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Abstract
We present gg, a framework and a set of command-line

tools that helps people execute everyday applications—e.g.,
software compilation, unit tests, video encoding, or object
recognition—using thousands of parallel threads on a cloud-
functions service to achieve near-interactive completion times.
In the future, instead of running these tasks on a laptop, or
keeping a warm cluster running in the cloud, users might
push a button that spawns 10,000 parallel cloud functions to
execute a large job in a few seconds from start. gg is designed
to make this practical and easy.

With gg, applications express a job as a composition of
lightweight OS containers that are individually transient (life-
times of 1–60 seconds) and functional (each container is her-
metically sealed and deterministic). gg takes care of instantiat-
ing these containers on cloud functions, loading dependencies,
minimizing data movement, moving data between containers,
and dealing with failure and stragglers.

We ported several latency-sensitive applications to run on
gg and evaluated its performance. In the best case, a dis-
tributed compiler built on gg outperformed a conventional
tool (icecc) by 2–5×, without requiring a warm cluster run-
ning continuously. In the worst case, gg was within 20% of
the hand-tuned performance of an existing tool for video en-
coding (ExCamera).

1 Introduction

Public cloud-computing services have steadily rented out
their resources at finer and finer granularity. Sun’s Grid utility
(2005), Amazon’s EC2 (2006), and Microsoft’s Azure virtual
machines (2012) began by renting virtual CPUs for a mini-
mum interval of one hour, with boot-up times measured in
minutes. Today, the major services will rent a virtual machine
for a minimum of one minute and can typically provision and
boot it within 45 seconds of a request.

Meanwhile, a new category of cloud-computing resources
offers even finer granularity and lower latency: cloud func-
tions, also called serverless computing. Amazon’s Lambda
service will rent a Linux container to run arbitrary x86-64 ex-
ecutables for a minimum of 100 milliseconds, with a startup
time of less than a second and no charge when it is idle.
Google, Microsoft, Alibaba, and IBM have similar offerings.

Lambda/S3 Lambda/Redis OpenWhisk EC2Google Cloud Functions Local

build system
(make, ninja)

ExCamera
(video encoder)

Google Test
(unit tests)

Scanner
(video analysis)

Lambda/S3 Lambda/Redis OpenWhisk EC2Google Cloud Functions Local

gg
front-ends

gg
back-ends

compute and storage engines

gg IR
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Figure 1: gg helps applications express their jobs as a composition
of interdependent Linux containers, and provides back-end engines
to execute the job on different cloud-computing platforms.

Cloud functions were intended for asynchronously in-
voked microservices, but their granularity and scale has al-
lowed researchers to explore a different use: as a burstable
supercomputer-on-demand. These new systems launch a
burst-parallel swarm of thousands of cloud functions, all
working on the same job. The goal is to provide results to
an interactive user—much faster than can be accomplished
on the user’s own computer or by booting a cold cluster, and
cheaper than maintaining a warm cluster for occasional tasks.

Recent work has validated this vision. ExCamera [15] and
Sprocket [3] launch thousands of cloud functions, with inter-
thread communication over TCP, to encode, search, and trans-
form video files quickly. PyWren [23] exposes a Python API
and uses AWS Lambda functions for linear algebra and ma-
chine learning. Serverless MapReduce [35] and Spark-on-
Lambda [36] demonstrate a similar approach.

Unfortunately, building applications on swarms of cloud
functions is difficult. Each application must overcome a num-
ber of challenges endemic to this environment: (1) workers
are stateless and may need to download large amounts of code
and data on startup, (2) workers have limited runtime before
they are killed, (3) on-worker storage is limited, but much
faster than off-worker storage, (4) the number of available
cloud workers depends on the provider’s overall load and
can’t be known precisely upfront, (5) worker failures occur
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when running at large scale, (6) libraries and dependencies
differ in a cloud function compared with a local machine, and
(7) latency to the cloud makes roundtrips costly. Past appli-
cations have addressed only subsets of these challenges, in
application-specific ways.

In this paper, we present gg, a general framework for build-
ing burst-parallel cloud-functions applications, by building
them on an abstraction of transient, functional containers, or
thunks. gg helps applications express their jobs in terms of in-
terrelated thunks (hermetically sealed, short-lived containers
that may reference the output of other thunks or produce other
thunks as output), then schedules, instantiates, and executes
those thunks on a cloud-functions service.

gg can containerize and execute existing programs, e.g.,
software compilation, unit tests, video encoding, or searching
a movie with an object-recognition kernel. gg does this with
thousands-way parallelism on short-lived cloud functions. In
some cases, this yields considerable benefits in terms of per-
formance. Depending on the frequency of the task (e.g., for
compilation or unit tests every few minutes), cloud functions
are also much less expensive than keeping a comparable clus-
ter running continuously.

gg and other parallel execution systems. In its goals and
approach, gg is kin with container-orchestration systems
such as Kubernetes [5] and Docker Swarm [10], outsourcing
tools like the Utility Coprocessor [12] and icecc [20], and
cluster-computation tools such as Hadoop [38], Dryad [22],
Spark [40], and CIEL [27].

But gg also differs from these systems in its focus on a new
computing substrate (cloud functions), mode of execution
(burst-parallel, latency-sensitive programs starting from zero),
and target application domain (everyday “local” programs,
e.g. software compilation, that depend on an environment
captured from the user’s own laptop).

For example, the “stateless” nature of cloud functions (they
boot up with no dependable transient state) makes gg place
a large focus on efficient containerization and dependency
management: loading the minimal set of the right files into
each container at boot-up. Cluster-computation systems like
Dryad, Spark, and CIEL do not do this—although they can
interface with existing code and systems (e.g., a video encoder
or a database server), these components must be loaded in
advance by the user on a long-lived compute node. Container
systems like Kubernetes do this, but they are not aimed at
efficient execution of a transient interactive task—gg is more
than 45× faster than Google Kubernetes Engine at startup,
and 13× faster than Spark-on-Lambda (Figure 7). We discuss
related work more completely in Section 2.

1.1 Summary of Results
We ported four applications to express their jobs in gg’s for-
mat: a description of each container, and how it depends on
other containers, that we call the intermediate representation,

Compiling Inkscape

Tool Time Cost

single-core make 32m 34s —
icecc to a warm 48-core EC2 machine 6m 51s $2.30∕hr
icecc to a warm 384-core EC2 cluster 6m 57s $18.40∕hr
gg to AWS Lambda 1m 27s 50¢∕run

Figure 2: Compiling Inkscape using gg on AWS Lambda is almost
5× faster than outsourcing the job to a warm 384-core cluster, with-
out the costs of maintaining a warm cluster for an occasional task.

or IR (§3). One of them does it automatically, by inferring
the IR from an existing software build system (e.g., make or
ninja). The rest write out the description explicitly: a unit-
testing framework (Google Test [17]), parallel video encoding
with inter-thread communication (ExCamera [15]), and object
recognition using Scanner [30] and TensorFlow [1].

We then implemented gg back-ends, which interpret the IR
and execute the job, for five compute engines (a local machine,
a cluster of warm VMs, AWS Lambda, IBM Cloud Functions,
and Google Cloud Functions) and three storage engines (S3,
Google Cloud Storage, and Redis) (Figure 1).

For compiling large programs from a cold start, gg’s func-
tional approach and fine-grained dependency management
yield significant performance benefits. Figure 2 shows a sum-
mary of the results for compiling an open-source software,
Inkscape [21]. Running “cold” on AWS Lambda (with no pre-
provisioned compute resources), gg was almost 5× faster than
an existing system (icecc), running on a 48-core or 384-core
cluster of warm VMs (i.e., not including time to provision
and boot the VMs1).

In summary, gg is a practical tool that addresses the princi-
pal challenges faced by burst-parallel cloud-functions appli-
cations. It helps developers and users build applications that
burst from zero to thousands of parallel threads to achieve low
latency for everyday tasks. gg is open-source software and
the source code is available at https://snr.stanford.edu/gg.

2 Related Work

gg has many antecedents—cluster-computation systems such
as Hadoop [38], Spark [40], Dryad [22], and CIEL [27]; con-
tainer orchestrators like Docker Swarm and Kubernetes; out-
sourcing tools like distcc [8], icecc [20], and UCop [12];
rule-based workflow systems like make [13], CMake [7], and
Bazel [4]; and cloud-functions tools like ExCamera/mu [15],
PyWren [23], and Spark-on-Lambda [36].

Compared with these, gg differs principally in its focus
on targeting a new computing substrate (thousands of cloud
functions, working to accelerate a latency-sensitive local-

1Current cloud-computing services typically take an additional 0.5–2 min-
utes to provision and boot such a cluster.
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application task). We discuss how gg fits with the prior litera-
ture in several categories:

Process migration and outsourcing. The idea of accelerat-
ing a local application’s interactive operations by using the
resources of the cloud has a long pedigree; earlier work such
as the Utility Coprocessor (UCop) also sought to “improve
performance from the coffee-break timescale of minutes to
the 15–20 second timescale of interactive performance” by
outsourcing to a cloud VM [12]. gg shares the same goal.

gg’s architectural differences from this work come from its
different needs: instead of outsourcing applications transpar-
ently to a single warm cloud VM, gg orchestrates thousands
of unreliable and stateless cloud functions from a cold start.
Unlike UCop, gg is not transparent to the application—we re-
quire applications to be ported to express jobs in gg’s format.
In return, gg provides optimized orchestration of swarms of
cloud functions and fault tolerance (failed functions are rerun
with the same inputs). Unlike UCop’s distributed caching
filesystem, gg’s IR, which is based on content-addressed im-
mutable data, allows cloud workers to be provisioned with all
necessary dependencies in a single roundtrip and to commu-
nicate intermediate values directly between each other.

Container orchestration. gg’s IR resembles container and
environment-description languages, including Docker [10]
and Vagrant [34], and container-orchestration systems such as
Docker Swarm and Kubernetes. In contrast to these systems,
gg’s thunks are designed to be efficiently instantiated within
a cloud function, expressible in terms of other thunks to form
a computation graph, and deterministic and defined by their
code and data, allowing gg to provide fault tolerance and
memoization. These systems were not designed for transient
computations, and gg has much quicker startup. For example,
starting 1,000 empty containers with gg takes about 4 seconds
on a VM cluster or on AWS Lambda. Google Kubernetes
Engine, given a warm cluster, takes more than 3 minutes
(§5.1). Recent academic work has shown how to lower this
overhead to provide faster cloud-functions services [28].

Workflow systems. Workflow systems like Dryad [22],
Spark [40], and CIEL [27] let users execute a (possibly dy-
namic) DAG of tasks on a cluster. However, gg differs from
these systems in some significant ways:

• gg is aimed at a different kind of application. For example,
while Spark is often used for data analytics tasks, it is not
commonly used for accelerating the sorts of “everyday”
local applications that gg is designed for. No prior work
has successfully accelerated something like “compiling
Chromium” using Spark, and the challenges in accom-
plishing this (capturing the user’s local environment and
the information flow of the task, exporting the job and its
dependencies efficiently to the cloud, running thousands
of copies of the C++ compiler in a fault-tolerant way) are
simply not what Spark does.

• gg uses OS abstractions: it encapsulates arbitrary code
and dependency files in lightweight containers, somewhat
similar to a tool like Docker. gg focuses on efficiently
loading code and its minimal necessary dependencies on
cloud functions that boot up with no dependable state. By
contrast, systems like Dryad and Spark principally use
language-level mechanisms. While their jobs can inter-
face with existing software (e.g., the Dryad paper [22]
describes how a node can talk to a local SQL Server
process, and Spark jobs routinely invoke system binaries
such as ffmpeg), these systems do not take care of de-
ploying the existing code, worrying about how to move
the container in a way that minimizes bytes moved across
the network, etc. The user is responsible for loading the
necessary code and dependencies beforehand on a pool
of long-lived machines.

• gg is considerably lighter weight. In practice, attempts
to port workflow systems to support execution on cloud
functions (scaling from zero) have not performed well,
partly because of these systems’ overheads. Because of
its focus on transient execution, gg carries an order-of-
magnitude less overhead. For example, gg is 13× faster
at invoking 1,000 “sleep 2” tasks than Spark-on-Lambda
(Figure 7).

• gg supports dynamic data access (a function can produce
another function that accesses arbitrary data) and non-
DAG dataflows (e.g., loops and recursion). It does this
while remaining agnostic to the application’s program-
ming language. For example, gg has no language-level
API binding to launch a new subtask. (CIEL also allows
subtasks to spawn new subtasks, but requires use of its
Skywriting programming language to do this.)

Burst-parallel cloud functions. Researchers and practition-
ers have taken advantage of cloud-functions platforms to
implement low-latency, massively parallel applications. Ex-
Camera [15] uses AWS Lambda to scale out video encoding
and processing tasks over thousands of function invocations,
and PyWren [23] exposes a MapReduce-like Python API that
executes on AWS Lambda. Spark-on-Lambda [40] is a port of
Spark that uses AWS Lambda cloud functions. In contrast, gg
helps applications use cloud-functions platforms for a broader
set of workloads, including irregular execution graphs and
ones that change as execution evolves. gg’s main contribution
is specifying an IR that permits a diverse class of applications
(written in any programming language) to be abstracted from
the compute and storage platform, and to leverage common
services for dependency management, straggler mitigation,
and scheduling.

Build tools. Several build systems (e.g., make [13], Bazel [4],
Nix [11], and Vesta [19]) and outsourcing tools (such as
distcc [8], icecc [20], and mrcc [26]) seek to incremen-
talize, parallelize, or distribute compilation to more-powerful
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remote machines. Building on such systems, gg automati-
cally transforms existing build processes into their own IR.
The goal is to compile programs quickly—irrespective of
the software’s own build system—by making use of cloud-
functions platforms that can burst from complete dormancy
to thousands-way parallelism and back.

Existing remote compilation systems, including distcc
and icecc, send data between a master node and the workers
frequently during the build. These systems perform best on a
local network, and add substantial latency when building on
more remote servers in the cloud. In contrast, gg uploads all
the build input once and executes and exchanges data purely
within the cloud, reducing the effects of network latency.

3 Design and Implementation

gg is designed as a general system to help application devel-
opers manage the challenges of creating burst-parallel cloud-
functions applications. The expectation is that users will take
computations that might normally run locally or on small
clusters for a long time (e.g., test suites, machine learning,
data exploration and analysis, software compilation, video
encoding and processing), and outsource them to thousands
of short-lived parallel threads in the cloud, in order to achieve
near-interactive completion time.

In this section, we describe the design of gg’s intermediate
representation (§3.1), front-end code generators (§3.2), and
back-end execution engines (§3.3).

3.1 gg’s Intermediate Representation
The format that gg uses—a set of documents describing a
container and its dependency on other containers—is intended
to elicit enough information from applications about their
jobs (fine-grained dependencies and dataflow) to be able to
efficiently execute a job on constrained and stateless cloud
functions. It includes:

1. A primitive of a content-addressed cloud thunk: a
codelet or executable applied to named input data.

2. An intermediate representation (IR) that expresses jobs
as a lazily evaluated lambda expression of interdepen-
dent thunks.

3. A strategy for representing dynamic computation graphs
and data-access patterns in a language-agnostic and
memoizable way, using tail recursion.

We discuss each of these elements.

3.1.1 Thunk: A Lightweight Container

In the functional-programming literature, a thunk is a param-
eterless closure (a function) that captures a snapshot of its
arguments and environment for later evaluation. The process

of evaluating the thunk—applying the function to its argu-
ments and saving the result—is called forcing it [2].

For gg, our goal is to simplify the creation of new appli-
cations by allowing them to target the IR, which lets them
leverage the common services provided by the back-end en-
gines. Accordingly, the representation of a thunk follows from
several design goals. It should be: (1) simple enough to be
portable to different compute and storage platforms, (2) gen-
eral enough to express a variety of plausible applications, (3)
agnostic to the programming language used to implement the
function, (4) efficient enough to capture fine-grained depen-
dencies that can be materialized on stateless and space-limited
cloud functions, and (5) able to be memoized to prevent re-
dundant work.

To satisfy these requirements, gg represents a thunk with a
description of a container that identifies, in content-addressed
manner, an x86-64 Linux executable and all of its input data
objects. The container is hermetically sealed: it is not al-
lowed to use the network or access unlisted objects or files.
The thunk also describes the arguments and environment
for the executable, and a list of tagged output files that it
will generate—the results of forcing the thunk. The thunk
is represented as a Protobuf [31] structure (Figure 3 shows
three thunks for three different stages of a build process).
This container-description format is simple to implement and
reason about, and is well-matched to the statelessness and
unreliability of cloud functions.

In the content-addressing scheme, the name of an object
has four components: (1) whether the object is a primitive
value (hash starting with V) or represents the result of forcing
some other thunk (hash starting with T), (2) a SHA-256 hash,
(3) the length in bytes, and (4) an optional tag that names an
object or a thunk’s output.

Forcing a thunk means instantiating the described container
and running the code. To do this, the executor must fetch the
code and data values. Because these are content-addressed,
this can be from any mechanism capable of producing a blob
that has the correct name—durable or ephemeral storage (e.g.,
S3, Redis, or Bigtable), a network transfer from another node,
or by finding the object already available in RAM from a
previous execution. The executor then runs the executable
with the provided arguments and environment—for debug-
ging or security purposes, preferably in a mode that prevents
the executable from accessing the network or any data not
listed as a dependency. The executor collects the output blobs,
calculates their hashes, and records that the outputs can be
substituted in place of any reference to the just-forced thunk.

3.1.2 gg IR: A Lazily Evaluated Lambda Expression

The structure of interdependent thunks is what defines the gg
IR. We use a one-way IR, a document format that applications
write to express their jobs, as opposed to a two-way API (e.g.,
a function call to spawn a new task and observe its result)
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1 PREPROCESS(hello.c) → hello.i 2 COMPILE(hello.i) → hello.s 3 ASSEMBLE(hello.s) → hello.o

content hash: T0MEiRL

{ function: {
hash: 'VDSo_TM',
args: [
'gcc', -E', 'hello.c',
'-o', 'hello.i' ],

envars: [ 'LANG=us_US' ] },
objects: [
'VLb1SuN=hello.c',
'VDSo_TM=gcc',
'VAs.BnH=cpp',
'VB33fCB=/usr/stdio.h' ],

outputs: [ 'hello.i' ] }

content hash: TRFSH91

{ function: {
hash: 'VDSo_TM',
args: [
'gcc', '-x', 'cpp-output',
'-S', 'hello.i',
'-o', 'hello.s' ],

envars: [ 'LANG=us_US' ] },
objects: [
' T0MEiRL =hello.i',
'VDSo_TM=gcc',
'VMRZGH1=cc1', ],

outputs: [ 'hello.s' ] }

content hash: T42hGtG

{ function: {
hash: 'VDSo_TM',
args: [

'gcc', '-x', 'assembler',
'-c', 'hello.s',
'-o', 'hello.o' ],

envars: [ 'LANG=us_US' ] },
objects: [
' TRFSH91 =hello.s',
'VDSo_TM=gcc',
'VUn3XpT=as', ],

outputs: [ 'hello.o' ] }

Figure 3: An example of gg IR consisting of three thunks for building a “Hello, World!” program that represents the expression
ASSEMBLE(COMPILE(PREPROCESS(hello.c))) → hello.o. To produce the final output hello.o, thunks must be forced in order from
left to right. Other thunks, such as the link operation, can reference the last thunk’s output using its hash, T42hGtG. Hashes have been shortened
for display, and dependencies between thunks are shown in color.

because we expect the application will be running on the
user’s own computer, at some remote cloud-functions engine:
the intention is to avoid roundtrips over a long-latency path
by keeping the application out of the loop. We also envision
that it will be possible to better schedule and optimize a job,
and easier to maintain different interoperable back-ends, if the
application is out of the loop before execution begins.2 This
representation exposes the computation graph to the back-end,
along with the identities and sizes of objects that need to be
communicated between thunks. Based on this information,
the back-end can schedule the forcing of thunks, place thunks
with similar data-dependencies or an output-input relationship
on the same physical infrastructure, and manage the storage
or transfer of intermediate results, without roundtrips back to
the user’s own computer.

The IR allows gg to schedule jobs efficiently, mitigate the
effect of stragglers by invoking multiple concurrent thunks
on the critical path, recover from failures by forcing a thunk
a second time, and memoize thunks. This is achieved in an
application-agnostic, language-agnostic manner.

The application generally starts by forcing a single thunk
that represents the ultimate outcome of the interactive op-
eration. This thunk typically depends on other thunks that
need to be forced first, etc., leading the back-end to lazily

2Systems like the LLVM compiler suite [25] (which allows front-end
language compilers to benefit from a library of back-end optimization passes
and assemblers, interfacing through an IR) and Halide [33] (which separates
an image-processing algorithm from its schedule and execution strategy)
have demonstrated the benefits of a rigid representational abstraction in other
settings. gg’s use of an IR is not exactly the same as these, but it has a similar
value in abstracting front-ends (applications and the tools that help them
express their jobs) from back-end execution engines in a way that allows
efficient and portable execution.

force thunks recursively until obtaining the final result. Fig-
ure 3 shows an example IR for computing the expression
ASSEMBLE(COMPILE(PREPROCESS(hello.c))).

3.1.3 Tail Recursion: Supporting Dynamic Execution

The above design is sufficient to describe a directed acyclic
graph (DAG) of deterministic tasks executing in the cloud.
However, many jobs do not have a data-access pattern that is
completely known upfront. For example, in compiling soft-
ware, it is unknown a priori which header files and libraries
will need to be read by a given stage. Other applications use
loops, recursion, and other non-DAG dataflows.

An application may also have an unpredictable degree of
parallelism. For example, an application might detect objects
in a large image, and then on each subregion where an object
is detected (which may be zero regions, or might be 10,000
regions), the application searches for a target object. Here, the
computation graph is not known in advance.

Systems like PyWren [23] and CIEL’s Skywriting lan-
guage [27] handle this case by giving tasks access to an API
call to invoke a new task. For gg, we aimed to preserve the
memoizability and language-independence of the IR, which
is challenging if tasks can invoke tasks on their own and if gg
must expose a language binding. Instead, gg handles this sit-
uation through language-independent tail recursion: a thunk
can write another thunk as its output.

3.2 Front-ends
We developed four front-ends that emit gg IR: a C++ SDK,
a Python SDK, a group of command-line tools, and a series
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of model substitution primitives that can infer gg IR from a
software build system.

The C++ and Python SDKs are straightforward. Each ex-
poses a thunk abstraction and allows the developer to describe
a parallel application in terms of codelets. These codelets are
applied to blobs of named data, which may be read-only mem-
ory regions or files in the filesystem.

The model-substitution primitives extract a gg IR descrip-
tion of an existing build system, without actually compiling
the software. Instead, we run the build system with a modi-
fied PATH so that each stage is replaced with a stub: a model
program that understands the behavior of the underlying stage
well enough so that when the model is invoked in place of the
real stage, it can write out a thunk that captures the arguments
and data that will be needed in the future, so that forcing the
thunk will produce the exact output that would have been
produced during actual execution. We used this technique to
infer gg IR from the existing build systems for several large
open-source applications (§4.1).

3.3 Back-ends
gg IR express the application against an abstract machine
that requires two components: an execution engine for forc-
ing the individual thunks, and a content-addressed storage
engine for storing the named blobs referenced or produced
by the thunks. The coordinator program brings these two
components together.

Storage engine. A storage engine provides a simple inter-
face to a content-address storage, consisted of GET and PUT
functions to retrieve and store objects. We implemented sev-
eral content-addressed storage engines, backed by S3, Redis,
and Google Cloud Storage. We also have a preliminary im-
plementation (not evaluated here) that allows cloud functions
to communicate directly among one another, avoiding the
latency and throughput limitations of using a reliable blob
storage (e.g., S3) to exchange small objects.

Execution engine. In conjunction with a storage engine,
each execution engine implements a simple abstraction: a
function that receives a thunk as the input and returns the
hashes of its output objects (which can be either values or
thunks). The engine can execute the thunk anywhere, as long
as it returns correct output hashes that are retrievable from the
storage engine. We implemented back-end execution engines
for several environments: a local multicore machine, a cluster
of remote VMs, AWS Lambda, Google Cloud Functions, and
IBM Cloud Functions (OpenWhisk).

The coordinator. The main entry-point for executing a thunk
is the coordinator program. The inputs to this program are
the target thunk, a list of available execution engines and the
storage engine. This program implements services offered by
gg, such as job scheduling, memoization, failure recovery and
straggler mitigation.

Upon start, this program materializes the target thunk’s
dependency graph, which includes all the other thunks needed
to get the output. Then, the thunks that are ready to execute are
passed to execution engines, based on their available capacity.
When the execution of a thunk is done, the program updates
the graph by replacing the references to the just-forced thunk
and adds a cache entry associating the output hash to the input
hash. The thunks that become ready to execute are placed
on a queue and passed to the execution engines when their
capacity permits. The unified interface allows the user to mix-
and-match different execution engines, as long as they share
the same storage engine.

The details of invocation, execution and placement are left
to the execution engines. For example, the default engine for
AWS Lambda/S3 invokes a new Lambda for each thunk. The
Lambda downloads all the dependencies from S3 and sets up
the environment, executes the thunk, uploads the outputs back
to S3 and shuts down. For applications with large input/output
objects, the roundtrips to S3 could affect the performance. As
an optimization for such cases, the user can decide to run
the execution engine in the “long-lived” mode, where each
Lambda worker stays up until the job finishes and seeks out
new thunks to execute. The execution engine keeps an index
of all the objects that are already present on each worker’s
local storage. When placing thunks on workers, it selects the
worker with the most data available, in order to minimize the
need to fetch dependencies from the storage back-end.

The coordinator can also apply optimizations to the depen-
dency graph. For example, multiple thunks can be bundled
as one and sent to the execution engine. This is useful when
the output of one thunk will be consumed by the next thunk,
creating a linear pipeline of work. By scheduling all of those
thunks on one worker, the system reduces the number of
roundtrips.

Failure recovery and straggler mitigation. In case of co-
ordinator failure, the job can be picked up where it was left
off, as the coordinator program uses on-disk cache entries to
avoid redoing the work that has already been done. In case of
a recoverable error in executing a thunk, the execution engine
notifies the coordinator with the failure reason, where it can
decide to retry the job or pass it to another available execution
engine for execution.

Straggler mitigation is another service managed by the
coordinator program which duplicates pending executions
in the same or a different execution engine. The program
keeps track of the execution time for each thunk, and if the
execution time exceeds a timeout (set by either the user or the
application developer) the job will be duplicated. Since the
functions don’t have any side-effects, the coordinator simply
picks the output that becomes ready first.
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Figure 4: Part of the IR of interdependent thunks inferred with
model substitution from the GNU hello build system. Each box
represents a thunk and is labeled with the name of its output. The
contents of the numbered thunks are depicted in Figure 3 (Many
header files and other dependencies omitted for simplicity).

3.4 Implementation Notes

We implemented gg in about 14,000 lines of C++. The imple-
mentation consists of five compute engines (a local machine,
a cluster of warm VMs, AWS Lambda, Google Cloud Func-
tions, and IBM Cloud Functions), three storage engines (S3,
Google Cloud Storage, and Redis), a series of command line
tools to aid generation, execution and inspection of gg IR,
a C++ and Python SDK, and several model programs for
different stages of build process.

4 Applications

We used gg to implement several applications, each emitting
jobs in the gg IR. We describe these in turn.

4.1 Software Compilation

The time required to compile software is an evergreen frustra-
tion for software developers; a popular cartoon even spoofs
the duration of this job [39]. Today’s open-source applications
have grown larger and larger. For example, the Chromium
Web browser takes more than four hours to compile on a four-
core laptop computer from a cold start. Many solutions have
been developed to leverage warm machines in a local cluster
or cloud datacenter (e.g., distcc or icecc). We developed
such an application on top of gg.

Using model substitution, we implemented models for
seven popular stages of a C or C++ software build pipeline:
the preprocessor, compiler, assembler, linker, archiver, indexer,
and strip. These allow us to automatically transform some

software build processes (e.g., a Makefile or build.ninja
file) into an expression in gg IR, which can then be exe-
cuted with thousands-way parallelism on cloud-functions plat-
forms to obtain the same results as if the build system had
been executed locally. Figure 4 illustrates the resulting IR
from an example invocation (the enumerated thunks are de-
tailed in Figure 3). These models are sufficient to capture
the build process of some major open-source applications, in-
cluding OpenSSH [29], Python interpreter [32], the Protobuf
library [31], the FFmpeg video system [14], the GIMP image
editor [16], the Inkscape vector graphics editor [21], and the
Chromium browser [6].3

Build systems often include scripts that run in addition to
these standard tools, such as a tool to generate configuration
header files, but typically such scripts run upstream of the pre-
processor, compiler, etc. Therefore, gg captures these script
outputs by a model as dependencies.

Capturing dependencies of the preprocessor. Preprocess-
ing is the most challenging stage to model. It requires not
only capturing the source file as dependencies, but also all the
header files that are both directly and indirectly included by
that source file. Capturing all header files in a container is not
feasible, because cloud functions are constrained in storage.
For example, AWS Lambda has a 500MB storage limit.

The precise header files required to preprocess a file can be
discovered at fine grain, but only by invoking the preprocessor
(i.e., gcc -M) which is an expensive operation at large scale.
Finding the dependencies for each source file in Chromium
takes nearly half an hour on a 4-core computer.

To solve this problem, the application uses gg’s capabilities
for dynamic dataflow at runtime. gg’s preprocessor model
generates thunks that do dependency inference in parallel on
cloud functions. These thunks have access only to a stripped-
down version of the user’s include directories, preserving only
lines with C preprocessor directives (such as #include and
#define). These thunks then produce further thunks that pre-
process a given source-code file by listing only the necessary
header files.

4.2 Unit Testing

Software test suites are another application that can benefit
from massive parallelism. Using gg’s C++ SDK, we imple-
mented a tool that can generate gg IR for unit tests written
with Google Test [17], a popular C++ test framework used by
projects like LLVM, OpenCV, Chromium, Protocol Buffers,
and the VPX video codec library.

3We have to emphasize that no changes were made to the underlying build
system of these programs. The main challenge here is to build correct and
complete models for programs used in the build pipeline, such as gcc and ld,
which is a one-time effort. However, an arbitrary build system may require
other programs to be modeled, or execute these programs in an aberrant way
that is outside of the scope of model substitution.
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Figure 5: Visual representation of the gg IR for a video-processing
workflow [15].

Typically, each test is a standalone program that can be run
in parallel with other tests, with no dependency requirements
between them. No changes to the code are necessary, with
one exception: if a test case needs to access files on the file
system, then the programmer has to annotate the test case
with the list of files that it wants to access. This process can
be automated by running the tests locally and then tracing
the open system calls invoked by each test case. The tool
uses these annotations, either handcrafted or automatically
generated, to capture each test’s dependencies. A separate
thunk is created for each test case, allowing the execution
engine to exploit the available parallelism.

4.3 Video Encoding

The ExCamera system [15] uses cloud-functions infrastruc-
ture to run interdependent video-processing tasks with 4,000-
way parallelism [15]. Cloud workers exchange data through
TCP connections, brokered by a tightly coupled back-end
that was bound to AWS Lambda. To demonstrate gg’s ex-
pressive power and performance, we ported ExCamera into a
“front-end-only” version that targets gg IR.

In ExCamera, the functions necessary for parallel video
encoding are ENCODE, DECODE, ENCODE-GIVEN-STATE,
and REBASE. The algorithm first encodes each chunk in par-
allel using ENCODE and then, in a serial process, REBASEs
each output on top of the state left by the previous chunk.
Video-codec states must be communicated between workers
in order to stitch together the overall video. Figure 5 shows
the dependency graph for encoding a batch of four chunks.

The original ExCamera keeps Lambda workers warm by
keeping the raw video in RAM and communicating video-

codec states over TCP between workers. gg’s back-end for
AWS Lambda also keeps workers warm and keeps the raw
video in their local filesystem. gg routes thunks to workers
that already have the necessary data, but brokers inter-worker
communication through S3. Finally, gg provides fault toler-
ance, which ExCamera’s own back-end lacks.

4.4 Object Recognition
The increase in visual computing applications has motivated
the design of frameworks such as Scanner [30], which is a
system for productive and efficient video analysis at scale.
To use Scanner, the user feeds in a compressed video and
designates an operation to be applied on each decoded frame.
To compare Scanner’s execution engine with gg, we used the
gg C++ SDK to implement a two-step analysis pipeline. In
the first stage, the frames of a video V are decoded in batches
of m frames, using DECODE(V ,m) function. Subsequently,
an object-recognition kernel, OBJECT-REC, is applied to the
decoded frames and returns the top five recognized objects
for each frame.

We implemented the DECODE function using FFmpeg [14]
and implemented OBJECT-REC in TensorFlow’s C++ API [1]
using a pre-trained Inception-v3 model [37]. gg’s thunks were
able to bundle these pre-existing applications. We imple-
mented the same pipeline in Scanner for comparison. To do
so, we leverage Scanner’s internal video decoder and the same
TensorFlow kernel and pre-trained Inception-v3 model.

4.5 Recursive Fibonacci
To demonstrate the way that gg handles dynamic dataflows,
we used the C++ SDK to implement a classic recursive Fi-
bonacci program in the gg IR. The application is expressed
using two functions: ADD(a,b), which returns the sum of its
two input values and FIB(n) which recursively computes the
n-th Fibonacci number as ADD(FIB(n−1), FIB(n−2)) or the
base case when n ≤ 1.

Figure 6 shows the execution steps. In the beginning, there
is only one thunk, FIB(4). After execution, instead of returning
a value, it returns three thunks, replacing the target with the
sum of two preceding Fibonacci numbers. The IR expands
(for the recursive case) and contracts (for the base case), until
resolving to the final value.

In a naïve recursive implementation of the Fibonacci series,
each Fibonacci value is evaluated many times. However, in
gg, the functions are memoized and lazily-executed, resulting
in each Fibonacci value computed only once.

5 Evaluation

We evaluated gg’s performance by executing each application
in gg, compared with comparable tailor-made or native ap-
plications. Although we implemented back-end engines for
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Figure 6: Evolution of the IR for a recursive Fibonacci application.
Execution begins with a single thunk. As each thunk is forced, re-
turning a new thunk or the base case, the IR expands and contracts.
The engine lazily forces thunks until it can return the overall value.

several cloud-functions platforms (including Google Cloud
Functions and IBM Cloud Functions), we found that AWS
Lambda had the best performance and available parallelism.
As a result, we focus on evaluation results from gg’s AWS
Lambda back-end.

5.1 Startup Overhead
To motivate the importance of gg’s lightweight abstractions,
we implemented a trivial job, 1,000 parallel tasks each exe-
cuting sleep(2), using four frameworks: gg, PyWren, Spark-
on-Lambda, and Kubernetes. The first three frameworks were
executed on AWS Lambda, and the last on Google Kubernetes
Engine (GKE), which was given a warm cluster of eleven
96-core VMs (1,056 cores in total) on which to allocate con-
tainers. Figure 7 shows the results.

gg is able to quickly scale to 1,000 concurrent containers
and finish the job 7.5–9× faster when compared with other
two frameworks running on Lambda. After subtracting off
the 2-second sleep time, this translates to 11–13× less over-
head. For PyWren, on average, each worker spends 70% of
its time on setting up the Python runtime (downloading and
extracting a tarball). A large portion of this runtime consists
of packages that are not used by our sleep(2) program (cf.
gg fine-grained dependency tracking). Google Kubernetes
Engine was not designed for transient computations and was
not optimized for this use case; it is much slower to start 1,000
Docker containers.

Additionally, we measured the overheads associated with

1K trivial containers running “sleep 2”

AWS Lambda
gg-λ 06s ± 01s
PyWren 46s ± 08s
Spark-on-Lambda 54s ± 21s

Google Kubernetes Engine Kubernetes 03m 08s ± 03s

Figure 7: Comparison of completion time for running 1,000
sleep(2) tasks using four different systems. gg’s lightweight design
and implementation has less overhead than other systems.

Compiling Inkscape on AWS Lambda (total of 3602 thunks)

Initial graph construction 56ms
Mean time to read a thunk 188 µs ± 367 µs
Mean time to recompute the IR per thunk 336 µs ± 560 µs
Invocation (thunk completion to invocation of
all dependent thunks)

142ms ± 135ms

Figure 8: gg’s overheads allow for relatively fine-grained tasks.

loading thunks and recomputing the IR after a thunk is done
in Figure 8. These overheads, especially the invocation over-
head, support an intuition about the appropriate granularity of
thunks: gg works well when thunks last about 1–20 seconds
each.

5.2 Software Compilation

To evaluate gg’s application for software compilation, we
measured the start-to-finish build times under multiple sce-
narios on a set of unmodified large open-source packages.
We compared these times with existing tools under the same
scenarios. For distributed builds outsourced from a 4-core
EC2 VM, we found that gg is able to achieve significantly
shorter build times than existing approaches.

5.2.1 Evaluation Set

To benchmark gg’s performance, we picked four open-source
programs written in C or C++: FFmpeg, GIMP, Inkscape,
and Chromium. No changes were made to the code or the
underlying build system of these packages. We compiled all
packages with GCC 7.2.

All the 4-core machines used in the experiments are
EC2 m5.xlarge, and all the 48-core machines are EC2
m5.12xlarge instances. To realistically simulate users send-
ing applications to nearby datacenters, client machines reside
in the US West (N. California) region, and outsource their
jobs to machines in the US West (Oregon) region.
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Local (make) Distributed (icecc) Distributed (gg)

Estimated SLoC 1 core 48 cores 48 cores 384 cores 384 cores AWS Lambda

FFmpeg 1,200,000 06m 19s 20s 01m 03s 39s 40s 44s ± 04s
GIMP 800,000 06m 48s 49s 02m 35s 02m 38s 01m 26s 01m 38s ± 03s
Inkscape 600,000 32m 34s 01m 40s 06m 51s 06m 57s 01m 20s 01m 27s ± 07s
Chromium 24,000,000 15h 58m 20s 38m 11s 46m 01s 42m 18s 40m 57s 18m 55s ± 10s

Figure 9: Comparison of cold-cache build times in different scenarios described in §5.2. gg on AWS Lambda is competitive with or faster than
using conventional outsourcing (icecc), and in the case of the largest programs, 2–5× faster. This includes both the time required to generate
gg IR from a given repository and then to execute the IR.

5.2.2 Baselines

For each package, we measured the start to finish build time
in four different scenarios as the baseline for local and dis-
tributed builds:

make, make (48): The package’s own build system was ex-
ecuted on a single core (make), and with up to 48-way
parallelism (make -j48). The make and make (48) tests
were done on 4-core and 48-core EC2 VMs, respectively.
No remote machines were involved in these tests.

icecc (48), icecc (384): The package was built using the
icecc distributed compiler on a 4-core client that out-
sources the job to a 48-core VM, or to eight 48-core VMs,
for a total of 384 cores.

5.2.3 gg’s Benchmarks

We conducted the following experiments for each package to
evaluate gg:

1. gg (384): The package was built with the same config-
uration as the icecc (384) experiment: a 4-core client
farming out to eight 48-core machines, using gg’s back-
end for a cluster of VMs.

2. gg-λ: The package was built on a 4-core client outsourc-
ing to AWS Lambda, using as many concurrent Lambdas
as possible (up to 8,000 in the case of Chromium).

For Chromium experiments, an additional standby EC2
VM acted as the overflow worker for thunks whose total
data size exceeded Lambda’s storage limit of 500 MB.
Throughout building Chromium, there were only 2
thunks (out of ~90,000 thunks) that did not fit on a
Lambda and had to be forced on this overflow node.

5.2.4 Discussion of Evaluation Results

Figure 9 shows the median times for the package builds. gg is
about 2–5× faster than a conventional tool (icecc) in building
medium- and large-sized software packages. For example, gg
compiles Inkscape in 87 seconds on AWS Lambda, compared

with 7 minutes when outsourced with icecc to a warm 384-
core cluster. This is a 4.8× speedup. Chromium, one of the
largest open-source projects available, compiles in under 20
minutes using gg on AWS Lambda, which is 2.2× faster than
icecc (384).

We do not think gg’s performance improvements on AWS
Lambda can be explained simply by the availability of more
cores than our 384-core cluster; icecc improved only mod-
estly between the 48-core and 384-core case and doesn’t
appear to effectively use higher degrees of parallelism. This
is largely because icecc, in order to simplify dependency
tracking, runs the preprocessor locally, which becomes a ma-
jor bottleneck. gg’s fine-grained dependency tracking allows
the system to efficiently outsource this step to the cloud and
minimize the work done on the local machine.

Figure 10 shows an execution breakdown for compiling
Inkscape. We observe two important characteristics. First,
the large spikes correspond to Lambdas that have failed or
taken longer than usual to complete. gg’s straggler mitigation
detects and relaunches these jobs to prevent an increase in
end-to-end latency. Second, the last few jobs are primarily
serial (archiving and linking), and consume almost a quarter
of the total job-completion time. These characteristics were
also observed in the other build jobs.

5.3 Unit Tests
To benchmark gg’s performance in running unit tests created
with the Google Test framework, we chose the VPX video
codec library [9], which contains ~7,000 unit tests. We anno-
tated each test with the list of required data files.

The Google Test library that is shipped with LibVPX is
only capable of running the tests serially. To establish a better
baseline, we used gtest-parallel, a program that executes
Google Test binaries in parallel on the local machine. We ran
the tests with 4- and 48-way parallelism and compared the
results with gg on AWS Lambda, with 8,000-way parallelism.
Figure 11 shows the summary of these results.

Using the massive parallelism available, gg was able to
execute all of the test cases in parallel, and 99% of the test
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Figure 10: Breakdown of workers’ execution time when building Inkscape using gg on AWS Lambda. Serial stages (archiving and linking)
consume almost a quarter of the total job-completion time. Spikes indicate stragglers, which are mitigated by gg using standard techniques. In
this experiment, stragglers mostly consist of Lambdas that have trouble communicating with the storage back-end (S3).

gg-λ gtest (4) gtest (48)

LibVPX Test Suite 03m 25s 51m 45s 04m 40s

Figure 11: Running the LibVPX test suite using gg on AWS Lambda
outperforms running the tests with 4-way and 48-way parallelism on
a local machine. 99% of the test cases complete within 30 seconds.

gg-λ original

ExCamera 01m 30s 01m 16s

Figure 12: The gg version of ExCamera is 18% slower than the
hand-optimized original ExCamera, which was written to pipeline
I/O and computation within a Lambda worker.

cases finished within the first 30 seconds. From a developer’s
point of view, this improves turnaround time and translates
into faster discovery of bugs and regressions.

5.4 Video Encoding

We evaluated the gg implementation of ExCamera on AWS
Lambda, with the original implementation as the baseline.
The selected configuration was the same as ExCamera’s orig-
inal paper (6 frames per chunk, 16 chunks per batch). The
input video consisted of 888 chunks, and all chunks had been
uploaded to S3 in raw format prior to execution. For the origi-
nal ExCamera implementation, a 64-core VM (m4.16xlarge)
was used as the rendezvous server to broker TCP streams be-
tween Lambda workers.

Figure 12 shows the results. The original ExCamera was
hand-coded to pipeline I/O and computation to reduce end-
to-end latency. By contrast, gg’s abstract interface must force
and load all data-dependencies before running user code, and
cannot perform this optimization. ExCamera-on-gg is 18%
slower than the original, but adds memoization and fault-

Object Recognition

gg local (64 cores) 04m 30s
gg on AWS Lambda 37s

Scanner local (64 cores) 05m 39s
Scanner on cluster (140 cores) 03m 14s

Figure 13: Scanner-on-gg outperforms the original Scanner on the
same hardware, and performs even faster on AWS Lambda.

tolerance, unlike the original ExCamera.

5.5 Object Recognition
We compared the original Scanner [30] with the gg implemen-
tation using a 4K video with more than 6,000 frames. For the
baseline, we chose the most favorable execution parameters
through an exhaustive search. The optimal number of pipeline
instances and frame batches were 14 and 75, respectively.
Within each pipeline, each video chunk is first decoded into
raw images before being passed to the TensorFlow kernel ex-
ecution thread. Each execution thread only needs to load the
model once per stream of frames. Scanner local was run on a
64-core machine (m4.16xlarge). Scanner on cluster was run
with a 4-core master (m4.xlarge) and four 36-core workers
(c4.8xlarge), of which Scanner uses 35 and leaves one for
scheduling. For the gg implementation, the video was broken
up into five-second chunks and uploaded to the cloud prior to
execution. Each chunk was decoded in batches of 25 frames.
For the object recognition task, the IR was configured to the
optimal number of frame batches per task.

Figure 13 presents the summary of the results. While Scan-
ner on cluster is 39% faster than gg local, it is 5.2× slower
than gg on AWS Lambda. Scanner local is over 9× slower
than gg on AWS Lambda. gg’s lightweight scheduling and ex-
ecution engine removes several layers of abstraction present
in Scanner’s design.
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6 Limitations and Discussion

gg has a number of important limitations and opportunities
for future work.

Direct communication between workers. Although com-
mentators have noted that “two Lambda functions can
only communicate through an autoscaling intermediary ser-
vice. . . like S3” [18], our experience differs: we have found
that on AWS Lambda, two Lambda functions can communi-
cate directly using off-the-shelf NAT-traversal techniques, at
speeds up to 600Mbps (although the performance is variable
and requires an appropriate protocol and failure-recovery strat-
egy). We thus believe that the performance of systems such as
ExCamera, PyWren, and gg is likely to improve in the future
as practitioners develop better mechanisms for harnessing this
computing substrate, including direct communication.

In follow-on work, we are developing a 3D ray-tracing
engine on gg, that will quickly render complex scenes across
thousands of nodes, where the scene geometry and textures
consume far more space than any individual node’s mem-
ory. To achieve sufficient performance, this will require low-
latency and high-speed communication between workers, mo-
tivating the use of direct network connectivity, instead of an
intermediate storage system such as S3 or Pocket [24].

Limited to CPU programs. gg specifies the format of the
code as an x86-64 Linux ELF executable. The IR has no mech-
anism to signal a need for GPUs or other accelerators, and effi-
ciently scheduling such resources poses nontrivial challenges,
because loading and unloading configuration state from a
GPU is a more expensive operation than memory-mapping a
file. We plan to investigate the appropriate mechanisms for a
gg back-end to schedule thunks onto GPUs.

A gg DSL to program for the IR. Currently, we have im-
plemented a C++ and Python SDK for users to express ap-
plications that target the gg IR. However, this requires the
user to explicitly provide an x86-64 executable and all of its
dependencies prior to thunk generation. We envision a lan-
guage in which users can write high-level code in Python or
C++, using primitives such as a parallel map, fold, and other
operations, which will be compiled into the gg IR.

Why cloud functions? Transient, burst-parallel execution
on services like AWS Lambda produces a different cost struc-
ture from a warm cluster. It takes about the same amount of
time for gg to compile Inkscape on AWS Lambda as on a
384-core cluster of warm EC2 VMs (Figure 9). The job costs
about 50 cents per run on Lambda, compared with $18.40 per
hour to keep a 384-core cluster running (Figure 2). Whether
it is financially beneficial for the gg user to run such jobs on
long-running VMs or on cloud functions depends on how
often the user has a job to run. From an economic perspec-
tive, the provider is compensating the infrequent user for their
elasticity; e.g., for having structured their workload to vacate
compute resources when no task is active, and to tolerate vari-

ations in the exact number of nodes available for a job and
the timing of when they are allocated.

In the future, we expect the performance characteristics of
VMs and Lambda-like services to move closer together. There
is no intrinsic reason for it to take more than 30 seconds to
provision and boot an infrastructure-as-a-service VM in the
public cloud. Linux itself can boot in less than a second, and
KVM and VMware can provision a VM in less than 3 seconds.
We understand the remaining time is largely “management
plane” overhead. If this can be reduced, then cloud functions
may hold no compelling advantage over virtual machines
for executing burst-parallel applications—but tools like gg
that aid efficient execution on remote compute infrastructure
(whether VM or cloud function) may remain valuable.

7 Conclusion

In this paper, we described gg, a framework that helps develop-
ers build and execute burst-parallel applications. gg presents
a portable abstraction: an intermediate representation (IR)
that captures the future execution of a job as a composition of
lightweight Linux containers. This lets gg support new and
existing applications in various languages that are abstracted
from the compute and storage platform and from runtime
features that address underlying challenges: dependency man-
agement, straggler mitigation, placement, and memoization.

As a computing substrate, we suspect cloud functions are in
a similar position to Graphics Processing Units in the 2000s.
At the time, GPUs were designed solely for 3D graphics, but
the community gradually recognized that they had become
programmable enough to execute some parallel algorithms
unrelated to graphics. Over time, this “general-purpose GPU”
(GPGPU) movement created systems-support technologies
and became a major use of GPUs, especially for physical
simulations and deep neural networks.

Cloud functions may tell a similar story. Although intended
for asynchronous microservices, we believe that with suffi-
cient effort by this community the same infrastructure is ca-
pable of broad and exciting new applications. Just as GPGPU
computing did a decade ago, nontraditional “serverless” com-
puting may have far-reaching effects.
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