

Theorem 4.7.2. J-holomorphic spheres appear with Maslov index at least 2 - they do not
destroy pB8q2 “ 0. J-holomorphic disks appear, but cancel out in pairs (their signed counts
are zero).

What about energy? We need Epkerµq to be bounded. Recall that Π “ π2px, xq “
H1pY q‘Z “ pΠ‘xΣy, where Σ is a periodic domain with nzpϕq “ 1. Since µ on pπ2px, xq “ pΠ
is bounded, it remains to see what happens on Σ. It turns out that µpΣq “ 2 (which we will
show later). Therefore the kernel of µ on just Σ is trivial (and thus has bounded energy).
However, the kernel of µ on pΠ ‘ xΣy consists of linear combinations of things that might
be non-vanishing in either summand, so there is work to do.

That being said, in principle the Σ term does not contribute to the differentials: We
really only care about ϕ with µpϕq “ 1, but we have

µpϕ` nΣq “ 1` 2n ‰ 1
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for n ‰ 0. Therefore the differentials ignore Σ in some sense. This is a bit vague, but
formally Ozsváth and Szabó deal with the problem by introducing a notion of strongly
admissible Heegaard diagrams which ensures that Epkerµq is bounded.

Finally, how do we grade HF8? It was remarked earlier that it inherits a grading
from the Maslov grading akin to yHF , but we must also describe how Uk interacts with the
grading. Suppose µpϕq “ 1, and B8x contains Uky (i.e. nzpϕq “ k). Then

µpϕ´ krΣsq “ 1´ 2k, nzpϕ´ krΣsq “ 0, ϕ´ krΣs P pπ2px, yq.

The first equality comes from µpΣq “ 2. We want the grading of x to be equal to 1 more
than the grading of Uky. Therefore we set grpUq “ ´2 to cancel out the 2k appearing

above. Now Tα X Tβ will be graded by Z{δpsqZ (as was yHF ), with grpUkxq “ grpxq ´ 2k.
In summary, we have a well defined version of Heegaard Floer homology,

HF8pY q “
à

sPSpincpY q

HF8pY, sq,

where the summands on the right are Z{δpsqZ-graded.

Remark. If we ignore U , since µpΣq “ 2, (and the grading is determined by the image of
the Maslov grading map), the right side would only be Z{2Z graded.

The real question is, is this version of Heegaard Floer homology interesting? Remark-
ably, it’s totally not interesting!

Theorem 4.7.3 (Lidman). HF8pY q is determined by (the cup product on) H˚pY q.

However, we can use it define HF` and HF´, which are genuinely interesting versions
of Heegaard Floer homology.

Definition 4.7.4. Recall that CF8 is the free ZrU,U´1s-module generated by x P TαXTβ.
We define CF´ Ă CF8 to be the free ZrU s-module generated by Ux, x P Tα X Tβ. That
is, it is the subset consisting of only positive powers of U . We further define CF` “

CF8{CF´, i.e. this consists only of the non-postive powers of U . The corresponding
homologies are denoted by HF´ and HF` respectively.

There is evidently a short exact sequence

0 Ñ CF´ Ñ CF8 Ñ CF` Ñ 0.

This means there is a long exact sequence in homology!

¨ ¨ ¨ Ñ HF´˚ pY q Ñ HF8˚ pY q Ñ HF`˚ pY q Ñ ¨ ¨ ¨ .

Even though HF8 is boring in the sense that we can compute it from H˚, it can help us
understand HF´ and HF` via this exact triangle!
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Example. Consider S3 with the standard genus 1 Heegaard diagram. (That is, the α

curve is a meridian and the β curve is a longitude of the torus.) Then yHF “ Z, HF8 “
ZrU,U´1s, HF´ “ ZrU s, and HF` “ ZrU,U´1s{ZrU s. This can expressed in a diagram
which shows the grading:

HF´ HF8 HF`

Grading

4 U´2x U´2x
2 U´1x U´1x
0 x x
-2 Ux Ux
-4 U2x U2x
-6 U3x U3x

We can make some comments:

�
yHF has less information than HF`, HF´ but it suffices for most 3 dimensional
applications.

� HF˘ are needed for 4-manifold invariants.

� HF8 gives you some information about HF`, HF´.

In fact, we see that yCF “ CF´{U . Therefore we have a short exact sequence

0 Ñ CF´
U
ÝÑ CF´ Ñ yCF Ñ 0.

Therefore there is a long exact sequence

¨ ¨ ¨ Ñ yHF Ñ HF´
U
ÝÑ HF´ Ñ ¨ ¨ ¨ .

Similarly, there is a long exact sequence

¨ ¨ ¨ Ñ yHF Ñ HF`
U
ÝÑ HF` Ñ ¨ ¨ ¨ .

In fact, either of these long exact sequences determines a short exact sequence

0 Ñ cokerU Ñ yHF Ñ kerU Ñ 0,

which tells us that (over a field), yHF “ kerU ‘ cokerU .
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4.8 The degree of U in CF8 (lecture 8)

In the previous lecture, we mentioned that

µpΣq “ 2

where Σ is interpreted as a domain in π2px, xq, and µ is the Maslov index of Σ. This
was used to justify that grpUq “ ´2. We will briefly re-derive that grpUq should be ´2,
assuming µpΣq “ 2. Let x, y P Tα X Tβ, and define grpx, yq “ µpϕq where ϕ P pπ2px, yq,
i.e. ϕ P π2px, yq and nzpϕq “ 0. Similarly define grpx, Uyq “ µpψq, where ψ P π2px, yq and
nzpψq “ 1. Then the corresponding domains differ by Σ:

Dpψq “ Dpϕq ` Σ ñ µpψq “ µpϕq ` µpΣq “ µpϕq ` 2.

Therefore grpx, yq ´ grpx, Uyq “ ´2. But using the induced relative gradings on x, y, and
Uy, this means that grpxq ´ grpyq ´ grpxq ` grpUyq “ ´2, so grpUyq ´ grpyq “ ´2. This is
what we wanted to show.

So how do we determine that µpΣq “ 2? We will use the Lipshitz formula.

Theorem 4.8.1. Let the ambient space be SymgpΣq, and let ϕ P π2px, yq. Then it has a
domain D “ Dpϕq, and

µpDq “ epDq ` nxpDq ` nypDq,

where epDq is the Euler measure, while nxpDq and nypDq are average vertex multiplicities.

We will not prove this theorem, but to understand the statement we must explore the
Euler measure and average vertex multiplicities.

Euler measure: Let D be a domain, and choose a metric on Σ so that all α, β intersect
at right angles and are geodesics. Then

epDq “
1

2π

ż

D
KdA

where K is the Gauss curvature. Of course, we do not have to do any geometry - this
quantity can be computed using the Gauss-Bonnet theorem. We now list some examples.

� A square with right angled vertices and geodesic boundary is flat: epsquareq “ 0.

� A bigon with right angled vertices has positive curvature: epbigonq “ 1{2.

� More generally, ep2n-gonq “ 1´ n{2.

� If Σg is the closed surface with genus g, then Gauss-Bonnet gives us

epΣgq “ χpΣgq “ 2´ 2g.
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� The most general case we encounter is a surface of genus g with boundary. Then

epDq “ χpDq ´
# angles

4
.

An important observation is that if we partition a domain as D “ D1 YD2, then epDq “
epD1q ` epD2q. It follows that ep

ř

aiRiq “
ř

aiepRiq, which can aid in calculations.
Average vertex multiplicity: This is essentially want the name suggests: let D be

a domain. Recall that domains are defined in the following way: let u : D2 Ñ SymgpΣq
be a J-holomorphic strip. By the tautological correspondence, this gives a g-fold branched
cover p : S Ñ D2 and a map ru : S Ñ Σ (for some space S). Then Dpuq is the image of
ru interpreted as a 2-chain. But now if D is a domain corresponding to u P π2px, yq, then
each of x and y lift to g-tuples tx1, . . . , xgu and ty1, . . . , ygu in S. Similarly the α and β
curves lift to S, carving out regions.

Choose some xi P txiu. This is a vertex at the intersection of a lift of an α and β
curve, and defines 4 neighbouring regions Ri1, . . . , R

i
4. Each of these regions appear in D

with some multiplicity aik (by writing D “
ř

ajRj). The average vertex multiplicity at xi
is then nxipDq “ pa

i
1 ` ¨ ¨ ¨ ` a

i
4q{4. More generally, the average vertex multiplicity at x is

nxpDq “

g
ÿ

i“1

nxipDq.

Example. Let D be a bigon with vertices x and y. Then nxpDq “ 1{4 and nypDq “ 1{4,
since at each vertex, exactly one of the four regions appears in a bigon. Moreover, we
mentioned earlier that epDq “ 1{2. Therefore

µpDq “ epDq ` nxpDq ` nypDq “ 1{2` 1{4` 1{4 “ 1.

Example. Next let D be a square with vertices x1, x2, and y1, y2. Then nxpDq “ 1{2 and
nypDq “ 1{2, since each vertex once again has average multiplicity 1{4. But from earlier,
we had that epDq “ 0! Therefore

µpDq “ epDq ` nxpDq ` nypDq “ 0` 1{2` 1{2 “ 1.

An important question in Heegaard Floer theory is: if µpDq “ 1, where D “ Dpϕq, ϕ P
π2px, yq, then what is #pMpϕq{Rq? If we know this, we can compute Heegaard Floer ho-
mology, since this is the only difficult term appearing in the boundary map. Unfortunately
this is difficult to recover from topology alone, as we will now see.

Example. Consider the bigon from two examples earlier, which was shown to that µpDq “
1. Several lectures ago we noted that complex automorphisms of disks have three degrees
of freedom, but two of these are fixed by the restriction that p´1, 1q ÞÑ px, yq in the
definition of a J-holomorphic strip. Therefore only one degree of freedom remains, and
Mpbigonq “ R. Therefore

#pMpbigonq{Rq “ ˘1.

62



Example. We can also compute #pMpϕq{Rq, where Dpϕq is a square. This time we must
count the number of branched double covers from a disk with four marked boundary points
to pD2, 1,´1q. By complex analysis, there is a unique double cover modulo an R action!
Once again #pMpϕq{Rq “ ˘1.

Example.

Figure 4.2: Example to demonstrate that #pMpϕq{Rq is difficult to compute.

As a final example, we consider the two images above. Since they are annuli, they have
Euler characteristic 0. Since they have two vertices, their Euler measure is ´1{2. On the
other hand, the vertices nxpDq “ 1{4`1{4 “ 1{2, and nypDq “ 1{2`1{2 “ 1. In summary
µpDq “ 1 as in the above examples. By the classification of conformal structures on annuli,
one can check that #pMpϕq{Rq “ ˘1.

On the other hand, in the second diagram, we can have #pMpϕq{Rq “ 0 (as well as
˘1)! This is because the length of the red curve from y to y1 can be such that it forbids the
existence of any J-holomorphic strips. In conclusion, #pMpϕq{Rq is not easily determined
from topology alone. This makes HF difficult to compute!

Proposition 4.8.2. If Σ is interpreted as a domain in itself, then µpΣq “ 2.

Proof. Suppose Σ has genus g. Then epΣq “ 2´ 2g. On the other hand,

nxpΣq “ nypΣq “

g
ÿ

i“1

nxipΣq “ gpp1` 1` 1` 1q{4q “ g.

Therefore µpΣq “ 2´ 2g ` g ` g “ 2.

4.9 Heegaard diagram invariance

We defined HF ˝ for ˝ P tp,`,´,8u using a fixed Heegaard diagram. However, for the
invariants to really be useful, we want them to not depend on the choice of Heegaard
diagram. This is indeed the case, as promised earlier!
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Theorem 4.9.1 (Ozsváth - Szabó). Heegaard Floer homology HF ˝pY q is an invariant of
the 3-manifold Y , where ˝ P tp ,`,´,8u.

Proof sketch. We must verify invariance under Heegaard moves. Precisely, we must verify
that Heegaard Floer homology is invariant under isotopies, handleslides, and stabilisations,
where each move is going through admissible diagrams.

Isotopy invariance. Recall that this is true in general for Lagrangian Floer homology
if we only use Hamiltonian isotopies! If we restrict ourselves to admissible diagrams, then
areas between curves are zero. Moreover, isotopies can be chosen so that the intermediate
diagrams are all admissible. But then areas are constantly being preserved, so the isotopy
is Hamiltonian!

Stabilisation invariance. Suppose we use a Heegaard diagram

pΣ, α1, . . . , αg, β1, . . . , βgq

to define Heegaard Floer homology, and then stabilise it to obtain

pΣ`, α1, . . . , αg`1, β1, . . . , βg`1q.

Then Tα X Tβ consists of g-tuples tx1, . . . , xgu, and Tα` X Tβ` consists of tx1, . . . , xg`1u.
Since the curves αg`1 and βg`1 intersect at exactly one point, the last point xg`1 is
necessarily this one intersection point. This establishes a 1-to-1 correspondence

Tα X Tβ Ø Tα` X Tβ` , tx1, . . . , xgu Ø tx1, . . . , xg`1u.

It follows that there is a bijective correspondence between J-holomorphic strips, ϕ P

π2px, yq Ø ϕ` P π2px
`, y`q. Therefore the counts of J-holomorphic strips #pMpϕq{Rq

also remain unchanged under stabilisation.
Handleslide invariance. This is what will require the most work. We use “triangle

maps”. Let L0, L1, L2 Ă pM,ωq satisfy the usual conditions for Lagrangian Floer homology.
Define F : CF pL0, L1q b CF pL1, L2q Ñ CF pL0, L2q by

F pxb yq “
ÿ

z

ÿ

ϕPπ2px,y,zq,µpϕq“0

p#Mpϕqqz.

Here ϕ is a “J-holomorphic triangle”, i.e. a map from a disk with three marked points into
M , such that the boundary of the disk must map onto the Lagrangians Li, and the marked
points map to pairwise intersections x, y, z of the Lagrangians. One can verify that Mpϕq
really has dimension 0. (This is essentially because maps from disks have three degrees of
freedom, and here we are fixing three degrees of freedom.) In summary, the above map is
well defined.

Proposition 4.9.2. F is a chain map. In particular, F then induces a map HF pL0, L1qb

HF pL1, L2q Ñ HF pL0, L2q which we call a triangle map.

64



Figure 4.3: Handle slide of β2 over β1 to obtain new curves γi.

We do not give a proof of this fact, but it amounts to showing that BF pxbyq`F pBxb
yq ` F pxb Byq “ 0. One can draw a diagram to convince oneself of this fact. We are now
ready to investigate how Heegaard Floer homology is affected by handleslides! Figure 4.3
shows part of a Heegaard diagram pΣ, α1, . . . , αg, β1, . . . , βgq. (The α curves are incomplete
etc.) We consider the handleslide of β2 over β1, which gives a new curve γ2. Overall, we
consider the new Heegaard diagram to be pΣ, α1, . . . , αg, γ1, . . . , γgq. (That is, we replace
the β curves with γ curves.)

From above, we have a triangle map

Fα,β,γ : yHF pTα,Tβq b yHF pTβ,Tγq Ñ yHF pTα,Tγq.

The first factor is yHF pH1q, and the last term is yHF pH2q, where our Heegaard diagram
was changed from H1 to H2 via the handleslide. Our first goal is to understand the term
yHF pTβ,Tγq. This is actually just

yHF pTβ,Tγq “ yHF p#gpS1 ˆ S2qq “ pH˚pS1qqbg “ H˚pTgq.

The last space is generated by tθ1, η1uˆ¨ ¨ ¨ˆtθg, ηgu. Define Θ “ tθ1, . . . , θgu P yHF pTβ,Tγq,
and

F : yHF pH1q Ñ yHF pH2q by F pxq “ Fα,β,γpxbΘq.

We define a map G : yHF pH2q Ñ yHF pH1q similarly, by instead considering a triangle map
yHF pTα,Tγq b yHF pTγ ,Tβq Ñ yHF pTα,Tβq.

One can construct maps H1 and H2 which essentially count holomorphic quadrilaterals,
and show that

FG “ 1` BH1 `H1B, GF “ 1` BH2 `H2B.

It follows that F is a chain homotopy equivalence, so yHF pH1q – yHF pH2q.
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This completes the proof (outline) that Heegaard Floer homology doesn’t depend on
the choice of (admissible) Heegaard diagram! It’s really an invariant of closed connected
oriented 3-manifolds! Next we will explore some applications in 4-dimensions.
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Chapter 5

Heegaard Floer homology in
dimension four

Heegaard Floer homology was defined earlier for closed connected oriented 3-manifolds.
However, we will see in this chapter that Heegaard Floer homology is a “3+1 topological
quantum field theory”. This loosely means that given an oriented compact cobordism W 4

from Y0 to Y1, we obtain a homomorphism F : HF pY0q Ñ HF pY1q. This further defines
an invariant for closed oriented 4-manifolds.

Applications include the existence of exotic smooth structures on 4-manifolds, which
originally used gauge theory. However, this method is completely independent of gauge
theory! Another important application is to the study of the homology cobordism group
Θ3

Z. Rokhlin first showed that the group was non-trivial, and Donaldson showed it was
infinite. However, more precise results have been obtained using Heegaard Floer homology:
Froyshov showed that Θ3

Z has a Z summand using Heegaard Floer homology! (Note that
this is considered a 4 dimensional application, because the equivalence relation between
homology spheres is homology cobordism, and the cobordisms are 4-dimensional. More
precisely, the 4-dimensional theory of Heegaard Floer homology is used rather than just
the 3-dimensional theory.)

5.1 Heegaard Floer homology as a 3+1 TQFT (lecture 9)

To interpret Heegaard Floer homology as a 3+1 dimensional topological quantum field
theory, we must take a brief detour through some spin structure things.

Proposition 5.1.1. Spinc-structures on a 4-manifold X are in (non-canonical) one-to-one
correspondence with H2pX;Zq. (In particular, they always exist.)

Thus, if we fix any s0 P SpincpXq, s´ s0 is a well defined element of H2pX;Zq. There
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is also a map induced by the first Chern class:

c1 : SpincpXq Ñ H2pX;Zq, c1ps` aq “ c1psq ` 2a.

On 3-manifolds, there exists an s such that c1psq “ 0. However, this need not be the case
on 4-manifolds.

Proposition 5.1.2. If s is a Spinc-structure, then xc1psq, xy ” xx, xy mod 2, for all x P
H2pX;Zq. That is, c1psq is a characteristic element.

It follows that if there exists an s such that c1psq “ 0, then x2 ” 0 mod 2 for all
x P H2pX;Zq. This is true for example in S4 or S2 ˆ S2, but not for CP2.

Figure 5.1: Heegaard Floer homology as TQFT.

The main theorem of this section is that Heegaard Floer homology defines a 3+1 di-
mensional topological quantum field theory, so it is not only an invariant of closed oriented
3-manifolds, but also for certain 4-manifolds. The precise statement is as follows:

Theorem 5.1.3 (Ozsváth, Szabó). Let W be a connected smooth oriented 4-dimensional
cobordism between connected 3-manifolds Y0 and Y1. Fix a path γ and s P SpincpW q. (See
figure 5.1 for reference.) There is an associated map

F ˝W,s : HF ˝pY0, s|Y0q Ñ HF ˝pY1, s|Y1q

(where ˝ P tp ,`,´,8u) satisfying the following properties.

� If W “ Y ˆ r0, 1s and γ “ z ˆ r0, 1s, then F ˝W,s “ id.

� Let W1 be a cobordism from Y0 to Y1, and W2 a cobordism from Y1 to Y2. Let W be
the cobordism obtained by gluing W1 to W2. Then

F ˝W2,s2 ˝ F
˝
W1,s1 “

ÿ

sPSpincpW q,s|Wi
“si

F ˝W,s.
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Notice that the above two properties are just functoriality, where we view

pW,Y0, Y1, γ, sq ÞÑ F ˝W,s

as a functor from the 3+1 cobordism category to Z-mod. Therefore our theorem is really
the statement that Heegaard Floer homology defines a topological quantum field theory.

Remark. For functoriality, we are taking a sum over “all the s that restrict to s1 and s2.
This is a bit strange - what if there are none? what if there are infinitely many? The count
comes from the Mayer-Vietoris sequence:

¨ ¨ ¨ Ñ H1pY1q
δ
ÝÑ H2pW q

i
ÝÑ H2pW1q ‘H

2pW2q Ñ H2pY1q Ñ ¨ ¨ ¨ .

The number of s such that s restricts to given s1, s2 is exactly the number of s in the
preimage of any given ps1, s2q P H

2pW1q‘H
2pW2q. Thus there are ker i “ im δ many such

s. In particular, there is a unique s if and only if δ is the zero map. (For example, if Y1 is
a rational homology sphere, in which case H1pY1q “ 0.)

We now give a sketch of the contruction of the cobordism map. (More precisely, we’ll
start with an outline of the sketch of the construction!)

Outline of the construction of F ˝W,s. Recall from Morse theory that every smooth
manifold Mn can be decomposed into handles. Precisely, an m-dimensional k-handle is a
copy of Dk ˆDm´k glued to the boundary of an m-manifold along BDk ˆDm´k.

For example, suppose X “ D3 is the 3-ball. Then we can glue a 3-dimensional 1-handle
onto X: this is a copy of D1 ˆD2 glued to X along pBD1q ˆD2 “ D2

0 \D
2
1. The result is

a solid torus.
Now suppose W 4 is a cobordism from Y0 to Y1. This can be decomposed as W “

W1 YW2 YW3, where Wi consists purely of 4-dimensional i-handles. We will define

FW,s “ FW3,s3 ˝ FW2,s2 ˝ FW1,s1 .

Therefore the remaining steps are constructions of the cobordism map in each case where:

� the cobordism consists entirely of 1-handles,

� the cobordism consists entirely of 2-handles,

� the cobordism consists entirely of 3-handles.

The cobordism map for 1-handles. We start with Y0ˆr0, 1s as the trivial cobordism
W . In this context a 1-handle is a copy of r0, 1s ˆ D3. Gluing this to W means we glue
r0, 1sˆD3 via 0ˆD3 and 1ˆD3, onto Y0ˆt1u. This is a little hard to visualise, but figure
5.2 shows that gluing a 1-handle to W at Y0 ˆ t1u is equivalent to a boundary connected
sum of S1 ˆD3 to Y0 ˆ t1u, and hence the boundary component becomes Y0#pS1 ˆ S2q.
Thus the trivial cobordism is now replaced with a cobordism from Y0 to Y0#pS1 ˆ S2q.
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Figure 5.2: Gluing a 1-handle to a trivial cobordism.

We wish to define a map yHF pY0q Ñ yHF pY0#pS1 ˆ S2qq. But the codomain is then

just yHF pY0qbyHF pS1ˆ S2q “ yHF pY0qb xθ, ηy. Here xθ, ηy “ H˚pS1q, with θ denoting the
higher graded element. We define

FW1 : yHF pY0q Ñ yHF pY0#pS1 ˆ S2qq “ yHF pY0q b xθ, ηy, x ÞÑ xb θ.

The cobordism map for 3-handles. 3-handles are the opposites of 1-handles. This
is very literally true - gluing a 3-handle to a trivial cobordism from Y1 to Y1 will change it
to a cobordism from Y1#pS1 ˆ S2q to Y1. Therefore we define

FW3 : yHF pY1#pS1 ˆ S2qq “ yHF pY1q b xθ, ηy Ñ yHF pY1q,

#

xb η ÞÑ x

xb θ ÞÑ 0.

The cobordism map for 2-handles. This case takes the most work, in the sense
that most of the complexity of a 4-manifold comes from 2-handles.

In our setting, “attaching a 2-handle” means gluing D2 ˆD2 to Y ˆ t1u Ă Y ˆ r0, 1s
along S1 ˆD2. But S1 ˆD2 Ă Y is a (closed) neighbourhood of a knot in Y ! Specifically,
the knot K “ S1ˆt0u. Therefore attaching a 2-handle corresponds to cutting out S1ˆD2,
and gluing it back in via a different diffeomorphism. This is called knot surgery, and
appeared in e.g. my notes on 4-manifolds from Spring 2020, and probably also in my notes
on homology spheres or knot theory.

Definition 5.1.4. Let Y be a 3-manifold, and K Ă Y a knot. Fix a neighbourhood S1ˆD2

of K. This has boundary S1 ˆ S1, which is parametrised by a longitude ` and a meridian
m respectively. The rational p{q-surgery on K in Y is defined to be

pY ´ S1 ˆD2q \f pS1 ˆD2q
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where f sends a meridian µ of the second copy of S1ˆD2 to a loop c, where rcs “ prms`qr`s
in homotopy (with p, q P Z). This is denoted by Yp{qpKq.

Observe that p{q-surgery occurs as the boundary of a 2-handle additional if and only if
q “ ˘1. That is, if and only if the surgery is integral. (In other words, in a handle addition,
we cannot “wrap around the handle” multiple times - we traverse the handle exactly once.)

In summary, the cobordism W2 consisting entirely of two handles can alternatively be
considered as the rest of integral surgery on a link L. Therefore we will define FW2,s in
terms of L. Suppose L is a knot, that is, there is a single 2-handle. We will associate to
the surgery cobordism Y Ñ Y 1 “ YppKq a “triple Heegaard diagram”. That is,

pΣ, α1, . . . , αg, β1, . . . , βg, γ1, . . . , γgq

such that

1. pΣ, αi, βiq is a Heegaard diagram of Y ,

2. pΣ, αi, γiq is a Heegaard diagram of Y 1,

3. and γi, βi are isotopic for i ă g (intersecting at two points), while γg and βg intersect
at one point.

Figure 5.3 gives an example of a triple Heegaard diagram.

Figure 5.3: Example of triple Heegaard diagram.

From the figure, we see that pΣ, βi, γiq represents #g´1pS1 ˆ S2q. The map FW2,s2 :
HF ˝pY q Ñ HF ˝pY 1q is defined in a manner reminiscent to the proof of the invariance of
Heegaard Floer homology with respect to handle slides: we count holomorphic triangles.
More precisely we consider the triangle map

f : HF pTα,Tβq bHF pTβ,Tγq Ñ HF pTα,Tγq.

By construction HF pTβ,Tγq is equal to xθ1, η1y b ¨ ¨ ¨ xθg´1, ηg´1y b xθgy. Write Θ “ θ1 b

¨ ¨ ¨ b θg. Then the cobordism map is

FW2,s2 : HF ˝pY q Ñ HF ˝pY 1q, x ÞÑ fpxbΘq.
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(Here we are using that HF ˝pY q “ HF pTα,Tβq, and HF ˝pY 1q “ HF pTα,Tγq).
This completes the construction of the maps. Ozsváth and Szabó proved that the FW,s

defined in this manner do not depend on the choice of handle decomposition of the given
W .

Exercise. As an example of the fact that the maps are functorial, one can consider S3 ˆ

r0, 1s as the cobordism. This can be decomposed as the union of a 1-handle and 2-handle,
i.e. W “W1YW2, where W1 is a cobordism from S3 to S1ˆS2, and W2 a cobordism from
S1 ˆ S2 to S3. Compute FW1 and FW2 , and verify that FW2 ˝ FW1 “ id.

5.2 Cobordism maps on gradings

Since cobordisms W between 3-manifolds Y0 and Y1 induce maps HF pY0q Ñ HF pY1q, an
immediate question is whether or not the maps preserve the grading. If not, how does it
affect the grading? We explore this question here.

Theorem 5.2.1. For c1psq torsion, there exists an absolute Q-grading on HF ˝pY, sq sat-
isfying the following properties:

� The absolute Q-grading lifts the relative Z{NZ-grading in the sense that grpxq ´
grpyq “ grpx, yq mod NZ (and grpxq, grpyq P Q).

� Suppose pW, sq is a cobordism from pY0, s0q to pY1, s1q. Then the absolute Q-gradings
on HF ˝pYi, siq are related by

grpFW,spξqq ´ grpξq “
c1psq

2 ´ 2χpW q ´ 3σpW q

4
.

Details on the above theorem can be found in Holomorphic triangles and four-manifold
invariants by Ozsváth and Szabó.

Recall that by a relative Z{NZ grading, we mean grpx, yq P Z{NZ is well defined, but
not grpxq or grpyq. The relative grading satisfies the additive property grpx, yq` grpy, zq “
grpx, zq.

Remark. The mysterious expression above involving the first Chern class, Euler charac-
terstic, and signature, is equal to the expected dimension of the Seiberg-Witten moduli
space of a closed 4-manifold equipped with a Spinc structure s.

Recall that the signature σpW q of a 4-manifold W is the signature of its intersection
form. That is, σpW q “ p ´ q where p is the number of positive eigenvalues and q is the
number of negative eigenvalues of Q : H2pW q bH2pW q Ñ Z.

What is c1psq
2? By Poincaré duality, c1psq P H

2pW q – H2pW, BW q. However, there
is no intersection form on H2pW, BW ;Zq! This is because we can’t intersect surfaces with
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boundary and reasonably count intersections (or alternatively, if we view this from the
cohomological perspective using the cup product, there is no fundamental class). This is
where the condition that c1psiq is torsion comes in handy! That is, BW “ Y0 Y Y1, and we
can write s|Yi “ si.Then c1psiq is torsion, so c1ps|Y0YY1q “ c1ps|BW q is also torsion. This
means c1ps|BW q “ 0 P H2pBW ;Qq. The long exact sequence of cohomology reads

H2pW ;Qq – H2pW, BW ;Qq Ñ H2pW ;Qq Ñ H2pBW ;Qq.

But now c1psq P H
2pW ;Qq maps to c1psq|BW “ c1ps|BW q “ 0 in H2pBW ;Qq, by exactness

there exists some x P H2pW, BW ;Qq whose image is c1psq.
We now define c1psq

2 to be xc1psq ! x, rW sy. This makes sense because c1psq ! x P
H4pW, BW ;Qq, while rW s P H4pW, BW ;Qq.

Proposition 5.2.2. If Y is an integral homology sphere, then the absolute Q-grading is
in fact a Z-grading.

Example. In each of the following, s is the unique torsion spin structure.

�
yHF pS3, sq “ Z in grading 0.

�
yHF pS1 ˆ S2, sq “ Z‘ Z in gradings p´1{2, 1{2q.

5.3 Reduced Heegaard Floer homology

If our aim is to study 4-manifolds, we would ideally like some invariants of closed 4-
manifolds rather than just cobordisms of 3-manifolds. In this section we will introduce
an ingredient for such an invariant (which I cannot motivate - that is, I don’t see why it
should have anything to do with 4-manifold invariants!)

Recall that CF8 is generated over ZrU,U´1s by TαXTβ. This contains a subcomplex
CF´ which is generated by U ix for i ě 1, and CF` is the complex defined by CF8{CF´.
This gives a long exact sequence

. . . HF´
i
ÝÑ HF8

π
ÝÑ HF`

δ
ÝÑ HF´ Ñ ¨ ¨ ¨ .

But now, from this long exact sequence, we can extract some information common to HF`

and HF´ which doesn’t feature in HF8! Namely, the image of δ.

Definition 5.3.1. The reduced Heegaard Floer homology, denoted by HFred, is defined by
any one of the following equalities:

HFred “ cokerπ “ HF`{ ker δ “ im δ “ ker i.

Example. Let Y “ S3. Recall from several lectures ago that HF8 “ ZrU,U´1s, HF´ “

ZrU s, and HF` “ ZrU,U´1s{ZrU s. If x is a generator of yHF “ Z, then we have the
following table:
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HF´ HF8 HF`

Grading

4 U´2x U´2x
2 U´1x U´1x
0 x x
-2 Ux Ux
-4 U2x U2x
-6 U3x U3x

The δ map is then necessarily trivial, so HFred “ 0.

Example. We will not give the details for this example, but Yn “ S3
1{nptrefoilq is an

example of a 3-manifold with non-trivial HFred. (That is, our space is the rational 1{n-
surgery on a right handed trefoil knot in the 3-sphere.) Notice that Y1 is the Poincaré
homology sphere. In general, we have H1pYnq “ 0, so each Yn is an integral homology
sphere.

In the case of Yn, the table of Heegaard Floer homology is as follows:

HF´ HF8 HF`

Grading

4 U´2x U´2x
2 U´1x U´1x
0 x x
-2 Ux Ux, y1, . . . , yn´1

-3 z1, . . . , zn´1

-4 U2x U2x
-6 U3x U3x

The extra terms y1, . . . , yn´1 map to z1, . . . , zn´1 under δ, so that HFred “ Zn´1. (The
rest of the terms map isomorphically in the expected way, as in the case of the 3-sphere.

5.4 Näıve Heegaard Floer homology for closed 4-manifolds
(lecture 10)

Finally we are ready to define invariants for closed 4-manifolds via Heegaard Floer ho-
mology. Before defining the “right notion”, we will use the naive approach and see what
goes wrong. By the naive approach, we mean taking an arbitrary closed 4-manifold, and
removing two 3-balls to create a cobordism. The Heegaard Floer cobordism map would
then be the associated invariant.

Let X4 be a closed smooth oriented connected 4-manifold, and s P SpincpXq. Let
W “ X ´ pB4 YB4q. Heegaard Floer homology induces a map

F ˝W,s : HF ˝pS3q Ñ HF ˝pS3q,
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where as usual ˝ P tp,`,´,8u. This means we have a map F ˝W,s : ZÑ Z, and such a map
is uniquely determined by F ˝W,sp1q P Z.

However, recall that HF8pY q is determined by H˚pY q. Similarly, it turns out the
cobordism maps are determined:

Theorem 5.4.1 (Ozsváth, Szabó). Let W be a cobordism from Y1 to Y2.

1. If b`2 pW q ą 0, then F8W,s is 0.

2. If b`2 pW q “ 0, b1pW q “ 0, and QW has trivial kernel, then F8W,s is an isomorphism.

Note that QW : H2pW ;Rq bH2pW ;Rq Ñ R is the intersection form, which is a sym-
metric bilinear form. Over R, such a form is equivalent to mp1q ‘ np´1q ‘ pp0q, where

� m “ b`2 is the dimension of the maximal subspace on which QW is positive definite,

� n “ b´2 is the dimension of the maximal subspace on which QW is negative definite,

� and p is the dimension of the kernel of QW .

In our case, W is from S3 to itself. Closed 4-manifolds have trivial nullity, and this is
preserved by cutting out two solid balls. Therefore nullitypW q “ 0. It follows that

F8W,s : HF8pS3q “ ZrU,U´1s Ñ HF8pS3q “ ZrU,U´1s

satisfies

F8W,s is

#

0 b`2 pW q ą 0

– b`2 pW q “ 0.

But next we have that

HF8 “ U´1HF´, HF´pS3q “ ZrU s.

The cobordism maps are related by F8W,s “ U´1F´W,s. Similarly to above, the cobordism

map F´W,s is determined by b`2 pW q:

F´W,s : HF´pS3q “ ZrU s Ñ HF´pS3q “ ZrU s, Fi “

#

0 b`2 pW q ą 0

˘1 b`2 pW q “ 0.

Here Fi is a map from ZÑ Z, where we view ZrU s as consisting of copies of Z in negative
gradings, and Fi is the restriction of F´W,s to one of these gradings (Z). Finally F`W,s is
determined from the exact sequence

¨ ¨ ¨ Ñ HF´ Ñ HF8 Ñ HF` Ñ ¨ ¨ ¨ ,
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and zFW,s is determined from the exact sequence

¨ ¨ ¨yHF Ñ HF´
U
ÝÑ HF´ Ñ ¨ ¨ ¨ .

To demonstrate how the exact sequence determines, for example, zFW,s, consider the fol-
lowing diagram:

¨ ¨ ¨ yHF pS3q HF´pS3q HF´pS3q ¨ ¨ ¨

¨ ¨ ¨ yHF pS3q HF´pS3q HF´pS3q ¨ ¨ ¨

zFW,s F´W,s F´W,s

The map zFW,s must be trivial if F´W,s changes the grading, since the former has no grading
change. By virtue of the diagram commuting (from everything being functorial), we have

zFW,s “

#

˘1 0 grading shift, W negative definite

0 otherwise.

In summary, our naive invariants really were quite naive! They don’t contain much infor-
mation at all. A more interesting 4-manifold invariant must capture the parts of HF` and
HF´ that don’t feature in HF8 (as losing this information was our downfall in this case).
That is, we must make use of HFred. These invariants are called mixed invariants and are
next on our menu.

5.5 Mixed invariants of closed 4-manifolds

In this section, we assume X is a closed oriented 4-manifold with b`2 pXq ě 2. We then
define W “ X ´ pB4 Y B4q to be our cobordism between 3-spheres. To extract more
interesting information, we consider an admissible cut to express W as a composition of
two cobordisms.

Definition 5.5.1. An admissible cut N (shown in figure 5.4) for W is a submanifold
N3 ĂW 4 such that W “W1\NW2 with b`2 pW1q, b

`
2 pW2q ě 1, and BH1pNq “ 0 Ă H2pW q.

The second condition makes it easy to glue Spinc structures together. To define mixed
invariants, we start by considering the following two commutative diagrams, in which si
denotes s|Wi , the restriction of a spinc structure on W to one of the halves Wi:

HF´pS3q HF´pNq HF8pNq HF8pS3q

HF8pS3q HF8pNq HF`pNq HF`pS3q

F´W1,s1

i π

F8W2,s2
“0

F8W1,s1
“0 F`W2,s2
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Figure 5.4: Example of an admissible cut.

All vertical maps are induced from the exact sequence

¨ ¨ ¨HF´pY q Ñ HF8pY q Ñ HF`pY q Ñ ¨ ¨ ¨ .

We first consider the diagram on the left. By the previous theorem of Ozsváth and Szabó,
since b`2 pW1q ě 1, we automatically know that F8W1,s1

“ 0. Therefore by commutativity of
the diagram,

imF´W1,s1
Ă ker i “ HFredpNq.

In other words, F´W1,s1
factors through HFredpNq. Similarly in the second diagram, we

conclude that F8W2,s2
“ 0, and thus imπ Ă kerF`W2,s2

. By the universal property of

quotients for example, we conclude that F`W2,s2
also factors through cokerπ “ HFredpNq.

In summary, we obtain the following two diagrams:

HF´pS3q HF´pNq HF`pNq HF`pS3q

HFredpNq HFredpNq

F´W1,s1
F`W2,s2

The mixed map is now defined to be the composition

Fmix
W,s : HF´pS3q Ñ HFredpNq Ñ HF`pS3q.

Recall that HF´pS3q “ ZrU s and HF`pS3q “ ZrU´1s “ ZrU,U´1s{ZrU s. But now
Z Ă ZrU s, and the image of Z under Fmix

W,s is also contained in Z Ă ZrU´1s. We are finally
ready to define mixed invariants!
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Definition 5.5.2. Let X be a 4-manifold as above, and s a spinc structure on X. The
mixed invariant of X is defined to be

ΦX,s “ Fmix
W,s p1q P Z.

Of course, this definition isn’t well defined unless we verify the existence of admissible
cuts, and admissible-cut-invariance.

Lemma 5.5.3. Any cobordism W from S3 to S3 with b`2 pW q ě 2 admits an admissible
cut.

Proof. Let X be a closed 4-manifold with b`2 pXq ě 2. Find a surface Σ Ă X with rΣs2 ą 0
(by using that b`2 pXq ě 2). Let N be the boundary of a tubular neighbourhood NpΣq of
Σ, and write W1 “ NpΣq ´ B4, W2 “ X ´NpΣq ´ B4. Now one can verify that N is an
admissible cut of W “W1 \N W2:

H2pNpΣqq “ H2pΣq “ Z, ñ b`2 pW1q “ 1

b`2 pXq “ b`2 pW1q ` b
`
2 pW2q, ñ b`2 pW2q ě 1.

The coboundary condition can also be readily checked. (Notice that N is an S1-bundle
over Σ, with Euler class rΣs2.)

To complete the verification that the above definition is well defined, we simply state
a theorem of Ozváth and Szabó (without proof):

Theorem 5.5.4. The mixed invariant ΦX,s is independent of the choice of admissible cut.

One immediate property of mixed invariants is that if W admits an admissible cut N
with HFredpNq “ 0, then ΦX,s “ 0. This happens for example when N is a 3-sphere,
Poincaré homology sphere, or lens space.

Corollary 5.5.5. If a 4-manifold X can be expressed as a non-trivial connected sum (in
the sense that X “ X1#X2, with b`2 pX1q ě 1, b`2 pX2q ě 1), then ΦX,s “ 0.

This result can be used to prove the existence of exotic smooth structures on 4-
manifolds! Finally before moving onto such applications, we state some connections with
Seiberg-Witten invariants:

Conjecture. Let X be a 4-manifold as above, and s a spinc structure on X. Then

ΦX,s “ SWX,s

where the latter are Seiberg-Witten invariants.

(See for example my notes from the 4-manifolds topics class in Spring 2020 for more
about Seiberg-Witten invariants.) The lower dimensional analogue has been verified, and
this version is expected to hold. However, the result will take a lot of work and people are
exhausted.

Theorem 5.5.6 (Kutluhan-Lee-Taubes, Colin-Ghiggini-Honda). HF pY, sq “ HMpY, sq,
where the right side denotes monopole (Seiberg-Witten) Floer homology.
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5.6 Applications: exotic smooth structures

One of the main applications of the mixed invariant is that it gives a novel proof of the
existence of exotic smooth structures on 4-manifolds. That is, there exists closed oriented
4-manifolds X1 and X2 which are homeomorphic but not diffeomorphic.

Theorem 5.6.1. Let X1 “ K3#CP2, and X2 “ 3CP2#20CP2. Then X1, X2 are homeo-
morphic but not diffeomorphic.

Recall that K3 denotes the K3 surface tz4
0 ` z4

1 ` z4
2 ` z4

3 “ 0u Ă CP3. On the other

hand, CP2 denotes CP2 endowed with the opposite orientation.

Proof. First we note that X1, X2 have the same intersection form on H2, and they are both
simply connected. Therefore by Freedman’s theorem, X1 and X2 are homeomorphic.

Next we write
X2 “ p2CP2#20CP2q#CP2.

Then on the left we have b`2 “ 2, b´2 “ 20. On the right, b`2 “ 1, b´2 “ 0. By the obersvation
about the mixed invariant factoring through HFredpS3q “ 0 (by taking the sphere from the
connected sum as the admissible cut), this gives ΦX2,s “ 0 for every s.

As for X1, we can consider the admissible cut given by 1{2-surgery on a trefoil knot.
This is the Brieskorn sphere Σp2, 3, 11q. Then HFredpΣp2, 3, 11qq “ Z, and there exists s
such that ΦX1,s “ 1. Therefore X1 and X2 cannot be diffeomorphic.

Remark. Although we used mixed invariants (which allows us to consider just cobordisms

from spheres to spheres), zFW,s and F˘W,s can also be used on their own to detect smooth

structures on some 4 dimensional cobordisms (just not those from S3 to S3).

5.7 Applications: homology cobordism group

Another, perhaps more important application, is to the study of the homology cobordism
group Θ3

Z. While the existence of exotic smooth structures was already known, Heegaard
Floer homology has contributed new understanding to the structure of Θ3

Z. Recall that
in the first lecture, I presented some expository material on why we care about Θ3

Z, and
historical progress in its understanding.

Definition 5.7.1. The homology cobordism group Θ3
Z is the group of homology cobordism

classes of integral homology spheres. That is,

Θ3
Z “ toriented ZHS3su{ „,

where Y0 „ Y1 if and only if there is an oriented compact smooth 4-manifold W such that
BW “ p´Y0q \ Y1, and H˚pW,Yiq “ 0 for both i.
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Observe that Θ3
Z is an abelian group:

rS3s “ 0, rY0s ` rY1s :“ rY0#Y1s.

rS3s “ 0 because S3 bounds a ball - thus S3 is homology cobordant to the “empty manifold”.
Next we note that ´rY s “ rY s. This is because

rY s ` rY s “ rY#Y s “ rS3s “ 0.

The middle equality comes from considering Y ˆ r0, 1s, which is a cobordism from Y to
itself. But then deleting a tubular neighbourhood of a path from Y ˆt0u to Y ˆt1u turns
this into a 4-manifold bound by Y#Y . Deleting a ball from thsi manifold gives a homology
cobordism from Y#Y to S3 as required.

Remark. By definition rY s “ 0 P Θ3
Z if and only if Y is homology cobordant to a 3-sphere.

But a 3-sphere bounds a 4-ball, so filling this in, we have that rY s “ 0 if and only if it
bounds a homology ball!

Remark. We now list a few reasons why we care about the homology cobordism group.

� The homology cobordism group tells us about triangulations: fix n ě 5. Then
there exist closed orientable topological manifolds Mn if and only if Θ3

Z contains no
elements of order 2. The latter fact was proven by Manolescu using Seiberg-Witten
Floer homology.

� The homology cobordism group tells us about knots: there are various homomor-
phisms C Ñ Θ3

Z,Θ
3
Q, where C denotes the knot concordance group. Understanding

the structure of Θ3 helps us to understand C via these maps.

� Construction of smooth 4-manifolds: if a homology sphere Σ bounds a smooth 4-
manifold X1 with intersection form QX1 , and ´Σ bounds X2 with intersection form
QX2 , then gluing along the homology sphere gives a manifold X with intersection
form equivalent to QX1 ‘QX2 .

Of course, the question now is: what does Θ3
Z look like? The structure of this group is

as of now unknown!

Open question. What is Θ3
Z?

Here is some of the history of the understanding of this group:

1. Rokhlin: the homology cobordism group is non-trivial. Specifically, it surjects onto
Z{2Z via the Rokhlin invariant µ : Θ3

Z Ñ Z{2Z.

2. Donaldson: using Donaldson’s diagonalisability theorem, one can show that the
Poincaré homology sphere has infinite order in Θ3

Z. Therefore the homology cobor-
dism group is infinite!
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3. Furuta and Fintushel-Stern: Θ3
Z is infinitely generated. Both proofs were gauge-

theoretic, using the Chern-Simons functional. Precisely, it was shown that Σpp, q, pqk´
1q are linearly independent over Z in Θ3

Z, where p, q ě 2 are relatively prime, and
k ě 1.

4. Frøyshov: Θ3
Z has a Z summand. This proof uses Heegaard Floer homology!

5. Dai-Hom-Stoffregen-Truong: Θ3
Z has a Z8 summand. This uses involutive Heegaard

Floer homology.

Of course, as remarked earlier, we also have the structural result that Θ3
Z does not have

any 2-torsion (whis is equivalent to the statement that in every dimension at least 5, there
exist non-triangulable manifolds).

We now outline the proof that Θ3
Z has a Z summand. We must introduce the notion

of correction terms. Let Y be a QHS3, and s P SpincpY q. Then HF8pY, sq “ ZrU,U´1s.
Tensoring with Q, we have HF8pY, s;Qq “ QrU,U´1s. Now HF´pY, s;Qq decomposes as
a direct sum of QrU s and a torsion QrU s-module, i.e. QrU s ‘HFredpY q.

The diagram of HF8,˘pY, s;Qq is familiar, shown in figure 5.5.

Figure 5.5: Towers and tails in Heegaard Floer homology.

Definition 5.7.2. Let Y be a homology sphere and s P SpincpY q. Then HF´pY, s;Qq
splits as QrU s ‘ HFredpY q. The QrU s summand is called the tail of HF´, since it has
a maximum grading, but continues forever in the negative-grading-direction. Similarly,
HF`pY, s;Qq “ QrU´1s ‘HFred, and the QrU´1s summand is called the tower of HF`.
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The correction term dpY, sq measures the mistmatch of the absolute gradings of terms
in HF pY q with that of HF pS3q. Precisely,

dpY, sq :“ mintgrpxq : x P tower of HF`u “ 2`maxtgrpxq : x P tail of HF´u P Q.

Proposition 5.7.3. If Y is in ZHS3, then there is a unique spinc-structure on Y , since
SpincpY q – H2pY ;Zq “ 0. Moreover, dpY q :“ dpY, sq P 2Z.

Proposition 5.7.4. d{2 induces a surjective homomorphism

d{2 : Θ3
Z Ñ Z.

Proof. A few things need checking: firstly, is the map even well defined? That is, is d{2
constant on homology cobordism classes? Secondly, is it really a homomorphism? And
finally, is it surjective?

Suppose Y0 and Y1 are homology cobordant integral homology spheres. We will show
that dpY0q “ dpY1q. By earlier general theory, the homology cobordism W from Y0 to Y1

gives a morphism
F`W,s : HF`pY0q Ñ HF`pY1q,

and the map necessarily has no grading shift. But now dpY0q ď dpY1q, since x in the tower
of HF`pY1q realising the minimum grading could map to a term in HFredpY1q. Now by
reversing W , we have a homology cobordism from Y1 to Y0 from which it follows that
dpY0q ě dpY1q. Therefore d{2 is constant on homology cobordism classes as required: we
have established that

d{2 : Θ3
Z Ñ Z

is at least a well defined set-theoretic map. Next: is it a homomorphism? We must verfiy
that

dprY0s ` rY1sq “ dpY0#Y1q “ dpY0q ` dpY1q.

This makes use of the connected sum formula

HF´pY0#Y1q “ HF´pY0q bZrUs HF
´pY1q.

This formula was proven by Ozsváth and Szabó: the idea is that connected sums of 3-
manifolds can be expressed as connected sums of Heegaard diagrams, then the “neck”
is stretched and analysis on J-holomorphic curves is carried out. But now the tail of
HF´pY0#Y1q is the tensor product of the tails of each connected summand, and degrees are
additive under tensor product. This completes the verification that d{2 is a homomorphism!

Finally, a calculation gives

dpP q “ 2, P Poincaré sphere.

Therefore d surjects onto 2Z, so d{2 is a surjective homomorphism from Θ3
Z onto Z!
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Corollary 5.7.5. Θ3
Z has Z summand. Precisely,

Θ3
Z “ xP y ‘ kerpd{2q.

Elements in the kernel of d{2 can be readily constructed: given any Y P Θ3
Z, simply

consider Y connect sum pdpY q{2qP .
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Chapter 6

Computations in Heegaard Floer
homology

We’ve now constructed a bunch of homology nonsense, and even proven some results, but
we haven’t actually carried out any non-trivial calculations! Is it feasible to calculate
Heegaard Floer homology? Are there any calculational tools? In this chapter we will:

� Carry out a detailed calculation of Heegaard Floer homology for lens spaces (including
grading calculations).

� Introduce the surgery exact triangle which is the most important tool for calculations.
As the name suggests, it aids in calculating Heegaard Floer homologies of manifolds
obtained by surgery on knots.

� Prove that there is an algorithm for computing yHF for any 3-manifold! Given a
Heegaard diagram of the 3-manifold, we can determine its Heegaard Floer homology
in a combinatorial manner (without every having to reference analysis or symplectic
geometry).

6.1 Detailed calculation of HF for lens spaces (lecture 11)

In this section, the lens space Lpp, 1q denotes S3
ppuq, i.e. the p-surgery on the unknot u,

where p P Zą0.

Remark. The above convention is used by Ozsváth and Szabó. However, other sources
usually use Lpp, 1q “ ´S3

ppuq.

A Heegaard diagram of genus 1 for Lpp, 1q is given in figure 6.1. In the above diagram,
we see that there are p intersection points in TαXTβ. Moreover, there is no topological disk
between any two intersection points, bound by the curves - this means each intersection
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Figure 6.1: Heegaard diagram for Lpp, 1q.

point belongs a distinct equivalence class in SpY q, or equivalently a distinct spinc structure.
This gives

SpincpLpp, 1qq – H2pLpp, 1qq – H1pLpp, 1qq “ Z{pZ

as expected. For each s, we also have

yHF pLpp, 1q, sq “ Z, HF`pLpp, 1q, sq “ ZrU´1s, . . .

as expected. The non-trivial calculations that are still required are absolute gradings: what
are

dpLpp, 1q, sq

for each of the p spinc-structures? We will make use of the defining properties of the
absolute grading:

� The absolute Q-grading lifts the relative Z{NZ-grading.

� If pW, sq is a cobordism from pY0, s0q to pY1, s1q, then the absolute gradings of
HF ˝pYi, siq are related by

grpF ˝W,spξqq ´ grpξq “
c1psq

2 ´ 2χpW q ´ 3σpW q

4
.

Since we know the absolute grading on HF ˝pS3q, our best hope is to define a cobordism
W from S3 to Lpp, 1q. At the start of chapter 5 we introduced the cobordism map, and in
its construction we explained how knot surgery corresponds to the addition of a 2-handle.
That is, if we consider the cylinder S3ˆr0, 1s, but then glue a 4 dimensional 2-handle to the
second copy of S3 with framing p, trivially knotted in the cylinder, we obtain a cobordism
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from S3 to S3
ppuq. This has boundary S3\p´S3

ppuqq, so we reverse the cobordism to ensure
the cobordism is correctly oriented. (That is, we consider the cobordism as a map from
S3
ppuq to S3.

In summary, we have maps F ˝W,s : HF ˝pS3
ppuq, s|S3ppuqq Ñ HF ˝pS3q, where W is the

reverse of a 2-handle addition. How does the grading change?

� What is χpW q? We haveH0pW q “ Z, H1pW q “ 0, H2pW q “ Z, H3pW q “ Z, H4pW q “
0. Therefore χpW q “ 1` 1´ 1 “ 1.

� What is σpW q? The intersection form is p´pq : H2pW q ˆ H2pW q Ñ Z. This is
because the handle has p framing, and the orientation is reversed. It follows that
σ “ 1.

Therefore
c1psq

2 ´ 2χpW q ´ 3σpW q

4
“
c1psq

2 ´ 2` 3

4
“
c1psq

2 ` 1

4
.

This tells us that

grpF ˝W,spξqq ´ grpξq “
c1psq

2 ` 1

4

for any ˝ P tp,`,´,8u and any ξ P HF ˝pS3
ppuq, s|S3ppuqq. We are now free to choose

˝ and ξ in ways that can be understood! For example, if we consider HF`, then 1 P
HF`pS3

ppuq, s|S3ppuqq “ ZrU´1s achieves the minimum grading (and hence the minumum

tower grading): grp1q “ dpLpp, 1q, s|Lpp,1qq.
This becomes more useful when we recall that

F8W,s : HF8pLpp, 1q, s|Lpp,1qq Ñ HF8pS3, s|S3q

is determined by the singular cohomology on W : since W is negative definite and b1pW q “
0, the map is an isomorphism! This forces the map to be multiplication by ˘1. Using the
exact triangle HF´ Ñ HF8 Ñ HF`, the cobordism map on HF` is also multiplication
by ˘1. Therefore 1 P HF`pLpp, 1q, s|Lpp,1qq maps to ˘1 P HF`pS3, s|S3q, and this is known
to have grading 0! Therefore from our choice of ˝ “ ` and ξ “ 1, we have computed

grpF`W,sp1qq ´ grp1q “ 0´ dpLpp, 1q, s|Lpp,1qq,

so that

dpLpp, 1q, s|Lpp,1qq “ ´
c1psq

2 ` 1

4
.

It remains to understand the possible values of c1psq
2. To this end, recall that SpincpW q –

H2pW q “ Z, and the image of c1 : SpincpW q Ñ H2pW q is precisely the space of character-
istic elements, i.e. xc1psq, ay ” a2 mod 2 for all a. So what are the characteristic elements
in our case? We require c1psqa ” ´a

2p mod 2 for all a P Z. This means the characteristic
elements are exactly those with parity p. Moreover, we know from general theory that
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c1 : SpincpW q Ñ H2pW q is injective if H2 has no 2-torsion. This is indeed the case, so c1

defines a bijection onto the subset of Z with the same parity as p.
We describe this isomorphism by declaring that for each j P Z, sj P SpincpW q is the

unique spinc structure with c1psjq “ 2j ´ p P Z “ H2pW q.
With this identification, we can compute c1psq

2. The intersection form is induced from
Poincaré duality, in the sense that

PD : H2pW ;Qq Ñ H2pW ;Qq

is given by multiplication by ´p. Let ξ P H2pW ;Zq Ă H2pW ;Qq be a generator. Then the
Poincaré duality map sends ξ to ´pζ, where ζ is a generator of H2pW ;Zq Ă H2pW ;Qq.
Thus ξ2 “ ´p. Now

ζ2 “ pξ{ ´ pq2 “ ξ2{p2 “ ´p{p2 “ ´1{p.

It follows that a ¨ a “ ´a2{p for a P H2pW ;Qq. In particular,

c1psjq
2 “ ´

p2j ´ pq2

p
.

In particular, this gives

dpLpp, 1q, sj |Lpp,1qq “
p2j ´ pq2 ´ p

4p
.

This is currently expressed in terms of spinc structures on W , so it would be good to
express this intrinsically in terms of spinc structures on Lpp, 1q. There is a natural map
H2pW q – ZÑ H2pLpp, 1qq – Z{pZ; the quotient map. Therefore there is a corresponding
map

SpincpW q Ñ SpincpLpp, 1qq, sj ÞÑ rsjs, sj „ sj ` kp, k P Z.

This gives an identification of SpincpLpp, 1qq with t0, . . . , p´ 1u, so that

dpLpp, 1q, sjq “
p2j ´ pq2 ´ p

4p
, 0 ď j ă p.

This completes our example! It’ll be interesting to see how things change when we consider
Lpp, qq.

6.2 A compuational tool: the surgery exact triangle

In our previous example, we already knew the spaces HF if we ignored gradings. However,
in other applications even calculating HF ˝pY q can be tricky. The surgery exact triangle is
a useful tool for this scenario.
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Figure 6.2: Surgery exact triangle example.

Theorem 6.2.1. Let M be a compact oriented 3-manifold, with BM “ T 2. Let γ1, γ2, γ3

be curves on BM such that

γ1 ¨ γ2 “ γ2 ¨ γ3 “ γ3 ¨ γ1 “ ´1.

(The dot denotes signed intersections.) For each i, let Yi “M \γi pS1ˆD2q. That is, glue
M to S1ˆD2 along their common boundary by identifying γi with the meridian t1uˆBD2.
Then there exists a long exact sequence (for any ˝ P tp ,`,´,8u),

¨ ¨ ¨ Ñ HF ˝pY1q Ñ HF ˝pY2q Ñ HF ˝pY3q Ñ ¨ ¨ ¨ ,

where maps are induced by surgery cobordisms.

In figure 6.2, we give examples of curves γi meeting the conditions of the premise.
We do not prove this theorem, but it is explained in detail in Lectures on Heegaard Floer
homology by Ozsváth and Szabó. Instead, we now investigate an example.

Example. Let M “ S3 ´NpKq, where K is a knot, and NpKq a tubular neighbourhood
of K. Let m be the meridian of NpKq, and ` the longitude. That is, r`s “ 0 in H1pMq,
m ¨ ` “ ´1, and m2 “ `2 “ 0. We can take

γ1 “ m

γ2 “ pm` `

γ3 “ ´ppp` 1qm´ `q.

These curves meet the premise for the surgery exact triangle, giving an exact sequence
sequence

¨ ¨ ¨ Ñ HF ˝pS3q Ñ HF ˝pS3
ppKqq Ñ HF ˝pS3

p`1pKqq Ñ ¨ ¨ ¨ .
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More generally, the purpose of the surgery exact triangle is the same as any long exact
sequence: if we have a sufficient understanding of two of the involved spaces, we can deduce
information about the third!

Example. Another variation of the surgery exact triangle is the following:

¨ ¨ ¨ Ñ HF ˝pS3q Ñ
à

j”i mod p

HF ˝pS3
0pKq, jq Ñ HF ˝pS3

ppKq, iq Ñ ¨ ¨ ¨ .

The exact sequence holds for all i P SpincpS3
ppKqq – Z{pZ. Note that SpincpS3

0pKqq – Z,
so we’re summing over all the j P Z congruent to a fixed i mod p.

Exercise. What is the Heegaard Floer homology of S3
ppT q, where T is the right handed

trefoil knot?
A result of Moser gives that

S3
5pT q “ Lp5, 4q – ´Lp5, 1q “ ´S3

5puq.

We know the Heegaard Floer homology of Lp5, 1q from our first example in class. But now
a general recipe for determining the Heegaard Floer homology of S3

ppT q is:

1. Determine the Heegaard Floer homology of S3
5pT q by using the diffeomorphism with

´S3
5puq.

2. Use the version of the surgery exact triangle from the previous example to determine
the Heegaard Floer homology of S3

0pT q.

3. Use the surgery exact triangle again to determine the Heegaard Floer homology of
S3
ppT q for any p.

In particular, ´S3
1pT q is the Brieskorn sphere Σp2, 3, 5q, commonly referred to as the

Poincaré homology sphere!
To be more explicit, the calculations to determine HF ˝pS3

ppT qq can be carried out
by combining two facts: firstly, the maps on HF8 in the surgery exact triangle are all
isomorphisms, since the cobordisms being considered are negative definite! Secondly, the

¨ ¨ ¨ Ñ HF´ Ñ HF8 Ñ HF` Ñ ¨ ¨ ¨

exact triangle commutes with cobordism maps. Therefore, to determine HF`pS3
ppKq, iq

(along with gradings), we can use the following commutative infinite grid:
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...
...

...

¨ ¨ ¨ HF´pS3q
À

j”i mod pHF
´pS3

0pT q, jq HF´pS3
ppT q, iq ¨ ¨ ¨

¨ ¨ ¨ HF8pS3q
À

j”i mod pHF
8pS3

0pT q, jq HF8pS3
ppT q, iq ¨ ¨ ¨

¨ ¨ ¨ HF`pS3q
À

j”i mod pHF
`pS3

0pT q, jq HF`pS3
ppT q, iq ¨ ¨ ¨

...
...

...

Using these exact grids, we can, for example, compute HF`pΣp2, 3, 5qq “ HF`pP q.
It turns out that HF`pP q “ ZrU´1s, with dpP q “ 2. (This is detailed in Ozsváth and
Szabó’s Absolutely graded Floer homologies and intersection forms for four-manifolds with
boundary.) Recall that we used this fact earlier in our proof that Θ3

Z has a Z summand!
We’ve just shown that d{2 : Θ3

Z Ñ Z is surjective, since it sends P to 1. We can also show
that HFredpP q “ 0.

6.3 General algorithm to compute yHF (lecture 12)

As mentioned a few times prior, one of the most powerful aspects of Heegaard Floer ho-
mology is that it can theoretically be computed for any space, if we know its Heegaard
decomposition! This means that any question answered in terms of Heegaard Floer ho-
mology answers the question in general. (For example, we will see in the next lecture that
Heegaard Floer homology detects the Thurston norm, i.e. lower bounds on the genus of
surfaces representing a class in H2pY 3q.)

Theorem 6.3.1 (Sarkar-Wang). Let H be a Heegaard diagram of a 3-manifold Y . There

is an algorithm to compute yHF pY q in Z{2Z-coefficients in terms of the combinatorial data
of H.

This theorem will take a lot of work to prove, so we’ll start by explaining the goal.
That is, what exactly do we need to create an algorithm for? The problem comes down to
computing the differentials in the Heegaard Floer chain complex. This map cares about

ϕ P π2px, yq, µpϕq “ 1 and Dpϕq “
ÿ

i

aiRi, ai ě 0.
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The first condition on ϕ is immediate from the definition of the map, but the second
condition comes from implicit complex geometry: one can show that

ai “ rϕs ˝ rtziu ˆ Symg´1pΣqs, zi P Ri,

and for an arbitrary ϕ P π2px, yq this can be anything. However, for ϕ to have a holomorphic
representative, ai must be non-negative.

To understand the boundary maps, we must calculate #pMpϕq{Rq for ϕ as above. We
have discovered earlier that this is difficult in general! The idea is to change the Heegaard
diagram (by Heegaard moves) to make it easy to count. Recall from earlier that we know
that if a domain Dpϕq is a rectangle or bigon, then #pMpϕq{Rq “ ˘1. If we work in mod
2 coordinates, all signs are lost! Therefore we will aim to arrange Heegaard diagrams in
this manner - then the boundary map can genuinely be computed combinatorially. The
main idea of the theorem is that all Heegaard diagrams can be changed into a Heegaared
diagram in which all regions (not including the basepoint) are either bigons or rectangles!
Expanding and proving all of these ideas will be the goal of the rest of this section.

Remark. The result from this section is actually very surprising. Lagrangian Floer ho-
mology is known to require geometry and gauge theory, as well as analysis. Since yHF was
modelled off Lagrangian Floer homology, it was also expected to depend on these tools.
This result started a whole new direction of research.

The remainder of this section can be broken up into two subsections:

1. Proof that #pMpϕq{Rq “ ˘1 for Dpϕq consisting of bigons or rectangles, and µpϕq “
1.

2. Proof that Heegaard diagrams are equivalent to ones with just bigons and rectangles
(away from the basepoint).

As mentioned above, combining these two facts leads to the desired result.

Lemma 6.3.2. Let Dpϕq “
ř

i aiRi be a domain, with ai ě 0 for each i, and Ri a bigon
or rectangle whenever ai ą 0. Suppose moreover that µpϕq “ 1. Then Dpϕq has exactly
one J-holomorphic representative.

Proof. Let D be a domain for ϕ P π2px, yq as above. Recall the Lipshitz formula:

µpϕq “ epDq ` nxpDq ` nypDq,

where epDq is the Euler measure, and nx and ny are average vertex multiplicities. Since
x, y P TαXTβ, we can write x “ tx1, . . . , xgu and y “ ty1, . . . , ygu, where the xi and yj are
genuine intersection points of curves on Σ.

Recall that domains D satisfy BD “ BαD ` BβD, where

BpBαDq “ BpBβDq “ x´ y “
ÿ

xi ´
ÿ

yi.
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We now calculate some relations that must hold between the multiplies of regions
meeting at a vertex. Suppose p P αi X βi is an intersection point, with xi R x, p R y.
Locally D looks like the left side of figure 6.3: notice that since p is not a vertex of D,
any multiplicity at a quadrant must be shared with neighbouring quadrants (so that no
“corners” occur). Overall, the region near the quadrant must be formed by laying “strips”
adjacent to p.

Figure 6.3: Local structure at p, where p P αj X βi does not lie in x nor y.

Using the coordinates on the right, we have

a “ q ` r, b “ p` r, c “ q ` s, d “ p` s.

But now a ` d “ p ` q ` r ` s “ b ` c. Using similar analyses together with the local
examples in figure 6.4 (to show the choice of orientation), we obtain the following identities:

� p R x, p R y ñ a` d “ b` c

� p R x, p P y ñ a` d “ b` c` 1

� p P x, p R y ñ a` d` 1 “ b` c

� p P x, p P y ñ a` d` 1 “ b` c` 1 ñ a` d “ b` c.

In particular, in the first and last case, the average vertex multiplicity at p is a half-integer,
while in the middle cases it is an odd quarter-integer (i.e. pa` b` c` dq{4 P 1

2Z`
1
4).

We can now proceed with the main body of the proof. Let Dpϕq “
ř

i aiRi with
ai ě 0, and Ri a bigon or rectangle whenever ai ą 0. Suppose µpϕq “ 1. Two possible
types of domains satisfying these conditions are shown in figure 6.5. We know from earlier
in the class that domains of the types shown in figure 6.5 have exactly one J-holomorphic
representative. Therefore we prove that no other types of domains are possible!

By the Lipshitz formula, µpϕq “ epDq ` nxpDq ` nypDq “ 1. Since epDq “
ř

i aiepRiq,
the only Euler measure contributions come from regions with ai ą 0. Such regions are
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Figure 6.4: Local structure at xi and yi (example).

Figure 6.5: Two types of domains with one holomorphic representative.

necessarily bigons or rectangles, which have Euler measure 0 or 1/2. Recall that this
comes from the formula

epΣq “ χpΣq ´
#right angles

4
.

We also have the assumption that nxpDq, nypDq ě 0, from the fact that each ai is non-
negative. This immediately restricts us to three cases:

1. epDq “ 1, nxpDq “ nypDq “ 0.

2. epDq “ 1{2, nxpDq ` nypDq “ 1{2.

3. epDq “ 0, nxpDq ` nypDq “ 1.

We will now work through these cases one by one.
1. If nxpDq “ nypDq “ 0, then there are no points p P αi X βj X D such that p

lies in exactly one of x or y. This is because of the local structure of intersection points
determined at the start of this proof: the average vertex multiplicity of any such point is
necessarily an odd quarter integer (which is necessarily non-zero). The sum of any number
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of non-negative non-zero numbers will give a positive result, which is prohibited. Therefore
all intersection points p occuring in D either belong to neither x nor y, or both x and y.
This forces x “ y for our strip ϕ, so that ϕ is the constant strip. Then µpϕq “ 0. This
breaks one of our premises! No domains D are of the first type.

2. If epDq “ 1{2 and nxpDq ` nypDq “ 1{2, then either nxpDq “ nypDq “ 1{4, or
one of them is 0 and the other is a half. We also know that the regions making up the
domain must consist of exactly one bigon and many rectangles, simply by considering
epDq. The existence of the bigon prohibits the latter options for nxpDq and nypDq, so we
must have nxpDq “ nypDq “ 1{4. Now there are exactly two intersection points which are
non-constant, and the rest have trivial multiplicity. Overall this tells us that D must itself
be a bigon, i.e. of the form described earlier.

3. In the final case, epDq “ 0 and nxpDq ` nypDq “ 1. Since epDq “ 0, all regions
are necessarily rectangles. The only way rectangles can be stitched together to achieve the
premise is for D itself to be a large rectangle, i.e. of the form described earlier.

This completes the proof that our domain Dpϕq is of a form where #pMpϕq{Rq is
known to be plus or minus 1!

The next question is whether or not we can take an arbitrary Heegaard diagram and
turn it into a diagram where all regions are bigons or rectangles. If so, that would be our
algorithm!

Remark. Unfortunately, this is impossible in general. Suppose the Heegaard diagram has
genus gpΣq ě 2. Then

2´ 2g “ χpΣq “ epΣq “
ÿ

epRiq ě 0,

which is absurd. Moreover, the only manifolds with Heegaard diagrams of genus at most
1 are S3,S1 ˆ S2, and lens spaces Lpp, qq.

Remark. Rejoice! For yHF we only require counting regions that do not include the
basepoint z P Σ! This means we cna hopefully transform our Heegaard diagram into one
for which all regions not including the basepoint are either bigons or squares. This can
indeed be done.

Theorem 6.3.3. Let Y have based Heegaard diagram pΣ, α, β, zq. Then one can change
α, β by a sequence of handleslides and isotopies to obtain a Heegaard diagram in which all
regions not containing z are bigons or rectangles. (Sarkar and Wang refer to such diagrams
as nice diagrams).

Proof. Let pΣ, α, β, zq be the Heegaard diagram. Originally, some regions might not be
polygons (that is, they might not be simply connected). By using isotopies, we can assume
without loss of generality that all regions are polygons. (See figure 6.6.)

94



Figure 6.6: Using isotopies, all regions can be made into polygons.

Each region R is now a polygon, with 2n edges. We say that R is good if n ď 2, and
bad if n ě 3. This is because we want our regions to eventually be bigons or rectangles,
which are exactly the good polygons. We define the badness of a polygon to be

bpRq “ maxp0, n´ 2q.

Thus the goal of the proof is to move all of the badness to the region containing z.
Now let D denote a bad region. We further define dpDq to be the minimum number

of β curves that must be crossed to get from D to the region containing z, by a path not
intersecting α-curves. Intuitively, dpDq is the distance from D to z through β curves.

Figure 6.7: Using isotopies, all regions can be made into polygons.

In the left of figure 6.7, the region D has distance dpDq “ 4. (It also has badness
bpDq “ 1). The main idea of this proof is not to initially decrease the badness itself, but
decreases the distances of the bad regions. For example, on the right of figure 6.7, we have
“pushed a finger” from a β curve through a series of α curves. In the resulting Heegaard
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diagram, there are two bad regions instead of one; of badnesses 1 each. However, the bad
regions have distance 1 and 3 from z, so maxtdpDq : bpDq ‰ 0u has decreased!

dpD0q “ 4, bpD0q “ 1 ù

#

dpD1q “ 3, bpD1q “ 1

dpD2q “ 1, bpD2q “ 1.

In our algorithm, we will aim to move all badness closer to z, even at the expense of the
number of bad regions or individual badnesses getting worse.

More precisely, let d “ maxtdpDq : bpDq ‰ 0u denote the maximum distance of any
bad region from z. Let D1, . . . , Dm be the bad regions at distance d from z. We want a
sequence of moves doing the following:

1. Decrease the maximum distance d.

2. Keep the same d, but decrease the total badness of the regions at distance d, i.e.
decrease

řm
i“1 bpDiq.

3. Keep the same d and
řm
i“1 bpDiq, but decrease m, i.e. decrease the number of regions

achieving the maximum distance d. Formally we will decrease the distance complex-
ity, which is the quantity pbpD1q, . . . , bpDmqq measured with the lexicographic norm,
where Di are initially ordered so that bpDiq ď bpDi`1q. Notice that if this strictly de-
creases with each step, then after a finite number of steps m can be made arbitrarily
small.

We order these changes lexicographically - each is an improvement to the diagram, but
decreasing d is preferred over decreasing

řm
i“1 bpDiq etc. Therefore if we consider the

quantity

pd,
m
ÿ

i“1

bpDiq, bpD1q, . . . , bpDmqq

with lexicographic norm, our goal is to find a sequence of moves which continuously de-
creases pd,

řm
i“1 bpDiq, bpD1q, . . . , bpDmqq until d “ 0. We will refer to the lexicographic

size of pd,
řm
i“1 bpDiq, bpD1q, . . . , bpDmqq as the complexity of the diagram.

We will now describe a collection of such moves (which forms the algorithm), hence
completing the proof.

1. Choose a bad region with the least badness amongst regions achieving the maximum
distance d. (That is, consider the region D1.)

2. Push a finger from a β curve bounding the region through an α curve of the same
region, and continuing pushing as follows:

(a) If the finger enters a rectangle, keep pushing - unless the rectangle has a smaller
distance to z.
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(b) If the finger enters a bigon, stop.

(c) If the finger enters a bad region, stop.

(d) If the finger re-enters the original region, then it necessarily encircles a β curve.
Handleslide over the encircled β curve, as in figure 6.8.

Figure 6.8: Handleslide, if a finger is pushed into its starting region.

The moves above are guaranteed to strictly decrease the completely of the Heegaard
diagram with every move! Therefore it must eventually force d “ 0, as required. It remains
to verify that the moves really decrease the complexity.

� If we stop at (a), then the original region has been broken into two regions, with
smaller badness. The complexity has strictly decreased because d could not have
increased, since the only region with increasing badness has distance less than d from
z. However, if d has not decreased, then

ř

bpDiq has strictly decreased, as the original
region has been broken into separate regions! (One can verify that it has decreased
by exactly 1.)

� If we stop at (b), the same argument as above holds.

� If we stop at (c), by the hypothesis, the region in which we’ve stopped has a smaller-
or-equal distance to z. If the region has a smaller distance, the same argument as
above holds. If the region has the same distance, then d has not decreased, and one
can verify that

ř

bpDiq is also left unchanged. However, we have moved some of the
badness of D1 to a subsequent region, so the complexity has indeed strictly decreased.

� Finally if we stop at (d), then once against d might have decreased, but if not, then
ř

bpDiq has decreased!

This completes the proof! (Technically some of the details are missing in the difficult case
of (d), but these can be checked in the original paper of Sarkar and Wang.)

Corollary 6.3.4. There is a combinatorial description of yHF over Z{2Z.
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Later we will study some other algorithms as well! In particular, Manolescu, Ozsváth
and Dylan Thurston developed an algorithm for HF˘ and 4-manifold invariants, using
surgery formulae and nice diagrams.
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Chapter 7

Applications in three dimensions

In an earlier chapter we studied some applications of Heegaard Floer homology in four
dimensions, but we have yet to see any three dimensional applications! One of the most
celebrated applications is that it detects the Thurston norm. We will also study L-spaces,
which are the “homologically simple spaces” in the setting of Heegaard Floer homology.

7.1 L-spaces (lecture 13)

Definition 7.1.1. A 3-manifold Y is an L-space if yHF pY, sq “ Z for all s in SpincpY q.

This is the Heegaard Floer homology version of an integral homology sphere.

Example. Some L-spaces include S3, lens spaces, and the Poincaré homology sphere.

Example. Some spaces which are not L-spaces are 1{n-surgeries on the trefoild knot T ,
for n ě 2. One can also simply consider spaces with b1 ą 0.

Proposition 7.1.2. Let Y be a closed oriented 3-manifold. The following are equivalent:

1. Y is an L-space.

2. HF`pY, sq “ ZrU´1s for all s.

3. HF´pY, sq “ ZrU s for all s.

4. Y is a rational homology sphere, and HFredpY q “ 0.

Corollary 7.1.3. If a closed 4-manifold X admits an L-space as an admissible cut, then
ΦX,s “ 0 for all s.
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Proof. We now prove the previous proposition. The first three are all equivalent via the
exact triangles

0 Ñ yHF Ñ HF˘
U
ÝÑ HF˘ Ñ 0.

It remains to prove that Y is an L-space if and only if Y is a rational homology sphere
with trivial reduced Heegaard Floer homology.

One direction is easy: suppose Y is a rational homology sphere. Then

HF8pY, sq “ ZrU,U´1s,

from which we have thatHF´pY, sq “ ZrU s‘HFred. Now ifHFredpY q vanishes, HF´pY, sq “
ZrU s as required.

For the converse, we require a lemma. Namely, the Euler characteristic χpyHF pY, sqq
depends only on homology:

χpyHF pY, sqq “

#

˘1 b1pY q “ 0

0 b1pY q ą 0.

It follows that if Y is an L-space, then it must have χpyHF pY, sqq “ ˘1. But then b1pY q “ 0,
so Y is a rational homology sphere.

We now prove this lemma. Recall that

yHF pY q “
à

sPSpincpY q

yHF pY, sq,

and that
χpyHF pY qq “ rTαs ¨ rTβs in SymgpΣq.

A Heegaard decomposition of genus g for Y consists of a CW-complex for Y with one
0-cell, g 1-cells, g 2-cells, and one 3-cell. Therefore H˚pY q comes from the complex

0 Ñ Z 0
ÝÑ Zg D

ÝÑ Zg 0
ÝÑ ZÑ 0,

where D is a g ˆ g matrix, Dij “ rαis ¨ rβjs in Σ. Overall, we have rTαs ¨ rTβs “ detD.
Since H1pY q “ Zg{ imD, if b1 ą 0 it must be the case that D is singular (detD “ 0), and
if b1 “ 0 then |H1pY q| “ ˘detD. In summary we have established that

χpyHF pY qq “

#

0 b1 ą 0

˘|H1pY q| b1 “ 0.

The remaining ingredient is the fact that χpyHF pY, sqq is independent of s! This is because
we can change s by moving the basepoint to a different location. (That is, the bijective
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correspondence of SpincpY q with SpY q is non-canonical, depending on the choice of base
point.) But we also know that SpY q – H1pY q, so this implies that

χpyHF pY qq “
ÿ

iP|H1pY q|

χpyHF pY, sqq ñ χpyHF pY, sqq “

#

0 b1 ą 0

˘1 b1 “ 0

as required.

This motivates L-spaces in one way: understanding L-spaces helps us to understand
4-manifolds with trivial mixed invariant.

Another reason we care about L-spaces is because of the Boyer-Gordon-Watson conjec-
ture, which we first state and then explain (since the statement will contain some unfamiliar
terms).

Conjecture. Let Y be a closed oriented 3-manifold. It is conjectured that the following
are equivalent:

1. Y is not an L-space.

2. Y carries a coorientable taut foliation.

3. π1pY q is left orderable.

Remark. This conjecture, if it holds, is truly remarkable. The first statement lies in the
realm of Heegaard Floer homology, which comes from symplectic geometry (and has a
combinatorial description in terms of a Heegaard decomposition). The second statement
lies in the realm of differential topology, and the third statement is purely algebraic. The
conjecture binds together separate mathematical realms.

We now describe what the conjecture actually means, by defining the missing termi-
nology.

Definition 7.1.4. A foliation of an n-manifold X is a decomposition X “
Ť

tPT Lt into
k-dimensional leaves Lt, so that locally T satisfies

Rn “
ď

tPRn´k

pttu ˆ Rkq.

A foliation of a 3-manifold Y 3 by surfaces is said to be taut if there is an embedded circle
γ P Y meeting every leaf transversely at least once. Finally, any foliation is said to be
coorientable if the normal bundles to the leaves are orientable.

Example. The product S1 ˆ Σ for Σ a surface is trivially a foliation by surfacesttu ˆ Σ.
It’s automatically taut, as we can take the curve S1 ˆ tptu for any point in Σ.
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Example. A non-example of a taut foliation is the Reeb foliation, which is a foliation
of S3 by surfaces by decomposing it into two solid tori, and foliating each solid torus by
spiralling “cups”.

There are some cool results about taut foliations, such as the following:

Theorem 7.1.5 (Sullivan). A foliation of Y 3 by surfaces is taut if and only if there exists
a metric on Y such that all leaves are minimal surfaces.

Theorem 7.1.6 (Eliashberg-Thurston). If a manifold Y 3 admits a taut foliation, then it
admits a tight contact structure.

We do not explain what the above theorem means, but Ozsváth and Szabó proved that
if a space admits a tight contact structure then it cannot be an L-space! This is the only
direction known to hold in the Boyer-Gordon-Watson conjecture.

Next we briefly explore the algebraic side of the conjecture.

Definition 7.1.7. A non-trivial group G is called left-orderable if there exists a total order
on G such that g ă h if and only if kg ă kh, for all k P G.

Example. Z, R, and Zn (lexicographical) are all left orderable.

Example. A non-example is any group G with non-trivial torsion. Suppose g P G has
order n. Then if 1 ă g, then g ă g2, and g2 ă g3 and so on, until we reach gn´1 ă gn “ 1.
Therefore 1 ă 1, which is impossible. The same contradiction holds if g ă 1.

The BGW conjecture has actually been verified for many classes of 3-manifolds! For
example, all graph manifolds are known to satify the conjecture. These are manifolds that
split into Seifert fibred spaces after cutting along spheres and tori.

Finally we remark that L-spaces are rational homology spheres with trivial reduced
Heegaard Floer homology, so there is no clear connection with integral homology spheres.
It turns out that the only known integral homology spheres which are L-spaces are obtained
by gluing together the Poincaré homology sphere.

Conjecture. If Y is a ZHS3, then Y is an L-space if and only if Y is a connected sum

Y “ nP#mP.

Crazy! Recall that the Poincaré homology sphere is the only non-trivial Brieskorn
homology sphere with finite fundamentak group, but in principle there could be many
other integral homology spheres which are L-spaces (as we need not restrict ourselves to
Brieskorn spheres).
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7.2 Genus bounds

Let Y 3 be a 3-manifold, and a P H2pY q. To study H2pY q, one approach is to define a
notion of the complexity of a. For this, we introduce a notion of complexity for surfaces.

Given a surface Σ, which has connected components Σi (so that Σ “ \iΣi), we define

χ´pΣq “
ÿ

i

maxp0,´χpΣiqq.

Then χ´pΣq is large if it has many components of high genus. Using this, we can define
the Thurston norm for a P H2pY q:

Definition 7.2.1. Given a P H2pY q, its Thurston norm is defined by

Θpaq “ mintχ´pΣq : Σ Ă Y, rΣs “ au.

Ozsváth and Szabó proved that Heegaard Floer homology detects the Thurston norm:

Theorem 7.2.2 (B). yHF pY q detects the Thurston norm, where the underline means the
homology is taken with twisted coefficients.

We will not prove this result, but we will prove a weaker result along with an example,
where we use the theorem to prove a genus bound.

Theorem 7.2.3 (A). If Z Ă Y is an oriented connected surface of genus g ą 0 and
yHF pY, sq ‰ 0 for some s P SpincpY q, then

|xc1psq, rZsy| ď 2g ´ 2.

Example. Let Σg denote the oriented closed surface of genus g. Let Y “ Σg ˆ S1. Let
a “ rΣg ˆ tptus P H2pY q. We will show that there is no surface Σh Ă Y representing a
with genus lower than g.

This probably has a classical (algebraic topology) proof, but we can prove it using
theorem A. First since Y has no 2-torsion in H1pY q, we know that there is an isomorphism

SpincpY q
–
ÝÑ 2H2pY ;Zq Ă H2pY ;Zq.

Therefore we can choose s such that c1psq “ p2g ´ 2qPDptptu ˆ S1q, where PD denotes
the Poincaré dual.

Case 1: if g ě 2, then yHF pΣg ˆ S1, sq ‰ 0 for our choice of s. Therefore the premises
of theorem A are satisfied, so that if Σh is any surface representing a, then

2g ´ 2 “ |xc1psq, ay| “ |xc1psq, rΣhsy| ď 2h´ h.

Therefore g ď h, as required.
Case 2: if g “ 1, Y “ T3. We must show there is no embedded 2-sphere representing

a “ rT2 ˆ tptus. But we know that π2pT3q “ 0, so all embedded spheres are trivial!
Case 3: if g “ 0 we have nothing to prove, since spheres are already the genus minimising

surface.
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Now that we’ve seen an example application of the theorem, it’s time to prove the
theorem! To do this, we recall some properties of periodic domains. Let pΣ, α, βq be a
Heegaard diagram for Y . A domain D is said to be periodic if its boundary is a sum of
whole α and β curves. Recall that the following isomorphisms hold:

pΠ :“ tperiodic domains, with nz “ 0u – π2px, xq – H1pY q – H2pY q.

What exactly is the correspondence from pΠ to H2pY q? Recall that a Heegaard diagram
describes how to glue disks and an balls into surfaces to describe our given 3-manifold as a
CW complex. These disks are bound by α and β curves, as are periodic domains. We cap
the boundaries of the periodic domains by these disks to obtain classes in H2. See figure
7.1 for an example. A key fact we will make use of in the proof of theorem A is that for

Figure 7.1: Example of the correspondence pΠ Ñ H2pY q.

any ϕ P π2px, xq, if P denotes the corresponding periodic domain and pP the corresponding
capped surface in H2pY q, then

µpϕq “ xc1psq, r pP sy,

where s is a spinc structure so that under the correspondence SpincpY q – SpY q, x P s.
We have established all background ideas, and are now ready to proceed with the main

proof.

Proof of theorem A. Let Z Ă Y be a surface of genus g, and fix a tubular neighbourhood
NpZq “ Z ˆ r0, 1s. Now Y ´NpZq is a 3-manifold with two boundary components, each
copies of Z. We can choose a “Heegaard decomposition” of Y ´NpZq:

pΣh, α1, . . . , αg, αg`1, . . . , αh, β1, . . . , βg, βg`1, . . . , βhq.

Here we use quotation marks around “Heegaard decomposition”, because only the curves
αg`1, . . . , αh, βg`1, . . . , βh mark where to fill the surface with disks Dαi , Dβi . This is de-
scribed in figure 7.2.
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Figure 7.2: A compression body.

The disks Dαg`1 through to Dαh
defines a cobordism from Σh to Σg, which we call

a compression body. This is the natural generalisation of a handlebody which is used to
construct generalisations of Heegaard decompositions for manifolds with boundary.

Figure 7.2 shows a compression body which we denote by Uα. Similarly, there is a
compression body Uβ constructed with β curves. Gluing these together along Σh gives a
cobordism from Σg to itself, which is exactly Y ´ NpZq. This is decribed in figure 7.3
(ignore the blue colour for now).

Figure 7.3: Heegaard diagram for Y obtained from Y ´NpZq.

By gluing the two copies of Σg together, we recover Y . Now we might think that this
gives a Heegaard diagram for Y - if we glue the two copies of Σg, we are left with an

105



embedded Σh, and perhaps cutting this gives two handlebodies. Unfortunately, if we cut
along Σh we only obtain one component! So it isn’t a Heeegaard decomposition.

Instead, we take a sort of connected sum between each copy of Σg and Σh, as shown
by the blue tubes in figure 7.3. Now gluing the copies of Σg together gives an embedded
surface of genus g ` h ` 1. (See how the two tubes bend around to create the extra `1
genus.) That is, we have a diagram

pΣ1, α1, β1q

where the new curves αg`h`1 and βg`h`1 come from tube meridians.

Now choose s so that yHF pY, sq ‰ 0. (We know this exists - recall the premise of the
result we’re proving!) Then there exists x P Tα1 X Tβ1 so that x lies in the class of s.

This means there is a periodic domain P so that r pP s P H2pY q, with r pP s “ rZs, and the
boundary of P is given by αg`h`1 and βg`h`1. From our earlier fact, it follows that

µpϕq “ xc1psq, r pP sy “ xc1psq, rΣsy,

for any ϕ P π2px, xq, with x P s.
But now we apply the Lipshitz formula: we have that

µpϕq “ epP q ` nxpP q ` nypP q “ pp2´ 2gq ´ 2q ` 2nxpP q.

Since x “ tx1, . . . , xg`h`1u includes at least one point on αg`h`1 and one on βg`h`1, we
must also have nxpP q ě 1{2` 1{2 “ 1. It follows that

µpϕq ě 2´ 2g.

Therefore
xc1psq, rZsy ď 2g ´ 2.

Finally to get the absolute value, we use the conjuagte symmetry of yHF . Given any s, there
exists s such that c1psq “ ´c1psq, and yHF pY, sq – yHF pY, sq. Now the same inequality
runs through with the minus sign, so that

|xc1psq, rZsy| ď 2g ´ 2

as required.
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Chapter 8

Connections to Seiberg-Witten
theory

The first aim of this chapter is to explain why there seem to be four fundamental types of
Heegaard Floer homology, namely yHF,HF`, HF´, and HF8. This comes from a deep
connection between Heegaard Floer homology and Seiberg-Witten Floer homology, and the
latter can expressed as four fundamental types of equivariant homology. Next we explore
involutive Heegaard Floer homology, which was created through an attempt to imitate a
certain construction in Seiberg-Witten Floer homology.

8.1 Equivariant homology overview (lecture 14)

The reason there are four types of Heegaard Floer homology and Seiberg-Witten Floer
homology is because they can be interpreted as coming from four types of equivariant
homology.

Let G be a Lie group, acting on a finite CW complex X. What are the types of
homology we can consider? The first type we can consider is of course

H˚pXq,

the ordinary homology of X. This näıve homology theory simply ignores the group action
all together!

The second type we can consider is Borel homology.

Definition 8.1.1. The Borel equivariant homology, also just called equivariant homology,
is

HG
˚ pXq :“ H˚pX{{Gq,

where X{{G is the homotopy quotient XˆGEG “ pXˆEGq{px, eq „ pgx, geq. Recall that
EG is a contractible space on which G acts freely.
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Recall that BG “ EG{G is the classifying space of the group G, which satisfies

tprincipal G-bundles over Y u ú rY,BGs.

Example. If G “ Z{2Z, then EG “ S8 with G acting via the antipodal map. BG “

RP8. If G “ S1, then EG “ S8, viewed as the unit sphere in C8. G acts by complex
multiplication by S1 Ă C, acting diagonally. BG “ CP8.

In general there is a fibration

X Ñ X ˆG EGÑ BG,

since G acts freely on EG. This can be used with spectral sequences etc to compute Borel
homology.

We now make a number of observations.

1. If G acts freely on X, we also have a fibration EGÑ X ˆG EGÑ X{G. Since EG
has trivial homology, it follows that

HG
˚ pXq “ H˚pX{Gq.

2. If G acts trivially on X, then X{{G “ X ˆBG, so

HG
˚ pXq “ H˚pX ˆBGq.

3. In particular, HG
˚ ptptuq “ HG

˚ pBGq.

4. Similarly, we can define Borel cohomology. Then H˚Gptptuq “ H˚pBGq. Any element
of H˚pBGq pulls back to H˚pX{{Gq “ H˚GpXq via the aforementioned fibration.
Therefore H˚pBGq acts on HG

˚ pXq via the cap product. It follows that HG
˚ pXq is an

H˚pBGq-module.

Example. Let G “ S1. Then H˚pBGq “ H˚pCP8q “ ZrU s, where U has degree 2. Thus
for any X, we have that HS1

˚ pXq is a ZrU s-module, degU “ 2. This looks rather similar
to HF˘.

On the other hand, the ordinary homology doesn’t have any structure coming from G -
we just ignore the action all together. That is, H˚pXq is a Z-module. This looks like yHF .

We remark now that Borel homology satisfies many of the nice properties of ordinary
homology, such as Mayer-Vietoris, Excision, and so on. However, we will now see that it
cannot satisfy Poincaré duality:

Example. Observe that HS1
˚ ptptuq “ H˚pCP8q “ ZrU´1s. (Incidentally, we notice that

this is HF`pS3q.) In particular this is infinite in the positive direction! (but not in the
negative direction). Therefore Poincaré duality cannot hold.
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So what is Poincaré dual to Borel homology? This is the coBorel homology. To define
this, we make use of Alexander duality, for which we must introduce the reduced version
of Borel homology.

Proposition 8.1.2 (Alexander duality). Let X ãÑ SN be an embedding for some large N .
Then

rH˚pXq – rHN´˚´1pSN ´Xq,

where rH denotes the reduced ordinary (co)homology.

Definition 8.1.3. Let x P X, fixed by G. The reduced Borel homology is

rHG
˚ pXq :“ cokerpHG

˚ ptxuq Ñ HG
˚ pXqq.

We now have the necessary ingredients to define coBorel homology :

Definition 8.1.4. Let G act on X, and let X ãÑ V where V is a linear representation of
G, dimV “ N . Then the coBorel homology of X is defined by

c rHG
˚ pXq :“ rHN´˚´1

G pV ` ´Xq,

where V ` is the one point compactification of V .

Example. c rHG
˚ pXq is usually infinite in the negative direction! For example, rHS1

˚ pS0q “

ZrU´1s, from which we have c rHS1
˚ pS0q “ ZrU s. Notice that this is HF´pS3q!

Again, the coBorel homology satisfies Mayer-Vietoris, excision, and all the other nice
standard homology theory properties.

The final equivariant homology theory we consider is Tate homology.

Definition 8.1.5. Let G act on X. The Tate homology of X is defined by

t rHG
˚ pXq “ c rHG

˚ p
ĄEG^Xq,

where ĄEG denotes the (unreduced) suspension of EG.

Example. For example, t rHS1
˚ pS0q “ ZrU,U´1s. Notice that this is equal to HF8pS3q.

� Suppose G acts on X freely. Then t rHG
˚ pXq “ 0.

� If the action is semifree, meaning stabilisers are 1 or G, then t rHG
˚ pXq depends only on

XG; the fixed point set of X under the G action. (In this case, X “ XGYtfree partu.)

Example. If S1 acts semifreely on X, then

t rHS1
˚ pXq “

rH˚pX
S1q b ZrU,U´1s.
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Finally, as one might have guessed from the development so far, there is a long exact
sequence relating Borel, coBorel, and Tate homology:

Theorem 8.1.6. The Tate-Swan long exact sequence of H˚pBGq-modules is

¨ ¨ ¨ Ñ c rHG
˚ pXq Ñ t rHG

˚ pXq Ñ
rHG
˚´1pXq Ñ ¨ ¨ ¨

For example, the earlier examples with X “ S0 and G “ S1 gives the long exact
sequence induced from

0 Ñ ZrU s Ñ ZrU,U´1s Ñ ZrU´1s Ñ 0.

This is the same exact sequence we see with Heegaard Floer homology for S3:

¨ ¨ ¨ Ñ HF´pS3q Ñ HF8pS3q Ñ HF`pS3q Ñ ¨ ¨ ¨ .

At this point it’s very tempting to conjecture that given a 3-manifold Y , there is some
associated space (or “spectrum”) SY such that

HF pY q “ rH˚pSY q HF`pY q “ rHS1
˚ pSY q

HF´pY q “ c rHS1
˚ pSY q HF8pY q “ t rHS1

˚ pSY q.

In the next section, we’ll see that this is indeed true.

8.2 Heegaard Floer vs Seiberg-Witten Floer vs equivariant
homology

In Maths 283A of spring 2020, we explored the Seiberg-Witten invariants for 4-manifolds.
A similar construction works for 3-manifolds as well. The Seiberg-Witten equations on a
3-manifold Y are PDEs on Y solving for pairs pA,Φq where

� A is a spinc connection, and

� Φ is a spinor field,

in a complex rank 2 vector bundle S over Y . The Seiberg-Witten equations have ΓpAutpSqq
gauge-symmetry. Fixing a gauge, (equivalently, modding out by gauge), we’re left with a
residual Up1q-action eiθ : pA,Φq ÞÑ pA, eiθΦq under which the equations are invariant. That
is, the moduli space of solutions have Up1q “ S1 symmetry.

Definition 8.2.1 (Kronheimer, Mrowka). There are four versions of Seiberg-Witten (monopole)
Floer homology, denoted

ĆHM,~HM,zHM,HM

coming from the Seiberg-Witten equations. These are read as tilde, to, from, and bar
respectively.
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The big result is that these can be interpreted as S1-equivariant homology, where the
S1 action comes from the symmetry of the moduli space.

Theorem 8.2.2 (Lidman, Manolescu). There is an S1-equivariant Seiberg-Witten Floer
spectrum SWF pY q so that

ĆHMpY q “ rH˚pSWF pY qq ~HMpY q “ rHS1
˚ pSWF pY qq

zHMpY q “ c rHS1
˚ pSWF pY qq HMpY q “ t rHS1

˚ pSWF pY qq.

Finally, everything is tied together by the following huge result of Kutluhan-Lee-Taubes
and Colin-Ghiggini-Honda:

Theorem 8.2.3.

ĆHM – yHF,~HM – HF`,zHM – HF´, HM – HF8.

The isomorphisms are on the nose; they hold for the exact same 3 manifold and spinc

structure and so on.

Notice that given the above isomorphisms, the Tate-Swan exact sequence is really

¨ ¨ ¨HF´ Ñ HF8 Ñ HF` Ñ ¨ ¨ ¨ .

Remark. Seiberg-Witten Floer homology could be interpreted as S1-equivariant homology
because of the S1 action on the moduli space. However, there is no S1 action on Heegaard
Floer homology! The ZrU s-module structure comes from the basepoint of the Heegaard
diagram. This is why the isomorphisms are given in the order

S1 ´ equivariant hom ú Seiberg-Witten Floer hom ú Heegaard Floer hom.
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Chapter 9

Involutive Heegaard Floer
homology

9.1 Construction of involutive Heegaard Floer homology

Involutive Heegaard Floer homology is a refinment of Heegaard Floer homology by using
a bit more symmetry. We remarked in an earlier lecture that there is an involution on
SpincpXq,

j : s ÞÑ s, c1psq “ ´c1psq.

The Seiberg-Witten equations are invariant with respect to this involution. Therefore we
have

S1 symmetry` j symmetry ù Pinp2q symmetry.

Recall that Pinp2q is the group

Pinp2q “ S1 Y jS1 Ă C‘ jC – H “ spanp1, i, j, kq.

This group looks like two disjoint circles. In fact, if s “ s in SpincpXq, then s comes from
a spin structure! In this case SWF pY, sq is a Pinp2q-equivariant spectrum.

Definition 9.1.1 (Manolescu). There is a Pinp2q-equivariant Seiberg-Witten Floer homol-
ogy,

SWFH
Pinp2q
˚ pY q “ rH

Pinp2q
˚ pSWF pY q;F2q.

Pinp2q-equivariant Seiberg-Witten Floer homology was used to disprove the triangu-
lation conjecture! That is, in every dimension at least 5, there exist non-triangulable
manifolds.

Lin gave an alternative construction of this, in the spirit of Kronheimer and Mrowka.
This is referred to as Pinp2q monopole Floer homology.
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Remark. Recall that in general Seiberg-Witten Floer homology is more difficult to com-
pute than Heegaard Floer homology, so we desire analogues in the Heegaard Floer setting.

Due to technical reasons, currently there is no analogue of Pinp2q-equivariant Seiberg-
Witten Floer homology for Heegaard Floer homology. Instead, we have involutive Heegaard
Floer homology due to Hendricks and Manolescu, which uses conjugation symmetry in HF
to construct HFI˝pY q, for ˝ P tp,`,´,8u.

Conjecture.

HFI`py, sq – rH
Z{4Z
˚ pSWF pY q;F2q,

where Z{4Z – xjy ă Pinp2q. Notice that both sides of the conjectured isomorphism are
modules over H˚Z{4Zptptu;F2q “ FrU,Qs{Q2, where U has degree -2 and Q has degree ´1.

We now describe the construction of involutive Heegaard Floer homology.

Definition 9.1.2. Let Y be a 3-manifold, and H “ pΣ, α, β, zq a based Heegaard diagram
of Y . The conjugate diagram of Y is H “ pΣ, β, α, zq.

Notice that swapping Σ for Σ swaps Y for Y , but swapping α and β curves also swaps
orientation. Therefore H is truly a diagram for Y . It follows that there is a sequence of
Heegaard moves relating H to H.

Recall that Ozsváth and Szabo proved the invariance of HF ˝ under changes Heegaard
diagrams. Formally, a sequence m of moves from H1 to H2 induces a chain map

Φpmq : CF ˝pH1q Ñ CF ˝pH2q

that induces an isomorphism on homology. Hence HF ˝pH1q – HF ˝pH2q, and it makes
sense to talk about the Heegaard Floer homology of the manifold.

Theorem 9.1.3 (Juhász, D. Thurston, Zemke). Heegaard Floer homology is natural. More
precisely, given two sequences of moves m1,m2 from H1 to H2, the maps Φpm1q and Φpm2q

are chain homotopic. Therefore the isomorphism HF ˝pH1q Ñ HF ˝pH2q is well defined.

Remark. This is actually important for defining the cobordism map FW,s : HF ˝pM1q Ñ

HF ˝pM2q (for four manifold invariants coming from Heegaard Floer). However, Ozsváth
and Szabó forgot to check this! It took five years before anyone realised there was a hole
that needed filling.

In our case, we consider diagrams H,H for Y . This induces a chain map

Φ : CF ˝pHq Ñ CF ˝pHq,

induced by a sequence of Heegaard moves from H to H. In particular, this map preserves
spinc structures. On the other hand, there is another map we can consider as well! There
is a (conjugation symmetry) map

η : CF ˝pHq Ñ CF ˝pHq
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induced by the bijection of points between Tα X Tβ and Tβ X Tα. (The J-holomorphic
strips map bijectively.) Moreover, this map conjugates the spinc structure: it induces
isomorphisms

CF ˝pH, sq Ñ CF ˝pH, sq.

In summary, CF ˝pHq and CF ˝pHq are isomorphic in two different ways. Composing the
two maps, we have an isomorphism

ι “ Φ ˝ η : CF ˝pH, sq Ñ CF ˝pH, sq.

In particular, in the case s “ s, this gives a chain homotopy equivalence from CF ˝pH, sq
to itself. We are finally ready to define involutive Heegaard Floer homology!

Definition 9.1.4. The involutive Heegaard Floer complex is defined by

CFI˝pY, sq “ ConepCF ˝pY q
Qp1`ιq
ÝÝÝÝÑ Q ¨ CF ˝pY qq,

where Q is a formal variable of degree ´1 such that Q2 “ 0. Here Cone denotes the
homological mapping cone:

ConepC˚
f
ÝÑ D˚q :“

ˆ

C˚ ‘D˚,

ˆ

B f
0 B

˙˙

.

Note that this appears to differ from the usual convention of mapping cones, in which the

map is given by

ˆ

B f
0 ´B

˙

. We’re following the convention in Hendricks-Manolescu. In

summary we can write

CFI˝pY q :“
`

CF ˝pY qr´1s bF2 F2rQs{Q
2, B `Qp1` ιq

˘

.

Theorem 9.1.5 (Hendricks, Manolescu). HFI˝pY, sq “ H˚pCFI
˝pY, sqq is an invariant

of pY, sq.

We do not give a proof - but it uses the Juhász, Thurston, Zemke naturality result from
earlier in the lecture.

9.2 Properties of HFI (lecture 15)

In the previous lecture we defined involutive Floer homology HFI˝pY, sq to be the homology
of the involutive Floer complex CFI˝pY, sq. (We are under the assumption that s “ s.)
This complex is obtained as the cone over

CF ˝pY q
Qp1`ιq
ÝÝÝÝÑ Q ¨ CF ˝pY q,

114



where Q is a formal variable of degree ´1. The idea is to capture the extra structure
CF ˝pHq that isn’t captured by ordinary Heegaard Floer homology: namely the map ι :
CF ˝pH, sq Ñ CF ˝pH, sq.

To justify the name involutive Heegaard Floer homology we now prove that ι is a
homotopy involution on the Heegaard Floer chain complex.

Proposition 9.2.1. Let ι : CF ˝pH, sq Ñ CF ˝pH, sq be as defined in the previous lecture.
Then ι2 „ id.

Corollary 9.2.2. ι˚ : HF ˝pY, sq Ñ HF ˝pY, sq is an involution.

Proof. A calculation gives

ι2 “ Φ ˝ η ˝ Φ ˝ η “ Φ ˝ pη´1 ˝ Φ ˝ ηq,

using the fact that η2 “ id. (This is true because η is the map induced by the bijection
TαXTβ “ TβXTα). On the other hand, Φ : CF ˝pHq Ñ CF ˝pHq is induced by a sequence
of Heegaard moves. The conjugation η´1 ˝ Φ ˝ η is now a map from CF ˝pHq Ñ CF ˝pHq
also induced by Heegaard moves. But now, overall,

Φ ˝ pη´1 ˝ Φ ˝ η´1q : CF ˝pHq Ñ CF ˝pHq

is a composition of two maps induced by Heegaard moves. On the other hand, the empty
sequence of moves from H Ñ H induces the identity. By Juhász, Thurston, Zemke natu-
rality, ι2 „ id.

The involutive Heegaard Floer homology HFI˝pY, sq is defined for s self-conjugate, i.e.
s “ s. Which s satisfies this?

� Such an s always exists, since we can take s corresponding to 0 in H2.

� Moreover, if H2 has no torsion, then

s “ s ñ c1psq “ c1psq “ ´c1psq ñ 2c1psq “ 0 ñ s “ 0.

Example. We have yet to compute any examples of involutive Heegaard Floer homology.
The easiest example is the 3-sphere.

From earlier examples, we know that

CF´pS3q “ FrU s,

where we take F to be the field of size 2. (That is, we’re working in mod 2 coefficients.)
The boundary map B is trivial, since the terms in FrU s with a fixed degree in U all lie in
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the same grading. (That is, the chain complex comes from a Heegaard diagram with one
intersection.) Recall that we conclude from here that

HF´pS3q “ FrU s

and so on.
For involutive Heegaard Floer homology, we now wish to understand

CFI´pS3q “ pFrU s bF FrQs{Q2, Qp1` ιqq.

Pictorially, this complex is as shown in figure 9.1.

Figure 9.1: CFI´pS3q.

What is the map ι? Since this is a chain map, in particular it is a homomorphism
FrU s Ñ FrU s, and is determined by the image of 1 which is either 0 or 1. In the first case,
ι is the zero map, and in the second case, ι is the identity. However, we also know that ι is
a homotopy involution! This forces ι “ 1. But now 1` ι is the 0 map (since we’re working
in mod 2 coefficients). It follows that the maps shown in 9.1 are trivial, and

HFI´pS3q “ FrU,Qs{Q2

with the grading shown in the figure.

In the above example, we’re really just using properties of how involutive Heegaard Floer
homology relate to Heegaard Floer homology and not doing anything with the sphere. The
property we made use of is formalised in the following proposition.
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Proposition 9.2.3. There is a long exact sequence

¨ ¨ ¨HF ˝pY, sq
1`ι
ÝÝÑ HF ˝pY, sq Ñ HFI˝pY, sq Ñ ¨ ¨ ¨ .

Proof. The long exact sequence comes from the short exact sequence of complexes

0 Ñ CF ˝ Ñ CFI˝ Ñ CF ˝ Ñ 0

from the fact that CFI˝ is the cone of 1` ι.

In the above example, we can conclude that 1 ` ι “ 0 from the Heegaard homology
alone, from which we have that HFI´pS3q “ FrU,Qs{Q2.

Corollary 9.2.4. More generally, it follows that if Y is an L-space, then

HFI´pY, sq – FrU,Qs{Q2,

possibly with a degree shift.

9.3 A non-trivial example of HFI

Are there examples where involutive Heegaard Floer homology isn’t determined by just
Heegaard Floer homology? Can we learn something new from Heegaard Floer homology?
Such an example is the Brieskorn sphere

Σp2, 3, 7q.

Definition 9.3.1. Let p, q, r ą 1 be pairwise coprime integers. The Brieskorn sphere
Σpp, q, rq is defined to be

Σpp, q, rq “ txp ` yq ` zr “ 0u X SpC3q Ă C3.

Brieskorn spheres are so-called because they are examples of integral homology 3-
spheres. In particular, Σp2, 3, 5q is the Poincaré homology sphere.

The fundamental group of a Brieskorn sphere can be expressed as a degree 2 extension
of the von Dyck group V pp, q, rq, and these are finite (spherical) or infinite (Euclidean or
hyperbolic) depending on the size of 1{p` 1{q` 1{r. The Poincaré homology sphere is the
unique Brieskorn sphere with 1{p` 1{q ` 1{r ą 1, and hence the unique Brieskorn sphere
with finite fundamental group! This is why the Poincaré homology sphere is something
that appears so often in topology.

What is the involutive Heegaard Floer homology of Σp2, 3, 7q?
We first inspect its Heegaard Floer homology. Using the surgery exact triangle and

studying how cobordism maps interact with ι, one can show that

HF´pΣp2, 3, 7qq – FrU s ‘ F,
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Figure 9.2: HF´pΣp2, 3, 7qq.

where the F summand is HFred. The grading is given by d “ 0: pictorially, HF´ is as
shown in figure 9.2.

To compute HFI´, we change coordinates from a, b to a, c “ a ` b. Now Ua “ Uc,
giving a diagram shaped like a “Y” instead of the one shown in 9.2. Moreover, we claim
that

CF´pΣp2, 3, 7qq “ FrU sxa, c, zy{Ba “ Bc “ 0, Bz “ Upa` cq,

and that
ι˚a “ c, ι˚c “ a, ι˚z “ z.

The latter calculation comes from cobordism maps, considering Σp2, 3, 7q as the boundary
of a 4-manifold. From the above, we can draw the chain complex and its homology as in
figure 9.3: Using the chain complex CF´pΣp2, 3, 7qq with generators a, c, z as in figure 9.3,
we can further deduce CFI´pΣp2, 3, 7qq and HFI´pΣp2, 3, 7qq, which are shown in figure
9.4.

On the left of figure 9.4, we have CFI´pΣp2, 3, 7qq which is obtained from CF´pΣp2, 3, 7qq
as the cone over Qp1 ` ιq. This results in two copies of CF´ side by side, by shifted by
degree ´1 (which is the degree of Q), and with additional pieces added to the boundary
map.

On the right, we have the homology.

� In degree ´2, there are two generators: a and c. These both map to the same image,
namely Qa ` Qc. Working over F “ F2, it follows that the kernel of the boundary
map in degree ´2 is generated by ra ` cs. (That is, the homology in degree ´2 is
generated by ra` cs).
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Figure 9.3: CF´pΣp2, 3, 7qq and HF´pΣp2, 3, 7qq, new generators.

� In degree ´3, Qa and Qc both map to zero under the boundary map. However, they
represent the same class in homology, so the degree ´3 homology is generated by
rQas.

� In degree ´4, we again have that Ua`Uc “ Upa`cq maps to zero. However, this also
lies in the image of the boundary map - it’s the image of z in degree ´3. Therefore
this term vanishes in homology. However, we also have a kernel term coming from
Qz - the term Ua`Qz maps to 0. Nothing maps to these terms, so rUa`Qzs freely
generates the homology in degree ´4.

� In degree ´5, we’re back to a familiar situation - everything is the same as degree
´3, just with an extra factor of U . That is, the homology is generated by U rQas.

� This continues, with even degrees generated by U irUa ` Qzs and odd degrees by
U irQas.

What about maps between homology?

� In degree ´2, the homology is generated by ra ` cs. This maps to 0 under both Q
and U .

� In degree ´3, we have rQas which maps to 0 under Q since Q2 “ 0, but U rQas is
non-zero! There’s a non-trivial map between degree ´3 and ´5 homology. This holds
for all odd degrees.

� Finally in degree ´4, both U and Q are non-trivial. This holds for all even degrees.
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Figure 9.4: CFI´pΣp2, 3, 7qq and HFI´pΣp2, 3, 7qq.

In summary, we have the homology shown on the right side of figure 9.4. Alternatively,
see the left imagine in figure 9.5.

In figure 9.5, we also show HF´pΣp2, 3, 7qq b FrQs{Q2 on the right. This has been
computed by using the form of HF´pΣp2, 3, 7qq computed right at the start of this example.
We see that HFI´ is not just the tensor product of HF´ with FrQs{Q2. (This was the
case in the trivial case of the 3-sphere, and more generally L-spaces.) This is perhaps to
be expected, because the involution ι is not the identity map for Σp2, 3, 7q.

What is the involutive Heegaard Floer homology of ´Σp2, 3, 7q?
This is an even more interesting case to study! When reversing the orientation, the

homology turns out to be dual in some sense:

HF´˚ p´Σp2, 3, 7qq “ HF`´˚`2pΣp2, 3, 7qq.

Computing HF`´˚`2, we have what is shown in figure 9.6. Notice that we again have an
infinite tower with the same copy of HFred showing up. However, this time HFred is in
a different degree to the maximum degree of the tail of HF´. This is because of the
degree shift which appears in the connecting homomorphism of the long exact sequence
¨ ¨ ¨ Ñ CF´ Ñ CF8 Ñ CF` Ñ ¨ ¨ ¨ . Notice that HF´p´Σp2, 3, 7qq has at most one
copy of F in each degree! Since ι˚ is an involution, in particular it is an isomorphism on
homology. But with a single copy of F in each degree, there is a unique isomorphism! ι˚
must be the identity map on HF´.

Despite this, we will see that the involutive Heegaard Floer homology of ´Σp2, 3, 7q
is non-trivial! At the chain complex level, CF´p´Σp2, 3, 7qq is “dual” to CF`pΣp2, 3, 7qq,
and is the complex shown on the left of figure 9.7.
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Figure 9.5: HFI´ vs HF´ b FrQs{Q2.

Proceeding as in the above example, using CF´p´Σp2, 3, 7qq as shown in figure 9.7, we
can explicitly write down CFI´p´Σp2, 3, 7qq. For this, we note that

ιa “ c, ιc “ a, ιz “ z

as in the previous example. This is interesting because ι is a non-trivial isomorphism at the
chain complex level, but the identity map on the level of HF´. Computing the homology
of this complex, we obtain the right side of figure 9.7.

We once again notice that the resulting complex is not determined from HF´! That
is,

HFI´p´Σp2, 3, 7qq fl HF´p´Σp2, 3, 7qq b FrQs{Q2.

This time the result is even more interesting, because the involution ι was the identity map
on HF´.

9.4 New maps on the homology cobordism group

Now that we’ve looked at some non-trivial examples of involutive Heegaard Floer homology,
it’s time for a more general application. Recall from earlier that an application of HF´

was to construct a homomorphism

d{2 : Θ3
Z Ñ Z.

By showing that dpP q “ 2 where P is the Poincaré homology sphere, we observed that Θ3
Z

has a Z summand.
More precisely, we recall the following definitions:

121



Figure 9.6: HF´p´Σp2, 3, 7qq.

Definition 9.4.1. The homology cobordism group Θ3
Z consists of integral homology 3-

spheres, modulo homology cobordism. That is, Y0 „ Y1 if and only if there is a smooth
4-manifold W which is a cobordism from Y0 to Y1, and such that H˚pW,Yiq “ 0 for each i.

Note that rY s “ 0 P Θ3
Z if and only if Y bounds an integral homology 4-ball.

Definition 9.4.2. The map d{2 : Θ3
Z Ñ Z comes from the invariant d, where dpY q is the

minimum degree of the U -tower in HF`, or equivalently the maximum degree of the U -tail
in HF´, plus 2.

Note that dpS3q “ 0, dpP q “ 2.

We now introduce the analogous invariants from involutive Heegaard Floer homology,
which also determine maps on the homology cobordism group. Observe that there’s a long
exact sequence of the form

¨ ¨ ¨ Ñ QHF´pY, sq Ñ HFI´pY, sq Ñ HF´pY, sq
1`ι˚
ÝÝÝÑ ¨ ¨ ¨ .

But the map 1 ` ι˚ is trivial on the U -tail of HF´ in degrees ! 0! Therefore we end up
with two infinite tails of HFI´pY, sq as FrU s-modules!

For a rational homology sphere, notice that the “first tail” doesn’t have Q, while the
“second tail” has Q.

Definition 9.4.3.

dpY, sq “ max deg. of first U -tail in HFI´ ` 2

dpY, sq “ max deg. of second U -tail in HFI´ ` 3.
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Figure 9.7: Computing HFI´p´Σp2, 3, 7qq.

Example. We computed the involutive Heegaard Floer homologies of Σp2, 3, 7q and´Σp2, 3, 7q
earlier. From these, we find that

Σp2, 3, 7q ´Σp2, 3, 7q
d 0 0
d -2 0

d 0 2.

More generally, it turns out

dp´Y q “ ´dpY q, dp´Y q “ ´dpY q.

There are some additional properties too:

1. dpS3q “ dpS3q “ dpS3q “ 0.

2. d, d induce maps Θ3
Z Ñ Z (not homomorphisms).

3. d ” d ” d mod 2.

4. d ď d ď d from the FrU,Qs{Q2-module structure.

5. d “ d “ d if Y is an L-space, for fixed spinc structures (from the fact that HFI´ –
HF´ b FrQs{Q2).

An application of this is that Σp2, 3, 7q is non-trivial in Θ3
Z. Equivalently, Σp2, 3, 7q

does not bound a homology ball. (This can also be shown using the Rokhlin invariant.)
However, a new result is that Σp2, 3, 7q is not homology cobordant to any L-space.
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9.5 Connected sum formula (lecture 16)

At the end of the previous lecture, we mentioned that

d, d : Θ3
Z Ñ Z

are not homomorphisms. The fact that these are not homomorphisms can be seen using a
connected sum formula.

In ordinary Heegaard Floer homology we have the following result:

Theorem 9.5.1 (Ozsváth, Szabó).

yHF pY1#Y2, s1#s2q – yHF pY1, s1q bZ yHF pY2, s2q

HF´pY1#Y2, s1#s2q – HF´pY1, s1q bZrUs HF
´pY2, s2qr´2s.

In the second equation, the r´2s denotes that there is a grading shift up by 2. Notice that
there is no analogous formula for HF`, since HF`pS3q “ ZrU´1s, but bZrUsZrU´1s ‰ id.

There is an analogue for involutive Heegaard Floer homology as well.

Theorem 9.5.2 (Hendricks, Manolescu, Zemke). There is a chain homotopy equivalence

CF´pY1#Y2, s1#s2q – CF´pY1, s1q bFrUs CF
´pY2, s2qr´2s

such that the involution ι on CF´ corresponds to ι1 b ι2 up to chain homotopy.

Example. An algebra exercise: from pCF´pΣp2, 3, 7q, ιq, compute pCF´pΣp2, 3, 7q#Σp2, 3, 7q, ιq.
This gives HFI´pΣp2, 3, 7q#Σp2, 3, 7qq.

Earlier we computed the Heegaard Floer homology of Σp2, 3, 7q, and established that

d “ ´2, d “ d “ 0.

On the other hand, it turns out that for Σp2, 3, 7q#Σp2, 3, 7q, we also have

d “ ´2, d “ d “ 0.

Therefore we see that

dpΣp2, 3, 7q#Σp2, 3, 7qq ‰ dpΣp2, 3, 7qq ` dpΣp2, 3, 7qq.

This establishes that d is not additive, and hence not a homomorphism on Θ3
Z. Moreover,

because dp´Y q “ ´dpY q, we also have that d is not a homomorphism.

Is there a more conceptual reason that d, d are not homomorphisms? Yes - this comes
from the module structure.
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� d is defined from FrU s-modules, and FrU s is a PID. It follows (as we will soon see)
that the module has a sufficiently rigid structure ensuring that d is additive.

� d, d come from FrU,Qs{Q2 modules, and the latter ring is not a PID. The tails then
interact with other nonsense resulting in non-additivity.

What do we mean by this? In the case of HF´, we note that d comes from a FrU s-module.
However, a finitely generated homogeneous module over FrU s (or more generally a PID) is
a direct sum of copies of FrU s and FrU s{Uk by the structure theorem for finitely generated
modules over a PID.

For Y an integral homology sphere, we have HF´pY q “ FrU s ‘ HFred where HFred

consists of the torsion part. But now HF´pY1q b HF´pY2q is also of the same form, so
it must be the case that the tails are tensored together and the torsion parts are tensored
together (without mixing together)! Therefore it follows that

dpY1#Y2q “ dpY1q ` dpY2q.

For involutive Heegaard Floer homology, the lack of a “structure theorem” results in the
above reasoning breaking down. In general, we have

HFI´pY1#Y2, s1#s2q ‰ HFI´pY1, s1q bHFI
´pY2, s2q.

Recall that the homomorphism d : Θ3
Z Ñ Z was used to establish the existence of a

d summand in Θ3
Z. The natural question now is whether or not we can use involutive

Heegaard Floer homology to construct more homomorphisms (instead of just functions).
This is resolved by using ι-complexes.

9.6 ι-complexes

As the previous section suggests, there is some structure in pCF´, ιq that is lost in HFI´

(as we change from a PID to a more general ring). Therefore to define homomorphisms
from involutive Heegaard Floer homology, we will divert our attention to pCF´, ιq.

Definition 9.6.1. An ι-complex is a pair pC, ιq where

� C is a Z-graded finitely generated free chain complex over FrU s, with U having degree
´2, and U´1H˚pCq – FrU,U´1s.

� ι : C Ñ C is a grading preserving involution.

Example. For Y a ZHS3, pCF´pY qr´2s, ιq is an ι-complex. Notice the pesky grading
shift! This is an artefact of HF` originally being more popular than HF´.
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Definition 9.6.2. Two ι-complexes pC, ιq, pC 1, ι1q are called equivalent if there are chain
homotopy equivalences of complexes of FrU s-modules

F : C Ñ C 1, G : C 1 Ñ C

such that FG „ id, GF „ id, and F and G preserve the involution up to homotopy:
Fι „ ι1F,Gι1 „ ιG.

Example. If Y is a ZHS3, then pCF´pY qr´2s, ιq is an invariant of Y up to equivalence.

This strong notion of equivalence isn’t particularly useful in our case - a weaker but
more useful notion is the following:

Definition 9.6.3. pC, ιq, pC 1, ι1q are locally equivalent if there are chain maps of complexes
of FrU s-modules

F : C Ñ C 1, G : C 1 Ñ C

such that F,G induce isomorphisms on U´1H˚, and F and G preserve the involution up
to homotopy.

Example. If Y and Y 1 are homology cobordant, then pCF´pY1qr´2s, ιq and pCF´pY2qr´2s, ιq
are locally equivalent but not necessarily equivalent. The local equivalence comes from the
fact that cobordism maps induce isomorphisms on HF8 “ FrU,U´1s (since the homology
cobordisms are negative definite, and an earlier theorem of Ozsváth and Szabó applies).

Definition 9.6.4. The local equivalence group is the collection of ι-complexes modulo local
equivalence, denoted by J .

Proposition 9.6.5. J is an abelian group, under the operation

pC, ιq b pC 1, ι1q “ pC bFrUs C
1, ιb ι1q.

Proof. The unit is pFrU s, idq. The inverses are given by

´pC, ιq “ pC_, ι_q, C_ “ HomFrUspC,FrU sq.

The main thing to check is that the claimed inverse is really an inverse.

Remark. By using local equivalence, we have a group structure, even though inverses
wouldn’t have existed in general had we used equivalence instead. This is analgous to the
homology cobordism group being a group, even though homology spheres up to homeo-
morphism or diffeomorphism are not groups. Similarly, the knot concordance group is a
group, even though knot equivalence doesn’t give a group.
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The main reason we care about J is because there is a natural homomorphism

h : Θ3
Z Ñ J , hprY sq “ pCF´pY qr´2s, ιq.

This map is clearly non-trivial, since different homology spheres can have different involu-
tive Heegaard Floer homologies. A more precise measure of non-triviality would be if we
could find maps from Θ3

Z which factor through J . Indeed,

d, d, d : Θ3
Z

h
ÝÑ J Ñ Z

factor through J . If we can understand the structure of J , it will help to understand Θ3
Z.

Currently, the structure of J is an open question.

9.7 Using ι-complexes to study Θ3
Z

One of the themes of these lecture notes is the study of Θ3
Z. As an application of cobordism

maps, we showed that the invariant dpY q is a homology cobordism invariant, and used this
to prove that Θ3

Z has a Z-summand. Using involutive Heegaard Floer homology and J , we
can obtain some even better results!

We begin with an overview of results.

Theorem 9.7.1. Θ3
Z contains Z8 as a subgroup.

1. First proof: Fintushel-Stern, Furuta, circa 1990, using Yang-Mills theory.

2. Newer proof: Stoffregen, circa 2015, using Pin(2)-equivariant Seiberg-Witten theory.

3. Newer proof: Dai and Manolescu, using involutive Heegaard Floer homology and J .

Moreover, in 2018, the result was strengthened further:

4. Dai, Hom, Stoffregen, and Truong, showed that Θ3
Z has a Z8 summand by again

using J .

In this section, we will first describe the result of Dai and Manolescu, and later explore
the more recent result of Dai, Hom, Stoffregen, and Truong.

Theorem 9.7.2. Θ3
Z has a Z8 subgroup.

Proof. The idea is to compute

pCF´pΣpp, 2p´ 1, 2p` 1qq, ιq

up to local equivalence, where p ě 3 is odd.
Figure 9.8 shows a representative of the local equivalence class for each p:
By algebra, the ι-complexes can be shown to be linearly independent in J for each

p.
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Figure 9.8: The local equivalence class of pCF´pΣpp, 2p´ 1, 2p` 1qq, ιq.

Next we give a proof outline for an improved result.

Theorem 9.7.3 (Dai, Hom, Stoffregen, Truong 2018). Θ3
Z has a Z8 summand.

Remark. It might not be clear that this is any strong! Notice that Z8 is a subgroup of
Q8, but not a summand.

Proof. We wish to construct homomorphisms fi : J Ñ Z such that

Θ3
Z

h
ÝÑ J f

ÝÑ Z8

is surjective, where f is the direct sum of the fi.
Concretely, define Yi “ Σp2i`1, 4i`1, 4i`3q, and suppose fjphpYiqq “ δij . Then f ˝h

would indeed be surjective. It follows that

Θ3
Z – xYiy ‘ kerpf ˝ hq “ Z8 ‘mystery summand.

In this proof, we will construct such maps fi.
The main difficulty is that chain complexes over FrU,Qs{Q2 are difficult to understand.

Instead, it is easier to consider complexes over FrU,Qs{pQ2, QUq. This is also not a PID,
but it’s closer!

Definition 9.7.4. A almost ι-complex is a pair pC, ιq such that

1. C is a finitely generated free Z-graded complex over FrU s, with degree U “ ´2, and
U´1H˚pCq – FrU,U´1s.
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2. ι : C Ñ C is a grading preserving FrU s-module homomorphism such that ιB ` Bι P
imU, ι2` id P imU . That is, ι is a chain map modulo U , and a homotopy involution
modulo U .

Definition 9.7.5. Two almost ι-complexes pC, ιq, pC 1, ι1q are locally equivalent if there is
a grading preserving homomorphism of FrU s-chain complexes

f : C Ñ C 1, g : C 1 Ñ C

such that f, g induce isomorphisms on U´1H˚, and fι „ ι1f mod U, gι1 „ ιg mod U .

Almost ι-complexes also give rise to an abelian group!

Definition 9.7.6. The abelian group of almost ι-complexes up to local equivalence is
denoted by pJ .

Notice that there is a natural homomorphism

J Ñ pJ ,

simply the forgetful map. The proof of DHST proceeds by classifying the elements of pJ ,
and using it to define relevant desired maps mentioned at the start of this proof.

Theorem 9.7.7. Every almost ι-complex is locally equivalent to a chain complex of the
form Cpa1, b2, a3, . . . , a2n´1, b2nq, where ai P t˘u and bi P Z ´ t0u, freely generated by
elements T0, . . . , T2n with

ai “ ´ ñ p1` ιqTi´1 “ Ti

ai “ ` ñ p1` ιqTi “ Ti´1

bi ă 0 ñ BTi “ U |bi|Ti

bi ą 0 ñ BTi “ U |bi|Ti´1

and B “ 0 otherwise. Note that the first two conditions together with ι2 „ id mod U
determine ι up to local equivalence.

Example. To unobfuscate the above theorem, figure 9.9 shows Cp´,´3,´, 4,`,´2q.

The above result is analogous to the structure theorem for finitely generated modules
over a PID. Overall, this classifies pJ as a set. However, it should be noted that the group
structure is still mysterious!

Define ϕn : pJ Ñ Z by

ϕnpCpa1, . . . , b2nqq “ #pparameters with bi “ nq ´#pparameters with bi “ ´nq.

This is really a signed count of towers of length n in H˚. The remainder of the proof is to
show that the ϕn are homomorphisms, and if we consider the composition
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Figure 9.9: Cp´,´3,´, 4,`,´2q; an example of the structure theorem for pJ .

J pJ Z,

fn

ϕn

then we have fnphpYiqq “ δij as required.
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Chapter 10

Knot Floer homology introduction

The last big topic of the course is knot Floer homology. In 3 and 4 dimensional topology,
we find that knots are an invaluable tool, as they are a lot easier to study and understand
than 3 and 4 manifolds, but also contribute many non-trivial examples (and in the case
of 3-manifolds, even a classification of oriented closed 3-manifolds in terms of knots). In
subsequent sections and chapters we will introduce knot Floer homology. The two main
applications we consider are to the structure of the knot concordance group, but also the
existence of an algorithm to compute all the different versions of Heegaard Floer homology
for 3 manifolds (beyond just the hat version). A good survery on knot Floer homology is
Manolescu’s introduction to knot Floer homology.

10.1 Alexander-Conway polynomial (lecture 17)

Definition 10.1.1. A knot is a smooth oriented embedding of S1 in S3. We consider knots
up to isotopy. A link is a disjoint union of knots.

Definition 10.1.2. The Alexander-Conway polynomial, also just called the Alexander
polynomial, is the unique polynomial ∆Lpqq “ ∆pLq P Zrq1{2, q´1{2s satisfying

1. ∆punknotq “ 1 (normalisation)

2. ∆
´ ¯

´∆
´ ¯

“ pq1{2 ´ q´1{2q∆
´ ¯

(skein relation).

If L is a knot, then ∆pLq P Zrq, q´1s.

Example. What is the Alexander polynomial of the unlink? Using the definition, we have

0 “ 1´ 1 “ ∆
´ ¯

´∆
´ ¯

“ pq1{2 ´ q´1{2q∆
´ ¯

,

so that
∆
´ ¯

“ 0.
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What is the Alexander polynomial of the Hopf link? Again we use the definition and find
that

∆
´ ¯

´∆
´ ¯

“ pq1{2 ´ q´1{2q∆
´ ¯

.

The second Alexander term is the Alexander polynomial of the unlink, and the last term
is of the unknot. This gives

∆
´ ¯

“ q1{2 ´ q´1{2.

What about the trefoil knot?

∆

ˆ ˙

´∆

ˆ ˙

“ pq1{2 ´ q´1{2q∆

ˆ ˙

.

This time the second term is the unknot and the last term the Hopf link, giving

∆

ˆ ˙

´ 1 “ pq1{2 ´ q´1{2q2.

Therefore the Alexander polynomial of the trefoil is

∆

ˆ ˙

“ q ´ 1` q´1.

Remark. It is straight forward to show that a polynomial satisfying the definition of the
Alexander polynomial is a knot invariant. However, the work is in showing that such
a polynomial exists (and is unique). To prove this, loosely speaking, one inducts on n,
considering the space Dn of all diagrams with n crossings. The proof formalises the fact
that for any link, we can compute its Alexandedr polynomial as we did above, and the
choice of path of crossing resolutions doesn’t affect the outcome.

Proposition 10.1.3. Here are several elementary properties of the Alexander polynomial.

� ∆Kp1q “ 1 whenever K is a knot.

� ∆Kpqq “ ∆Kpq
´1q.

� ∆Kpqq “ ∆mpKqpqq, where mpKq denotes the mirror of K. (Change all crossings.)

� ∆Kpqq “ ∆Krpqq, where Kr denotes the reverse of K. (Change orientation of K.)

Note that typically K,mpKq,Kr, and mpKrq are all distinct. We also denote the mirror
of a knot by K.
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10.2 Heegaard diagrams for knots

Our goal is to develop Heegaard Floer homology for knots. This will require some type of
Heegaard diagram for a knot, which we introduce in this section.

Definition 10.2.1. Let K Ă S3 be a knot. The data

pΣ, α1, . . . , αg, β1, . . . , βg, w, zq

is a Heegaard diagram for K if it satisfies the following:

� pΣ, αi, βiq is a Heegaard diagram for S3.

� w, z lie in Σ´Yiαi ´Yiβi.

� There exist curves γα, γβ so that K “ γαY γβ, and γα is a path lying in Uα´YiDαi ,
while γβ is a path lying in Uβ ´YiDβi . Here we write Uα to denote the handlebody
determined by the α curves and Dαi to denote the disk in Uα determined by αi, and
similarly for β.

Of course, we’ve established that every oriented closed 3-manifold admits a Heegaard
diagram. Does every knot admit a Heegaard diagram? Yes!

Proposition 10.2.2. Every K Ă S3 admits a Heegaard diagram.

Proof. Write Y “ S3 ´ nbhdpKq. Then BY “ T 2. We can choose a Heegaard diagram
pΣ, α1, . . . , αg, β1, . . . , βg´1q of Y , i.e. Y is a union of a genus g handlebody with g ´ 1
neighbourhoods of β disks. Now adding the meridian βg of the knot gives a Heegaard
diagram pΣ, α1, . . . , αg, β1, . . . , βgq of S3.

Fix w, z to be points close to βg, on either side. I claim that

pΣ, α1, . . . , αg, β1, . . . , βg, w, zq

is a Heegaard diagram for K. Define γα to be the small arc directly joining w and z by
crossing βg. On the other hand, we define γβ to be the arc following the longitude of K
in Uβ. This avoids all of the β curves, because by construction the longitude of K does
not intersect β1, . . . , βg´1 (by considering the Heegaard diagram of Y ). But now it is clear
that K “ γα Y γβ, and we have indeed constructed a Heegaard diagram of K.

Proposition 10.2.3. Any two Heegaard diagrams for K are related by a sequence of
moves:

� isotopies away from w, z,

� handleslides away from w, z,
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� stabilisation/destabilisation.

Recall from earlier chapters that yHF pY, sq is Z{NZ-graded where NZ is the image of
the Maslov-grading map µ : pπ2px, xq Ñ Z, where x represents the equivalence class s of
intersection points Tα X Tβ. (Alternatively, s can be considered to be a spinc-structure.)
But we also know that the Maslov map has trivial image if Y is a rational homology sphere,
giving an integral grading. We now recall the Maslov grading for the 3-sphere, which will
give us a grading for knot Floer homology.

Let pΣ, αi, βiq be a Heegaard diagram for S3. Recall that SpincpS3q “ H1pS3q “ 0.
In other words, for any x, y P Tα X Tβ, there exists some ϕ P π2px, yq, and the relative
grading between x and y is given by ϕ. More precisely, CF ˝pΣ, α, βq “ CF ˝pS3q admits a
Z-grading M : Tα X Tβ Ñ Z given by the Maslov index µ, satisfying

Mpxq ´Mpyq “ µpϕq, ϕ P π2px, yq, nwpϕq “ 0.

Recall that the second condition on ϕ is specifying that ϕ must stay away from w; we
declare that w is the basepoint of the Heegaard diagram. For general ϕ, we can actually
just decree that

Mpxq ´Mpyq “ µpϕq ´ 2nwpϕq.

Finally this grading is made absolute by noting that yHF pS3q “ Z is concentrated in degree
0.

Example. Consider the standard genus 1 Heegaard diagram for S3, with basepoint w, as
shown in figure 10.1.

Figure 10.1: Example of the Maslov grading formula for S3.

Cutting along the α and β curve gives a single rectangular region R, with µpRq “ 2.
This follows from the Lipshitz formula, since R is a region from x to itself, and

µpRq “ epRq ` nxpRq ` nxpRq “ 0` 1` 1 “ 2.
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On the other hand, we see that R passes over the point w once, giving nwpRq “ 1. But
now

µpRq ´ 2nwpRq “ 0.

This agrees with the general theory, from which we require that

Mpxq ´Mpxq “ µpRq.

In particular, Mpxq “ 0 because the Heegaard Floer homology of S3 is concentrated in
degree 0.

10.3 Knot Floer homology: definition and properties

We’re now ready to define knot Floer homology. In the 4-manifolds class in Spring 2020,
we finished with Khovanov homology. We saw that this was a categorification of the Jones
polynomial. More precisely, Khovanov homology was bigraded - by the homological grading
i and the Jones grading j. The Euler characteristic

χpKhpKqq “
ÿ

i,j

p´1qiqj rk Khi,jpKq

is equal to pq ` q´1qJKpqq, where JKpqq is the Jones polynomial of K.
Knot Floer homology, which we now define, is analogously a categorification of the

Alexander polynomial. Writing i for the Maslov grading and s for the Alexander grading,
we will see that

∆Kpqq “
ÿ

i,s

p´1qiqs rkp{HFKipK, sqq.

A good place to learn about knot Floer homology is Ciprian’s 2016 expository article An
introduction to knot Floer homology.

Definition 10.3.1. Let K Ă S3 be a knot. Let pΣ, αi, βi, w, zq be a Heegaard diagram for
K. Then the knot Floer homology of K is

{HFKpKq “ HF pTα,Tβ in SymgpΣ´ w ´ zqq.

Recall that the restriction to SymgpΣ ´ w ´ zq means that we only count J-holomorphic
curves in π2px, yq with nw “ nz “ 0.

Proposition 10.3.2. Knot Floer homology is integrally bigraded:

{HFKpKq “
à

i,sPZ

{HFKipK, sq.

Here i is the Maslov or homological grading, and s is the Alexander grading.
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We already described the Maslov grading at the end of the previous section, and ob-
served that it was integral. It remains to describe the Alexander grading.

We declare that x „ y if and only if there exists ϕ P π2px, yq such that nwpϕq “ nzpϕq “
0. Then the set of equivalence classes is in bijective correspondence with spinc-structures
on the knot complement, so that

t equivalence classes u – SpincpS3 ´Kq – H1pS3 ´Kq “ Z.

Partitioning the knot Floer homology by these equivalence classes then gives an integral
grading, which we call the Alexander grading.

As promised earlier, the bigrading gives rise to the Alexander polynomial!

Proposition 10.3.3.

χp{HFKpKqq “
ÿ

i,sPZ
p´1qiqs rkp{HFKipK, sqq P Zrq, q´1s

is the Alexander polynomial, ∆Kpqq.

Proof. It suffices to verify that the Euler characteristic satisfies the defining relations of
the Alexander polynomial - normalisation and the skein relation. Specifically, for the skein
relation, one can show that

, ,

all fit in a long exact sequence! (Notice that we technically cannot prove this yet! Resolving
crossings typically doesn’t preserve the number of components - we first need a notion of
knot Floer homology for links.)

Example. Adding an extra marked point to the Heegaard diagram of S3 shown in the pre-
vious section gives a Heegaard diagram of the unknot, as shown in figure 10.2. From this

Figure 10.2: Heegaard diagram of the unknot.

Heegaard diagram, we immediately deduce that {HFKpunknotq “ Z, and this is concen-
trated in bidegree p0, 0q. The Euler characteristic is then 1, which is indeed the Alexander
polynomial of the unknot.
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Proposition 10.3.4. Knot Floer homology enjoys various symmetries, which can be
thought of as generalisations of the symmetries at the level of the Alexander polynomial.

1. {HFKipK, sq “ {HFKipK
r, sq.

2. {HFKipK, sq “ {HFK´ipK,´sq. In fact, this gives

{HFKpLHT q ‰ {HFKpRHT q,

which we know is not the case for the Alexander polynomial. Therefore knot Floer
homology contains more information than the Alexander polynomial!

3. {HFKipK, sq “ {HFKi´2spK,´sq. This is conjugation symmetry, corresponding to
the symmetry ∆Kpqq “ ∆Kpq

´1q of the Alexander polynomial.

We do not prove these symmetries.
One of the dankest applications of knot Floer homology is that it solves the genus

problem for knots!

Definition 10.3.5. Given a knot K Ă S3, a Seifert surface of K is an oriented properly
smoothly embedded surface Σ Ă S3 with BΣ “ K. The genus gpKq of the knot K is the
minimum of the genera of Seifert surfaces of K.

Example. The genus of the unknot is 0, since it bounds an embedded disk. Conversely,
the boundary of any embedded disk is always an unknot, so

gpKq “ 0 ô K is an unknot.

The trefoil knot is not the unknot, so it must have gpKq ě 1. On the other hand,
there exists a Seifert surface with genus 1 (by using the diagram with three crossings with
rotational symmetry of order 2). Therefore gptrefoilq “ 1.

A classical result bounds the genus of a knot from below: if

∆Kpqq “ asq
s ` as´1q

s´1 ` ¨ ¨ ¨ ` asq
´s, as ‰ 0,

then gpKq ě s. Ozsváth and Szabó improved this result, giving an equality.

Theorem 10.3.6 (Ozsváth, Szabó).

gpKq “ maxts : {HFKpK, sq ‰ 0u.

Corollary 10.3.7. {HFK detects the unknot. That is, if {HFK of a knot is trivial, then
its genus must be 0, so the knot is the unknot.
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This result can actually be combined with the next property we describe to detect even
more knots!

Definition 10.3.8. A knot K is fibred if there exists a fibre bundle

Σ Ñ S3 ´ nbhdpKq Ñ S1,

where Σ is some surface with boundary.

Example. The unknot is fibred, because the knot complement of the unknot is topologi-
cally S1 ˆD2. This is the total space of a bundle over S1 with fibre D2.

Other examples of fibred knots include the trefoil and figure 8 knots.

A classical result is that if K is fibred, then ∆Kpqq is monic. (That is, as “ ˘1). This
can be strengthened by knot Floer homology.

Theorem 10.3.9. A knot K is fibred if and only if {HFKpK, gpKqq “ Z.

Using this result, we now show that knot Floer homology detects the trefoil and figure
8 knots.

Corollary 10.3.10. {HFK detects the trefoil and figure 8 knots.

Proof. We use the following fact: the only fibred knots of genus 1 are the two trefoils (left
and right handed trefoils) and the figure 8 knot (which is amphichiral). As an example,
we show that knot Floer homology detects the right handed trefoil, as the same argument
carries through.

1. Compute {HFKpKq. Suppose it’s equal to the knot Floer homology of the right
handed trefoil.

2. Since the trefoil has genus 1, by the genus theorem of Ozsváth and Szabó, we know
that

1 “ gpRHT q “ maxts : {HFKpRHT, squ “ maxts : {HFKpK, squ “ gpKq,

so K has genus 1.

3. Since the trefoil is fibred, we also know that

{HFKpK, gpKqq “ {HFKpK, 1q “ {HFKpRHT, gpRHT qq “ Z.

Therefore K is fibred. In summary, K is a fibred knot with genus 1.

4. The only such knots are the left and right handed trefoils and figure 8 knot. These
three knots each have distinct knot Floer homologies, so K cannot be the left handed
trefoil or the figure 8 knot. This leaves only the right handed trefoil, so K “ RHT .

Remark. Finally we remark that knot Floer homology is not a complete invariant: there
exist knots K1,K2 which are not equivalent, but such that their knot Floer homologies are
equal. One can take 74 and 92, for example.
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10.4 Heegaard diagrams from bridge presentations

We have yet to describe how to actually compute knot Floer homology, since we don’t
know how to obtain a Heegaard diagram of a knot! This turns out to be very straight
forward, using knot diagrams.

Definition 10.4.1. A b-bridge presentation of a knot K is a knot diagram of K consisting
of 2b arcs, which alternate between b arcs which strictly underpass other arcs, and b arcs
which strictly overpass.

Example. The trefoil admits a 2-bridge presentation. Specifically, figure 10.3 is a 2-bridge
presentation of the right handed trefoil knot.

Figure 10.3: A 2-bridge presentation of RHT

It turns out that every knot has a b-bridge presentation for some b! This is easy to
see because given any diagram of a knot with b crossings, one can simply convert each
overpass to a small arc which is declared an overpassing arc for the bridge presentation.
In summary, we have:

Proposition 10.4.2. Every knot admits a b-bridge presentation for some b.

Definition 10.4.3. The bridge number bpKq of a knot K is the minimum b such that K
admits a b-bridge presentation.

It turns out that given a b-bridge presentation of a knot K, we can describe a Heegaard
diagram of genus b ´ 1 for K! We describe the process using words here, but it is best
understood through examples.

Proposition 10.4.4. Let K be a knot with a b-bridge diagram. The following process
defines a Heegaard diagram of K with genus b´ 1.
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1. Replace b ´ 1 underpassing arcs with α-curves: the endpoints become circles in the
Heegaard diagram which are identified to give genus.

2. Replace the last underpass with the symbols w and z at its endpoints.

3. Remove the bridge (overpassing arc) incident to z.

4. Replace all other bridges with β-curves: visually, this is taken to be the boundary of
a regular neighbourhood of the arc.

Example. Figure 10.4 shows two examples of the above procedure, one for the unknot,
and one for the left handed trefoil.

Figure 10.4: Examples of obtaining a Heegaard diagram from a bridge presentation.

Why is this really a Heegaard diagram of the given knot? The idea is that a bridge
presentation corresponds to an embedding of a surface Σ in S3, so that ΣXK are all of the
points in the bridge presentation where a bridge meets an underpass. Σ cuts S3 into two
handlebodies - the “top handlebody” contains the bridges, and the “bottom handlebody”
contains underpasses. These are the handlebodies of the Heegaard diagram. Finally,
specifying the α and β curves as above allow us to reconstruct the knot as a union of two
arcs (as in the definition of a Heegaard diagram of a knot) in a canonical way.

This is difficult to convey in words, so instead an example is provided in figure 10.5.
Recall that pΣ, αi, βi, w, zq is a Heegaard diagram of K if it’s a Heegaard diagram for S3

with curves γα and γβ, lying in Uα´Yiαi and Uβ´Yiβi respectively, so that K “ γαYγβ.
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Figure 10.5: Example to verify that the Heegaard diagrams obtained above are really
Heegaard diagrams of the knot.

In our case, we see that γα can be taken to be the bridge which was deleted (in the
conversion of our bridge presentation to the Heegaard diagram), and γβ can be taken to
be the union of all of the other arcs from the bridge presentation.

10.5 Example calculations of knot Floer homology (lecture
18)

In this section, we’ll compute the knot Floer homologies of some 2-bridge knots. These
knots canonically admit genus 1 Heegaard diagrams by the process described in the previous
lecture, so the calculations are reasonably easy. To be more precise, if a Heegaard diagram
has genus 1, then we consider

Sym1pΣ´ w ´ zq “ Σ´ w ´ z,

in which domains end up being exactly bigons. From earlier, we know that bigons admit
exactly one J-holomorphic strip, so we can easily describe the boundary map in the Floer
chain complex.

Definition 10.5.1. A knot admitting a 2-bridge presentation is called a 2-bridge knot.
These are classified by the rationals! Examples include the trefoil and figure 8 knots.
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Formally, our method for computing knot Floer homologies is as follows:

1. Find TαXTβ. Let ϕ P π2px, yq. We know that the Maslov grading is given relatively
by

Mpxq ´Mpyq “ µpϕq ´ 2nwpϕq.

On the other hand, the Alexander grading is given relatively by

Apxq ´Apyq “ nzpϕq ´ nwpϕq.

2. M is upgraded from a relative grading to an absolute grading since we require
yHF pS3q – Z to be concentrated in degree 0. Recall that yHF pS3q is the Lagrangian

Floer homology of Tα,Tβ in SymgpΣ ´ wq as opposed to {HFKpKq which is the

homology in SymgpΣ´ w ´ zq. We track where yHF pS3q lifts to {HFKpKq.

3. A is upgraded from a relative grading to an absolute grading by the requirement that
the Euler characteristic (Alexander polynomial) is symmetric.

Example. For our first example, we will compute

{HFKpLHT q

using the Heegaard diagram shown in figure 10.6. Notice that we can isotope a β curve
“over infinity” in the diagram on the left to arrive at the much simpler diagram on the
right.

Using this Heegaard diagram, we’re ready to calculate! First, we see that there are
three intersection points, a, b, c. Therefore

{CFK “ xa, b, cy.

What’s the boundary map? There are exactly two bigons in the Heegaard diagram, one
containing w and one containing z. Therefore there are no bigons away from w or z.
Therefore all of the moduli spaces of J-holomorphic strips are empty, and the boundary
map is trivial! We have

{HFKpLHT q “ xa, b, cy “ Z3.

Next we determine the relative grading differences between the points a, b, c which generate
the homology. For the Maslov grading, we have

Mpaq ´Mpbq “ µpDzq ´ 2nwpDzq “ 1´ 2 ¨ 0 “ 1

where Dz is the bigon containing z. We also have

Mpcq ´Mpbq “ µpDwq ´ 2nwpDwq “ 1´ 2 ¨ 1 “ ´1
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Figure 10.6: Heegaard diagram of a left handed trefoil.

where Dw is the bigon containing w. Therefore

Mpcq ` 2 “Mpbq ` 1 “Mpaq.

To make this an absolute grading, we determine yHF pS3q in terms of a, b, c. This time we
can consider regions that cover z, so in particular the bigon containing z contributes to a
non-trivial term in the boundary map: we have

Ba “ b, Bb “ Bc “ 0.

Therefore yHF pS3q “ xcy. Since this is concentrated in degree 0, it must be the case that

Mpcq “ 0,Mpbq “ 1,Mpaq “ 2.

Finally we determine the Alexander grading. We have

Apaq´Apbq “ nzpDzq´nwpDzq “ 1´0 “ 1, Apcq´Apbq “ nzpDwq´nwpDwq “ 0´1 “ ´1.

Therefore
Apcq ` 2 “ Apbq ` 1 “ Apaq.

We want the Alexander polynomial to be symmetric (in the sense of ∆pqq “ ∆pq´1q, so
this forces the middle term b to lie in grading 0, with c in grading ´1 and a in grading 1.
This concludes our calculation of the bidegrees of the non-vanishing terms in {HFKpLHT q:
the homology is as in the following table.
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Knot Floer homology of LHT

A
M

-3 -2 -1 0 1 2 3

3

2

1 Z
0 Z
-1 Z
-2

-3

We can also compute the Alexander polynomial readily from this table:

∆LHT pqq “ q ´ 1` q´1.

To compute the knot Floer homology of the right handed trefoil, we rewind back to the
very first step where we draw a Heegaard diagram. Here the diagram is “reflected”, cor-
responding to reversing orientations. Then almost all of the calculations carry out in the
same way, except with a, b, c labelled the same way, the non-trivial part of the yHF pS3q

boundary map becomes Bb “ c. Therefore the homology is generated by a, and the Maslov
grading shifts by 2:

Knot Floer homology of RHT

A
M

-3 -2 -1 0 1 2 3

3

2

1 Z
0 Z
-1 Z
-2

-3

This shows that knot Floer homology distinguishes the chirality of trefoils! On the other
hand, we see that the right handed trefoil also has Alexander polynomial q ´ 1` q´1.

Remark. Recall that one of the basic properties of knot Floer homology described in the
introductory section was that

{HFKipK, sq “ {HFK´ipK,´sq.

This says that the table of the knot Floer homology of RHT should be the 180 degree
rotation of the LHT knot Floer homology, about p0, 0q. We see that this is indeed the case.
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Example. For our next example, we will determine the knot Floer homology of a figure-8
knot. The 2-bridge diagram and associated Heegaard diagram (shown in figure 10.7 are
quite a bit funkier than the previous example!

Figure 10.7: Heegaard diagram of the figure 8 knot.

This time we see that the Floer chain complex has five generators. Again, there are no
bigons away from z or w, so the boundary map is trivial, giving

{HFKp41q “ xa, b, c, d, ey “ Z5.

It remains to determine the gradings. To this end, we have added some colour to regions
in the Heegaard diagram in figure 10.7 to aid in the calculations.

Consider the intersections c and d. There is a bigon from c to d (shown in yellow).
This bigon meets w but not z. Therefore

Mpcq ´Mpdq “ 1µ´ 2nw “ ´1.

Next we consider a and c. There is no immediate bigon, but we can combine the bigon
from c to d with the rectangular region shown in orange (with vertices a, b, c, d)! This
rectangle has µ´ 2nw “ 0´ 0 “ 0. Therefore

Mpbq ´Mpaq “Mpcq ´Mpdq “ ´1.
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Next we notice that there is a bigon from c to b, which wraps around infinity. This does
not meet w (as it meetz z instead). We have

Mpcq ´Mpbq “ 1´ 2 ¨ 0 “ 1.

Finally combining this with the purple rectangle, we have

Mpdq ´Mpeq “ 1.

This determines the relative Maslov grading completely: we have

Mpdq ´ 1 “Mpaq “Mpcq “Mpeq “Mpbq ` 1.

As for the Alexander grading, we use the same regions as above. For example,

Apcq ´Apdq “ nz ´ nw “ ´1

since the yellow bigon contains w but not z. In fact, we end up with the same relative
grading as the Maslov index!

Apdq ´ 1 “ Apaq “ Apcq “ Apeq “ Apbq ` 1.

Since the Alexander grading must be symmetric, for the absolute grading we end up with

Apbq “ ´1, Apaq “ Apcq “ Apeq “ 0, Apdq “ 1.

For the absolute Maslov grading, notice that the bigons from c to b and d to e do not
contain w, so the boundary map in yCF pS3q obtained from the above Heegaard diagram is
defined by

Bd “ e, Bc “ b, Ba “ 0.

That is, yHF pS3q “ xay. Therefore the absolute Maslov grading is fixed by Mpaq “ 0. This
gives

Mpbq “ ´1, Mpaq “Mpcq “Mpeq “ 0, Mpdq “ 1.

In summary, the knot Floer homology of the figure-8 knot is as in the following table.

Knot Floer homology of 41

A
M

-3 -2 -1 0 1 2 3

3

2

1 Z
0 Z3

-1 Z
-2

-3
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Reading off the Euler characteristic, we have

∆41pqq “ ´q ` 3´ q´1.

We see that the knot Floer homology is preserved by a 180 degree rotation of the table
about p0, 0q, agreeing with the fact that 41 is amphichiral.

10.6 The relationship between Maslov and Alexander grad-
ings

In the examples in the previous sections, all of the knot Floer homologies were non-trivial
along a gradient 1 line. That is to say, A ´M was constant. This is a general property:
for 2-bridge knots, all generators can be related by bigons which pass through either w or
z exactly once, from which one can show that A´M is constant. In fact, we can calculate
this constant.

Theorem 10.6.1 (Rasmussen). If K is a 2-bridge knot, then A ´M “ σpKq{2, where
σpKq is the signature of K. Moreover,

{HFKipK, sq “

#

Z|as| i “ s` σ{2 where ∆K “
ř

asq
s

0 otherwise.

For Heegaard Floer homology, we introduced L-spaces as being the manifolds which
are homologically simplest. The analogue in knot Floer homology is precisely those knots
with homology as above.

Definition 10.6.2. If {HFKpKq satisfies the above formula, K is called perfect or Floer
σ-thin.

In this terminology, Rasmussen showed that 2-bridge knots are Floer σ-thin.

Remark. Considering knots of up to 9 crossings, only two are not Floer σ-thin, namely
819, 942.

Rasmussen’s result can be improved, and this improved version is the result we will
give a proof outline for.

Theorem 10.6.3 (Ozsváth, Szabó). Alternating knots are Floer σ-thin.

This gives a hierarchy of knot-structure as follows:

knots Ą Floer σ-thin Ą alternating Ą 2-bridge.

It’s not immediately clear from our definition of 2-bridge knots that they are alternating:
the idea is to instead consider the projection “from above”.
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How did Ozsváth and Szabó prove their result? The key idea is to consider a new
method for obtaining a Heegaard diagram of a knot. This method will typically give a
higher genus than the bridge-method, but it highlights the fact that different forms of
diagrams can be more useful at different times.

Proposition 10.6.4. Let K be a knot with a planar diagram with c crossings. The
following process defines a Heegaard diagram of K with genus c` 1.

1. Consider the planar diagram as sitting in the px, yq-plane in R3. Let Σ be the
boundary of a regular neighbourhood of the diagram in R3. (Then Σ immediately
has genus c` 1.)

2. Place α curves around each of the c` 1 holes of Σ. (These are canonical, as we will
see in a subsequent example.)

3. Fix a basepoint of the knot. Add a β curve as a meridian at the corresponding part
of Σ.

4. Add the w and z points on Σ to lie on either side of the previously defined β curve.

5. The remaining c β curves are added to each of the crossings of the diagram, respecting
the over/underpass data.

Example. Following the above steps is basically impossible without an example! We carry
out the process for a figure-8 knot and determine the corresponding Heegaard diagram.
Next we verify that it really is a Heegaard diagram of the knot. Figure 10.8 shows the
Heegaard diagram obtained from the standard diagram of the figure-8 knot.

Figure 10.8: Heegaard diagram of a figure-8 knot obtained by the alternative method.
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It is easy to see that the diagram on the right is really what we obtain, by following
the rules described in the preceding proposition.

Now we verify that this is a Heegaard diagram of the figure-8 knot. The first step is
verifying that this is a Heegaard diagram of S3. To see this, define U to be the volume
outside of Σ, and V the volume inside Σ. For each α curve, we glue a disk Dα into U with
boundary the α curve. Then U ´YiDαi is topologically a 3-ball! Therefore we can take U
to be the handlebody Uα. Conversely, we can also glue in a disk Dβ inside V for every β
curve. Following the path of knot from z to w, we find that the complement of these disks
in V is again a 3-ball. Therefore we’ve described a Heegaard diagram of U Y V “ S3.

Next we must verify that there are curves γα and γβ so that K “ γα Y γβ, and each
curve lives in Uα ´ YiDαi and Uβ ´ YiDβi respectively. This is best explained with a
diagram: see figure 10.9. The idea is similar to the above, where γβ is really just obtained
by following the path of the knot. (This is actually the same argument that the volume V
earlier is the Uβ handelbody.)

Figure 10.9: The diagram is truly a Heegaard diagram of the figure-8 knot.

At each crossing we were given two choices for how to “orient” the β curves. We see
from figure 10.9 that our choices really guarantee that we can follow the diagram along the
knot to define γβ as required. (The crossings at each intersection over/underpass correctly.)
This completes the example-proof, which generalises to arbitrary planar diagrams.

Next we’ll compute the knot Floer homology from such a Heegaard diagram. Things
get a bit messy with the figure-8 knot, as genus 5 is already getting quite large for human
means. Instead we’ll consider the trefoil.
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Example. Starting with the standard diagram of the trefoil, we obtain a genus 4 Heegaard
diagram as shown in figure 10.10.

Figure 10.10: Heegaard diagram of a trefoil knot obtained by the alternative method.

Since the Heegaard diagram has genus 4, the intersection points x P Tα X Tβ are
unordered tuples tx1, . . . , x4u, where each xi comes from an honest intersection of α and
β curves. More formally, they are of the form x “ tx1, . . . , x4u where

xi P ασpiq X βi, σ P S4.

Using this rule, we can readily enumerate the points in Tα X Tβ by inspecting the figure.
Firstly, β1 only intersects α1, so we can take x1 to be the intersection denoted by a green
dot at the top of the diagram. Next, β2 intersects α1, α2, and α3. Since α1 has already
been taken, we can choose between α2 or α3. Let’s choose α2 X β2. This is the green dot
on the left of the figure. Similarly we have two choices for β3. Finally, we’re left with only
one choice for β4.

Repeating this process with each of the choices, we end up with exactly three possibil-
ities, as shown in green, purple, and orange. Therefore TαXTβ consists of 3 points, a, b, c.
In fact, one can show that B “ 0 so that

{CFK “ {HFK “ xa, b, cy “ Z3.

It remains to determine the gradings.
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Proof outline of the Ozsváth-Szabó Floer σ-thin theorem. Ozsváth and Szabó used these
diagrams to show that for alternating knots, the generators satisfy

A´M “ σ{2.

In this case, for a fixed A, all generators lie in the same Maslov grading, which implies that
B “ 0. Therefore {HFKipK, sq “ Z|as| in degree i “ s´ σ{2.

The next immediate goal is to extend knot Floer homology to links. This was alluded to
in the previous lecture, where we remarked that any proofs involving crossing resolutions
really requires the notion of knot Floer homology to be extended to links. The idea is
to consider Heegaard diagrams with even more base points, since we should need two
basepoints for every component of the link.

Question from class. Naively, Khovanov homology looks very different from knot Floer
homology. However, the Jones and Alexander polynomials are related by being special cases
of the HOMFLY polynomial. Are these two homology theories related? Is there perhaps a
triply graded homology theory, with Euler characteristic the HOMFLY polynomial?

Answer. Yes! This is formalised by spectral sequences! A recent result established that
there is a spectral sequence induced by knot Floer homology. The second page (and
higher) are knot invariants. In particular, the second page is triply graded, and its graded
Euler characteristic is the HOMFLY polynomial. By construction, the spectral sequence
converges to knot Floer homology.

Alternatively, there is an older notion - Khovanov-Rozansky homology (which is an
slpNq-knot homology generalising Khovanov homology) which induces a spectral sequence
converging to Khovanov homology, and conjecturally also to knot Floer homology.
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Chapter 11

Combinatorial knot Floer
homology

We established in an earlier chapter that yHF pY q was combinatorial (for mod 2 coefficients)
by using “nice diagrams”. These are diagrams in which all of the badness is moved into
the region containing the basepoint, since we don’t consider J-holomorphic strips over the
basepoint. However, it wasn’t clear how to generalise to other versions of Heegaard Floer
homology in which we consider strips over the basepoint as well.

In knot Floer homology, we’ll actually prove that all the versions are combinatorial!
This is because we’ll soon see that all Heegaard diagrams for knots can be taken to have
low genus by trading them off with additional basepoints. With genus 0 or 1, every region
can be taken to be a bigon or rectangle. In fact, this will imply that the other versions
of Heegaard Floer homology for 3-manifolds are also combinatorial, since 3-manifolds can
be described in terms of knots by the Lickorish-Wallace theorem and the Heegaard Floer
homology is then expressed in terms of the knot Floer homology.

11.1 Heegaard Floer homology with multiple basepoints (lec-
ture 19)

The main prerequisite for showing that knot Floer homology is combinatorial is the concept
of Heegaard diagrams with multiple basepoints.

Definition 11.1.1. Let Y 3 be closed and oriented. A Heegaard diagram for Y with multiple
basepoints is the data

pΣg, α1, . . . , αg`k, β1, . . . , βg`k, z1, . . . , zk`1q

where k ě 0. Each set of α and β curves must consist of disjoint simple closed curves that
span a half dimensional subspace of H1pΣg;Zq “ Z2g, and each component of Σ ´

Ť

αi,
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Σ´
Ť

βi must contain exactly one basepoint.

Example. Figure 11.1 shows the α curves of a Heegaard diagram for a 3-manifold with
genus 3 and 4 basepoints (i.e. k “ 3).

Figure 11.1: Multiple basepoint Heegaard diagram example.

We find that the 6 simple closed curves in the diagram do indeed span a half-dimensional
subspace of H1pΣ;Zq “ Z2g “ Z6, since

rα4s “ rα1s ` rα2s, rα5s “ rα3s, rα6s “ 0.

Therefore the space is generated by rα1s, rα2s, and rα3s. It is also clear from the figure
that each cut component indeed has exactly one basepoint.

In the setting of Heegaard diagrams with multiple basepoints, we consider the tori

Tα “ α1 ˆ ¨ ¨ ¨ ˆ αg`k,Tβ “ β1 ˆ ¨ ¨ ¨ ˆ βg`k Ă Symg`kpΣg ´ tz1, . . . , zkuq Ă Symg`kpΣgq.

Proposition 11.1.2. HF pTα,Tβ in Symg`kpΣg ´ tziuqq “ yHF pY q b pH˚pS1qqbk. Intu-

itively, HF pTα,Tβq is comprised of 2k copies of yHF pY q.

Proof sketch. Any two Heegaard diagrams with multiple basepoints, for the same Y , are
related by the usual moves (isotopies, handleslides, and stabilisation and destabilisation)
together with a new type of stabilisation which consists of adding a new basepoint and an
α{β curve pair as in figure 11.2.

If the original complex is C˚, then upon the new stabilisation the complex is updated
to C˚ ‘ C˚´1, where the first factor contains the x intersection point, and the second y.
The degree shift is because x lives in one degree higher than y. It turns out that Bx “ 0 in
the new complex, because there are two J-holomorphic curves from x to y - as shown in
the highlighted parts of the figure. To verify that there is an “outer” curve (instead of just
the inner one, which is clear), formally we neck-stretch along the outermost dashed curve
and do some analysis. It follows that H˚ is updated to H˚ ‘H˚´1 upon stabilisation, as
required.
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Figure 11.2: New type of stabilisation.

Example. This is best seen by an example. Figure 11.3 shows a Heegaard diagram of S3

with genus 0 and k “ 1 (two base points).

Figure 11.3: Heegaard diagram of a sphere with two basepoints.

There are two intersections, x and y. It is clear that there are two bigons from x to
y which do not pass over the basepoints, and the J-holomorphic curves cancel in pairs so
that B “ 0. It follows that the homology of the Heegaard diagram is

xx, yy “ H˚pS1q

by noting that x is in degree one higher than y. Notice that this is equal to yHF pS3qbH˚pS1q

since the former is literally just Z in degree 0.

We’ve established some properties of the “hat version” of Heegaard Floer homology
with multiple basepoints. By allowing J-holomorphic curves to pass over basepoints, we
also obtain other types of homology. In particular, we next define a version of “minus”
homology:
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Definition 11.1.3. Consider Tα,Tβ Ă Symg`kpΣgq. We define CF´ to be freely generated
by intersection points x P TαXTβ, over ZrU1, . . . , Uk`1s. The boundary map is defined by

Bx “
ÿ

y

ÿ

ϕPπ2px,yq,µpϕq“1

#pMpϕq{RqUnz1 pϕq
1 ¨ ¨ ¨U

nzk`1
pϕq

k`1 y.

We define HF´ to be the homology of this complex.

As with the hatted version, this is also closely related to more familiar versions of
Heegaard Floer homology.

Proposition 11.1.4. As a ZrU s-module, HF´pTα,Tβq is isomorphic to HF´pY q. (To
view the former as a ZrU s-module, all the Ui are identified with U .)

Proof sketch. Under the new stabilisations, a complex C˚ is sent to

C˚rUk`1s
Uk´Uk`1
ÝÝÝÝÝÝÑ C˚rUk`1s,

with homology HpC˚qrUk`1s{Uk “ Uk`1. This is evidently isomorphic to HpC˚q as re-
quired.

Remark. We can also set all of the Ui “ 0 to obtain a homology theory over Z, in which
case the homology is isomorphic to yHF pY q.

11.2 Knot Floer homology for links

We’re now ready to define knot Floer homology for links, by using Heegaard diagrams with
multiple basepoints.

Definition 11.2.1. Let L Ă S3 be a link with ` components. A Heegaard diagram for L
is the data

pΣg, α1, . . . , αg``´1, β1, . . . , βg``´1, z1, . . . , z`, w1, . . . , w`q

where
pΣ, αi, βi, ziq, pΣ, αi, βi, wiq

are both Heegaard diagrams for S3 (with multiple basepoints), and there exist arcs γαi , γβi
connecting wi to zi, the former in Uα´

Ť

iDαi , the latter in Uβ´
Ť

iDβi , so that the union
of all the arcs in S3 is the link L.

Definition 11.2.2. Let L Ă S3 be a link with ` components, and pΣ, αi, βi, zi, wiq be a
Heegaard diagram of L. Then the knot Floer homology of L is defined by

{HFKpLq “ HF pTα,Tβ away from wi, ziq,
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i.e. the Lagrangian Floer homology of the tori in Symg``´1pΣ´twi, ziuq. This decomposes
as

{HFKpLq “
à

i,sPZ

{HFKipL, sq,

where i is the homological grading and s is the Alexander grading.

Proposition 11.2.3. Given a link L, the Euler characteristic of it’s knot Floer homology
is a scaled Alexander polynomial:

χp{HFKpLqq “ p1´ q´1q`´1∆Lpqq.

Remark. In fact, there are ` Alexander gradings s1, . . . , s`, and s “
ř

i si. The Euler char-
acteristic of the s-graded knot Floer homology is the Alexander polynomial, but the Euler
characteristic of si-graded knot Floer homology is the multivariable Alexander polynomial.
The si-graded theory is sometimes called link Floer homology.

Example. As an example, we begin with the unlink of two components. An example
Heegaard diagram is shown in figure 11.4.

Figure 11.4: Knot Floer homology of the unlink.

In the figure we’ve drawn green arcs to represent γαi and pink arcs for γβi . Indeed,
these verify that our Heegaard diagram is really a Heegaard diagram of the unlink with
two components.

We know from earlier that Bx “ y ´ y “ 0, so that {HFKpLq “ xx, yy “ Z2. It
remains to compute the gradings. We consider a bigon from x to y that does not meet any
basepoints, and choose ϕ P π2px, yq mapping into the bigon. This establishes that

Mpxq ´Mpyq “ 1, Apxq ´Apyq “ 0.

Upon deletion of the z points to obtain asbolute gradings, the knot Floer homology of
the unlink is as in the following table:
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Knot Floer homology of the unlink

A
M

-3 -2 -1 0 1 2 3

3

2

1

0 Z Z
-1

-2

-3

Notice that this uses the convention that

yHF pS3q bHpS1q “ Z2

is in degrees ´1 and 0.
Reading off the Euler characteristic, ∆Lpqq “ p1´ q

´1q´1p1´ 1q “ 0 as required.

Example. For our next example, we consider the Hopf link, which we again denote by L.
This time ∆Lpqq “ q1{2 ´ q´1{2, so we expect

χp{HFKpLqq “ p1´ q´1qpq1{2 ´ q´1{2q “ q1{2 ´ 2q´1{2 ` q´3{2.

In figure 11.5, we show a genus 1 Heegaard diagram with on the right.

Figure 11.5: Knot Floer homology of the Hopf link.

To see why this is a Heegaard diagram of the Hopf link, consider the image on the left.
Again the boundary maps are trivial, so that

{HFK “ Z4.
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This time they are trivial because there are no bigons that don’t contain a z or w point.
As for the relative gradings, we can compute them using the four bigons wrapping around
the right-side figure. For example, Mpbq´Mpaq “ 1´2nw “ 1´0 “ 1, and Apbq´Apaq “
ř

nzi ´
ř

nwi “ 1´ 0 “ 1. Overall, we find that the relative gradings are

Mpdq “Mpbq ` 1 “Mpcq ` 1 “Mpaq ` 2, Apdq “ Apbq ` 1 “ Apcq ` 1 “ Apaq ` 2.

The Alexander grading is made absolute by inspecting the Euler characteristic (Alexander
polynomial). We find that it is half-integral!

Apdq “ 1{2, Apbq “ Apcq “ ´1{2, Apaq “ ´3{2.

On the other hand, to make the Maslov index absolute, we allow holomorphic curves over
z basepoints. Then Bb “ a, Bc “ a, so that

yHF pS3q bHpS1q “ xb´ c, dy.

Using the convention that the above is in degrees ´1 and 0, we have

Mpaq “ ´2, Mpbq “Mpcq “ ´1, Mpdq “ 0.

In summary the knot Floer homology of the Hopf link is as in the following table:

Knot Floer homology of the unlink

A
M

-3 -2 -1 0 1 2 3

5/2

3/2

1/2 Z
-1/2 Z2

-3/2 Z
-5/2

11.3 Knot Floer homology with multiple basepoints

The reason Heegaard diagrams with multiple basepoints is required for combinatorial knot
Floer homology is that we will use it to trade genus with basepoints. For this to make
sense, we must introduce a notion of knot Floer homology with more basepoints (than just
twice the number of link components).

Definition 11.3.1. Let L Ă S3 be a link with ` components. Let k ě `. A Heegaard
diagram

pΣg, α1, . . . , αg`k´1, β1, . . . , βg`k´1, z1, . . . , zk, w1, . . . , wkq
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is a Heegaard diagram of L (with multiple basepoints) if each of pΣ, αi, βi, ziq and pΣ, αi, βi, wiq
is a Heegaard diagram (with multiple basepoints) of S3, and there exist arcs γαi , γβi in
Uα´

Ť

iDαi and Uβ ´
Ť

iDβi respectively, with one endpoint on a z basepoint and one on
w basepoint, so that their union is the link L. (Note that each component of L is allowed
to be comprised of more than two arcs!)

Example. Figure 11.6 shows possible arcs comprising an unlink in a Heegaard diagram
with additional basepoints. This diagram has g “ 3 and ` “ 2, but k “ 4.

Figure 11.6: Example of arcs in a Heegaard diagram for the unlink with extra basepoints.

Proposition 11.3.2. HF pTα,Tβ away from all the wi, ziq is isomorphic to {HFKpLq b
V bpk´`q, where V “ Z2 “ HpS1q has generators in bidegrees p´1,´1q and p0, 0q. Intu-

itively, it says that HF is 2k´` copies of {HFK.

Proof sketch. Again, any two diagrams of L are related by the usual moves along with “new
stabilisations”. To verify that the new stabilisation (addition of basepoints and curves, but
not genus) really gives a Heegaard diagram of the same link, we inspect figure 11.7.

In the bottom part of the figure, we see how the new stabilisation genuinely gives a
Heegaard diagram of the link by declaring what the appropriate new γα, γβ arcs are.

We see that {CFK is sent to {CFK‘{CFK, with the first component being generated by
x and the second by y. This inductively gives the first part of the proposition, but we still
need to determine gradings. Inspecting the Heegaard diagram on the top right of the figure,
we see from the right-most-bigon (from x to y) that Apxq ´ Apyq “ Mpxq ´Mpyq “ ´1,
giving the desired grading as well.

We have mentioned on several occasions that the advantage of Heegaard diagrams with
extra basepoints is that genus can be traded for basepoints.
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Figure 11.7: New stabilisation for Heegaard diagram of a link.

Proposition 11.3.3. Every link admits a genus 0 Heegaard diagram of some number of
base points.

Proof. We don’t give a full proof - instead, we will walk through an example for the
construction of such a Heegaard diagram.

The general algorithm to produce a genus 0 Heegaard diagram is as follows:

1. Start with a bridge diagram of the link. Delete one bridge and one underpass.

2. Replace all other bridges with blue sausages, and replace its end points with w and
z basepoints. Similarly, replace all underpasses with red sausages.

As an example, we consider figure 11.8.

Figure 11.8: Genus 0 Heegaard diagram example.

To verify that this is indeed a Heegaard diagram for the link, simply re-draw the bridges
and underpasses from the bridge diagram. These are exactly the arcs that verify that the
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Heegaard diagram represents the given link: the underpasses are the γα arcs, and the
bridges are the γβ arcs.

11.4 Grid diagrams

Recall that Sarkar and Wang showed the existence of an algorithm for computing F2 hat
Heegaard Floer homology for 3-manifolds. This made use of nice diagrams in which all
regions were bigons or rectangles, except for the one including the basepoint. This means
we can count J-holomorphic disks without analysis.

Suppose a surface admits a Heegaard diagram in which all regions are bigons or rect-
angles. Then we have

2´ 2g “ χpΣgq “
ÿ

pEuler measures of regionsq ě 0,

because the Euler measure of a bigon is 1/2 and that of a rectangle is 0. This forces
g “ 0, 1, which is why we cannot in general force all regions to be bigons and rectangles.

However, for knots and links, we’re in luck! We can simply add more basepoints and
guarantee that the surface has genus 0 or 1! Moreover, this means that potentially every
region can be a bigon or rectangle, so we can even compute other versions of knot Floer
homology (rather than just the hatted version). Indeed this turns out to be the case - we
use so-called grid diagrams.

Definition 11.4.1. Let L Ă S3 be a link. A grid diagram of L is an n ˆ n grid with 2n
markings of two types, w and z, such that

� each row has exactly one z and one w,

� each column has exactly one z and one w,

� Joining w to z by vertical and horizontal arcs, with vertical arcs always overpassing,
we obtain a diagram for L.

Moreover, a grid diagram defines a Heegaard diagram of genus 1 by declaring that all
horizontal lines (between the rows of the grid) are α-curves, the vertical lines are β-curves,
and the outermost opposite edges are identified to make a torus.

Example. Figure 11.9 shows a grid diagram for the trefoil knot.
The light pink lines show that the marked points do indeed give a grid diagram for the

trefoil knot.

Remark. All regions in a grid diagram are rectangles! This means that given a grid
diagram, we can combinatorially/algorithmically compute the knot Floer homology! If all
links admit grid diagrams, then knot Floer homology itself is combinatorial.
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Figure 11.9: Grid diagram for the trefoil knot.

Figure 11.10: Existence of grid diagrams.

Proposition 11.4.2. Every link admits a grid diagram.

Proof. We do not give a general proof, but instead use an example: figure 11.10.
First we take any link diagram for the given link. Then we make it rigid, replacing the

components with vertical and horizontal edges. Then we locally rotate any of the crossings
that don’t overpass vertically. Finally writing w and z at the vertices, we have a grid
diagram!

In summary, all links admit grid diagrams, and all grid diagrams allow for knot Floer
homology to be computed combintaorially! Nice!

Some references on combinatorial knot Floer homology (which will be explored a little
more in the final lecture) are:
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1. Manolescu, Ozsváth, Sarkar - 2006. A combinatorial description of knot Floer ho-
mology.

2. Manolescu, Oszváth, Szabó, Thurston. On combinatorial link Floer homology.

3. Book by Ozsváth, Stipsicz, Szabó.

11.5 Combinatorial knot Floer homology (lecture 20)

In the previous lecture we introduced grid diagrams with a view to proving that knot Floer
homology is combinatorial. In this lecture we show how to obtain the combinatorial grid
complex given a grid diagram. As an example, we will use the grid diagram Γ of a Hopf
link as in figure 11.11.

Figure 11.11: Grid diagram Γ of Hopf link.

We must do four things:

1. Describe the underlying module of the Floer complex induced by the grid diagram.

2. Describe relative Maslov gradings between generators.

3. Describe the boundary map of the Floer complex.

4. Describe relative Alexander gradings between generators. (The Maslov grading can
be made absolute by computing the gradings of surviving generators in the homology
of the torus - this is combinatorial by Sarkar-Wang. The Alexander grading can be
made absolute by computing the Alexander polynomial, which is also combinatorial.)

1. Given a Heegaard diagram with n α curves and β curves, the generator of the
corresponding Heegaard complex has generators the intersection Tα X Tβ in SymnpΣq. In
our Hopf link example, we have a 4ˆ 4 grid Γ induced by 4 α and β curves. Therefore the
generators are

x “ tx1σp1q, . . . , x4σp4qu, σ P S4, xij “ αi X βj .
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Enumerating these, there are exactly 4! “ 24 choices. Our grid complex is the free Z-
module generated by 24 symbols. Yeouch!

CGpΓq “ Zxa1, . . . , a24y.

In general, an nˆ n grid diagram gives a grid complex with n! generators.
2. Next we must describe the Maslov grading, with a view to defining the boundary

map. For this we can use the Lipshitz formula. Any J-holomorphic strip ϕ mapping into
the torus maps into some polygon in the grid diagram, bound by segments of α and β
curves. We have

µpϕq “ epϕq `
ÿ

nvipϕq,

where epϕq is the Euler measure of ϕ, and nvi is the average vertex multiplicity. The image
of a strip is of the form Dpϕq “

ř

aiRi where ai ě 0 and Ri are the regions of the grid,
i.e. squares of size 1. Now epDpϕqq “

ř

aiepRiq “ 0. The average vertex multiplicity can
similarly be computed, and is given by

ÿ

nvipϕq “ ´1`#edges of ϕ{2.

Therefore
µpϕq “ epϕq `

ÿ

nvipϕq “ ´1`#edges of ϕ{2.

The above is a purely combinatorial description of the Maslov index of a strip. Now to
define the Maslov grading, we recall that

Mpxq ´Mpyq “ µpϕq ´ nwpϕq,

where nwpϕq is the number of times a strip ϕ from x to y passes over a w point.

Example. In figure 11.12, we show two generators of Tα X Tβ: green intersection points
represent the generator x, and pink y.

Figure 11.12: Maslov grading example
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These differ by a single rectangle, which is represented by a J-holomorphic curve ϕ,
giving

Mpxq ´Mpyq “ µpϕq ´ nwpϕq “ ´1` 4{2´ 2 ¨ 0 “ 1

from the above identity.

3. To define the boundary map, we must count index 1 J-holomorphic strips which do
not pass over w or z. Inspecting the above identity, such a strip must have image an empty
rectangle. We’ve established a bijective correspondence

tJ-holomorphic strips of index 1 away from wu Ø tempty rectangles in Γu.

Formally, an empty rectangle is a rectangle as shown in the above example, but one which
does not contain any z or w points. The boundary map is given by

Bx “
ÿ

y

˘nxyy, nxy “ #empty rectangles from x to y P t0, 1, 2u.

To see why the number of empty rectangles is an element of t0, 1, 2u, we simply notice
that given any two generators which differ on exactly two α and β curves, the number of
rectangles between them is exactly 2. It remains to see whether or not these rectangles
contain w or z points. (See figure 11.13.)

Figure 11.13: The two rectangles from x to y.

Example. The two generators x and y in figure 11.13 were shown to differ by Maslov
grading 1. However, nxy “ 0, since neither of the two rectangles from x to y are empty.

In summary, we have defined the grid complex

pCGpΓq, Bq.

Finally it remains to determine the relative Alexander grading. This can be combinatorially
achieved easily by recalling that

Apxq ´Apyq “ nzpϕq ´ nwpϕq.
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Example. In figure 11.12, we show two generators of Tα X Tβ whose relative Alexander
grading we’ll compute. These differ by a single rectangle, which is represented by a J-
holomorphic curve ϕ, giving

Apxq ´Apyq “ nzpϕq ´ nwpϕq “ 1´ 0 “ 1.

This completes the description of combinatorial knot Floer homology. By construction,
we have the following result:

Proposition 11.5.1. Let yHGpLq denote the homology of the grid complex pCGpΓq, Bq,
where Γ is a grid diagram of L. then

yHGpLq “ {HFKpLq b V bpn´`q

where V – Z‘ Z has generators in degrees p´1,´1q and p0, 0q.

By the above proposition, since we know how large our grid is, we have

Theorem 11.5.2. Knot Floer homology is combinatorial.

In fact, combinatorial knot Floer homology also solves the genus problem!

Theorem 11.5.3. There is an algorithm to compute the genus of a knot.

Proof. We have established that

1. there is an algorithm to compute knot Floer homology; {HFKipK, sq,

2. knot Floer homology detects genus:

gpKq “ maxts : {HFKpK, sq ‰ 0u.

Recall that the genus of a knot is the minimum genus of a Seifert surface of the knot.

The result follows by combining these.

Corollary 11.5.4. There is an algorithm to determine whether or not a given knot diagram
represents the unknot.

Remark. Kronheimer and Mrowka showed that Khovanov homology also detects the un-
knot, and Khovanov homology is inherently combinatorial.

Finally, one of the grand applications is that combinatorial knot Floer homology extends
to a “combinatorialisation” of all the versions of Heegaard Floer homology of a 3-manifold!

Theorem 11.5.5 (Manolescu, Ozsváth, Thurston (2009)). There is an algorithm to com-
pute HF˘ for 3 manifolds (as well as the mixed invariants ϕX,s of 4-manifolds, mod 2).
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Proof idea. The important observation is that the above combinatorial knot Floer homol-
ogy also works for other types of knot Floer homology, that is, we have a combinatorial
algorithm to compute HFK˘ and so on. To this, we apply two results:

1. The Lickorish-Wallace theorem: all closed 3-manifolds are obtained by surgery on a
link L Ă S3.

2. The link surgery formula: Ozsváth and Szabó proved a knot surgery formula which
computes the Heegaard Floer homology of a surgery on K in terms of the knot Floer
homology of K. This was generalised to links by Manolescu and Ozsváth, in which
the Heegaard Floer homology of the surgery on L is determined by the knot Floer
homology of L and all of its sublinks.

Combining these two results and adding a bit more work, the result follows.

Remark. This is really a theoretical result rather than a practical result. For example, a
K3 surface is obtained by surgery on a knot with a 44ˆ44 grid diagram. The corresponding
grid complex has 44! generators, which is far too many for our computers to handle.

This completes one of the big themes of this course - Heegaard Floer homology is not
only useful, but also combinatorially computable!
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Chapter 12

Other versions of knot Floer
homology

In the final chapter of these notes, we explore a few other versions of knot Floer homology.
We’ll finish with an application to the knot concordance group, which is the knot theoretic
analogue of the homology cobordism group for 3-manifolds.

12.1 Full knot Floer homology

Let K Ă S3 be a knot, and

H “ pΣ, α1, . . . , αg`k´1, β1, . . . , βg`k´1, w1, . . . , wk, z1, . . . , zkq

a Heegaard diagram. So far we’ve only defined {HFKpKq for a Heegaard diagram with
exactly 2 basepoints, and described the homology theories arising from additing more
basepoints in terms of {HFKpKq. Additional versions of knot Floer homology are defined
as follows.

Definition 12.1.1. ČHFKpKq is the Lagrangian Floer homology of Tα,Tβ in Symg`k´1pΣ´
tzi, wiuq. That is, the only valid J-holomorphic strips are those that do not pass over any
z or w points.

We observe that
ČHFKpKq – {HFKpKq b V bpk´1q,

and in particular when k “ 1 the two homologies are the same.

Definition 12.1.2. HFK´pKq is the homology of Tα,Tβ in Symg`k´1pΣ ´ tziuq. That
is, we do not allow J-holomorphic curves to pass over z points, and we keep track of how
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they pass over wi with a variable Ui. Formally, the boundary map is

Bx “
ÿ

y

ÿ

µpϕq“1,nzi pϕq“0

p#Mpϕq{RqUnw1 pϕq
1 ¨ ¨ ¨U

nwk
pϕq

k y.

The correspondong homology is an invariant of K, which is a module over ZrU1, . . . , Uks.

The above can be taken to be a module over ZrU s by setting all the Ui :“ U .

Definition 12.1.3. A more general definition of {HFKpKq is to define it in terms of
HFK´ with multiple basepoints: we simply set one of the Ui “ 0. (That is, we consider
J-holomorphic strips which are not allowed to meet z1, . . . , zk, wi.)

Finally we define the full version of knot Floer homology. The first version ČHFK
contains the least information, as we’re heavily restricting the J-holomorphic strips we
consider. Then {HFK allows us to pass over i ´ 1 of the w points, and HFK´ considers
strips passing over all of the w points. In the full version, we extend it further by considering
J-holomorphic strips that also pass over the z points.

Definition 12.1.4. CFK denotes the full knot Floer complex in which J-holomorphic
curves are permitted to pass over all basepoints. We keep track of wi by Ui and zi by Vi,
and consider the complex over ZrU1, . . . , Uk, V1, . . . , Vks. The boundary map is given by

Bx “
ÿ

y

ÿ

µpϕq“1,nzi pϕq“0

p#Mpϕq{RqUnw1 pϕq
1 ¨ ¨ ¨U

nwk
pϕq

k V
nz1 pϕq

1 ¨ ¨ ¨V
nzk

pϕq

k y.

Example. In figure 12.1, we show a Heegaard diagram of the unknot with k “ 2.

Figure 12.1: Unknot Heegaard diagram.

We see that Bx “ pU1 ´ U2qy, but also By “ pV1 ´ V2qx. Therefore

B2 “ pU1 ´ U2qpV1 ´ V2q ‰ 0.

This example demonstrates that the full knot Floer complex as defined isn’t actually a
complex! In general,

B2 “ pU1V1 ´ V1U2 ` U2V2 ´ V2U3 ` ¨ ¨ ¨ ` UkVk ´ VkU1q.
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Such an object is called a matrix factorisation. This is similar but gives a more complicated
version of homological algebra. Notice that kernel mod image nolonger makes sense, but
there are homotopical alternatives.

Two common ways of dealing with the full knot Floer complex are as follows.

1. Work over ZrUi, Vis{pU1V1 ´ V1U2 ` ¨ ¨ ¨ ´ VkU1q. Then the boundary map satisfies
B2 “ 0 and homological algebra works.

2. Ensure that k “ 1 in the original diagram. Then the boundary map is automatically
that of a chain complex. This is denoted by HFK, and is a homology theory over
ZrU, V s.

Question from class. What are the Euler characteristics of the various versions of knot
Floer homology?

Answer. They’re all various multiples of Alexander polynomials.

Example. Figure 12.2 shows a Heegaard diagram of the left handed trefoil LHT, along
with its hatted knot Floer homology {HFKpLHT q “ Z3. The boundary map is easily seen
to be trivial, since the only two bigons both contain basepoints. Below the diagram, we
also compute some other versions of knot Floer homology for the trefoil.

Figure 12.2: Left handed trefoil Heegaard diagram and {HFK.

Next, what is HFK´pLHT q? Over ZrU s we have Bc “ Ub and Ba “ Bb “ 0. Therefore

HFK´ “ ker B{ im B “ xa, by{xUby.

Therefore HFK´ “ ZrU s ‘ Z, where the first summand is generated by a and the latter
is xb : Ub “ 0y.

As for HFK, we have Ba “ V b, Bc “ Ub, and Bb “ 0. Therefore

HFKpLHT q “ xb, Ua´ V cy{xUb, V by – ZrU, V s ‘ Z

where the first summand is xUa´ V by and the latter is xb : Ub “ V b “ 0y.
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12.2 Applications to the knot concordance group

As mentioned earlier, the knot concordance group is an analogue of the homology cobordism
group.

Definition 12.2.1. Two knots K1,K2 Ă S3 are concordant if there is a smoothly properly
embedded annulus A Ă S3 ˆ r0, 1s, with BA “ p´K1q Y K2, where K1 Ă S1 ˆ t0u and
K2 Ă S3 ˆ t1u.

Is the collection of equivalence classes non-trivial? That is, do there exist knots that
are not concordant? yes, this is indeed the case: a knot is concordant to the unknot if
and only if it bounds a smooth disk D in B4, i.e. if and only if the knot is slice. This
is demonstrated by figure 12.3. The majority of knots seem not to be slice - for example,
Rasmussen’s s-invariant gives a lower bound for the slice genus, and this can be computed
to be non-trivial for most small knots.

Figure 12.3: Slice ô null-concordant, 61 is slice.

The knot 61, also shown in figure 12.3, is the smallest slice knot.

Open question. Find an algorithm to determine sliceness of knots.

Since we’ve developed combinatorial knot invariants that detect the unknot, perhaps
we can one day detect sliceness too!

Definition 12.2.2. The knot concordance group, denoted C, consists of all oriented knots
up to concordance. This is an abelian group under

0 “ runknots, rK1s ` rK2s “ rK1#K2s, ´rKs “ rmpKrqs.

(By mpKrq, we mean the mirror of the opposite orientation knot.)
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Remark. We mentioned that the knot concordance group is analogous to the homology
cobordism group. To strengthen this, we mention that there are various homomorphisms

C Ñ Θ3
Z,Θ

3
Q.

Examples include: mapping a knot to the surgery on the sphere along the knot, or mapping
a knot to double covers branched over the knot. Therefore understanding the structure of
C can help understand Θ3 and vice versa.

Open question. What is C? We don’t know what its isomorphism class as an abelian
group is, although more is known about it than Θ3

Z. This reflects the fact that knots are
easier than 3-manifolds.

Recall that for the homology cobordism group Θ3
Z, Heegaard Floer homology provided

a surjective homomorphism
d : Θ3

Z Ñ Z,

where dprY sq is the maximum grading of an element in the infinite tail of HF´pY q, plus
2. Similarly we can consider

τpKq “ ´maxts : Dx P HFK´pK, sq, U jx ‰ 0@j ě 0u.

In other words τpKq measures the largest s for which HFK´pK, sq contains an element
belonging to an infinite tail.

Remark. The invariant τ measures the Alexander grading rather than the Maslov (ho-
mological) grading! In this manner it is distinct from d.

Proposition 12.2.3. The invariant τ defines a homomorphism

τ : C Ñ Z.

Example. Let K “ LHT be the left handed trefoil. Then

HFK´pT q “ ZrU s ‘ Z “ xay ‘ xb : Ub “ 0y.

The Alexander grading of a is 1, and the Alexander grading of b is 0. U decreases the
Alexander grading by 1. Therefore the maximum s for which HFK´pK, sq contains an
element belonging to an infinite tail is s “ 1, and we can take the element to be a. It
follows that

τpKq “ ´1.

Therefore the trefoil is not slice!
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There are more concordance invariants arising from knot Floer homology. Examples
include

ν, ν`, ε, . . .

In particular, Ozsváth, Stipsicz, and Szabó introduced the invariants Υt for t P r0, 1s.
These invariants are defined for a variant of HFK over ZrU s, where w is kept track of by
U tnwpϕq and z by U p1´tqnzpϕq in the boundary map. Otherwise the definition of Υt imitates
that of τ . These give rise to infinitely many distinct homomorphisms

Υt : C Ñ Z.

From these, we find that

Proposition 12.2.4. C has a Z8 summand.

This result was already known. However, a more impressive application is that the
homomorphisms restricted to

Υt : CTS Ñ Z

also shows that CTS has a Z8 summand! The space CTS consists of topologically slice knots
up to smooth concordance. A knot is said to be topologically slice if there is an embedded
disk in B4 whose boundary is the knot, but the embedding is only required to be locally
flat rather than smooth. This is crazy! It shows that there are very many knots which are
topologically slice but not smoothly slice.

This concludes Maths 283A of Fall quarter 2020. Thank you again Ciprian for a fan-
tastic course! It was a lot of fun.
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