CS154

Lecture 6:
Streaming Algorithms and Communication Complexity
Streaming Algorithms
Streaming Algorithms
L = \{x \mid x \text{ has more 1’s than 0’s}\}

Initialize $C := 0$ and $B := 0$
Read the next bit x from the stream
If $(C = 0)$ then $B := x$, $C := 1$
If $(C \neq 0)$ and $(B = x)$ then $C := C + 1$
If $(C \neq 0)$ and $(B \neq x)$ then $C := C - 1$
When the stream stops,

accept if $B=1$ and $C > 0$, else reject

B = the majority bit
C = how many more times that B appears

On all strings of length n, the algorithm uses $(1 + \log_2 n)$ bits of space (to store B and C)
Streaming Algorithms

Streaming algorithms differ from DFAs in several significant ways:

1. Streaming algorithms can output more than one bit

2. The “memory” or “space” of a streaming algorithm can (slowly) increase as it reads longer strings

3. Could also make multiple passes over the data, could be randomized

Can recognize non-regular languages
Theorem: Suppose a language L can be recognized by a DFA with $\leq 2^p$ states. Then L is computable by a streaming algorithm A using $\leq p$ bits of space.

Proof Idea: Algorithm A stores the DFA’s current state in memory, beginning with the start state. Alg. A makes decisions based on DFA transitions. When the string ends, A outputs $accept$ if the DFA state is accepting, $reject$ otherwise.
DFAs and Streaming

For any $L \subseteq \Sigma^*$ define $L_n = L \cap \Sigma^n$

Theorem: Suppose L is computable by a streaming algorithm A using $f(n)$ bits of space, on all strings of length n
Then for all n, L_n is recognized by a DFA with $\leq 2^{f(n)}$ states.

Proof Idea: The new DFA will have a state for each of the $2^{f(n)}$ possible configurations of A’s memory. When A sees a symbol, its memory will update; the transition function of the DFA can simulate that.
L = \{x \mid x \text{ has more 1's than 0's}\}

Is there a streaming algorithm for L using much \textit{less than} \((\log_2 n)\) space?

\textbf{Theorem:} Every streaming algorithm for L needs at least \((\log_2 n)-1\) bits of space

We will use:

• Myhill-Nerode Theorem
• The connection between DFAs and streaming
L = \{x \mid x \text{ has more 1’s than 0’s}\}

Theorem: Every streaming algorithm for L
requires at least \((\log_2 n)-1\) bits of space

Proof Idea: Let n be even, and \(L_n \subseteq \{0,1\}^n \cap L\)

We will give a set \(S_n\) of \(n/2+1\) strings such that
each pair in \(S_n\) is *distinguishable* in \(L_n\)

Myhill-Nerode \(\Rightarrow\) Every DFA recognizing \(L_n\)
needs at least \(n/2+1\) states

\(\Rightarrow\) Every streaming algorithm for L requires at least \((\log n)-1\) bits of memory
$L = \{x \mid x \text{ has more 1's than 0's}\}$

Theorem: Every streaming algorithm for L requires at least $(\log_2 n)-1$ bits of space

Suppose we partition all strings into their equivalence classes under $\equiv_{\binom{L}{n}}$

But the number of states in every DFA recognizing L_n is *at least* the number of equivalence classes under \equiv_{L_n}
\[L = \{ x \mid x \text{ has more } 1\text{'s than } 0\text{'s}\} \]

Theorem: Every streaming algorithm for \(L \) requires at least \((\log_2 n)-1\) bits of space

Proof (Slide 1): Let \(S_n = \{0^{n/2-i}1^i \mid i = 0, \ldots, n/2\} \)

Let \(x = 0^{n/2-k}1^k \) and \(y = 0^{n/2-j}1^j \) be from \(S_n \), \(k > j \)

Claim: \(z = 0^{k-1}1^{n/2-(k-1)} \) distinguishes \(x \) and \(y \) in \(L_n \)

- \(xz \) has \(n/2-1 \) zeroes and \(n/2+1 \) ones \(\Rightarrow xz \in L_n \)
- \(yz \) has \(n/2+(k-j-1) \) zeroes and \(n/2-(k-j-1) \) ones

But \(k-j-1 \geq 0 \) ... so \(yz \not\in L_n \)

So \(x \not\equiv_{L_n} y \), because \(z \) distinguishes \(x \) and \(y \)
L = \{x \mid x \text{ has more 1’s than 0’s}\}

Theorem: Every streaming algorithm for L requires at least \((\log_2 n) - 1\) bits of space.

Proof (Slide 2):

All pairs of strings in \(S_n\) are distinguishable in \(L_n\)

\[\Rightarrow\] There are at least \(|S_n|\) equiv classes of \(\equiv_{L_n}\)

Then, from the Myhill-Nerode Theorem:

\[\Rightarrow\] All DFAs recognizing \(L_n\) need \(\geq |S_n|\) states

\[\Rightarrow\] Every streaming algorithm for L requires at least \((\log_2 |S_n|)\) bits of space.

Recall \(|S_n| = n/2 + 1\) and we’re done!
Number of Distinct Elements

The DE problem
Input: \(x \in \{0,1,\ldots,2^k\}^* \), \(2^k > |x|^2 \)

Output: The number of distinct elements appearing in \(x \)

Note: There is a streaming algorithm for DE using \(O(k \, n) \) space

Theorem: Every streaming algorithm for DE requires \(\Omega(k \, n) \) space
Randomized Algorithms Help!

The DE problem
Input: \(x \in \{0,1,\ldots,2^k\}^* \), \(2^k > |x|^2 \)
Output: The number of distinct elements appearing in \(x \)

Theorem: There is a \textit{randomized} streaming algorithm that can approximate DE to within 0.1\% error, using \(O(k + \log n) \) space!

See the lecture notes for more details.
Communication Complexity
Communication Complexity

A theoretical model of distributed computing

- **Function** \(f : \{0,1\}^* \times \{0,1\}^* \rightarrow \{0,1\} \)
 - Two inputs, \(x \in \{0,1\}^* \) and \(y \in \{0,1\}^* \)
 - We assume \(|x| = |y| = n\). Think of \(n \) as HUGE

- **Two computers:** Alice and Bob
 - Alice *only* knows \(x \), Bob *only* knows \(y \)

- **Goal:** Compute \(f(x, y) \) by communicating as few bits as possible between Alice and Bob

We do not count computation cost. We *only* care about the number of bits communicated.
Alice and Bob Have a Conversation

In every step: Each bit sent is a function of the party’s input and all the bits communicated so far in the conversation.

Communication cost = number of bits communicated
= 4 (in the example)

We assume Alice and Bob alternate in communicating, and the last bit sent is the value of $f(x,y)$
Def. A *protocol* for a function f is a pair of functions $A, B : \{0,1\}^* \times \{0,1\}^* \rightarrow \{0, 1, \text{STOP}\}$ with the semantics:

On input (x, y), let $r := 0$, $b_0 = \varepsilon$. While $(b_r \neq \text{STOP})$,

$r++$

If r is odd, Alice sends $b_r = A(x, b_1 \cdots b_{r-1})$
else Bob sends $b_r = B(y, b_1 \cdots b_{r-1})$

Output b_{r-1}. Number of rounds $= r - 1$
Def. The **cost** of a protocol P for f on n-bit strings is
\[
\max_{x, y \in \{0,1\}^n} \text{[number of rounds in } P \text{ to compute } f(x, y)}
\]

The **communication complexity** of f on n-bit strings is the
minimum cost over all protocols for f on n-bit strings
= the minimum number of rounds used in any protocol
for computing $f(x, y)$ over all n-bit x, y
Example. Let $f : \{0,1\}^* \times \{0,1\}^* \rightarrow \{0,1\}$ be arbitrary

There is always a “trivial” protocol:

- Alice sends bits of x in odd rounds
- Bob sends bits of y in even rounds
- After $2n$ rounds, they both know each other’s input!

The communication complexity of every f is at most $2n$
Example. \(\text{PARITY}(x, y) = \sum_i x_i + \sum_i y_i \mod 2. \)

What’s a good protocol for computing PARITY?

Alice sends \(b_1 = (\sum_i x_i \mod 2) \)
Bob sends \(b_2 = (b_1 + \sum_i y_i \mod 2). \) Alice stops.

The communication complexity of PARITY is 2
Example. MAJORITY(x, y) = most frequent bit in xy

What’s a good protocol for computing MAJORITY?

Alice sends $b = \text{number of 1s in } x$

Bob computes $c = \text{number of 1s in } y$,

sends 1 iff $b + c$ is greater than $(|x| + |y|)/2 = n$

Communication complexity of MAJORITY is $O(\log n)$
Example. EQUALS(x, y) = 1 $\iff x = y$

What’s a good protocol for computing EQUALS?

?????

Communication complexity of EQUALS is at most $2n$
Connection to Streaming and DFAs

Let $L \subseteq \{0,1\}^*$

Def. $f_L: \{0,1\}^* \times \{0,1\}^* \rightarrow \{0,1\}$

for x, y with $|x| = |y|$ as:

$$f_L(x, y) = 1 \iff xy \in L$$

Examples:

$L = \{ x \mid x \text{ has an odd number of 1s} \}$

$$\Rightarrow f_L(x, y) = \text{PARITY}(x,y) = \sum_i x_i + \sum_i y_i \mod 2$$

$L = \{ x \mid x \text{ has more 1s than 0s} \}$

$$\Rightarrow f_L(x, y) = \text{MAJORITY}(x,y)$$

$L = \{ xx \mid x \in \{0,1\}^* \}$

$$\Rightarrow f_L(x, y) = \text{EQUALS}(x,y)$$
Theorem: If L has a streaming algorithm using $\leq s$ space, then the comm. complexity of f_L is at most $4s + 5$.

Proof: Alice runs streaming algorithm A on x. Sends the memory content of A: this is s bits of space. Bob starts up A with that memory content, runs A on y. Gets an output bit, sends to Alice.

(...why $4s+5$ rounds? Can you do better?)