
Making RAMCloud Writes

Even Faster
(Bring Asynchrony to Distributed Systems)

Seo Jin Park
John Ousterhout

●  Goal: make writes asynchronous with consistency.

●  Approach: rely on client
§  Server returns before making writes durable
§  If a server crashes, client retries previous writes

●  Behavior is still consistent: linearizable if client is alive

●  Anticipated benefits:
§  Write latency: 15 µs à 6 µs (even with geo-replication)
§  Lower tail latency
§  Write Throughput: 2-3x higher

●  Some applications don’t need durability of last 10ms

Slide 2

Overview

Slide 3

Bring Asynchrony to RAMCloud
Data Master(s) Client Backups

Durable Log Write

Write

succes
s

Data Master(s) Client Backups

Durable Log Write

Write

succes
s

RAMCloud provides
linearizability (current)
●  Strongest form of consistency for

concurrent systems

●  Write is blocked while replication

●  Write: 15 µs vs. Read: 5 µs

●  Wastes cycles in server
Make durability for write
happen asynchronously
●  Should we give up consistency?

 asynchrony = weak consistency??

●  Eventual consistency is popular in distributed storage
§  Writes are asynchronously durable for best performance
§  Ex) Redis cluster, TAO, MySQL replication

●  Problem: difficult to reason about the state of system
§  Clients may read different values.
§  Don’t know when updates will be applied

●  Cannot check update was durably queued
●  Write may get applied long after

●  New model: linearizable unless client crashes
 => Similar to (stronger) asynchronous file system

Slide 4

Consistency in Performant Systems

●  asyncWrite(tableId, key, value) → value, version
 … asyncCondWrite(), asyncIncrement() etc

●  sync() → NULL <waits all updates are durable>

Possible APIs [Feedback requested: are they useful?]
●  rpc.sync() → NULL <waits 1 update is durable>
●  sync(CallbackFunc) → NULL

Example
ramcloud.asyncWrite(1, “Bob”, “2”);
ramcloud.asyncWrite(1, “Bill”, “2”);
ramcloud.sync();
printf(“Updated Bob and Bill”);

Slide 5

API

Durability for write happens asynchronously
Behavior is still consistent
1.  All reads are consistent

§  Reads are blocked until data become durable

2.  Writes are linearizable unless client crash
§  When a server crashes, client retries previously returned writes.

●  Write is lost only if both client and server crash

●  Client may wait for durability before externalization

●  Conditional write is still consistent and possible

Slide 6

New Consistency Model

In server crash, client retries previously returned writes
●  Goal: Restore the same state as before server crash
●  Issue 1: Retry may re-execute the same write request

§  If a server crash, a write may or may not be recovered.
§  Client retries operations that are not yet known to be durable.
§  The retried write may get re-executed, which overwrites and

reverts subsequent updates by other clients

●  Issue 2: Retries from different clients may be out of
order
§  End state of system will be different
§  Previously succeeded conditional write may fail (client sees

inconsistency)

Slide 7

Maintaining Linearizability in Server Crash

Issue 1: Retry may re-execute

Client

Master

write(x, 20)

success

Backups

Recovery Master

Crash
Recovery

retry

success

?

?
Slide 8

X: 20

X: 20 ?

X: 20 write(x, 20)

●  RIFL (Reusable Infrastructure for Linearizability) [SOSP15]
will let server ignore already completed writes

●  Retries from clients may arrive with different order
from original execution => linearizability in danger!

●  Option 1) Use object version to decide final winner
§  Write: okay
§  Conditional write: can be handled specially.
§  Append? Not possible.

●  Option 2) Allow only 1 not-replicated write:
overwrites wait for durable
§  Any deterministic operations are okay.
§  Weakness: continuously overwritten object can be bad.

Slide 9

Issue 2: Out of Order Retries

Feedback requested:
Is it common and real problem?

Issue 2: Out of Order Retries

Client

Master

success

Backups

Recovery Master

Crash
Recovery

retry

(Always) success

X

Slide 10

X.val: 20
X.ver: 3

if x.version == 2
then x.value = 20

if x.version == 2
then x.value = 20 X.val: 1

X.ver: 2

X.val: 1
X.ver: 2

X.val: 1
X.ver: 2

X.val: 20
X.ver: 3

●  Reduces RAMCloud write latency
●  Completely decouples write latency and replication

latency
§  Consistent geo-replication becomes practical
§  Reduced tail latency: not affected by 3 backup servers

●  More efficient threading model in servers
§  No need to spin wait for replication
§  Dedicated replication thread is possible
§  Improves write throughput of RAMCloud 2-3x

Slide 11

Anticipated Benefits

1.  Don’t care about durability
§  Durability of last 10ms may not be important
§  Ex) Real-time doc sharing: user cannot distinguish from typo

2.  Split of update / validate clients
§  End-user can check write was failed. If failed, retry.
§  No surprise resurrection! Validation by read is possible.
§  Ex) Purchase item, redirect to order confirmation page, which is

rendered by different web server. Human notices and retries.

3.  Many updates before externalization
§  Simply sync() before externalizing the success of writes.
§  Any experiences on this?

Slide 12

Possible Applications?

Questions
●  Applications?

§  How does current web applications use no-sql DB?

●  How useful is ordering guarantee?
§  Is it important to have some ordering for durability?

●  Callback based API?
§  Is a single final response to request the only externalization?

Challenges
●  Client-side threading model for accurate timer

Slide 13

Need help!

●  Rely on client retry if server crash à
strong consistency with asynchronously durable writes

●  Decoupling durability from critical path can
improves performance (latency ê, throughput é)

●  RIFL (Reusable Infrastructure for Linearizability) eases
design and reasoning of consistency

Slide 14

Conclusion

Slide 15

Q&A

