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Technique for generating broadband FM light
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We suggest a technique for using off-resonance spectral
comb generation to produce broadband frequency-
modulated (FM), and therefore amplitude-quieted, light.
Results include closed-form formulas for the amplitudes
and phases of all of the spectral components. © 2020 Optical
Society of America

https://doi.org/10.1364/OL.383651

Recent advances in integrated frequency comb technology, such
as the demonstration of over 900 comb lines from dispersion-
engineered, ultra-low-loss thin-film LiNbO3 resonators [1],
have regenerated interest in resonator-enhanced electro-optic
devices. This Letter makes two contributions. The first is the
description of a new method for generating a broad spectrum
frequency-modulated (FM) light signal. The second is the
development of an analytical eigen-decomposition technique
that allows a closed-form expression for the modal amplitudes
and phases of a detuned spectral comb generator. Because the
generated signal is FM, its amplitude fluctuations, as compared
to a randomly phased signal with comparable bandwidth, are
greatly reduced.

In 1964, on the same time scale as theoretical work by
Gordon and Rigden [2] and Yariv [3], workers attempting to
use an electrooptic phase modulator to mode lock a He–Ne
laser discovered that a phase modulator placed inside of the
cavity and detuned from the modal resonances would produce
a set of modes with Bessel function amplitudes, and called the
resulting device an FM laser [4]. In 1972, resonator-enhanced
electro-optic frequency combs were demonstrated by Kobayashi
and colleagues [5]. In the early 1990s, work by Kourogi resulted
in broadband comb generators [6]. In 1993, application to
fiber optic technology and a method for time-domain analysis
were suggested by Ho and Kahn [7]. And recently, Yuan and
Fan have shown how a detuned-ring system might be used for
unidirectional frequency translation [8].

The system considered here is shown in Fig. 1(a), where a
monochromatic plane wave is incident onto a ring resonator
with an electro-optic phase modulator near the right-hand
turning mirror. A numerical example of the generated spectrum
is shown by the red curve in Fig. 1(b). We derive a closed-form
expression, Eq. (11), that approximates the numerical spectrum,
and is shown by blue dots in Fig. 1(b).

We work in the frequency domain and express all fields as
Dirac kets. For example, the reflected field |b〉 has spectral com-
ponents bn = 〈n|b〉 with frequencies ω0 + nωm , where ωm is
the frequency driving the electro-optic modulator M1, andω0 is
the incident optical frequency that is exactly on resonance with
a particular optical mode. We take these spectral components
to extend from−Nm to+Nm , with a total of 2Nm + 1 spectral
components. The temporal quantity associated with the ket |b〉
is b(t)=

∑Nm
n=−Nm

bn exp[inωm t].

Fig. 1. (a) Schematic of a phase modulator, M1, embedded in a ring
cavity; (b) output spectrum from port B . For appropriate conditions,
the light observed from port C will approximate a broadband FM
signal. The red curve is obtained by solution of 241 linear equations,
Eqs. (1), (2). The blue dots are the approximate solution, Eq. (11).
The width of the spectrum is 25 times larger than that produced by
a phase modulator without a resonator. Parameters: δ = 2, 0 = 50,
ξ = ρ1 = ρ2 =

√
0.999, andβ ′′ = 0.
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We write input and output boundary conditions at the beam
splitter [9]. The quantities ρ1 and ρ2 are the electric field reflec-
tion coefficients at the beam splitter and right-hand turning
mirror. τ1 and τ2 are the corresponding transmission coefficients
and satisfy ρ2

i + τ
2
i = 1, with a convention of aπ phase shift on

reflection from outside of the splitter. To account for loss, we
define ξ = exp(−αL), where α is the per-length electric field
absorption coefficient. When ξ = 1, there is no loss, and when
ξ = 0, there is no transmission.

The input–output conditions may then be written as

|e0〉 = τ1|a〉 + ρ1|e L 〉,

|e L 〉 = ξρ2 M2 M1|e0〉,

|b〉 = τ1|e L 〉 − ρ1|a〉,

|c 〉 = τ2|e0〉, (1)

where the location 0 is shorthand for 0+, i.e., inside the ring
immediately following the beam splitter. The location L is
shorthand for L−, i.e., just before the beam splitter. The ket |a〉
represents the input driving field and in this work will be taken
as a monochromatic field with unit amplitude at a center driving
frequencyω0 so that 〈n|a〉 = δn,0.

A sinusoidal phase modulator with peak phase retarda-
tion δ multiplies each frequency component at its input by
exp[iδ cos(ωm t)] =

∑
+∞

q=−∞ iq Jq (δ) exp[iqωm t]. This modu-
lator is described by the operator M1 with matrix elements
〈n|M1|r 〉 = in−r Jn−r (δ). Denoting an on-resonance cen-
ter frequency as ω0, and with T = L/Vg (ω0) as the transit
time around the ring, the free spectral range of the ring
resonator is ωfsr = 2π/T. We take the modulation fre-
quency ωm =ωfsr + δω with |δω|<ωfsr. With β ′′ as the
dispersive parameter, the collected phase through the ring is
described by an operator M2 with diagonal matrix elements
〈n|M2|r 〉 = exp[−i(nδωT +ω2

mn2β ′′L/2)]δn,r . The oper-
ators M1 and M2 are unitary and do not commute. We define
the matrix M = ξρ1ρ2 M2 M1 with components 〈n|M|r 〉 =
(ξρ1ρ2)in−r e−inδωT Jn−r (δ). Equation (1) then combines to

|e L 〉 =
τ1

ρ1
(I −M)−1 M|a〉,

|e0〉 = τ1(I −M)−1
|a〉. (2)

Equations (1), (2) are not restricted to high-Q cavities and
are valid for all values of the mirror reflectivities and loss. In
the absence of loss (ξ = 1), total power is conserved. Similar
equations have been previously derived [10,11]. Notably, if the
loss is zero and the mirror reflectivities are unity, one eigenvalue
of (I −M) is zero and (I −M)−1 does not exist. With loss
and non-zero reflectivity included, the smallest eigenvalue of
(I −M) isλ0 = (1− ξρ1ρ2) (see Supplementary Material).

We show that the detuned comb generator has much in
common with the FM laser [12]. To obtain a linearized solu-
tion for the FM laser, we neglect saturation and set the loss to
zero and the cavity reflectivity to unity. We assume that δωT
is sufficiently small such that exp[−inδωT] ' (1− inδωT).
This assumption assures that the instantaneous single-pass
frequency shift through the modulator is equal to the frequency
shift of the broadband FM signal with index0 [13]. For small δ,

we obtain

(nTδω)En =
δ

2
(En−1 + En+1),

En = Jn(0); 0 =
δ

δωT
. (3)

In the time domain, the Fourier components En correspond
to an FM wave cos[ω0t + 0 cos(ωm t)] with instantaneous fre-
quencyω0 − 0ωm sin(ωm t). The spectral bandwidth is approx-
imately 20ωm , and the number of spectral components with
appreciable amplitude is 20. In general, the temporal dynamics
of the FM laser are much more complex. Especially when the
gain profile is flat, there are many FM signals centered on differ-
ent cold cavity modes that compete with each other [12,13].

With |q〉 and λq as the orthonormal eigenvectors and eigen-
values, respectively, of the operator (I −M), we can express its
inverse as

(I −M)−1
=

∑
q

1

λq
|q〉〈q |. (4)

If one eigenvalue,λ0, is much smaller than the others, then

(I −M)−1 ∼=
1

λ0
|q0〉〈q0|. (5)

We now assume that the eigenvector |q0〉 is the same as that of
the FM laser with an additional time delay factor dependent on
the position of the phase modulator in the ring. The correspond-
ing eigenvalueλ0 = (1− ξρ1ρ2) is such that when δωT < 0.1,

(I −M) |q0〉 = λ0|q0〉

〈n|q0〉 = Jn(0) exp(−inδωT/2). (6)

From the first of Eq. (2), we have

|e L 〉 =

(
ξτ1ρ2

λ0

)
〈q0|M2 M1|a〉|q0〉. (7)

Using Graf ’s sum rule, we have shown that

〈q0|M2 M1|a〉 =
∑

q

i−q exp(iqδωT/2)Jq (0)Jq (δ)

= J0 (Z) , (8)

where, noting δωT = δ/0,

Z =
√
(02 + δ2 − 20δ sin(δ/(20)). (9)

When δ� 0, as in most of this work, Z→ 0. Combining
Eqs. (7)–(9), the approximate solution to Eqs. (1), (2) is

|e0〉 = τ1|a〉 +
(
ξτ1ρ1ρ2

λ0

)
J0(Z)|q0〉,

|e L 〉 =

(
ξτ1ρ2

λ0

)
J0(Z)|q0〉,

|b〉 = τ1|e L 〉 − ρ1|a〉,

|c 〉 = τ2|e0〉. (10)
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Fig. 2. Inverse absolute value of the nine smallest eigenvalues of
(I −M). The parameters are the same as those of Fig. 1.

Using Eq. (7), the field components are then

bn =−ρ1δn,0 +
ξτ 2

1 ρ2

λ0
J0(Z)Jn(0) exp (−inδωT/2) ,

c n = τ1τ2δn,0 +
ξτ1τ2ρ1ρ2

λ0
J0(Z)Jn(0) exp (−inδωT/2) .

(11)

With unity input power, the powers from port B and
port C are

PB = ρ
2
1 +

ξρ2τ
2
1 J0(Z)

(
ξρ2τ

2
1 J0(Z)− 2λ0ρ1 J0(0)

)
λ2

0

,

PC =
τ 2

1 τ
2
2

(
λ2

0 + ξρ1ρ2 J0(Z) (2λ0 J0(0)+ ξρ1ρ2 J0(Z))
)

λ2
0

.

(12)

When q 6= 0, the reflectivities are unity, and the loss is zero,
the eigenvalues λq are qδωT (see Supplementary Material).
Therefore, a rough criterion for the validity of the approximate
solution of Eq. (11) is that λ0 must be small as compared to λq ,
i.e.,

η=
(1− ξρ1ρ2)

δωT
� 1. (13)

We may also understand this criterion by noting that the
enhancement in the modulation index, 0/δ = 1/(δωT), must
be less than the number of round-trip passes allowed by the
combined loss and reflectivity, 1/(1− ξρ1ρ2). This criterion
determines the region of validity for the approximate solu-
tion and, of more importance, the parameters necessary for
generating FM light.

Figure 2 shows the inverse of the nine smallest eigenvalues of
the matrix (I −M). In this figure, the parameters are the same
as in Fig. 1. As expected,λ0 = (1− ρ1ρ2ξ) exactly, and the ratio
of 1/λ0 to 1/λ±1 is 26.6733, as compared to the predicted value
(δωT)/(1− ρ1ρ2ξ)= 26.6703 (see Supplementary Material).

Figure 3 shows the Fourier amplitudes and phases of the
output field at port C. The numerical solution is shown in red
and calculated from Eqs. (1), (2). The approximate solution
is shown as blue dots and calculated from Eq. (11). Because
η= .037 is much less than unity, the agreement between the

Fig. 3. Amplitude and absolute value of the phase of spectral com-
ponents at port C. The red curve is the result of the solution of 241 lin-
ear equations, Eqs. (1), (2). The blue dots are the approximate solution,
Eq. (11). Parameters are identical to Fig. 1.

exact solution and Eq. (11) is good. In general, we find that if
one is interested only in the amplitude, and not the phase, then
significantly higher values ofη still yield good agreement.

In Fig. 4, we sum the frequency domain components
c n = 〈n|c 〉 to obtain c (t) and plot |c (t)|2 as a function of
time (red curve). For comparison, we plot the square of the
absolute value of the time domain function that results if the
same modal amplitudes have random phases, i.e., the phases are
randomly assigned to determine the temporal function, which is
then squared and plotted (blue curve). Here, as in Figs. 1–3, the
parameter η= 0.037 and the reduction in intensity variation,
as compared to the randomly phased function, are substantial.
If the loss and reflectivity are reduced further, η→ 0, and the
temporal profile becomes flat (green curve), as obtained from
Eq. (11).

Though not developed here, one may also show that
the instantaneous phase φ(t), summed over all spectral
components, is

φ(t)= 0 sin

(
ωm t −

δωT
2

)
. (14)

This phase is consistent with a total spectral bandwidth of
2ωm0.

In Fig. 5, we use Eq. (12) to plot the efficiency, i.e., the ratio
of the power from port C to the input power. In this plot, the
modulator drive strength δ is fixed at 2 rad, and δω is varied so
that0 varies over the range 2≤ 0 ≤ 50. We find, somewhat sur-
prisingly, that this same efficiency curve is obtained for arbitrary
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Fig. 4. Fourier synthesis of the temporal output at port C. The
blue curve is obtained by assigning random phases to each of the
modal amplitudes from Eqs. (1), (2). These amplitudes and phases
are Fourier-synthesized to form a temporal profile. The absolute value
and square of this profile are plotted here. The red curve is obtained by
retaining the phases, as well as the amplitudes, of the numerical solu-
tion to Eqs. (1), (2). The green (flat) line is the result of the approximate
solution to Eq. (11) when η→ 0. Other parameters are the same as in
Fig. 1.

Fig. 5. Power conversion efficiency at port C as obtained from
Eq. (12). With δωT = δ/0, the efficiency is independent of δ. Other
parameters are the same as in Fig. 1.

δ. For example, the predicted efficiency peaks at about 7.78%
when 0 = 3.83. For this 0, at δ = 0.2, we find an efficiency of
7.78%, and for a δ = 2 an efficiency of 7.76%. This excellent
agreement is the result of the assumption of a small power loss
and a reflectivity of 0.1%.

This work suggests a technique for generating an FM, and
therefore an amplitude-quieted, broadband waveform. Such
a light source may be used to seed an amplifier to avoid the
nonlinearities or damage that would otherwise be caused by
a mode-locked or randomly phased source. As compared to a
monochromatic input, an FM generator might also be used
to increase the power that may be extracted from a broadband
inhomogeneous amplifying medium. Closed-form formulas
have been shown to be in good agreement with the result of the
numerical solution of hundreds of simultaneous equations.

Supplementary Material . Here, we make sufficient approxi-
mations to derive analytical expressions for the eigenvalues and

eigenvectors of the matrix M. These quantities provide guidance
for the key assumption, Eq. (5), and also for the criterion of
Eq. (13).

Starting with the matrix (I −M), we expand it in a power
series to first order in δ and δω, and let δ× (δω)= 0. The result
is a reduced matrix MR with non-zero matrix elements

〈r |MR |r 〉 = (1− ρ1ρ2ξ)+ i(rρ1ρ2ξδωT),

〈r |MR |r±1〉 =−iρ1ρ2ξ
δ

2
. (15)

With the reflectivity set to unity and no loss (ρ1 = ρ2 =

ξ = 1), the eigenvaluesλq and the eigenvectors |q〉 of MR are

λq = iqδωT,

〈n|q〉 = Jn−q (0), (16)

where0 = δ/(δωT). At this point, λ0 = 0, and the solution for
the FM laser, Eq. (3), is the eigenvector |q0〉.

To incorporate non-zero loss and finite reflectivity, we use
first-order perturbation theory, i.e., define a perturbative matrix:

1MR =MR −MR |ρ1ρ2ξ=1, (17)

so that

λ0 =1λ0 = 〈q0|1MR |q0〉 = (1− ρ1ρ2ξ). (18)

Of note, using
∑
∞

n=−∞ Jn−r (ζ )Jn−p(ζ )= δr ,p , the eigen-
vectors |q〉 form a complete orthonormal set. The result
λ0 = (1− ρ1ρ2ξ) holds true for the matrix M as well as for
MR and does not require perturbation.
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